The London CPL1 compiler

By G. F. Coulouris,* T. J. Goodey,* Roberta W. Hill,* R. W. Keeling} and D. Levin

The CPL language has been described elsewhere, but as yet no implementations of it have been
described. The authors have been concerned in the implementation of a subset of the full language,
the implementation proceeding concurrently with the design of the language. Since the majority
of the designers were not members of the implementation team, the choice of a subset was partly
dictated by the state of the design process at the time. Some other motivations for the choice are
given in Coulouris (1967). The implementation was intended to clarify some of the problems of
implementing CPL, and to gain feedback information from user experience to assist in the design
process. The authors believe that CPL is a powerful language for the demonstration of computing
concepts, and that the implementation has therefore provided a useful teaching tool.

(First received September 1967)

The compiler which is the subject of this paper is imple-
mented on the London Atlas for a language CPL1, very
similar to CPL (Barron et al., 1963; CPL Working
Papers, 1966), but less powerful. (It has no types
general, complex or double length. The list processing
facilities mentioned in Barron et al. (1963) and Barron
and Strachey (1966) are not part of CPL as defined by
the reference manual (2), and are not in CPL1.) Despite
this CPL1 is more powerful than ALGOL 60, and some
details of its implementation may therefore be of interest.
The CPL1 compiler has been written using the Com-
piler Compiler of Brooker and Morris. This takes a
‘statement’ at a time, analyses it, and produces object
code. In its application to CPLI it has been necessary
to define the complete program as a single source state-
ment; this is forced by the ‘where’ clause which allows
trailing definitions and by the labels which are not
defined at the head of a block. In a situation such as:

§l let B=0-01

§ letx=RB

...Program. ..
B: §1

it is not known, until the whole program is read in,
whether x is of type real or label (in fact it is label).

Declarations

At the head of a block, local variables can be defined
to have a certain type, and may also be initialised to the
value or to the address of some expression. Thus
‘let x, y be real’ corresponds to ALGOL ‘real x,y’;
‘let x, y = 0-0, 30+ 6’ is both an implicit type declaration
and an initialisation program.

‘let A ~ B’ initialises 4 to contain the address of
cell B and all references to A are indirect references
to B. The two ways of evaluating an expression, to
produce a value or an address, are called right-hand
and left-hand evaluation respectively, the nomenclature

deriving from the fact that these are the modes of
evaluation required on each side of an assignment
statement.

In CPL1 there are nine data types to which dynamic
assignments may be made. They are listed in Table 1.
It is a principle in CPL that the type of any expression
can be recognised by inspection. Thus when the
compiler meets ‘let b = ‘cat’’ it sets up b as a string
variable because it recognises ‘cat’ as a string. Constants
have easily recognisable types, and variables have their
type specified in their definition. The type of an
expression is determined by the main operator and its
operands—i.e. by the operator and operands which
result from the first stage of syntactic analysis of the
expression. (If the operands are themselves expressions,
this process is applied recursively.) Thus ¢ >a + b is
boolean, a + b is real if either a or b is real, otherwise
it is integer, A \/ b is logical unless both 4 and b are
boolean, when it is boolean. The conditional expression
b— A, B has a type which is the ‘worse’ of the two
types of A and B, in the sense of having the lower type
number in Table 1, so ‘b—1,3-24" is real. The
type of an expression can also be forced by using the
explicit transfer functions Real, Integer, etc.

The compile-time routine that generates object pro-
gram to evaluate an expression exits with a global

Table 1

TYPE NUMBER TYPE
real
integer
logical
boolean
string
routine
function
array
label

oINS LN -

* Present address, Centre for Computing and Automation, Imperial College, London.
+ Present address, Department of Computer Science, University of Edinburgh.
This work was carried out at the Institute of Computer Science, 44 Gordon Square, London W.C.1I.

020z e 60 U0 1senb Aq 06Z721/92/1/1 | AOBISAE-0[IE/|UlW00/ W00 dno"o|WapEsE//:Sd)Y WOl POpeojuMod



London CPLI1

variable set to the type number of the result it has found.
If the expression is the RHS of a definition then the
defined variable and its type are entered in the compile-
time dictionary.

Compile-time dictionaries

It is meaningful to redefine locally some variables in
terms of their previous global values. The definition
‘let i,j=j + 1,i + 1’ has this effect. It is necessary
to compile the expressions on the right-hand side before
the names being defined are put on the dictionary. 7 and
Jj are said to be defined in parallel.

