=t Edinburgh
geglonal
= Computing
gu‘ﬁeH Centre

"l ||||||||

o Y

A Syntactic and Semantic
definition of the IMP Language

As implemented by the
Edinburgh Regional Computing Centre

by
P.D. Stephens

First edition
August 1974

A SYNTACTIC AND SEMANTIC
DEFINITION OF THE IMP LANGUAGE

AS IMPLEMENTED IN THE ERCC.

PREFACE

This reference manual describes the IMP language as implemented by the
Edinburgh Regional Computing Centre on its service computers, a twin ICL 4-=75
i nteractive system operating under the Edinburgh Multi-Access System (EMAS)
and an [IBM 370/158 batch system, in a more formal manner than the Edinburgh
IMP Language Manual (2nd edition). It replaces Part 11, Chapters 8 and 9 of
the first edition of the IMP language manual (July 1970). The information has
been brought up to date with the current release 8 of the IMP compiler.

The syntax of the IMP language is presented in Section 1 and its semantics
in Section 2. Section 3 contains lists of the compile time and run time fault
messages generated by the compiler.

The reader is referred to the other two documents which describe
facilities of the IMP language; The Edinburgh IMP Language Manual (2nd
Edition), and The IMP/FORTRAN System Library Manual.

The editors would like to thank Mrs Anne Tweeddale who typed this manual.

Andrew McKendrick,
Gillian T. Watson,
July 1974,

SECTION 1 = SYNTAX

INTRODUCTION

The syntax describes in phrase-structure notation the structure of the various
forms of statement which are allowed in the language. The notation used is as
follows. A definition is started by P (for PHRASE), and ended by a semi-colon.
The symbols '<' and '>' are used to enclose definable items in the IMP language.
They stand for themselves ('less than' and 'greater than' respectively) whenever
they enclose any character which is not an upper or lower case letter, or a
space or prime. The sequence '::=' separates an item from its definition and may
be interpreted as 'is defined as'. The character '|' is used to separate
alternative definitions and may be interpreted as 'or'. Symbols used in a
definition but not enclosed by '<' and '>' denote actual IMP text, i.e.
literals.

For example, the phrase structure definition of 'assignment operator' is:
P<assop>::= ==|=|<{~|=>;
The phrase structure definition of 'name list' is:

Plname list)::= <name><rest of name list>;
P<rest of name list>::= ,<name list>|<null>

<null> denotes the null text,

i.e. P<null>::= H

Spaces are ignored everywhere in a program unless the compiler is operating in

text mode. The oconvention used is that, if there is a null alternative, Fhe

words 'rest of' will appear immediately after the '<' in the definition. A prime

immediately before the '>' of a phrase also denotes a null alternative.
P<plus'>::= +|=1"1<nul1>;

<{name> is termed a built-in phrase and has not been expanded further in terms of

1iterals or phrases. Such built-in phrases are described in detail at the end of
the phrase structure.

SYNTAX 1.1

IMP PHRASE STRUCTURE

All IMP source statements belong to the class P<SS>, where SS stands for source
s tatement, as defined below.

P<SS>

1.2

<unconditional instrn><{separator>|

<if or unless><cond>4THEN<unconditional instrn><else'><{separator>|
<if or unless><{cond>{then start><{separator>|

<unconditional instrn><if or unless><cond><{separator>|

<while or until><cond>3THEN<unconditional instrn><{separator>|
<while or until><cond>%CYCLE<separator>|

<{uncondi tional instrn><while or until><cond><separator>|
%CYCLE<cycparam'>|

%REPEAT¢separator>|

{type><qname' ><name list)><separator>|
{type>%ARRAY<{format'><array list><{separator>|
<xownd<type><name list><initial'>{rest of own declaration><separator>|
<xown><type>ZARRAY<name>{cbpair><const list>|

%SWITCHSswi tch list><{separator>|

<extrn' ><rt>%SPEC<{name><formal parameter defn'><separator>|
%SPEC<name><formal parameter defn'><{separator>|
<extrn'><rt><name><{formal parameter defn'><{separator>|
%BEGIN<separator>|

%END<separator> |

%ENDOF PROGRAM{separator> |

<{label>:|

<name>(<plus'><iconst>):|

<conment><{conment text><{separator>|

%L1ST<{separator>|

%ENDOFLIST<separator>|

ZMCODE<separator>|

ZENDOFMCODE<separator> |

*(machine instrn><{separator>|

%FINISHSelse'><separator>|

%RECORDFORMAT<name>({format element><rest of format defn>)<{separator>|
%RECORD<qname' ><name 1ist>(<name))<separator>|
%RECORDARRAY< format ' ><array 1ist>(<name>)<{separator>|
<xown>ZRECORD<name 1ist>(<name>)<{separator>|
<xown>%RECORDARRAY<name><{cbpai r>(<{name>)<{separator>|
%RECORDSPEC<name><ename' ' >(<name>)<{separator> |
JREALS<In><{separator>|

%CONTROL<iconst><{separator>|

%ZENDOFF | LE<separator>|

SFAULT<fault list><separator>|

{separator>;

where:

P<unconditional instrn>::=

and:

nn

P<plus'>::
P<exprnd>::
P<rest of exprn>::=
P<operand>::=

P<operator>::=

P<actual parameters')::=

P<rest of actual parameters>::=

P<conma'>::=

P<if or unless>::=
P<while or until>;::=
P<cycparam'>::=

P<{then start)::=
P<type>::=

P<name list)::=

P<rest of name list>::=
P<array list)::=
P<rest of array list>
P<bound pair list>::=
P<rest of bp list>::=
P<{cbpair>::=
P<{switch list)::=
P<rest of switch list>:
P<rt>::=

P<array'>::=

P<fmd:e=

<name><actual parameters'><ename'><assop><exprn><aui'>|
<{name><actual parameters'><aui'>|
=>{label>|

=><name> (<exprn>)|
%PRINTTEXT'<ptext><aui '>|

ZEXIT|

ZRETURN|

ZRESULT<assop><exprn> |

%STOP|

SMONITOR |

ZMON1 TORSTOP;

+|=1"1<null>;

<plus'><operand><rest of exprn>;

{operator><operand><rest of exprn>|<null>;

<{name><actual parameters'><ename'>|

{const><named><actual parameters'><ename'>|

<const>| (<exprn>)| {<exprn>!;

A R R V72 R R A VAL 1RSI Pod By

(<exprn><rest of actual parameters>)|<null>;

Lexprn><{rest of actual parameters>|<null>;

1 <null>;

%1 F| ZUNLESS;

ZWHI LE) ZUNTIL;

<{name><actual parameter'><ename'>=<exprn>,
<exprn>,<exprn>|<null’>;

%THEN%START| 2START;

