R.A.LR.O.
(9° année, septembre 1975, B-3 p. 29 a 45)

L]
Systémes C. GIRAULT
d’Exploitation C. KAISER, rédacteurs

THE EDINBURGH MULTI-ACCESS SYSTEM
SCHEDULING AND ALLOCATION PROCEDURES
IN THE RESIDENT SUPERVISOR (*)

by N. H. SHELNESS ('), P. D. STEPHENS (?) and H. WHITFIELD (*).

Abstract. — The resource allocation and scheduling procedures used in the Edinburgh
Multi-Access System (EM AS) differ radically from those used in other large scale virtual memory
systems (MULTICS, MTS, TSS, etc.). This paper consists of a brief introduction to EMAS, an
-extended discussion of the differences between the local scheduling and allocation algorithms
used in EM AS and the global algorithms used in other systems, and a description of improvements
made to the various scheduling and allocation components of EMAS since the last published
report on the system [W2].

INTRODUCTION

The Edinburgh Multi-Access System is a large, multi-user, interactive, paged,
virtual memory operating system developed in Edinburgh over the last nine
years. An initial design was formulated between 1964 and 1966 [W 1]. Follow-
ing this an attempt at implementation was undertaken by a large University/
manufacturer team: The Edinburgh Multi-Access Project. This effort commenced
in 1967 and came to an end in the summer of 1970, having failed to implement
a satisfactory system. The reasons for this will not be discussed here.

The system that existed at the end of the initial project was not robust enough
for even such simple system development tasks as editing and compilation.
There was, though, a nucleus of code on which a small team, varying in size
from 3 to 7, was able, over the next year, to build a system robust enough for
general release. The results of this effort, along with the performance charac-
teristics of the system in the summer of 1972 are presented in a paper written

(*) Regu mars 1974,
Article issu de celui qui a été présenté & I'LR.1.A. en avril 1974 au Colloque International
sur les Aspects Théoriques et Pratiques des Systémes d’Exploitation. :

(*) Department of Computer Science, Edinburgh University.
(%) Edinburgh Regional Computing Centre.
(3) Mathematisch Institut, Rijskuniversiteit te Groninigen.

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle n° sept. 1975, B-3.

30 N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

at that time [W 2]. Since then a new team including some who were associated
with this earlier effort, have rewritten a large part of the resident supervisor,
with a view to generality and portability. A number of scheduling and allocation
procedures have also been changed as a result of performance monitoring
and new design insights. These have resulted in a considerable performance
improvement over that reported in [W2]. It is the purpose of this paper to
discuss the current scheduling and allocation policies, and the motivation for
them.

PHYSICAL SYSTEM STRUCTURE

The hardware (ICL 4/75) corresponds to that of many large European third
generation machines, being a copy of an (RCA SPECTRA 70) which is itself
a copy of an (IBM S/360), to which an address translation facility (paging)
was added as an afterthought. It possesses four types of memory the first three
of which (tape, diskfile and drum) are connected to the last (core) by conventional
selector channels. On the initial 1 megabyte configuration in Edinburgh (fig. 1),
there are 4 nine track tape units on two chanrels, 2 three hundred and fifty

-
. .
O | <>
4,
-
. 1600 BPI. Tape

. 350 Mbyte Disk
. 6 Mbyte Disk

. 2 Mbyte Drum
. 1 Mbyte Core

DO IATE ACTIVE s,
S70RAG2 SI0RACE UATH STORACE

LeleYele
(0
(0| O

|

Figure 1 First EMAS configuration in Edinburgh

megabyte diskfiles on one channel, 3 six Mbyte disk packs on one channel,
and 3 two Mbyte drums, also on a single channel. The diskfiles have 32 tracks
per cylinder, with 2 1/2 pages per track, and 1023 cylinders each. The mean
seek time is 100 ms and the maximum transfer rate is 50 pages a second. The
drums have 4 pages per track, a rotational time of 20 ms, and a maximum transfer
rate accordingly of 200 pages per second. None of the rotating memory devices
possess a rotational sensing mechanism. They are not synchronized, nor may
more than one device on a channel be transferring at a time. The strategies

Revue Frangaise d’'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 31

used by the device handlers to surmount these difficulties [F 1] will be discussed
later: however, it is true to say that the system possesses less utilizable transfer
capacity than one has been led to believe necessary in systems of this type [L 1].

VIRTUAL SYSTEM STRUCTURE

The system implements a four level storage hierarchy consisting of archive
storage (tape), immediate storage (diskfile), active storage (drum) and main
storage (core). The unit of allocation in archive store is the file (1-4096 pages),
in immediate storage the segment (a set of 1-16 contiguous pages), and in active
and main store the page (4096 8 bit bytes). The sole unit of information transfer
between levels is the page.

.- The three fastest levels of the storage hierarchy are managed as a whole by

a resident supervisor on the behalf of up to 63 dynamically created virtual
processors. Each virtual processor has a linear virtual address space of 16 Mbytes.
Segments of each virtual address space are associated with segments of imme-
diate memory in one of a number of access modes: private read, private write,
shared read and shared write. This is accomplished by placing an entry in the
appropriate slot of the virtual processor’s master page. Hence, as in
MULTICS [C l}, there is no file I/0 in the conventional sense, all access to
files being performed through the virtual memory mechanism.