ACTIVE DICTIONARY

[alx|
@ [a]x]x]y|
Gi) [a [x[a|b]

Fig. 1

PASSIVE DICTIONARY

[T¢]

It is convenient to have two dictionaries (called active
and passive) where the passive dictionary holds all those
definitions currently being defined in parallel. At the
end of the definition the entries are transferred from
passive to active dictionaries. Consider the declarations.

‘leta,x =0
leta = resultof §letx,y =1
result = x +a§
and b =0’

Fig. 1 shows the states of the dictionaries

(i) after compiling the first definition
(i1) while compiling ‘result = x + @’
(iii) after compiling the second declaration.

If a definition is intended to be recursive it must be
preceded by the directive ‘rec’:

‘letreca =resultof §...a...§

which forces the identifiers being defined onto the active
dictionary before the right-hand sides are evaluated. In
this case a preliminary scan of the right-hand sides is
necessary to discover their type.

‘Where’ clauses

When a definition is only needed over a single CPL
expression or command it is not necessary to create an
additional block for it. A command, expression or
definition can be qualified by a where clause, which is a
trailing definition. Variables defined in a where clause
remain on the active dictionary throughout the scope of
the where clause. To compile

‘let A = x + y where x = 3’

27

x is defined equal to 3 and put on the active dictionary,
A is defined on the passive dictionary, finally x is removed
from the active dictionary and A placed there. The local
storage occupied by x at run-time is not recovered but is
treated as ‘own’ to the definition.

Functions are thought of as expressions with para-
meters and can be defined as such, e.g.

let Radius [x, y] = Sqrt[x 4 2 +y 4 2]

Variables which are not parameters of the expression
are called free variables. Assignments to these variables
alter the functions behaviour. In the above case the
only free variable is Sgrt. In CPL a further sort of
function can be defined with the property that assign-
ments to its free variables do not alter its behaviour, but
in CPL1 these functions are not available. A function
is represented as an entry address to a piece of object
program which will left-hand-evaluate the expression,
thus allowing the function to be used on the left-hand
or right-hand side of assignments. In CPL the com-
mands for evaluating the left-hand and right-hand
sides can be defined separately, in CPL1 this is not
possible.

Type transfers

The programmer is not required to say what type his
expressions are, so before any expression is compiled
the compiler can make no assumptions about its type.
The routine for compiling expressions discovers their
type and exits with a global variable set to the type of
the compiled expression. A compile-time transfer func-
tion is called to generate code transferring the value of
the expression to a value of the type required. If the
two types are the same, or if the transfer is integer to
real, no other action is needed. Otherwise if the transfer
is possible a soft report or note is printed, and if the
transfer is impossible a hard report is printed. After
a hard report the program will not normally be
executed.

For instance in the boolean expression ‘x = n’ where
x, n are real, integer, n is transferred from integer to real
for the comparison. Transfers are invoked in assign-
ments, during evaluation of actual parameters of routines
and functions, and for matching subexpressions to their
operators. Thus compile-time messages from the
transfer routine are frequent and sometimes useful.

Use of the Compiler Compiler

We give here a simplified version of the routine for
compiling CPL1 assignments written in the Compiler
Compiler language to illustrate the method used. The
names in square brackets refer to the instances of phrases
that the syntax recogniser has recognised in the source
program. The /1’ and /2’ postfixes distinguish separate
instances of the same class of phrase. Characters not
in square brackets refer to instances of themselves.
Compiler Compiler routines are allowed to be recursive.

020z e 60 U0 1senb Aq 06Z721/92/1/1 | AOBISAE-0[IE/|UlW00/ W00 dno"o|WapEsE//:Sd)Y WOl POpeojuMod



London CPLI
ROUTINE [COMMAND] = [EXPRESSION/1] := [EXPRESSION/2]

LHEV [EXPRESSION/1] | plants code to evaluate (i.e.
| fetch) the left-hand
| value (address) of
| [EXPRESSION/1] to
| index register 1.

Al = B2 | acompiler-time assignment.
| Al is a local integer vari-
| able of the compiling
| routine, and
| B2 is the global variable
| always
| containing the current type
| (set by LHEV).