%INTEGER| Z2REAL| 2BYTE% I NTEGER|

%SHORT%INTEGER | LONG%REAL |

$STRING<qualifier'>;

<{name><{rest of name list>;

<name list>|<null>;

<name list>(<bound pair list>)<rest of array list>;

,Larray list>|<null>;

<exprn>:<exprn><rest of bp list>;

,<bound pair list>|<null>;

(<plus'><iconst>:<{plus'><iconst>);

<name list><cbpair><{rest of switch list)>;

J$switch list>|<null>;

ZROUTINE| <type><fm>;

%2ARRAY | <null>;

%FN| ZMAP;

SYNTAX 1.3

P<{formal parameter defn'>::=

P<Fp list)ses -
P<rest of fp list)::=
P<fp delimiter>::=

P<{format element)::=

P<rest of format defnd::=

P<{xownd>::=

P<rest of own dec>::=
P<format'>::=
P<{qualifier')>::=
P<cond>::=

P<and cond>::=

P<rest of and cond>::=
P<or cond>::=

P<rest of or cond>::=
P<simple cond>::=

P<rest of simple cond>::=

P<comparator>:':=
P<label>::= !
P<initial')>::=
P<fault llst>°'=

P<rest of N list>::=

P<{rest of fault listy::=

P<comment>::=
P<asso?>"=
P<else'>::=
P<extrn'>::=
P<ename' D=

P<aul’ >::

(P<machine instrnd

1.4

(<Fp list>)|<null>;
{fp delimiter><name list><rest of fp list>;
<comma ' ><fp 1ist>|<nulld>;
<rtd> | <type><gname’> | NAME|
%RECORD<ar ray' >3NAME;
{typed><qname'><name list>|
<type>%ARRAY<name 1ist>{cbpair>{rest of switch list>|
%RECORD<array' >2NAME<name list>|
%RECORD<name 1ist>(<named);
,<{format element><rest of format defn>|<null>;
20WN| 2CONST | ZEXTERNAL | ZEXTRINSIC;
<{name listX<initial'><rest of own dec>|<null);
2FORMAT | <null>;
(unsigned integer>)|<null>;
<simple cond>%AND<and ocond>|
¢{simple ocond>%0R<or cond>|
<{simple cond>;
<{simple cond><rest of and cond>;
2AND<and cond>|<null>;
{simple ocond><rest of or cond>;
%20R<or cond>|<null>;
{exprn><{comparator><{exprn><rest of simple cond>|
(<cond>);
<{comparator><{exprm> |<null>;
=|#]7=]>=]>|<=|<]|=>;
<named | <unsigned integer>;
={plus’ ><const>| <nulld>;
<unsigned integer><{rest of N list>-><label>
{rest of fault list>;
,S{unsigned integer><{rest of N list>|<null>;
SLfault list>|<nulld>;
2COMMENT] ! ;
-:l(-'=|-)-
Z2ELSE%START| zELSE<uncondi tional instrn>|<null>;
%EXTERNAL | 2SYSTEM| $DYNAMI C| <null>;
_<name>|<null);
“<name><actual parameters'><ename'>|<null>;
ZARRAYNAME | ZNAME| <null>;
%LONG | ZNORMAL ;
2AND<unconditional instrm>|<null>;

See ICL 4/70 Userocode Reference Manual. Note
that only a subset of the u4=70 Usercode s
allowed and that its direct use in IMP is not
reconmended)

THE BUILT-IN PHRASES.

A few of the phrases used to define IMP syntax are not themselves defined by
literals and/or other phrases. These are the built-in phrases where recognition
or rejection of the phrase is by executing a piece of program in the compiler.
Built-in phrases are used for speed or because of a need to perform operations
other than recognition - a constant must be recognised (which could be performed
by a phrase definition) and also evaluated (which could not).

The built in phrases are:

P<null>

P<name>

P<{const>

P<iconst>

P<unsigned integer>

P<{separator> ‘
P<{conment text>

P{const list>

P<{ptext>

1. Phrase <null>

This merely directs the syntax analysis to proceed to the next item.

2. Phrase <name>

A name rust start WIth a letter. This may be followed by a string of letters
and/or digits. The following are valid names:

A, A3, POINTER 27, A 3 B, A2B37

Once the initial letter is found, phrase name will always find a valid name.

3. Phrase <const>

This recognises and evaluates constants. A constant may be a character
constant, a decimal constant, a string oonstant, or a multicharacter,
hexadecimal or binary constant.

Character constant.

Character constants consist of any one character from the extended
symbol set between quotes (').

.A', lsl' |=I' l;l

Al11 characters stand for themselves within quotes (except quote itself

which is represented by two quotes), including space and newline. The
value of the constant is the internal code of the symbol.

SYNTAX 1.5

Decimal constant.

Any sequence of digits is permitted which may contain one decimal point
(.). Leading zero's are permitted - thus valid decimal constants are:

12, 123, 0123, 01.23, 12.30, 0.123, .123000

Further, any decimal constant may be followed by the exponent indication
(@), an optional '+' or '-' sign and an integer indicating a scaling
factor as a power of ten. Thus valid constants containing an exponent
are:

12,10, 012@+10, 12@-8, 7@0.

Constants > 10**75 cause overflow during compilation;
Constants < 10+*-75 are taken as zero.

Constants are evaluated double length. The compi ler arranges to stare
real constants double length if they are used in an expression which s
to be evaluated double length. Otherwise constants are stored single
length.

String constant.

String constants oonsist of a string of symbols between quotes, all
symbols standing for themselves including space and newline but
excepting quote itself which is represented within quotes by two quotes.
The compiler checks that the length of the string constant does not

exceed the maximum length of 255 symbols, and stores it in string
format.

A character constant, 'A' say, is converted to a one-character string if
the context so demands.

Multicharacter, Hexadecimal and Binary oconstants.

Multicharacter oonstants consist of a string of up to four symbols
enclosed in quotes and prefixed by the letter M.

M'12mz!
M? 2!

Spaces and newlines are significant and a single quote is represented by
two quotes. Each symbol occupies one byte of store.

Hexadecimal constants consist of a string of up to eight hexadecimal

digits (0,1,.....9,A,B,.....F) enclosed in quotes and prefixed by the
letter X.

X'FF'
X'127A4CD2"

Each hexadecimal digit occupies a location of four bits in length.

L.

6.

- 9.

Binary constants consist of a string of up to thirty two binary digits
(0 or 1) enclosed in quotes and prefixed by the letter B.

B'01011110'
Each binary digit occupies one bit.
All three forms may appear in arithmetic expressions but are treated as
integer. If one is assigned to a real variable it will be converted to
floating point form.
If the number of digits or symbols which appear in a constant is le§s
than the maximum permissible, then the value assumed is the same as if

the digits or symbols had been right justified in a location of 32 bits
and the remaining bit positions filled with zeros.