Each virtual processor executes two virtual processes: a director process
and a user process. The director process runs a paged supervisor [R1], the
code and global tables of which are shared between all director processes. The
segments of virtual memory in which this shared material resides, as well as
segments private to each paged supervisor are shaded, and hence inaccessible
to the user process. The director process maintains the master page of the
virtual processor, both for itself and the user process. Director sub-processes
perform console interaction and other external functions through communi-
cating with the system processes that perform those tasks. In addition a critical
section of the paged supervisor maintains a file system, for the entire system,
on immediate storage. The director process of each virtual processor creates
.an environment in which the associated user process is aware only of named
sequences of bytes called files which are connected into its unshaded virtual
memory at specified segments, and of virtual addresses.

The user processes run one of a number of sub-systems [M 1]. There are
two types of user processes: executive processes and normal processes. The
sub-systems of executive processes perform specific system functions that
are not as time dependent as those performed in the resident supervisor. These
functions include: the handling of unit record device I/0, the demons executive:
the transfer of files to and from archive storage, the volumes executive: the
testing of online peripherals, the engineers executive: and systems maintenance
functions, the manager executive. The first two executives run in background
mode without an interactive console, while the last two run in foreground

n° septembre 1975, B-3.

32 N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

mode, and are initiated from an interactive console. Director and executive
processes have the same level of software privilege as processes in the resident
supervisor, that is the ability to communicate with any process, either resident
or virtual. Normal user processes, having a lower level of software privilege,
may communicate only with their own director processes. The functions provided
by a normal process sub-system [B3] are those often thought to be part of
a system: loading, command interpretation, compiling, editing etc. In EMAS
the programmes that perform all of these functions have an identical status
with programmes provided by the user, and in fact, a user may easily add to the
standard sub-system or provide his own, should he so desire.

The structure of processes in both the virtual processors and the resident
supervisor is provided implicitly by the structure of the IMP high level programm-
ing language ([S2], [B4]), in which the entire system is written. In order to
allow functions to be serviced by processes in either the resident supervisor
or a virtual processor, all inter-process communication and synchronization
is performed through a single message switching mechanism, provided by the
most basic software level—the kernel. The message switching mechanism
is described in detail in [W 2].

There are three levels of hierarchy in the resident supervisor, in addition
to those already described in the virtual processors. A chart of the system
hierarchy is presented in figure 2.

1RVEL INVONED BY FUNCTICNS PEHPORMED CODB
R Interrupts, Inter-process nessage switching.
B KBRIBL routine calls, Privileged hardware instruc- 40 k.bytes
8 Eeturns. froa MAIN tions, Interrupt Dossagoe con=
Is Processen. versinn. Process dispatching.
bu
EP 1/0 device control, Paged 1/0
N B| DEVICE Intor=process scheduling end orTor recovery. 52 k. tytes
T R| HANDLERS measage. Interactive comunicaticns
v devige control,
I
8| VIRTUAL Active and Main storage slloce-
0 Inter-pi tion, Virtual proceaser achod~ 32 k.bytes
R SUPPORT mosdage. uling and cantingenay handling,
o‘/
D | VIRTUAL Inter—p. A of virtual necory VIBTUAL / SRAL
I MENORY nessage, and addresses and imaediste zezory | & k.tytes BOUXDARY
R MAPPING Master Page -antries. sites. User process Signal
B sochanim,
¢ LT
T SUB~ Interactive coczundcation,
[} PROCESSES Inter-proooss Pile oystea maintainencs, 46 k tytes
R cessage. File transfer for 1/0.
e .
& | BXECUTIVE Unit record device spooling.
X USER Inter=process Batch scheduler, Archive aea- 69 k.+ 16 k.
B PROCESSES mesaage. ory ocatrol, Enginesring test + 75 k. hytes|
o ¢ prograzasa,
8
B
R ~
STAXDARD Inter-process Pilo definiticn, Odject file SOFTTARS PRIVILICED /
N | sussysmx Se3sago and routine | layout, linking and cading. 110 X.tytes FON-PRIVILIGED BOUNDARY
0 calls, Logical 1/0 mapping,
R
: Rditors, Coapilers, Utilities | 450 k.o
T PROGRAMAES Routine calls mg::rmum routines ::::.a. .
I granmes Figure 2

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 33

RESOURCE ALLOCATION

In all of the large and fully implemented paged systems known to the
authors ([B1], [C1], [G 1], [L3]), there are at least three distinct supervisory
processes which control the processing of user tasks, or as we chose to call
them virtual computations. These are a process scheduler, a paging manager
and a CPU scheduler. We will not concern ourselves in this paper with access
control functions that are performed by a segment manager or its equivalent.

