University of Edinburgh
¢

Department of Computer Science

The Structure and Uses
of
The Edinburgh
Remote Terminal

by
J.C.Adams, W.S.Currie,
B.A.C. Gilmore
Internal Report CSR-12-77
James Clerk Maxwell Building September 1977

The King’s Buildings
Mayfield Road
Edinburgh

EH9 3JZ

The Structure and Uses of The
Edinburgh Remote Terminal Emulator

J. C. ADAMS(*)
Departmenf of Computer Science,
University of Edinburgh,
James Clerk Maxwell Building,
The Kings Buildings,
Mayfield Road,
Edinburgh EH9 3JZ

W. S. CURRIE(**) & B. A. C. GILMORE
Edinburgh Regional Computing Centre
The Kings Buildings,
Mayfield Road,

Edinburgh EHS 3JZ

{*) Work supported by Science Research Council Grant BRG-93960
(**) Past work supported by Science Research Council Grant BRG-96084

ABSTRACT

Remote Terminal Emulation is an approach to the testing and
evaluation of multi-access camputer systems in which a workload
driver is implemented external to and independent of the system

being tested.

Remote Terminal Emulators may be used in many stages of system

development eg. initial checkout, acceptance tests and tuning.

The Edinburgh Remote Terminal Emulator (ERTE } is a system
designed to exert a specified interactive workload on a multi-access
system such that it appears to the system that it is connected to
live terminal devices. The emulator runs on a PDP 11/40 computer
under the control of the DEIMOS operating system, which like the

emulator is written in the high-level language IMP.

We describe the structure and development of ERTE with
particular emphasis on its modularity, the use of a message based
operating system, and the IMP language, which provide a fiexible and
easily modified tool.

Experiments, both current and projected, using ERTE are
discussed and our experience of developing and using a terminal
emulator is reviewed.

KEYWOROS
performance evaluation, benchmarks, interactive sys tems,

measurement, communiations, teleprocessing

INTRODUCT 10N

Measurement and evaluation techniques used on computer systems
in the past have largely been machine oriented [3]. Tradi tional ly
“scientific” systems have been evaluated in terms of raw instruction
speed,a suitable instruction mix for the desired enviromment being
set up,mostly of arithmetic instructions,and run off on various
configurations. On thé other hand,"commercial® systems have been

compared more on I/0 rates than on processor speeds.

With the advent of batch systems, throughput, the number of
Jjobs executed in unit time,became a common measure. In addition
both hardware and software components of a system were individually

monitored to measure utilisation or other desired characteristics.

Whereas 1in a batch system the perfomance fin processing
individual jobs is of relatively 1ittle importance, in interactive
multi-access systems the on-line user's view of the system's
performance is of paramount concern. Several user oriented measures
have. been introduced such as response times,sys tem
availability,reliability and accessability,which in turn require new

evaluation techniques.

One such technique is Remote Terminal Emulation.

REMOTE TERMINAL EMULATION

Remote Terminal Emulation [14] is an approach to the testing
and evaluation of multi-access canputer systems in which a
representation of wuser workload and behaviour is presented to the
system being tested { the Target system) by a driver external to

and independent of the target system.

The driver is connected to the target system either directly or
through a communications network so that the target system is unable
to detect any difference beween the driver and real users at real

teminals.

An important part of the driver is a monitor which records data
pertaining to the driver/target system interaction. Performance
characteristics can then be determined by a later analysis of this

1og.

Two of the most important features of this technique are its
repeatability and flexibility. The RTE 1is able to present any
workload time after time to the target system, so ary detected
performance differences are due to the target system alone. To be
flexible the RTE should be as machine independent as possibie and
must be able to cope with the unexpected,since interactive systems
are non-deterministic; for example, operator messages to users may

arrive at any time.

Real users working from scripts can be used to present
workloads to the system. However this is a very tedious process,

prone to error. A further alternative is to implement the driver

within the target system, but this could cause gross interference

and would be highly system dependent. [12]
There are four principal areas of use for an RTE :-

1) Tuning. If the workload presented to the target system
is a reasonably accurate reflection of the real user workload
then by running a serlies of experiments on the system with
changes in the scheduling parameters the RTE may be used as a
method of tuning the system. This can assist in the
improvement of overall performance. The data can also show how
changes in the scheduling parameters discriminate in favour of

or against classes of work.