Phrase <iconst>
This is exactly as for phrase <const> except that real and string constants
are not accepted.

Phrase <unsigned integer>

Accepts only unsigned integer constants - leading zeros are permitted.

Phrase <separatof>

Accepts only semi-colon or newline character.

Phrase <comment text>

Skips text up to the next valid separator.

Phrase <const list>

Accepts a list of constants separated from each other by a cooma. The list
can ocontinue over several lines provided each line other than the last ends
with a comma. No constant list is also a valid alternative. Note that <const
list> is affected by the type and precision options of the array it is
initialising. An incorrect constant (e.g. too large) gives a syntax fault
and terminates the <const list).

Phrase <{ptext>

Accepts and stores any character string up to the first occurrence of a
single quote that is not immediately followed by another quote. The string
is stored as it is written, including newlines, spaces and semi-colons but
not including the first or terminating quote. Any occurrence of two single
quotes together results in one quote only being stored.

SYNTAX 1.7

SECTION 2 - SEMANTICS

INTRODUCT I ON

Not every statement which is syntactically correct is meaningful.

For example

ZOWNBYTEINTEGER K = 256

is a syntactically correct statement, and will be recognised as such by the
compiler. However, its meaning is not clear, and that part of the compiler which
checks semantics will signal a fault. We therefore give below, corresponding to
each source statement, a description of the semantic checks made, and of the
effect of the statement both at compile and run time.

General rules are:

COMPILE TIME

1,
2,

grs's:lz;)l statements described in section Ul may be made conditional. (See
Syntax errors recognised by the compiler are signalled by SYNTAX
followed by a listing of the offending statement. When possible the
compiler will indicate the position of the SYNTAX error by outputting a
marker (!) under the character where analysis failed. This marker can be
approximate only.

e.g., if the statement

%ROUTINE SPECIAL ACTIONS is mistyped as
ZROUTINESPECIAL ACTIONS the failure message would be

* 111 SYNTAX
%ROUTINESPECIALACT | ONS
!

The marker is misplaced to the right, as this erronecus line more nearly
corresponds to a 'ZROUTINESPEC' statement than the intended
"9ROUTINE' statement.

The semantic errors recognised by the compiler will be signalled by
messages of the type

FAULT N

where N identifies the fault according to the table in Section 3,
COMPILE TIME FAULTS.

Each block (See SS18,SS19) is said to be at a different textual level
from that of any block containing it.

If blocks are nested to a depth of more than 9 levels, FAULT 34 will
be recorded. After this fault has occurred, the compiler will continue
to examine any further statements for errors, but will not compile them.

If more than 10 1levels are defined at any time FAULT 35 will be

recorded and compilation will cease completely. Each routine is said to
be at a different routine level. FAULT 35 occurs if routine levels are
nested greater than 5.
The compller allocates itself space, e.g., for dictionaries, depending
on the amount of core store available at compile time. If the store
available is not sufficient to compile the source program the compiler
perforce must stop and a catastrophic FAULT N (N>100) is recorded.

SEMANTICS 2.1

6.

Instructions to enter the system MONITOR routine in the event of various
run-time fault conditions occurring are compiled into the program. This
action can be varied by including appropriate options in the job control
Sstatements.
In general, as in the case of the SYNTAX message, compilation continues
after any FAULT N message has been recorded until the statement
%ENDOFPROGRAM is reached, or a %END is found which corresponds to the
opening %BEGIN.

However faults numbered 101 and upwards are catastrophic and
compi lation ceases.

RUN TIME

8.

The effect of MONITOR entry is cessation of execution, accompanied by
output of an explanatory message, as detailed in Section 3, RUN TIME
FAULTS.

A POST MORTEM is also output.

A complete 1ist of all faults recognised by the system is given in Section 3.

2.2

SEMANTICS OF SOURCE STATEMENTS

SSl

SS2

SS3

<unconditional instrn>{separator>

where: <unconditional instrn> = an instruction which may be made
condi tional.
{separator> a semi-colon or newline character.

See Unconditional Instructions Ul1-UI1l.

<if or unless><cond>3THEN<unconditional instrnd><else'><{separator>
where: <(If or unless> = %IF or %UNLESS
<{cond> = conditional expression
COMPILE TIME

1. Only instructions of the class <unconditional Iinstrn> may be made
conditional. (See UI1-UI1l).

2. If multiple unconditional instructions are provided, the effect is
exactly as If the individual unconditional instructions were enclosed
within a 2START=2FINISH grouping (See SS3).

RUN TIME

3. When <if or unless> = %IF: If the conditional expression is true, then
the unconditional instruction Is obeyed, otherwise it is skipped, and
the unconditional instruction following %ELSE (if any) is obeyed.

b, When <if or unless> = ZUNLESS: contrariwise.

5. Because of rounding involved in %REAL arithmetic operations, care should
be taken in equality comparisons between two expressions either, or
both, of which are of %REAL type.

6. See CP1l and CP2 for evaluation of conditional expressions.

<if or unless><{cond>{then start><{separator>
where: <then start> = %THEN %START or %START
COMPILE TIME

1. A note is made of the position of %START so that it can be associated
with the appropriate %FINISH.
2. %START-%FINISH blocks may be nested to any depth.

RUN TIME

3. When <If or unless> = %IF: |f the condition is true, all the statements
between %START and the appropriate %FINISH are executed, otherwise all
the statements between %START and the appropriate %FINISH are skipped
and, if a ZELSE follows the %FINISH, the statement(s) following the
%2ELSE are executed.

4, When <Iif or unless> = ZUNLESS: contrariwise.

5. If a %START-%FINISH-%ELSE block is entered via a jump and not via the

- %START then the action taken at the %ELSE is not defined.

SEMANTICS 2.3

SS4

SS5

<uncondi tional instrn><if or unless><cond><separator>

COMPILE TIME
1. Treated as <if or unless><{cond>%THENSunconditional instrn>{separator>.
(See SS2). Note that %ELSE is not allowed here.

<while or unti1><cond>%THEN<Cunconditional instrn><{separator>
where: <while or until> = ZWHILE or ZUNTIL
<cond> = oonditional expression
COMPILE TIME

1. If multiple unconditional instructions (connected by %AND) are provided
the effect is exactly as if the Individual unconditional instruction
were enclosed within a %CYCLE ZREPEAT group (See SS6).

RUN TIME

2. When <while or untl1>=%WHILE: The condition is tested and, if false, the
next statement is executed. Otherwlise the unconditional instruction is
obeyed and a branch made to test the condition again.

3. When <while or until>=%UNTIL: The unconditional instruction is obeyed
and the oconditlon tested. |If false, a further execution of the
uncondi tional instruction is Initiated. Otherwise the next statement is
obeyed.