THE ROLE OF THE PROCESS SCHEDULER

The process scheduler selects a virtual processor from among those desiring
to perform a virtual computation, and inserts it into the multi programming
set MPS. The process scheduler is initiated by the page manager when space
is available in the MPS. It will usually take into account, in making its choice,
the cpu and main storage requirements of previous computations performed
in each virtual processor. In so doing it determines the system’s response to
various classes of computation. It will assign to the virtual processor it selects
an amount of CPU time that the virtual computation may use before being
removed from the MPS and rescheduled —a cpu allocation. The process scheduler
will not assign any limit to the number of pages the processor may acquire in
main store—a main store allocation. The decision as to which pages will be
resident in main store at any instant, the resident page set RPS, will be made
by the global paging manager over the entire MPS. In EMAS this is not the case.

THE EMAS PROCESS SCHEDULER

The EMAS process scheduler assigns to the selected virtual processor both
a cpu and a main storage allocation. Having done this, there is no longer any
need for a global paging manager. It can be replaced by a number of local
paging managers provided on a one to one basis for each virtual processor
in the MPS. By replacing the global paging manager, which requires to operate
over the domain [S1] of the entire paging system, by local paging managers,
each operating over the domain of a single virtual processor, we immediately
reduce complexity and increase systems reliability. A critical failure that occurs,
be it hardware or software induced, while in a local paging manager, need
only affect a single virtual processor, not the entire system. A second benefit
of the EMAS approach is that we eliminate two of the major problems, and
greatest sources of programming complexity, encountered by a global paging
manager: preventing thrashing, and preventing throughout degradation across
the entire system as a result of having a virtual computation in the MPS which
displays unstable paging behaviour. In order to see why this is the case, it is
necessary to examine how a global paging manager manages the RPS.

n°® septembre 1975, B-3.

34 N. H. SHELNESS, P.D. STEPHENS, H. WHITFIELD

THE ROLE OF THE PAGING MANAGER

Control of the RPS is maintained through a mechanism of page replacement.
When a page fault occurs, a choice is made, by the paging manager, of a page
currently in the RPS to be replaced by the newly required page. In practice
there is usually a buffer pool of pages not included in the RPS, so that the newly
required page may be fetched immediately, rather than having to wait for the
replaced page to be written back to secondary storage if necessary.

There are basically two algorithms used by a global paging manager for
making its replacement choice: least recently used LRU and working
set WS [D1]. In the first algorithm the least recently used page in the RPS is
replaced. In the second algorithm a free page is replaced. A page is free if it
is not in the union of the working sets of any virtual processor in the MPS.

The elimination of thrashing in an LRU driven page replacement scheme
is difficult, but not impossible. The majority of systems being considered by
the authors use an LRU algorithm and don’t thrash. This is achieved, at the
expense of greater complexity in the CPU scheduler, through altering the size
of the active MPS by varying the CPU priority of virtual processors in the MPS.

In simple terms, the processing speed of a virtual processor is increased
as it uses its CPU allocation. This guarantees that, as it approaches the end
of its residency period, it uses its pages more often, reducing the likelihood
of them being prematurely replaced, than virtual processors that have just
started their residency period.

It should be noted that while this approach eliminates thrashing, it increases
the vulnerability of the system to high priority virtual processors whose compu-
tations vary the size of their working sets radically, as this will force the pages
of low priority virtual processors in and out of main store, and hence degrade
the speed at which their computations are processed through the system. The
same is true of a page replacement scheme driven by the working set algorithm.
Thrashing cannot occur, but the system is vulnerable to computations that.
display wild fluctuations in the size of their working sets, as such hehaviour
can result in the elimmation of free pages in the RPS to be replaced. In such
a case, a virtual processor must be removed from the MPS, either temporarily,
until the number of free pages grows larger than its working set, or by being
rescheduled. In either case, unless it is the misbehaving virtual processor that
is rescheduled, all other virtual computations in the system will suffer by taking
longer to complete. In EMAS a local paging manager will automatically remove
from the MPS any virtual processor whose working set attempts to grow larger
than its allocation. The virtual processor will then be rescheduled to run next
time with a larger main store allocation. In this way only the throughput of
a misbehaving computation will be retarded, not the throughput of the entire
system.

Revue Francaise d’Automatique, Informatique et Recherche Opérationnelle

EDINBURG MULTI-ACCESS SYSTEM 35
It still remains to be shown that the EMAS approach to main store allocation
uses the store as effectively as other approaches.

THE EMAS PROCESS SCHEDULER AND RESOURCE ALLOCATOR

The initial process scheduler is described in detail in [W 2] and there is an
excellent short description by Wilkes [W 3]. There are a number of categories,
currently 20. Associated with each category is a priority, a main storage
allocation, a CPU allocation, and a number of possible category transitions.
In addition there are other category parameters, some of which will be discussed
later (fig. 3). All virtual processors, be they already in the MPS, waiting on a

racord Laraat CAT LAY (hyts integsr CATEGORY, PHIORITY, STORE, &
ASPERD, ASMAX, ASMIN, 5
NCY1, NCY2, NCY3, NCY4, S
cPU TIME, STHOBE TIME)

NCY1 43 next category if process runs out of core.

NCY2. 18 next category iAf process exceads tima limit.

NCY3 as ncy2 but cors used less than next smallest core limit.

NCY4 is category if process goas to sleap.