2) Experimentation. One of the major difficulties in
research into any éuanex computing system is the lack of a
body of consistent data. Such data may be used for empirical
evaluation and for the validation and calibration of models
which may be used for prediction of the system's performance.
One of the major drawbacks to obtaining such a set of data is
the variability in user workloads. An RTE provides a method of
keeping the workload fixed over a set of experiments in which
other system parameters {(hardware camponents, scheduling
algorithms) may be changed and a consistent set of data

obtained.

3) Development. The effect of a system failure in a large
time-sharing system in terms of lost work, frustration and user
discontent 1is very high. An RTE gives a convenient way of

testing major software/hardware changes in the system before

they are released to the general user population. Also during
the development stages of a completely new system, an RTE
provides a way of presenting the system with a repeatable
workload which may be used in the tracing of errors or possible

performance bottlenecks.

4) Procurement. RTE'S provide a method of obtaining.
objective performance data on several systems when a new system
is being selected (Benchmarking). Also when a system has been
selected an RTE may be used to check that the system does in
fact fulfil its performance goals before the system is put into

service.

WORKLOAD REPRESENTATION

Remote terminal emulators require a workload to present to the
target system. This is nomally held in the form of scripts which
give the user commands,pauses etc. to describe the behaviour of one

or more users.

The commands in the scripts are in the final instance machine
dependent,but all think times,typing rates etc. can be specified in
an independent form and translated for actual use, a method

preferable for multi-machine use of the RTE.

It may also be possible to provide in the scripts specific
responses which the RTE is to check against actual target system

responses,or similarly times within which a response has to occur.

THE_EDINBURGH REMOTE TERMINAL EMULATOR

The Edinburgh Remote Temminal Emulator (ERTE)} is an
implementation of a general purpose workload driver suitable for the

above-mentioned applications.

THE LOGICAL STRUCTURE OF ERTE.

The logical structure of the Edinburgh Remote Terminal Emulator
is given in fig. 1. The data to simulate user behaviour is held in
scripts, and consists of the cammands for the target system, the
user's typing efficiency, the thinking time between getting a target
system response and typing the next canmand, and the terminal 1line

speed.

The next level is emulation of a terminal. This level receives
user commands and sends them towards the target machine, taking into
account the terminal line speed. It also receives output fram the
target system and simulates printing this on the 'teminal {virtual
printing). At this level the monitor log,consisting of the contents
and timing of all commands to and responses from the target system,
is recorded. This log 1s then available for both emulator
validation and measurement of system characteristics,such as

response time.

Below the virtual temminal level are two levels of protocol
which are communication and target system dependent. The temminal
protocol creates packets for individual terminals and handles the

end-to-end protocol between the RTE and the target mainframe. The
Tine protocol ensures the correct transmission and reception of
packets at the physical 1ink level between the RTE and the next part
of the communications network, which need not necessarily be the

target mainframe.

PHYSICAL IMPLEMENTATION OF ERTE

THE HARDWARE

The emulator runs on a Digital Equipment Corporation PDP 11740
computer with 32 words of core store, and one RKO5 cartridge disc
unit (1.2 Mbytes) which holds the system software. Mass storage is
provided by a 66 Mbyte Ampex DM980 disc drive which currently holds
both the script files and the monitor log data.

Communication with the target,currently the Edinburgh Multi
Access System [15), is through a DQS11-E Synchronous Line Interface
at a line speed of 9.6 Kb. To EMAS the emulator is simply another
Terminal Control Processor on a single line into the Front End

Processor {a PDP 11/45) [5].

THE SOFTWARE

The emulator software consists of several cooperating tasks
(fig. 2} running under the DEIMOS operating system,which was

developed locally for a number of communications applications.

DEIMOS is a general purpose multi-tasking system which will
support a number of general user programs [6]. Each program in the
system, which includes device handlers, is run as a separate task in
its own 32 word virtua) memory. Tasks may co-operate by sending
messages, in particular all I/0 is performed in this way.