4. If executing the unconditional instruction does not affect any of the
variables in the condition, the program is liable to loop indefinitely.

- 5. Note that with ZUNTIL the unconditional instruction will always be

SS6

2.4

executed at least once, but that with %HILE, the unconditional
instruction may not be executed at all. :

<while or until><cond>%CYCLE<separator>

COMPILE TIME

l. A note is made of the position of the %CYCLE so that it can be
assoclated with the appropriate %REPEAT. If at the end of a block, no
such ZREPEAT has been found, FAULT 13 will be recorded.

2. If <while or unti1>=%UNTIL the condition is saved so that it can be used
at the %REPEAT.

RUN TIME

3. When <while or unti1>=%WHILE: The condition Is tested and, if false, the
statement after the appropriate %REPEAT executed. Otherwise the cycle is
traversed and a branch is made to test the condition again.

4. When <while or until> = %UNTIL: The cycle is traversed and then the
condition is tested. If false, a further traverse of the cycle is
initiated. '

5. There Is no automatic increment of any variable. It is the programmer's
responsibility to ensure that executing the cycle is liable to change
one of the variables in the condition.

6. As SS5.5.

7. 1If a jump is made into the middle of a cycle, the effect on executing
the %REPEAT is not defined.

S§7

SS8

<unconditional instruction>{while or until><cond>{separator>

COMPILE TIME

1. Treated ekactly as <while or until><cond>%THEN<{unconditional instrn).
(See SS5).

%CYCLE <cycparam'>
where: <cycparam'> = <named<actual parameters'><ename'>=<exprn>,
<exprn>,<exprn><{separator> or <null>
COMPILE TIME

1. A record is made so that a %REPEAT in the same block can be associated
uniquely with this %CYCLE. If at the end of a block, no such %REPEAT has
been found, FAULT 13 will be recorded. (See SS19 and SS20).

2, |If cycle parameters are provided then <name><actual parameters'><ename'>
must be a %INTEGER variable (i.e. not %BYTEINTEGER or %SHORTINTEGER),
otherwise FAULT 25 is recorded. If the three expréssions are not of
integer type then FAULT 24 is recorded.

3. Cycles may be nested to any depth, but a %CYCLE and its associated
%REPEAT must be in the same block, and the same %START=%FINISH group.

k. No check is made by the compiler whether nested cycles employ the same
recorded variable and hence this is entirely the users' responsibility.

€.8. %CYCLE K = 1,1,10
%CYCLE K = 1,1,5
%REPEAT
%REPEAT

is syntactically acceptable but will cycle indefinitely.

RUN TIME

5. For open cycles no action is taken. For closed cycles 6-10 apply.

6. The three expressions (p,q,r say) are evaluated and stored upon first
entering the cycle. The cycle is monitored, INVALID CYCLE, if,

either (r=-p)/q # n, where n is an integer >= 0
or q = 0.

7. The address of the variable <{name><actual parameters'><ename'> is
recorded.

8. The recorded variable <name><{actual parameters'><ename'> is set at the
beginning of the first traverse of the cycle to the value p. When the
associated %REPEAT is encountered, the current value of <name><actual
parameters'><ename') is tested against the final value r. |If these two
values are equal, control passes to the next statement after the
%REPEAT, otherwise, - the current value of <name><actual parameters'>
<{ename')> is incremented by an amount q, and another traverse of the
cycle is begun.

9. Transfers of control within the body of a cycle, or out from the body of
a cycle, are allowed in the usual way. However, if control is
transferred into the body of the cycle without going via the %CYCLE
statement, the increment variable will not be assigned and MONITOR will
be entered when the %REPEAT is obeved.

SEMANTICS 2.5

10. Assignments to the recorded variable should not be made within the body
of the cycle without full regard to the possible consequences. For
instance, in view of 8 above it will be clear that a cycle such as

- %CYCLE K = 1,1,10 %CYCLE
K=20 is equivalent to
%REPEAT %REPEAT
SS9 ZREPEAT<separator>

COMP! LE TIME

1. Each %REPEAT is associated with the last unassociated %CYCLE statement
in the same block. If no such %CYCLE statement exists, FAULT 1 is
recorded. See SS6 or SS8 as appropriate.

RUN TIME ‘

2. Note that the MONITOR message "UNASSIGNED VARIABLE' can be obtained from
a %REPEAT as a result of SS8.9 or SS6.2.

SS10 {type><{gname'><name list><{separator>
where: <{type> is ZREAL, %INTEGER, %BYTEINTEGER, %SHORTINTEGER,
%LONGREAL or %STRING <qualifier'>
{qualifier'> = <unsigned integer> or <null>
{gname'> a ZARRAYNAME or ZNAME or <null>

COMPILE TIME

1. If any name on <name list> has been declared before in the current block
then FAULT 7 is recorded, otherwise arrangements are made for a location
in the store to be assigned to each name for use within the current
block at run time.

2, The type of each name in the current block is recorded.

3. Variables declared as %BYTE, %SHORT and %LONG are allocated 8, 16 and 64
bits each, respectively. If no length Is specified then 32 bits are
allocated. However, pointer varlables are allocated 32 bits and
%ARRAYNAME variables 128 bits.

L. The maximum string length, <unsigned integer>, is checked to ensure it
lies between 1 and 255 and,if so, code is compiled to allocate space at
run time. Otherwise FAULT 70 is recorded.

5. A check is made that the declarations occur at the head of a block (i.e.
before any label or jump instructions occur). If not, FAULT u40 s
recorded.

RUN TIME

6. The values of the names are lost on leaving the block, i.e. the declared
storage is deallocated and made available for other use.

7. Pointer variables are specialised and should not be used unless the

2.6

stack mechanism is well understood. Unpredictable and dire consequences
will follow iIf a pointer variable is left pointing to a variable when it
is deallocated as in SS10.6 or SS11.9.

SS11

SS12

{type>%2ARRAY<format'><array listd><{separator>
where: <format'> = %FORMAT or <null)

COMPILE TIME

1,

2.
3.

RUN
7 .

If any name on <array list> has been declared before in the block then
FAULT 7 is recorded, otherwise the name and the type of the name in the
caurrent block are recorded.

If expressions defining the array bounds are not Z%INTEGER expressions
then FAULT 24 Is recorded.

A check is made for string arrays that <unsigned integer> lies between 1
and 255. If not, FAULT 70 is recorded.

A check Is made that the declarations occur at the head of a block (i.e.
before any label or jump instruction occurs). If not, FAULT 40 Is
recorded.

If no faults have been found in the declaration, instructions for
calculating the bounds at run time are compiled into the program.

If <format'> = %FORMAT, no space is allocated. Otherwise instructions
for allocating space at run time are compiled into the program. Array
formats are required for the special array mapping function ARRAY only.
If they are used in any other context, FAULT 29 will be recorded.