I

RHEV [EXPRESSION/2] | plants code to evaluate
| [EXPRESSION/2] in an
| accumulator and (of course)
| reloads B2.
TRANSFER B2 TO Al | the implicit transfer func-
| tion, to transfer
| the contents of the accumu-
| lator from the type
| in B2 to the type in Al.
DUMP ACC IN 1 | plants code to store the
| accumulator
| in the location pointed to
| by index register 1.

END

Expression compilation

The type of an expression is determined by its principal
operators, e.g. an expression involving ‘A’ or 'V’ is of
type logical and its subexpressions will be transferred to
this type. Expressions are processed recursively from
the bottom up; by the time coding to evaluate the
expression is being planted, code to evaluate all the sub-
expressions has already been planted and all of their
types are known. The routine RHEV[EXPRESSION],
for compiling expressions, will involve calls to sub-
routines, one for each subexpression. The nature of
expression compilation can be seen from a simple
example.

The subexpression [FEXPN] is an expression involving
at worst the operator ‘\/’ and is defined syntactically:

[FEXPN] = [EEXPN]\/ [FEXPN] or [EEXPN]

The Compiler Compiler will use this definition for syn-
tactic analysis, and will need two corresponding parts to
the routine, one for each alternative. The subexpression
is compiled by routine FRHEV:

28

ROUTINE FRHEV [FEXPN]
—>1 UNLESS [FEXPN]

— [EEXPN]

ERHEV [EEXPN]

| is the operator absent

| if so the type and

| value of [FEXPN]

| are that of [EEXPN].
END

1 LET [FEXPN] | a command control-
= [EEXPN] \ [FEXPN]| ling exploration

| of the syntax tree.

FRHEV [FEXPN]
TRANSFER B2 TO 3 | transfers type to

| logical.

Al = B3 | B3 is the next available
| workspace address.
DUMP ACC | dump the accumulator
| moving B3 on by one
| word.
ERHEV[EEXPN]

TRANSFER B2 TO 3
PLANT 1646 ,0,0, A1 | plants Atlas extracode
| which OR s the

| accumulator with

| word at address Al.

UPDUMP 2 | move B3 pointer back
| two half words.
END | (i.e. one whole word.)

The routine LHEV [EXPRESSION] compiles code

for the evaluation of the left-hand value of an expression,
which could be a conditional expression such as
b— Al[i], Cl[i).
If it finds an expression not possessing a left-hand
value (e.g. ‘x =’) it calls RHEV to right-hand evaluate
it and then creates a new left-hand value in which to
store the result. The creation is performed by a routine
DUMP ACC. The compile-time global variable B3
points to the next available word of run-time storage.
Routine DUMP ACC moves up the pointer B3, looks
at B2 (the type of latest expression compiled) to decide
which accumulator to dump and plants code to dump
the accumulator. The effect is to create a left-hand
value for the expression most recently evaluated in right-
hand mode. There is an inverse routine UPDUMP [N]
which, by moving back the B3 pointer, deletes the last
N left-hand values created. This simulation of a stack
at compile time allows all addressing to be absolute, the
technique is described in Coulouris (1967). Under
recursion the local variables are preserved and restored
on a run-time stack.

Data representation

Variables can be initialised by value to contain the
right-hand value of an expression or by reference to
contain the left-hand value of an expression. A variable

020z e 60 U0 1senb Aq 06Z721/92/1/1 | AOBISAE-0[IE/|UlW00/ W00 dno"o|WapEsE//:Sd)Y WOl POpeojuMod



London CPL1

can also be initialised by substitution which sets it up as
a parameterless function.

Value variables of type real, integer, logical or boolean
have a single Atlas word assigned to them at compile-
time which will contain their run-time value. Routine,
function and label variables also have a single Atlas
word containing their entry address in the compiled
program. Strings and arrays have a pointer which at
run-time points to their currently assigned storage area,
or is zero if they are currently empty. Strings are stored
as a vector of half words. The first half word is the
length of the string, subsequent half words are conse-
cutive characters, simple or overprinted. Arrays are
stored as vectors of words. Most of them contain the
right-hand value of one element. However, the first
few words of the vector contain the total number of
elements, the dimension of the array and upper and
lower bounds for each dimension. Every variable
declared by value has reserved for it at compile-time an
Atlas word, the contents of which is changed on assign-
ment to the variable. The address of the reserved word
represents the left-hand value of the variable.