DEIMOS is based on a small, fixed Kernel which performs four
main functions.

a) It allocates the CPU to user programs and device tasks
according to their respective priorities.

b) It stores and forwards messages.

c) It enables tasks to map onto other task's virtual memories
to facilitate the passing of information.

d) It receives interrupts from all devices attached to the
system forming them 1into messages for interpretation by
the respective handler task.

All other system functions, including file system handling etc,
are carried out by standard tasks. This enables systems to be
easily tailored for specific machines with very 1ittle overhead.

With the exception of a small part of DEIMOS, namely hardware
register loading and compiler run time support, all the emulator
software 1s written in the high level language IMP ([11]1,[10],[13]).
The use of the high level language has, in our opinion, greatly
speeded up the development of DEIMOS and ERTE. The initial software
was written several times faster than a similar, but significantly
different, system which was written almost entirely in assembler
(7). Similar benefits were also discernible in the ease with which
errors were identified and corrected. The ability to adapt and
extend the software to cope with different environments is proven.
[7] Great care has been taken in the definition of modules and their
interfaces, enabling sections to be replaced easily.

The principal tasks are as follows [1] :-

1)THE SCRIPT TASKS

tach script task emulates a set of virtual users, currently up
to 16 per task, there nommally being several script tasks in an ERTE

configuration (see current uses section).

A script task is controlled by a parameter file, read in as
part of the script task initialisation phase. The file contains the
number of users for this task, a typing efficiency for those users
and a delay factor between the i{nitial user logon times. The
parameter fijle also associates a script file name and temminal line

speed with each virtual user.

10

e

The script task maintains pointers to the script files on disc
for each user and reads items as required. The first line of a
script file entry is the user input to the target system. Using the
length of this input and the user's typing efficiency, a typing
delay 1s calculated and ef fected before the input is passed to the
temninal protocol handler and thence to the target system.

When the target system responds with a request for more user
input the script task executes a user think time delay previously
read from the script file before commencing with the next input.

Currently output fram the target system is not returned to the
script tasks, although provision has been made to allow the checking
of target system responses against entries in the script files.

The script task continues to read from each script file until
all the files are exhausted or the emulator is aborted by operator
intervention. Note that one script file may contain several
consecutive user sessions at a virtual teminal with different

users.
It is possible for the operator to interrogate the script tasks
to get the status of each user, cause a script file to be repeated,
or abort the script task.
The script tasks are entirely target system independent and can

easily be reconfigured for various numbers of users.

2)THE TERMINAL PROTOCOL HANDLER

11

The terminal protocol handler takes care of the followirg four

functions:-

a) The handling of all buffering for messages between virtual
users and the target, by maintaining a central buffer pool fram
which the SCRIPT tasks and Line Protocol Handler task request space

as necessary.

b) Terminal Protocol Handling. The appropriate teminal
protocol [8) is added to or removed from each message and control is

exercised over the flow of messages to and from the target.

¢) Calculation of Typing Delays. The delays involved in the
typing of output are taken care of here and a message is sent to an
appropriate SCRIPT task only when a reply to a user command has been
‘typed' and the system has indicated that it is ready to receive

more input.

d) Maintaining the Performance Log. During a run all messages
whether generated by the users or the target system are recorded
with a time stamp in a log file held on disc. This log may be
analysed later to obtain performance data for the run. The fact
that all input and output is recorded is a validation procedure
which ensures that the target system has executed the specified
scripts. During a run the operator commands available [1] enable

checking to be made that the scripts are being processed.

3)THE LINE PROTOCOL AND DEVICE HANDLER

12

The Line Protocol Handler is passed messages by the Terminal
Protocol Handler and ensures their correct transmission to the next
stage 1in the conmunication network. The current implementation is

run under the HDLC protocol [8].

The use of HDLC has several benefits, including the fact that
correct transmission and' reception of messages can be guaranteed.
The distances involved are short enough to enable links without
error correction to be used. However the overall use of ERTE in
this manner would be limited by restricting 1fts physical position
with regard to any target mainframe. In addition, without error
correction there would always be a slight risk of losing or

corrupting messages.
HDLC with its facilities for transmitting and receiving several
messages in advance of an acknowledgement leads to significant\y

better throughput than simpler protocols.

The protocol handler passes the messages to a device handler

which controls the cammunications hardware.