ASHIN 13 the unconditional allocatiop of active store.

ASHAX 18 the largest amocunt of active stors that can be held.
ASFEHD 13 the numbsr of WS residency periods beofore reccmputing WS.

hexadecimal constants are bracketed by X° and ‘.

CPU TIME is cpu allocation in B microsacond units. X °00020000°=1 sec.
STHOBE TIKE 48 the period over which the mein storage WS is coaputed.

[e

sopat rcacord arcay CAT TAB{1:20) (CAT LAY) = o

1, 42,
<16,
24,
42,
16,
16,4
16,
24,
24,
24,
32,
a2,
32,
a2,
42,
42,
52,
52,
52,
52,

Loaat hvin

’
20,
20,
20,
40,
20,
20,
40,
10,
10,
40,
10,
10,
20,
10,
10,
20,

sl

5.
20,

s 64,

80, 64,

128,

17, 15, 149,

18, 18,

14,

17,

array CHOICE(0:63) = o

X *00020000°,
X ‘ono10000°,
X°00020000°,
X°00040000°,
X°00010000°,
x. n*

X°00004000°,
X *00010000°,
X °00020000°,
X°00010000°,
x:ouoionoo:.

X‘00140000°,
X°00020000°,
X *00140000°,
X°00000000°,
X'00020000°,
X°00140000°,
X°00180000°,
X *‘ooozoc00°,
X°00140000°,
X'00140000°,
X'00040000°,
X *000E0000°,
X°000A0000°,
X '60040000°,

.
X'00020000°,
X°00010000°,
X°060020000°,
X *00020000°,
X°00020000°,
X *00020000°,
X ‘00020000°,
X‘00020000°,
X°00020000°,
X *00020000°,
X °000%0000°,
X*06010000°,
X °*oo0020000°,
X 00008000 °

Jdnteasr

5011251425 142,10192:1:152,1:30 1,
21101083151,2,142:101020191:347,
1025109020%4291,4,30102:10103,1,

1020101425132:131,3,152, 1520100 Figure 3

priority queue to enter the MPS, or asleep—waiting for an external event,
are in one and only one category.

When a virtual processor wakes up—the external event it was waiting for,
such as console input occurs, it is placed on a queue associated with its current
priority. It will eventually be chosen from that queue, and when certain global
constraints are satisfied, inserted into the MPS. The local constraints on its

n°® septembre 1975, B-3.

.36 N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

behaviour: its main store, active store and CPU allocations will be those asso-
ciated with its category. The virtual processor will remain in the MPS until
one of two events occur: it attempts to exceed one of its local constraints, or
it goes to sleep. At this point it is removed from the MPS, and its next category
determined. There are four possible category transitions. The four cases that
determine which of the four transitions is to be made are:

1) The virtual processor’s working set attempts to grow larger than its main
store allocation.

2) The virtual computation overruns its CPU allocation with a working
set that would fit in a smaller category.

3) The virtual computation overruns its CPU allocation with a working
set that fits into the current category.

4) The virtual processor goes to sleep.

If the virtual processor is still awake, it is immediately placed on the priority
queue associated with its new priority. In this way a virtual processor follows
a path through the category table towards an entry that matches its current
behaviour. If that behaviour is for the most part stable, then we can expect
many of the transitions to be back into the same category, and this is in fact
the case (fig. 4).

The means by which a virtual processor is selected from a priority queue,
the choice algorithm, is exceedingly simple. A circular table is cycled through
one by one. Each entry contains the identity of the next priority queue to be
chosen. In the initial choice algorithm described in [W2], once a priority
queue was selected, and if there was a virtual processor on it, it was allowed to
enter the MPS only when the amount of unallocated main store was greater
than the selected virtual processor’s main store allocation. If the priority queue
was empty, or after the selected virtual processor had entered the MPS, the
choice algorithm was re-enabled to select another priority queue.

The decision to use the number of unallocated main store pages as the global
constraint on a virtual processor’s entering the MPS was our first choice, on
which we intended to improve if monitoring justified it. We have now done
this monitoring and it has allowed us to ascertain that with the original global
constraint, the main store was not used as effectively as it might have been.
There are three identifiable reasons why:

The first is that the measure of unallocated main store excludes pages that
are free due to sharing. This occurs because a page that is shared among two
or more virtual processors is included in the allocations of each of the virtual
processors using it, yet there is only one copy in main store.

The second is that a virtual processor’s working set is by definition always
less than or equal to its allocation. There is thus the likelihood that a number
of allocated main store pages remain free.