A reference variable is represented by a word con-
taining a pointer to the variable or array element it is
referencing. Instructions using reference variables are
implemented by indirect addressing. In most languages
left-hand evaluation is done implicity as part of a fetch
or store instruction. However, in CPL1 left-hand
evaluatio1 can involve evaluating functions and con-
ditional expressions so it is more convenient to calculate
the left-hand value separately and to leave the result
in an index register.

A substitution variable is represented as a pointer to
a piece of object program which calculates the left-hand
value of an expression. Substitution variables can be
evaluated for use on either side of an assignment. If
the right-hand value is required the variable is at first
left-hand evaluated then the right-hand value is fetched
to the accumulator.

Routine and functicn parameters

A routine call must have actual parameters matching
its declared formal parameters. When a routine or
function is defined, a list of the types of its parameters
is stored in the dictionary. In compiling the call, the
types of the actual parameters are matched to those of
the formal parameters, failure to match generating an
error message from the compiler’s transfer routine.

Inside the body of the routine or function, the formal
declaration of parameters together with the substitution
of actual parameters acts like an initialised definition.
Just as variables may be initialised by ‘=’, ‘~’ or ‘=’,
parameters can be called by value, reference or sub-
stitution. Thus after

‘let routine R6 [string ref S, real value 7]
...Body...

C

29

the routine call ‘R6 [Sam, 2.7] will make the body of
the routine act as if the local declaration

‘let S~Sam and 1=2-7"

had been made.

Copying

For variables with changing storage requirements
(functions, routines, arrays and strings) the question of
whether to copy on assignment arises. The bodies of
routines and functions cannot be changed or deleted so
no copying is necessary for them when they are assigned,
only the entry address is handed across. Arrays in
CPL1 are always copied on assignment as this seems to
cause least confusion to programmers (although in CPL
no copying is done unless the function ‘Copy’ is invoked).
In CPLI1 strings are not copied and the system never
collects the disused storage space. The programmer
must organise his own garbage collection.

Standard routines and functions

A full set of standard routines and functions is included
with the compiler; they do not necessarily correspond
with those in the CPL reference manual. The ‘Inpur’
and ‘Output’ routines accept any number of arguments
of any type. ‘Output’ will output its arguments in a
standard format determined by their type. Other out-
put routines allow the format to be specified, and further
flexibility can be achieved by using the string generating
functions. Full specification of the standard routines
and functions are given in Coulouris and Goodey (1966).

Predeclared labels

During execution of a program, faults such as accu-
mulator overflow and array bound violation can occur.
When this happens the program jumps to a predefined
label variable where monitoring action is taken. By
assigning labels in his program to these predefined label
variables the programmer can arrange to take his own
action when the fault occurs. All label jumps are
indirect jumps through a given stere location, and a
label assignment simply writes a new address into this
location.

Run-time postmortem

When compiling the program the compiler prints a
program ‘map’ which assigns to each block of the pro-
gram a block number. If the program fails in execution
then a postmortem is printed. This contains a one-line
identification of the fault and a list of blocks that the
program is dynamically inside. With each block is
printed a list of the local identifiers together with their
current right-hand values printed in their standard
output formats.

There is also a ‘block trace’ mechanism which prints
out each block or routine entry and exit. This can be
turned on and off dynamically.

020z e 60 U0 1senb Aq 06Z721/92/1/1 | AOBISAE-0[IE/|UlW00/ W00 dno"o|WapEsE//:Sd)Y WOl POpeojuMod



London CPLI1

Acknowledgements

The authors would like to extend their thanks to the
Director of the University of London Institute of
Computer Science, Prof. R. A. Buckingham, for making

References

the work possible, and to the staff of the Atlas Compu-
ting Service for making their interaction with the machine
somewhat less painful.

Thanks are also due to Dr. Derek Morris for his
unfailing help with the Compiler Compiler.

(1) BARRON, D. W., BuxToN, J. N., HARTLEY, D. F., NixoN, E., and STRACHEY, C. (1963). The main features of CPL, Com-

puter Journal, Vol. 6, pp. 134-143.

(2) University of London Institute of Computer Science and the Mathematical Laboratory, Cambridge, Technical Report,

‘CPL Working Papers’, July, 1966.

(3) CouLouris, G. F., and GoopEy, T. J. (1966). The CPL1 System Manual, University of London Institute of Computer Science.