4)THE TIMER AND INITIAL ISATION TASKS

The timer task s used by the script and terminal protocol
tasks to return messages after a specified interval. For example,
the script task, as one of its activities, sends a message to the
timer which includes a script number and a time 1in seconds for a
user think delay. After that time, the timer replies with a message
including the script number. In this way think delays, typing

13

delays and printing delays may easily be handled. The timer also

provides the time stamping facility for the monitor log.

The initialisation task 1loads the other tasks, handles all

fatal error messages and the controlled close down of the RTE.

DATA ACQUISITION ANO REDUCTION

A log of all messages and the time at which they appeared is
recorded by the Terminal Protocol Handler. This file is analysed to
obtain appropriate performance data. A suite of analysis programs
produces counts, distributions, means, variences etc. for a variety
of measures. These measures may be obtained over all users or any

specified subclass of users and include:

a) Response Times :- either averaged over all commands given or for
specific subclasses of canmands. The definition of response
time will vary according to the target system and the
application, however two response times are currently
considered:

1) First Response :- the time fran giving a command to the
system until the first character of the reply is received
(no typing or subsequent delays considered).

2) Final Response :- the time from giving a command to the

14

system until all of of the reply is typed and the target
has indicated that it {is ready to receive a further

command.

b} Command Types :- this is a frequency count of the canmand
subclasses which gives a measure of how changes in the
configuration or §chedu11ng algorithms in the target

discriminate for or against certain forms of interaction.

c) 1/0 Rates Achieved :- this is a count of the number of characters
input and output from each virtual terminal. This may be used
as a measure of the throughput capacity of the

sof tware/hardware handiing interactive communications.

15

CURRENT AND PROPOSED USES

ERTE has resulted fram a number of year's work in Edinburgh on
interactive benchmarks. The first version was used to provide an
interactive benchmark for the Edinburgh Multi-Access System [156] in
1973 and to produce a workload measure to match against the
performance of an ICL 2980 that the Regional Computing Organisation
was buying. This benchmark was run on a PDP 11/45 using the first
version of DEIMOS.

The next version has been used by Southhampton University since
August 1976, and latterly by Kent University to benchmark their ICL
2900s, This version runs on a POP 11 (with segmentation)} using
DEIMOS and software similar to ERTE. The significant difference
between ERTE and the Southampton benchmark is that instead of a
synchronous line, Southampton use two asynchronous multiplexers,
each capable of supporting 16 lines, each of which appears to the
2970 as a teletype. Consequently, instead of a Line Protocol
Handler, there is a Multiplexer Handler which fans out the messages

from the Terminal Protocol Task to the discrete lines.

At present the major use of ERTE is in the running of a set of
controlled experiments on EMAS. Within these, ERTE is used both as
a method of providing a range of repeatable workloads and as a
measurement device. EMAS is measured running under realistic loads
on a variety of configurations and the data so obtained is used to
validate and calibrate a range of models of this class of system.
The measurements are collected by ERTE (see Section 5) and within

16

EMAS [2].

The ability exists to vary three major hardware parameters
within the target- the size of main memory (up to 1Mbyte), the size
of secondary memory (up to 12Mbytes) and the channel bandwidth to
secondary memory (1 or 2 channels). As EMAS is also written in the
high level 1language IMP. and 1is relatively easy to modify for a
system of this size and complexity, almost any part of the software
system could be considered for changes. However experiments have
already been carried out and will continue to be carried out on the
scheduling algorithms and working set [4] calculation mechanisms

employed.

The workload currently used is one defined from measurements
taken on EMAS some time ago [2]. This mimics rea) users in that a
set of base program and data files are available in the target
machine for use during an ERTE run. These are not altered but ary
other files created during a run are automatically destroyed before
the next run. Research 1is also underway into the automatic
production of new synthetic workloads built fram a set of basic
units and validated against measurements teken on the system in
normal use. Using these synthetic workloads it is intended to
further investigate the effects of Toad and balance within load upon
EMAS'S performance and to carry out a similar exercise on di fferent

time-shared systems eg. PDP-10 and ICL 2900.