TIME
The bounds of each array are computed, and (subject to 6) space is

. allocated. (See AE1-AEL4 for semantics of <exprn)).

8.

However, MONITOR is entered if any lower bound exceeds the corresponding
upper bound, ‘'ARRAY INSIDE OUT'. If there is insufficient space
available, the program will be monitored "NOT ENOUGH STORE'.

This space is made available for other use at the end of the block.

The program is monitored if an attempt is made to refer to an array
element outside the declared bounds. This checking can be suppressed by
job control options.

The array will always start on a double word boundary.

Note that no initialisation takes place.

<xownd><type><name list><initial'><{rest of own declaration)

where: <{xown> = Z0WN or %CONST or ZEXTERNAL or ZEXTRINSIC
<initial'> = <plus'><const> or <null>

COMPILE TIME

1.

2.

This statement declares static variables where space is allocated at
compile time rather than run time. They make less efficient use of space
than dynamic variables, but possess additional attributes. %0WN and
%CONST variables are allocated in the non-sharable (GLAP) and sharable
(code) areas of the program file respectively. %CONST variables are
therefore 'read only' and any attempt to assign to them results in
FAULT 29 being recorded. %EXTERNAL variables are similar to Z%OWN but
their position Is recorded in the LOAD DATA so that other routines may
use them., %EXTRINSIC variables are assumed to exist in some other
program file which will be present at run time. No space is allocated
and the variables cannot be initialised or FAULT 46 will be recorded.
The constants provided are checked to be suitable for the variable and,
in the case of strings, that the 1length of string constant is <=
declared maximum length. |f this check fails, FAULT 44 is recorded.

If <initial'> = <null1> then zero (or null string) is pre-assigned.

SEMANTICS 2.7

SS13

2.8

3.

For ZSTRING variables a check is made that the declared maximum length
lles between 1 and 255.

k., The required amount of space in the appropriate area Is reserved and
inltialised.

5. Static variables may be declared global to, and used to communicate
between, a file of external routines.

RUN TIME

6. Since the space for static variables is allocated at compile time, if a
new value is assigned to a static variable, the new value will be found
in the variable on re-entry to the block (cf OWN variables in ALGOL 60).

7. Z%EXTERNAL and %EXTRINSIC variables enable IMP routines to access
COMMON areas produced by the Edinburgh Fortran Compiler. The
restrictions involved are outside the scope of this document.

<xown><{type>%ARRAY<name><{cbpair>{const list>
where: <xown> = %0WN or %CONST or %EXTERNAL or ZEXTRINSIC .

COMPILE TIME

1. As SS12.1

2. The array bounds are checked - if the lower exceeds the upper, FAULT 43
is recorded.

3. If a <const list> is provided, the number of constants is checked
against! the declared bounds. |If there is a discrepancy, FAULT 45 is
reoorded

b. If no <oonst 1list> Is given, the appropriate number of zeros (or null
strings) are pre-assigned.

5. Variables declared as %BYTE, %SHORT and %LONG are allocated 8, 16 and 64
bits each, respectively. If no length is specified, then 32 bits are
allocated.

6. For string arrays a check is made that <unsigned integer> is present and
lies between 1 and 255. If not, FAULT 70 is recorded.

7. Note that phrase constlist is primed to accept constants of the size and
type defined by <type>. Any incorrect constants will give a SYNTAX
fault.

RUN TIME

8. Although static arrays are declared in a block and can only be referred

to within that block, the actual array variables are not held in the
dynamically allocated storage for that block. Consequently, if a new
value is assigned to a static array element, the NEW value will be found
on re-entry (cf ALGOL).

SS14

%SWI TCH<Sswi tch list><{separator>

COMPILE TIME

1.

2.
3.
4,

RUN

SS15

If any name in <switch list> has been declared before in this block then
FAULT 7 is recorded, otherwise the name and type of name in this block
are recorded.

The bounds are recorded and space is allocated for the storage of the
addresses corresponding to the switch labels. (See $S22).

If the lower bound exceeds the upper bound then FAULT 43 is recorded and
compi lation continues, both bounds being set to the greater bound.

If either of the bounds is outside the range -32768:32767 then FAULT 18
will be recorded. ’

TIME - No action.

<extrn'><rt>%SPEC<name><{formal parameter defn'><{separator>

where: <rt> = ZROUTINE, <type>%FN or <type>ZMAP
{extrn'> = %SYSTEM or %ZEXTERNAL or %DYNAMIC or <null)

COMPILE TIME

1.

2.

3.
b,

7.

RUN .
8.

9.

The <name)> is declared as an <rt> type name of the current block.
tI;AUL'I' 7 is recorded if the name has been set before in the current
lock.

A record is made of the type of each formal parameter. The names are not
recorffied, and it is only the order of the parameter types which is made

use of,

%SYSTEM, %EXTERNAL or ZDYNAMIC routine specs are used to set up a
reference so that the routine can be found at program loading.

Any internal <rt)> specified must be described somewhere later in the
same block, otherwise FAULT 28 is recorded at the end of this block
(except as in 5 below).

Within a <rt> description which uses routine-type parameters there must
be, corresponding to each such parameter, a routine type 2%SPEC which

appears before the first reference to that parameter. However, in the
case of routine-type formal parameters, there must be no description
corresponding to the required %SPEC.

The reduced form %SPEC <name><formal parameter defn'><{separator> may

only be used as ah alternative to the above where the specification is

of <{rt> type parameter, in which case the semantics applicable are those
detailed in SS16.

It is the programer's responsibility to make certain that the number

and type of parameters in ZEXTERNALROUTINESPEC correspond to those in
the 1ibrary %ROUTINE. The compiler cannot check.

TIME

Any %EXTERNAL routine must be available in the library files declared in
the job head or the program will not be loaded. %SYSTEM routines are not
for general use.

No attempt to load a routine referenced by a %DYNAMICROUTINESPEC is made
until the routine is called. If the routine cannot then be found,
MONITOR is entered. This form of declaration is useful for routines that
are not necessarily called during the execution of a program.

SEMANTICS 2.9

SS16

%SPEC <name><{formal parameter defn'><separator>

COMPILE TIME

1.
2,

3.

5.

This statement may only appear within a 2ROUTINE, %2FN or %MAP block,
otherwise FAULT 53 is recorded.

If the <name> is not that of an <rt> type parameter in the %ROUTINE,
%FN or MAP parameter list then FAULT 3 is recorded, otherwise the
<name> Iis declared as an <rt> type name within the current ZROUTINE,
%FN or MAP block.

No <rt> description corresponding to this %SPEC may appear in the
current ROUTINE, %FN or MAP block, otherwise FAULT 7 will be recorded.
A record is made etc as in SS15.2 above.