Revue Frangaise d’Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 37

EMAS VERSM 781A DATE: 05/03/74 TIKE: 14,.31.01
CATEGORY TABLE MOVEMENT

R 0
1 2 3 4

] 6 7 8 9 10
1 39¢ [0] 0 ° o H [(]
2 0 2323 392 [0 °] [0 [
3 0 896 1917 470 0 [] [] [0
& 0 0 a72 600 0 [} [} 0 [4 [
¥y 0 o 0 0 v4ove 115 0 2666 0 0
B g 0 o ° 0 8 ° s 0 0 15
o, 0 0 0 ° 0 o M I o a0
¥a 0 0 0 o 2683 S50 0 9169 38 0
9 0 0 [] [0] 2 9 0 5
10 0 0] 0 122 0 73 39 0 187
1 0 0 0o 0 0 0 0 3874 37 [
12 0 0 0 ° [] 0 0 28 0 15
13 0]] (]] 0 0 37 [} b1
1%] 0]] [} 0 [13 [0
15 [] (] [[[]] Q 0 [] 0
16 [] 0 [0 [0 [} [[0
17 0 0 0 [[] [Q 3 0 [
13 [] 0 0 0 0 0 0 0 [0
19 [} [[} [0 0 0 [] []
20 [4 0 0] 0 [3 [°
70
" 12 13 16 1$ 16 17 18 19 20
1 2 [0 0 0 o 388 [0 0
2 L0 [0 [[[] 0 0] 0
3 0 0 [0 [] [0 0 (] 0
pé 0 [[} 0 0] 0 0 0 [}
RS 1 [} 0 0 [} [] [} [} [] 0
06 0 0 0 0 (] 0 [0 []
¥? 0 0 0 0 0 0 0 0 0 []
8 3842 0 0] [0 0 0 0 0
? 1] 59 ° []] 0 0 0 0
10 H 0 49 0 0 0 0 0 [0
1 s12¢ M 0 4678 [0 0 0 0 o’
12 34 20 16 0 10 0 [0 0
13 25] 90 0 0 139 0 0 0 [
14 4779 " 0o 3105 120 0 1850 0] 0
15 48 0 (14 21 544 26 [} o 300 0
16 22 0 5?7 22 0 933 [o 320 []
17 1n [} 0 1325 145 0 951 148 0 766
18 2 0 [0 13 1297 5§ 250
19 1$ 0 [RT3 0 237 28 0 2617 250
20 16 [o 125 207 o 130 183 0 2113
Figure 4

The third relates directly to the performance characteristics of the drums
and diskfiles. It is a result of the difference in wait time of a page that is fetched
on demand against the wait time of those that are prepaged (fig. 5). Prepaged
pages arrive three times faster than demand pages. The reasons for this will
be discussed later. This difference means that allocated pages that are free while
a virtual processor with a large main store allocation demand pages up to its
working set, could have been usefully utilized by a prepaging virtual processor
that had a small main storage and cpu allocation, as such a virtual processor
could have come and gone while the other was still demand paging.

To overcome these deficiencies in the initial global constraint, two changes
were made. Monitoring indicated that sharing within a single mix of resident
virtual processors was relatively stable, and tended to change only when a new
virtual processor entered, or an old virtual processor left the MPS. In light
of this evidence, the choice algorithm was trivially modified to take account

n® septembre 1975, B-3.

.38 N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

199))
% L ! Transfer rate in pages/s
1%) 3/4 Mbytes of core
ol | A L— 2 drums, 1 pseudo drum
/
1%] 32 users
140
'g R 16 minute sample
1 /""’
& | L L KEY
ol : | , 1. Diskfile demand reads.
» i— 3 2. Drum and pseudo drum demand reads.
10
. Drum an do drum prepage reads.
2% 25 STt 3. Drum and pseudo drum prepage
AVERAGE TRANSFER TIME / TRANSPER RATE
{ni11isoconds) .
200
150} - S A U VO
100
T
sl
1020 30 40 50 6 70 80 90 400
OCCURENCES / TRANSVER RATB
701
:: L3
T 7
£ i
30 ;—/,
20 ! i 2
L o = I B

= e 1|
10 20 30 X0 50 60 70 60 90 100
TRANSPERS / TRANSPER RATB

Figure 5§

of sharing. A virtual processor 1s now allowed to enter the MPS if its allocation
is less than the unallocated store plus the- amount of shared store. A virtual
processor may also enter the MPS and prepage up to the unallocated plus
shared limit, even if this is less than its full allocation. It is then allowed to run,
subject to the constraint that a minimal number of free pages remain, and it
is a short computation. Otherwise the computation is suspended until more
main store can be allocated to it. We refer to this process as partial prepaging.

Recently the installation of a second machine with switchable peripherals,
especially drums, has allowed us to experiment further, with the effects upon
main store utilization of various sizes of active and main storage. One result
we have arrived at is that the performance of the system in an interactive environ-
ment seemed to be limited by the amount, rather than the transfer capacity,
of active storage, as we had previously believed. In fact a 3/4 Mbyte machine
with four drums, seems to result in smaller queues, and hence faster response

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 39

than a one Mbyte machine with three drums. This is an extremely recent result,
and we are not yet completely sure of its validity.

INTERACTIVE RESPONSE

In the discussion so far we have ignored the choice algorithm itself, concentrat-
ing instead on paging behaviour. Here again problems arose that had not been
originally foreseen. This occured if a priority queue was empty, especially if
it was a high priority queue on which small interactive computations are held.
For this allowed the store to fill up with virtual processors chosen from lower
priority queues—virtual processors with large store and cpu allocations.