(4) Courourss, G. F. (1967). Principles for implementing useful subsets of advanced programming Languages (in Machine
Intelligence 1, Ed. by N. L. Collins and D. Michie, Edinburgh: Oliver and Boyd).

(5) BROOKER, R. A., MaccaLum, 1. R., Morris, D., and RoHL, J. S. (1963). The Compiler Compiler, Ann. Rev. Automatic

Programming, Vol. 3, Pergamon Press.

(6) BARRON, D. W., and STRACHEY, C. (1966). Programming (in Advances in Programming and Non-Numerical Computation,

ed. L. Fox, London: Pergamon Press).

Book Review

Procédures Algol en Analyse Numérique,; 324 pages. (Published
by Min. de ’Education Nationale, 35 F.)

This book, whose purpose is to provide useful ALGOL
procedures for scientific computing, and to encourage the
general use of ALGOL, is a combined effort by six French
Universities organised by the National Centre for Scientific
Research. There are seven chapters, with titles Linear
‘Algebraic Equations (13 procedures), Algebraic Eigenvalue
Problem (17), Algebraic and Non-linear Systems (11),
Differential Systems, Integral and Integro-differential Equa-
tions (6), Definite Integrals (10), Approximation (13), Proba-
bility and Special Functions (8).

The two linear algebra chapters contain much standard
material, such as variants of Gauss and Cholesky for solution
of linear equations and matrix inversion, and methods for
the eigenvalue problem associated with the names of Jacobi,
Givens, Householder, Sturm, Rutishauser, Hessenberg,
Wilkinson, Hyman, Laguerre and Newton. In addition
there are processes for the termination of iterations based on
consideration of a ‘neighbouring’ problem; least squares
methods including that of Golub and Businger; the deter-
mination of pseudo inverses; power methods and deflation
for eigenvalues; and Jacobi for complex Hermitian matrices.
Chapter 3 includes for polynomials the methods of Newton
(real and complex) and Laguerre, and those of Lin and
Bairstow for finding quadratic factors. For more general
functions the method of Muller is programmed, and ‘bisection’
and Newton iteration are used for single and simultaneous
non-linear equations.

Chapters 5 and 6 include programs which probably exist
in few other computer installations. The quadrature
procedures determine matrices connected with polynomial
and trigonometric interpolation, and tensor products of such
matrices, and use them for quadrature along a line and over
a rectangle, with error estimation based on the interpolating
function. Romberg integration is also extended from the

30

line to a rectangle and a parallelepiped. Chapter 7 relates
only to initial-value problems, but covers systems of first and
second order differential equations, Volterra integral equations
and Volterra integro-differential equations of first and second
orders. The main techniques are varieties of Runge-Kutta
processes recently developed in France.

Chapter 7 also breaks new ground. Six procedures find
good or best approximations, using the maximum norm, for
continuous functions under a miscellany of conditions and
constraints, both discrete and continuous. The Remes
algorithm is the basic tool. Four procedures use a least
squares norm, and four others produce spline approximations
of general and particular orders. In the final miscellaneous
chapter we find an additional Runge-Kutta error-minimising
procedure, two sections on Mathien functions, one on the
inversion of the error function, two on Markoff chains, and
two on random sequence generators.

Each section comprises a ‘Notice’, with information about
the program, method, and relevant literature; the ‘Procedure’,
containing the ALGOL instructions; and an ‘Exemple
d’utilisation’, with problem, program and numerical results
obtained. [Each chapter also has an introduction, with some
numerical analysis, a summary of the procedures and an
evaluation thereof, and further references. Finally, each
chapter and even each procedure have named responsible
authors, to permit ‘the establishment, of a fruitful dialogue
between the authors and the readers (suggestions, criticisms,
requests for clarification, etc’).

Extreme accuracy, of course, is a necessity for a work of
this kind, and the stated checks and methods of producing
the printed pages give confidence that this has been achieved.
This is undoubtedly an important and practically useful
publication, and the team responsible for it deserve our
congratulations and thanks for a good idea splendidly
carried out.

L. Fox (Oxford)

020z e 60 U0 1senb Aq 06Z721/92/1/1 | AOBISAE-0[IE/|UlW00/ W00 dno"o|WapEsE//:Sd)Y WOl POpeojuMod