Corresponding to each <rt> type parameter of the current Z%ROUTINE,
ZFN or MAP block, there must be a %SPEC of this type, or that above
(SS15), which appears before the first reference to that parameter. I f
not, FAULT 21 will be recorded.

RUN TIME - No actlon.

SS17 <extrn'><rt><name>{formal parameter defn'><{separator>
where: <rt> = ROUTINE, <type> %FN or <{type> IMAP

COMPILE TIME

1. If the <name> has not been specified (see SS15) in the current block,
then this source statement is first treated exactly as

<{rt> %SPEC <name><{formal parameter defn'>{separator>.

2, This statement marks the beginning of a new block.

3. The formal parameter names are declared in the new block in the
appropriate way. FAULT 9 is recorded if the type of the first formal
parameter in the heading is not the same as the type of the first
parameter given in the corresponding %SPEC if any; similarly for the
second /parameter, and so on. FAULT 8 or FAULT 10 will also be recorded
if the number of parameters differs from that of the spec.

4. An <rt> can only be entered by an <rt> call, and therefore the compiler
Inserts a jump around the description.

5. Compilation of the <rt> follows. Instructions are planted to store the
current diagnostic pointers and to reset the pointers to describe the
new block,

6. The form %EXTERNALROUTINE may occur only in a library file terminated by
%ENDOFF I LE.

7. The form %DYNAMICROUTINE is treated exactly as %EXTERNALROUTINE.

8. Parameters of type %REAL ZARRAY %NAME, %ZINTEGER %ZARRAY ZNAME etc. have
no dimensions specified. The compiler takes the dimensions from the
nuvber of parameters at the first reference encountered.

RUN TIME :

9. The complete block is skipped.

2,10

SS18

%BEGIN¢separator>

COMPILE TIME

1. This statement marks the beginning of a new block.

2. The first statement of a program will normally, but not necessarily, be
this statement.

3. Instructions are planted to store the current diagnostic pointers and to
reset the pointers to describe the new block.

RUN TIME

L. Control passes into the block.

SS19 %2END<separator>
COMPI LE TIME
. Denotes the textual end of a block (%BEGIN, %ZROUTINE, %FN or ZMAP).

2. Denotes the dynamic end of a %BEGIN block and may denote the dynamic end
of a ZROUTINE.

3. Labels of the block which have been used but not set are recorded with
FAULT 11.

k., A check is made to ensure that each %CYCLE statement has been associated
uniquely with a ZREPEAT. If not, FAULT 13 is recorded.

5. A check is made to ensure that all %START statements have been
associated uniquely with a ZFINISH. If not, FAULT 53 is recorded.

6. A1l the names declared in this block are unset. The pointers stored on
entry are restored.

7. |If the block is a ZROUTINE then %END is treated as ZRETURN; %END. If the
block is a %FN or $MAP, %END is treated as ZMONITOR; %END.

8. If the %END corresponds to the first %BEGIN at the head of the program,
FAULT 14 is recorded and compilation ceases.

9. Any names or labels declared in this block but not used are listed.
Such names and labels result in a less efficient object program.

RUN TIME

10. A1l local working space is lost except that declared statically (See

SS12 or SS13).

S$S20 %ENDOF PROGRAM<separator>
COMPI LE TIME
1. Exactly as %END<{separator> (See SS19).
2. The unconditional instruction %STOP is compiled.
3. FAULT 15 is recorded if this statement is not the %END corresponding to
the first %BEGIN of the program.
4., Compilation ceases. Thus this must be the last statement of the program.
5. If no faults have been recorded, the object program is completed.
RUN TIME
6. Execution ceases.

SEMANTICS 2.11

SS21 {label>:

where: <{label> = <{name> or <unsigned integer>

COMPILE TIME

1. If the label is already on the label list associated with this block,
then FAULT 2 is recorded.

2. Otherwise the label and the address of the next compiled instruction are
added to the label list.

3. <unsigned integer> must be in the range 1 to 16383.

k. Labels set within any textual level apply to that level only, see 1
above. Thus, control may not be transferred from one textual level to
another by jumps to labels. Note that in the following situation

1: %BEGIN

1: ZEND

the first 1label 1 is outside, while the second is inside, the textual
level considered, so no fault is recorded.

RUN TIME - No action.

S$S22 <name>(<plus'><iconst>):

SS23

COMPI LE TIME

1. <name> must have been declared in the current block as a %SWITCH
variable (otherwise FAULT 4 will be recorded).

2. The signed quantity <plus'><iconst> nust be within the bounds declared
for this switch variable, otherwise FAULT 5 is recorded.

3. This switch label must not have been set before in this block, otherwise
FAULT 6 is recorded.

L, If a fault has not been recorded the address of the next instruction is
recorded as the address of this switch label.

RUN TIME - No action.

{comment><{corment text><{separator>
where: <comment> = ZCOMMENT or !
COMPILE TIME

1. The statement is ignored.

RUN TIME - No action.

2.12

SS24 2LIST<separator>

$§25

SS26

$S27

SS28

COMPILE TIME

1. Source statement %LIST causes the input program to be listed on the line
printer, together with line numbers, during compilation. The first line
of output is the first after the %LIST statement.

2., No code is compiled in response to this statement.

3. A ZLIST statement during listing has no effect.

RUN TIME - No action.

%ENDOFLIST<separator>

COMPILE TIME

1. Source statement %ENDOFLIST causes the listing begun by %LIST to cease.
The last statement listed is %ZENDOFLIST.

2, No code is compiled in response to this statement.

3. An %ZENDOFLIST elsewhere in a program has no effect if no listing is
being effected.

RUN TIME - No action.

2MCODE<{separator>
This source statement no longer has any effect, and is retained only for
compatibility.

%ENDOFMCODE<separator>
This source statement no longer has any effect, and is retained only for
compatibility.

»{machine instrn><{separator>
Most machine instructions are permitted. See System U4 Usercode
Reference Manual for the valid forms of machine instruction.

The use of Usercode in general purpose programs is unnecessary and

is not reconmended.
This statement is only valid in the IMP system compiler.

SEMANTICS 2.13

$S29 %F INISH<else"><separator>

where: <else'> = %ELSE %START or %ELSE <unconditional instrn)> or <null)

COMPI LE TIME

1. The %FINISH is associated with the last unassociated %START in the same
block. If no such %START exists, FAULT 51 is recorded.

2. A check 1s made that %CYCLE and %REPEAT have corresponded within the
%START-%FINISH pair. If not, FAULT 52 is recorded.

3., The jump instruction around the %START...%FINISH is filled.

b, |If %ELSE follows the %FINISH a check is made that the occurrence of
%ELSE is legal. If not, FAULT 47 is recorded.

RUN TIME - No action.