The problem that arises is, that once these virtual processors enter the MPS,
they block the entry into the MPS of virtual processors that arrive on higher
priority queues in the interim. If three or four large virtual processors, with
a cpu allocation of ten seconds, are resident together, it could be as long as
thirty to forty seconds, in the worst case, before another processor can enter
the MPS. This problem has been overcome by limiting the multiprogramming
level among virtual processors chosen from low priority queues. This guarantees
that a certain amount of main store will always be free for allocation to high
priority virtual processors. Doing this does not radically affect the cpu utilization
of the system, as a single low priority virtual processor is capable of saturating .
the cpu when its working set is fully resident.

The second change to the choice algorithm was motivated by a political
decision: EMAS was to be first and foremost an interactive, rather than a remote
batch, system. Thus another simple amendment was made.

If a virtual processor remains active for more than a certain period of elapsed
time, currently 6 min., or if it was initiated by the batch scheduler, it is considered
to be penalized with respect to more interactive virtual processors—those that
go to sleep from time to time. If a virtual processor is penalized its
paging behaviour remains the same as if it were not. Its store and cpu allocations,
category and priority are determined normally The difference is that three
out of every four times it is selected, it is returned to the back of the priority
queue from which it was selected, rather than being allowed to enter the MPS.
Thus penalized virtual processors enter the MPS less often, unless there are
no unpenalized virtual processors on the same queue, in which case they enter
the MPS normally.

THE CPU SCHEDULER

Another area where some improvement has been achieved is that of cpu
scheduling. This area has been of little interest to us, and we believe, that while
it may still be possible to effect major improvements in system performance,
through nnproved cpu scheduling, it is unlikely. The goal of cpu scheduling -
in EMAS is one of satisfying a number of simple constraints. Context changes

n° septembre 1975, B-3.

| 40 N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

of a virtual processor are expensive and should be minimised. Demand paging
virtual processors should get the cpu as soon after satisfying a page fault as
possible, and small computations should be processed in as short an elapsed
time as possible, so as to free main store for the next small computation.

In the system described in [W 2] a simple queue of virtual processors able
to take the cpu (the run queue) was maintained, and we restricted ourselves to
experiments with various durations of CPU time slice. What we discovered is
that the throughput of small interactive computations increased as we reduced
the time slice, though of course at an increased cost in context switching over-
head. At that time we settled on a time slice of thirty milliseconds, and worked
on improving other areas of the system where we felt our efforts would yield
greater results. We have now though managed to satisfy our design constraints
more fully. To do this we introduced a system of three run queues of differing
absolute priority. On the first we placed virtual processors that had not com-
pleted their previous time slice before page faulting, on the second we placed
those virtual processors that had completed a time slice, and were not on the
third and lowest priority queue on which we put penalized virtual processors.
By doing this we were able to increase the time slice to 100 ms and still improve
the throughput of small virtual computations.

ACTIVE MEMORY MANAGEMENT

It is in the area of drum handling that we have made our most important
improvements, which have in turn impacted back into the scheduling of other
resources.

The most important change came as the direct result of the discovery that
the drums were only performing one fifth as fast as we thought they were. That
the system had been capable of the performance reported in [W 2] with drums
transferring pages at a rate slower than some disk subsystems has a message
in it somewhere. The cause of this performance degradation will be obvious
to anyone familiar with the early history of drums. The electronic switching
between tracks was taking longer than the inter-record gap. For once this
was not a case of the software being unable to keep up, but of a failure of the
drum control unit itself to keep up. Luckily there was enough room left over
on a track to interpose three dummy records between each page frame. The
page frames then occupying records 0, 2, 4 and 6 rather than 0, 1, 2 and 3 as
before. It is a testimony to the flexibility of the system software as it currently
exists, that the change required modification of one table in the rotating memory
handler and another in the drum formatting programme. A changeover was
achieved successfully in the first systems development slot after the discovery.

The other changes to the rotating memory handler came as a result of
experimentation. We have concluded that systems efficiency is improved by
prepaging, and by ordering transfer request in each of the sector queues by

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 41

type. We place demand page reads first, then prepage reads, and finally pageout
writes. This prevents the blocking of demand pages by other forms of transfer,
and of reads by writes. It is our understanding, that others have reached a similar
conclusion [L2]. It is a little frightening to think that drum controllers have
been built that do not impose this sort of discipline, especially as they have
been constructed after a great deal of modelling and simulation.

With respect to prepaging, it is obvious that the amount one does is tied
to the characteristics of one’s backing store. If an immediate access medium
such as bulk store is used, then of course it makes no sense to do any prepaging.
In our configuration, the following seems to occur. The average number of
virtual processors in the MPS is six, of which one is on the cpu, one is in a run
queue, and four are waiting for the arrival of one or more pages. If we operated
a pure demand page strategy, even with shortest latency time first SLTF order-
ing of transfers on each drum, we would not achieve much better throughput
than that produced by a first in first out FIFO ordering. For there would be
little more than a single transfer queuing on each drum. By prepaging we increase
the number of transfer requests pending on each drum, and hence in each
sector queue. We thus gain the benefits of a SLTF ordering on transfers. Approxi-
mately 80 % of all pages entering the RPS are prepaged. Of the prepaged
pages 20 ¥ are never used. While this figure seems high: it should be remembered
that a high proportion of prepared pages (well over half) are transferred in
sector windows that would not otherwise be used, and hence to a certain extent
are transferred at no cost.