ERTE may also be used to test system changes and hopefully
eliminate errors before the system s released to normal users. The
development of ERTE has been in parallel with many major changes in

the communications network software. ERTE has shown its usefulness

17

validating models of time-sharing systems. It is hoped, however,
that ERTE will provide a vehicle for further research into more
rigorous measurement and empirical evaluation techniques. The work
currently being carried out is on large time-sharing systems, an
area which has seen considerable research effort in the last 15
years. However, having developed techniques on this class of system
it 1is hoped that these -will be easily extendable to amy fom of

teleprocessing system or indeed communications network.

19

FIGURE 1 : THE LOGICAL STRUCTURE OF ERTE.

USER) COMMANDS
EMULATION THINK TIMES
TYPING SPEEDS

TERMINAL TERMINAL
EMULATION SPEEDS

TERMINAL TERMINAL CONCENTRATOR
SOFTWARE MESSAGE FLOW CONTROL
EMULATION VIA TERMINAL PROTOCOL

MESSAGE BUFFERING

COMMUN ICAT1ONS LINE

HANDL 1NG PROTOCOLS
wARDWARE [PHYSICAL LINE
DRIVER HANDL THG
COMMINICATIONS |

NE TWORK

TARGET SYSTEM [)]

20

FIGURE 2 : THE SOFTWARE STRUCTURE OF ERTE

SCRIPTS SCRIPTS
{DISC) {DISC)

------------ - SCRIPT S SCRIPT
PARAMETER PARAME TER
FILE TASK FILE i TASK
........... B commemm=d ¢ crmemcem——— commmman
//X/
TER4INAL PROTOCOL
HANDLER
MONITOR BUFFERI NG
LOG VIRTUAL PRINTING

......... TERMINAL PROTOCOL

Pl L Lt Spepppap——

L INE PROTOCOL
AND DEYICE
HANDLER

21

[1]

(2]

(3]

(4]

(5]

[6]

71

(8]

REFERENCES

J.C. ADAMS, W.S. CURRIE, & B.A.C. GILMORE, "The ERTE User
Manual" Edinburgh University, Computer Science DUDept.,

internal report (1977).

J.C. ADAMS, & G.E. MILLARD, "Perfonﬁance Measurement on the
Edinburgh Multi-Access System” Proceedings of the
International Computing Symposium , Antibes, ppl05 - 112
(1975).

J.C. ADAMS, ‘“"performance measurement and evaluation of
Time-Shared, Virtual Memory Systems” Phd Thesis, Edinburgh

University - to be published

P.J. DENNING, "The Working Set Model for Program Behaviour"
Comm. ACM, 11, pp323 - 333 {1968)

B.A.C. GILMORE, & S.T. HAYES, "The EMAS Front End Processor”
ERCC internal report, (1977)

B.A.C. GILMORE, “"The DEIMOS User Mamual” ERCC internal report
(1976)

B.A.C. GILMORE, "Imp as a tool for Small Systems
Implementation” M.Phil. Thesis, Edinburgh University
(1977)

HDLC Protocol is fully defined in ISO reports 150/TC97/5C6-731

22

and 1S0/TC97/SC5-1005.

[91 ITP “Interactive Protocol for use in the RCO Ntework" Edinburgh

Regional Computing Organisation report No. NP/37.

[10] p.S. ROBERTSON, "The Production of Optimised Code fram
Portable Compilers” Phd. Thesis, Edinburgh University -
to be published

{11] P.S. ROBERTSON, "Experience with the Portable IMP Compiler”

Edinburgh University Computer Science Dent. {1977)

[12]1 J. STASUIK, "Terminal Driver Monitor® University of Michigan,

Ann Arbor, Computer Center {1976)

[13] P.D. STEPHENS, “The IMP Language and Compiler" Computer J, 17,
pp2l6 - 223 (1974).

[14) United States National Bureau of Standards. "Survey of Remote

Terminal Emulators” special publication 500-4 (1977)

[15] H. WHITFIELD, & A.S. WIGHT, “"The Edinburgh Multi-Access
System” Computer J, 16, pp33l - 346 {1973).

ACKNOWLEDGEMENTS

We would like to thark Dr. A.S.WIGHT, P.S.ROBERTSON

{Edinburgh University Computer Science Department), Dr.

23

G.BURNS and Dr. A.MCKENDRICK (Edinburgh Regional
Computing Centre) for their assistance and advice

throughout the development of ERTE.

24