SS30 2RECORDFORMAT <name>(<{format element><{rest of format defn)>)<{separator>

COMPILE TIME

1. A check is made that the name of the record format has not been
previously declared at this level.

2. The names given in <record format defn> are used to identify elements of
the record, However these names are not 'set' and may be redeclared in
the same block without causing a fault. :

3. No code is compiled for this statement.

RUN TIME - No action.

§S31 - %RECORD<gname"’><name 1ist>(<name))<{separator>

$§32

COMPILE TIME

1. A check Is made that <name> is a valid %RECORDFORMAT name. If not,
FAULT 62 Is recorded. _

2. A check is made that none of the names in <name 1list> have been
previously declared at this level. If any have, FAULT 7 is recorded.

3. Instructions are compiled to allocate space.

4, The declaration must occur at the head of a block or FAULT 40 is
recorded.

RUN TIME
5. Space is allocated - each record starts on a double word boundary.

%RECORDARRAY< format ' ><array list>(<name)>)<{separator>

COMPILE TIME

l. A check is made that <name> is a valld ZRECORDFORMAT name. If not,
FAULT 62 is recorded.

2. A check is made that none of the names in <array list> have been
previously declared at this level. If any have, FAULT 7 is recorded.

3. As for ordinary arrays SS11,2-6.

RUN TIME
4, As for ordinary arrays SS11.7-10.

- 5. Record arrays start on a double word boundary but the records are packed

2,14

together as closely as alignment permits.

SS33

SS34

SS35

SS36

<{xown>%RECORD<name 1ist>(<name))<{separator>

COMPILE TIME

1, A check is made that (<name>) is a valid ZRECORDFORMAT name. If not,
FAULT 62 is recorded.

2. Exactly as for SS12.1,3-5 for ordinary static variables.

3. Note that no initiallsation Is permitted. The static records will start
on a double word boundary and be cleared to zero.

RUN TIME
4, As SS12.6-7

<{xown>%RECORDARRAY<name><{cbpai r>(<name>){separator>

COMPILE TIME

1. A check is made that (<{name>) is a valid ZRECORDFORMAT name. |If not,
FAULT 62 is recorded.

2, As SS13.2 for ordinary static arrays.

3. No iInitialisation is permitted. Each static record array will start on a
double word boundary and will be cleared to zero.

RUN TIME
b, As SS13.8

%RECORDSPEC<name><ename’ ' >(<name))<{separator>

COMPILE TIME
1. A check is made that (<name>) is a valid RECORDFORMAT name. If not,
FAULT 62 is recorded.
2. <named<ename''> must represent either
a record <array'> name in the formal parameter list of the current
routine, fn or map
or
a record <array'> name in a ¥RECORDFORMAT declared at this level.

If neither applies, FAULT 63 occurs.
3. This statement Is currently used to assign a format to a %RECORDNAME.

This must be done before any reference is made to the name or FAULT 21
occurs, -
L4, No code is compiled for this statement.

RUN TIME - No actlon

%REALS<1n>{separator>
where: <In> = %LONG or 2ZNORMAL
COMPILE TIME
1. If <In> is %LONG then every occurrence of %REAL thereafter is compiled
as %LONGREAL, until a %REALSNORMAL is met.
2. %REALSNCRMAL cancels ZREALSLONG.

RUN TIME - No action,

SEMANTICS 2.15

SS37

%CONTROLS lconst><{separator>

COMPILE TIME

1.

2,

This is a generalised flag setting statement to control compile time
options, The exact actions are liable to change and it is envisaged that
the statement will only be used via the macro scheme. However
%CONTROL 0 will always turn off all checking and diagnostics.

This statement is only valid in the IMP system compiler.

RUN TIME - No action

SS38

%ENDOFF I LE<separator>

COMPILE TIME

1.
2.
3.

Terminates the compilation of a file of external routines.
Campi lation ceases.
If no faults have been recorded then the object program is completed.

RUN TIME - No action,

SS39

SSk0

2.16

%FAULT<fault list>{separator>

COMPILE TIME

1.
2,

3.
b,
5.

The labels referred to within the jump instruction following each <rest
of N 1ist> must obey the normal rules for jump labels. (See UI3.)

This statement may only appear at the basic textual level of the
program, i.e. within %BEGIN. ..%ENDOFPROGRAM, but not within any other
blocks or routines, otherwise it will be faulted, (FAULT 26).

If the faults In <fault 1ist> include non trappable faults then FAULT 36
is recorded.

This statement counts as a branch and any declaration occurring after it
will be faulted.

For the faults which may be trapped and their corresponding numbers,
which appear in the <rest of N 1ist)>s, see Section 3.

RUN TIME

6.

Certain information concerning the current state of the program Iis
stored so that if a fault, which has been allowed for, occurs
subsequently, this information may be used to restart the program from
the relevant label; i.e. the statement must be executed at some time
during the normal flow of control of the program in order for any faults
to be trapped thereafter.

The label to be jumped to when any particular fault is trapped may be

changed‘ dynamically by executing a further fault statement in which the
new label appears.

{separator>

COMPILE TIME

1.

No action., This represents merely a redundant separator between
statements,

SEMANTICS OF UNCONDITIONAL INSTRUCTIONS

ull

<name><actual parameters'><ename'><assop><exprn><aui'>

where: <assop)> Is == or = or <~ or =)
<aui'> Is %AND<unconditional instrn)> or <null>

INTEGER OR REAL ASSIGNMENT

COMPILE TIME

1. If the <name> is of integer type and the RHS is of real type then
FAULT 24 is recorded.

2, <name> must be capable of being a destination for a value. Thus a
function, a routine name, switch or a %CONST variable is not allowed,
otherwise FAULT 29 is recorded.

3. For details of <exprn>, see AEl-l,

RUN TIME

4, If <assop> is '=', the RHS is evaluated and the value is assigned to the
destination given by the LHS provided that the LENGTH associated with
the LHS is great enough to hold the value calculated. If the value is
too great the program is monitored.

5. |If Cassop> is '¢-', the least significant 8 bits (if the LHS is a
%BYTEINTEGER) or 16 bits (if the LHS is a %SHORTINTEGER) are assigned to
the LHS. The remaining bits of the RHS value are ignored. In %REAL
expressions '<-' Is exactly equivalent to '=',

STRING ASSIGNMENT

COMPILE TIME

6. If <assop> is '=>', then a resolution (see AEL) is compiled.

7. <name> must be capable of being the address of a string. If not,
FAULT 29 is recorded.

8. See AE3 for detalls of string expressions.

RUN TIME

9, If <assop> is '=', then the RHS is evaluated and assigned to the LHS
provided the declared length N of the LHS is sufficient to hold the
RHS. If not, the program is monitored.