Because of the performance mis-match between the diskfiles and drums,
a mis-match that grows considerably worse as the queue of transfers pending
on each device grows, it is imperative that the majority of transfer request
be for pages, copies of which are held on the drum. Back of envelope calculations
indicated that we should aim for a transfer ratio of 20 drum transfers to
diskfile transfer, as this would create a balanced load on each device. Because
of the shortage of page frames in active memory it is necessary to optimize
the set of pages held in active memory, with respect to their expected future
use. It secemed reasonable given our success with a page allocation strategy
for main storage, that we should employ a similar strategy for active store.
This is especially true if one takes into account the consistency rule for inform-
ation in immediate storage. This rule states: that every time a page belonging
to a virtual processor is updated in immediate storage every page belonging
to that virtual processor in immediate storage should alse be updated. This
guarantees that a virtual processor’s image in immediate storage is always
self consistent, and that the immediate storage image always represents an
instantaneous image of the process, though rarely the real time image. This
rule yields a form of automatic checkpointing.

The observant reader may have noticed a flaw in this argument. What does
one do with write shared pages? When these are updated in immediate storage,

n° septembre 1975, B-3.

42 ’ N. H. SHELNESS, P. D. STEPHENS, H. WHITFIELD

parts of the images of other virtual processors are also updated. There is in
EMAS no attempt to propagate the consistency rule from virtual processor
to virtual processor, through the write shared material. As file indexes are
connected into multiple virtual memories in write shared mode, it would require
the updating of all immediate storage images any time a single virtual processor’s
immediate storage image was updated. Hence automatic checkpointing in
the sense it was initially intended does not exist; though the continued application
of the rule does minimize the chance of inconsistency in a user’s files as the
result of a system failure. One effect of adhering to the consistency rule is that
it is impossible to operate a global allocation policy in active storage.

The method of allocation employed is briefly as follows. A virtual processor
is allowed to build up pages in active storage, until one of four events occur.
It disassociates a file from its virtual address space (disconnection), it overflows
its active storage allocation, it remains asleep for two minutes, or a certain
number of residency periods have passed without its active storage working
set having been recomputed.

The pages that a processor uses during each period in the MPS are noted,
and a cyclic record of page use during the last four periods is kept on its master
page. It is from this record that the active storage working set of the virtual
processor is calculated. There are three progressively stiffer algorithms that are
applied depending upon global active storage saturation.

— WS=The union of the four periods.

— WS=The union of the intersection of the three oldest periods and the
most recent period.

— WS=The null set.

All updated pages belonging to that virtual processor are then updated
in immediate storage, and those pages in active storage no longer in the virtual
processor’s working set are deleted. Here as in main store, a virtual processor
cannot acquire more than its fair share of a system resource.

PSEUDO MEMORY

There is one other change to the system that needs to be mentioned, and
this is the introduction of a pseudo drum as a memory level extension. The
concept of allocatable memory extension is exceedingly simple and general.

It is a well known allocation problem, that one needs to keep a certain
amount of allocatable resource in hand to avoid deadlocks, or in our case the
need to remove a virtual processor from a memory level prematurely—a form
of thrashing. It is thus impossible to utilize all of a memory level, unless one
somehow extends the allocatable memory at that level so as to use all of the
real memory. This extension is effected through the use of pseudo memory.

Pseudo memory can be used at any memory level that has an address
continuity with the next. Examples are: main memory-mass memory, mass

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 43

memory-drum memory and drum memory-disk memory. The main memory-
drum memory boundary does not display this characteristic of address con-
tinuity, as one is addressed in bytes, and the other in pages. We are thus able
to use a pseudo drum, which is part of a small disk pack, the rest of which is
used as a collection pool for event monitoring records, but not pseudo main
memory. With this extension the active storage allocation algorithm can
endeavour to allocate all of the real drum pages, secure in the knowledge that
if it overflows the real drum there are pseudo drum pages in which to put the
information. We are thus able to achieve full drum utilization.

Needless to say pages are moved from the pseudo drum onto real drum
when space becomes available on the latter.

MACHINE A 150 V
201 allocatable pages o .
3 drums and 1 pseudo drum o ! average
from: 23:28 on: 27/02/74 w| I] I / free main store
to: 23:18 on: 28/02/74 110 ' : ! i | average

Queues sampled every ten seconds. 100 —Y - unallocated main store
Each point represents 1000 samples. \ !

|

70 : |

“ !

”]

w| '

o !

20 : ;

1o ! / ™ average

ol —— ! users

-10 : .

MERE

<ol i

-50

Figure 6 « v e o e e

It should be obvious from this discussion about utilizing drum storage that
we do not fully utilize main storage. Figure 6 shows main store utilization
during a 24 hour period. It is for others to decide how we fare in relation to other
techniques.

SYSTEM PERFORMANCE

The system currently supports a maximum of 55 simultaneous users, with
the elbow (the point at which the first critical resource becomes overloaded)
in the response curve appearing at somewhere between 45 and 50 users, depend-
ing upon the mix. Under this type of loading, the drum channel transfers about

n° septembre 1975, B-3.

4 EDINBURGH MULTI-ACCESS SYSTEM SCHEDULING

65 pages a second, and the diskfile channel about 6, of which less than 1-2 are
demand reads. Approximately 90 %, of the cpu is utilized with this number
of users, the remaining 10 % being free, due to an instantaneous lack of compute
bound virtual processors. In general 58 % of the processor is given to the virtual
processors, while the remaining 32 9, is spent in the resident supervisor.
Over 75 %, of this time is spent in only two resident processes, the drum handler:
and the working set calculator. This time would be radically reduced, with
the addition of appropriate hardware mechanisms in each case : hardware
drum scheduling, and access and usage information on the segment and page
tables, rather than the store. There are in fact 8 keys which have to be read out
and reset on each page, at every strobe period. Given the current hardware
configuration we see no way of improving these figures while running inter-
actively with many users, and fast response.

While running batch work overnight whith 6 batch streams, the system
achieves effectively 100 %, cpu utilization, 85 % of the time being spent in
virtual processors.

The meantime between crashes due to hardware malfunction is currently
25 hours, and we encounter approximately two failures a month, due to soft-
ware malfunction. This while the supervisor is still under development, and
being changed about twice a week. When running proven supervisors, we have
found that it is possible to achieve an essentially zero software error rate. Both
the hardware and software error rates are lower than they might be, due to
extensive checking, graceful degradation features, and the vetting of all incom-
ing messages by system processes. -

ACKNOWLEDGEMENTS

There have been too many people involved in the development of EMAS to mention them
all individually. Specific thanks though are due to Professor S. Michaelson for creating the
environment in which this work could be undertaken, and to Dr. J. G. Burns, who provided
moral support, when few external to the project believed it would be successful. Special thanks
are due also to Professor B. Galler of the University of Michigan, without whose encouragement
this paper would not have been written.

REFERENCES

[B 1] G. D. BoBrow, et al., TENEX, A Paged Time Sharing System for the PDP 10,
C.A.C.M,, March 1972, pp. 135-143.

[B 2] G. D. Bosrow, Personal Communication.

[B3] J. G. Burns, et al., the EMAS User Manual, Edinburgh Regional Com-
puting Centre, 1972.

[B 4] M. M. BARRITT, er al., The Imp Language Manual, Edinburgh Regional Com-
puting Centre, 1970.

Revue Frangaise d'Automatique, Informatique et Recherche Opérationnelle

EDINBURGH MULTI-ACCESS SYSTEM 45

[C 1] F.J. CorBaTO and V. A. VYSSOTSKY, Introduction and Overview of the MUL-
TICS System, Proc. A.F.1.P.S., 1965, F.J.C.C., 27, Part. 1, pp. 185-196.

[D 1] P.J. DENNING, The Working Set Model for Program Behaviour, C.A.C.M.,
May 1968, pp. 323-333.

[D 2] P. J. DENNING, Virtual Memory, Computing Surveys, 2 No. 3, September 1970.

[F 1] S. FULLER, Performance Characteristics of an I{O Channel With Multiple
Paging Drums, technical report 27, Stanford Electronics Laboratory, August, 1972.

[G 1] H. GALLER, Personal Communication.

[L 1] H. C. LAUER, Bulk Core in a 360/67 Time-Sharing System, Proc. A.F.LP.S,,
1967, F.J.C.C., 31, pp. 601-609.

[L 2] W. C. LYNCH, Personal Communication.

[L3] A.S. Lertr and W.L. KONIGSFORD, TSS 360: A Time Shared Operating
System, Proc. A.F.ILP.S., 1968, F.J.C.C., 33, Part. 1, pp. 15-28.

[M 1] G. MILLARD, The Standard EMAS Sub-System, The Computer Journal, 18,
No. 3, August 1975, pp. 213-220.

[0 1] E. 1. OrRGANICK, The MULTICS System, An Examination of its Structure,
MIT Press, Cambridge Mass., 1972.

[R 1] D. J. Rees, The EMAS Director, The Computer Journal, 18, No. 2, May 1975,
pp. 122-130.

[S1] M.J. SPiER, A Model Implementation for Protective Domains, International
Journal of Computer and Information Science, 2, No. 3, September 1973,
pp. 201-228.

[S 2] P. D. StepHENS, The IMP Programming Language, The Computer Journal,
17, No. 3, August 1974, pp. 216-223.

[W 11 H. WHITRELD, The Organization of the University of Edinburgh Time Sharing
Systems, International Seminar on Advanced Programming Systems, ii, No. v,
Jerusalem 1968.

[W 2] H. WHiITFIELD and A. S. WiGHT, EMAS, The Edinburgh Multi-Access System,
The Computer Journal, 16, No. 4, November 1973.

[W 3] M. V. WILKES, The Dynamxcs of Paging, The Computer Journal, 16, No. 1,
February 1973, pp. 4-9.

n° septembre 1975, B-3.