10. If <assop> is '<~', then the first N characters of the RHS are assigned
and the remainder lost.

RECORD ASSIGNMENT

COMPILE TIME

11, The <name> on the left hand side of the assignment must be a record
variable,

12, The <exprn> on the right hand side must be either zero or a single
record variable.

13, If the operator is '=', then both records must be of the same size,
otherwise FAULT 66 is recorded.

SEMANTICS 2.17

ui2

2.18

RUN TIME

14, If the <{exprn> is zero then the record on the left hand side is cleared
to all zeros.

15. If the operator is 's', then the record on the right hand side is copied
to the record on the left hand side.

16. If the operator Is '<-', then a copy is done as in 2, but restricted in
extent to the size of the smaller record. ‘

ADDRESS ASSIGNMENT (i.e. <assop> is ==)

COMPI LE TIME

17. The <name> must be capable of receiving an address (i.e. of type
ZARRAYNAME or %NAME). If not, FAULT 82 is recorded.

18. The <exprn> must evaluate to a single variable which has an address,
otherwise FAULT 81 is recorded.

19, The variable on the right hand side must have the same type and
precision as the left hand side or FAULT 83 occurs.

20, Care is required to ensure that a pointer variable is not left pointing
to a variable when the latter is undeclared.

RUN TIME
21, The address of the right hand side is evaluated and stored in the space
reserved for the pointer variable.

<{named><actual parameters'><aul'>

COMPILE TIME

l. A check is made to ensure that <name> has been declared as a
ZROUTINE, If not, FAULT 17 is recorded.

2. Checks are made to ensure that the actual parameters in <actual
parameters'> are consistent with the formal parameters of the
%ROUTINESPEC for <name>, both in type and number. |If the check fails
FAULTS 22 and/or 19 are recorded.

3. The LENGTHs of formal and actual parameters are checked to match if the
parameters are ZNAME type.

4, 1f no faults have been found, the %ZROUTINE call is compiled.

5. For rules regarding formal-actual parameter correspondence see edition 2
of the Edinburgh IMP Language Manual, Section 6.

6. Similar rules apply to the passing of parameters to other <{rt)> types.

RUN TIME

7. The actual parameters are evaluated and passed on for use by the
%ROUTINE body. The mode of passing on is analogous to the assignment
operator '=', i.e. an assignment to a %BYTEINTEGER or a %SHORTINTEGER is
checked to be of a sufficiently small value.

8. The %ROUTINE body is entered.

9, For parameters of type %REALARRAYNAME and %INTEGERARRAYNAME, a check is
made that the actual parameter has the correct nuvber of dimensions. If
not, a non-trappable fault occurs.

10. When the ZROUTINE body is left, control is returned to the Instruction
following the one In which <name)><actual parameters'> appears.

ut3

Uik

uls

=> <label>

COMPILE TIME

1. As the label corresponding to this jump may not yet be set in this
block, no attempt is made to compile the instruction until the end of
the block is encountered. If the label is omitted, FAULT 11 followed by
the offending <label> is recorded at the end of the block.

RUN TIME

2., The normal sequence of instructions is broken and the next instruction
to be obeyed is taken at label <label> of the block in which this jump
instruction appears.

=> <name>(<exprn))

COMPILE TIME

1, Unless <name> is a switch variable declared in the current block,
FAULT 4 is recorded,

2. Unless <exprn> is an integer expression, FAULT 24 Is recorded.

3. A junp to a switch label has the property of an ordinary jump in that
control can only be transferred within the same block level., The scope
of a switch declaration extends over the block, unlike the scope of
other declarations. Consequently a jump may not be made to a switch
label in an enclosed or enclosing block.

RUN TIME

L, The expression Is evaluated and, in checking mode, a check is made to
see that the value is within the bounds of the switch vector, as
declared, and that a switch label exists corresponding to this value of
the argument. If the label exists, control is transferred to that label,
otherwise the program is monitored, "SWITCH VARIABLE NOT SET'.

5. If an attempt is made to transfer control to a non-existent switch label
in non=-checking mode, the result is not defined.

%PRINTTEXT'<ptext><aul *>

COMPILE TIME

1. <{ptext> terminates with any single quote that is not followed
immediately by another quote.

2. <ptext> is stored exactly as it 1Iis written, including newlines and
semi-colons, but not including the first quote or the terminating quote.

3. A single quote is represented by two quotes.

4, The preferred form of this statement is the more general PRINTSTRING
('..."). This old form is maintained for compatibility with other IMP
compilers without type %STRING.

RUN TIME
5. <ptext)> is output as stored.

SEMANTICS 2,19

ulé

SEXIT
COMPILE TIME
1. A check is made that this statement occurs in a %CYCLE-%REPEAT group at
the current level. If not, FAULT 54 occurs.

RUN TIME

2. Control is transferred unconditionally to the statement following the

ut7

uis

2.20

ZREPEAT of the enclosing %CYCLE-ZREPEAT group.

%RETURN

COMPILE TIME

1. FAULT 30 is recorded unless this Instruction appears in a block
delimited by 2ROUTINE...ZEND.

2. This instruction may appear nore than once in such a block.

3. The %END ocorresponding to the %ROUTINE heading is regarded as
ZRETURN; %END so that an exit from a ZROUTINE can be made by running on
to its %END.

RUN TIME

4. This instruction is the dynamic end of a 2%ROUTINE block and ocontrol
passes back to the instruction following the routine call which caused
the entry,

5. Diagnostic pointers are restored.

6. The %ROUTINE is regarded as a block and, consequently, on exit from this
block all of the local working space is deallocated in the usual way.

%RESULT<assop><exprn>

COMPILE TIME

1, May appear only In a %FN or MAP block, otherwise FAULT 31 is recorded.

2. For functions the expression must be of the same type as that of the
%FN.

3. The form %RESULT== is provided for, and restricted to, %MAP blocks,
otherwise FAULT 31 is recorded. If any other form of expression is used
fo;d MAP blocks the programmer is responsible for validating the address
produced.

RUN TIME

4, The value of the expression is presented as the result of the %FN or
MAP (in the case of YMAP it is an address) in the same way that values
are assigned to variables. (See UIl),

5. Controll passes back to the block containing the %FN or MAP block, to
<':omp'l<e§e evaluation of the expression within which the %FN or %MAP was
nvoked. '

ulg %STOP

COMPILE TIME
1. May appear any number of times anywhere in the program.

RUN TIME
2. Execution ceases.
ullo ZMONITOR

COMPILE TIME
1. Code is planted to enter the system MONITOR routine.

RUN TIME

2. MONITOR is entered to produce diagnostic information and then execution
continues.

ulll MONITORSTOP

COMPILE TIME
1. Treated exactly as %MONITOR; %STOP

RUN TIME
2. MONITOR is entered to produce a post mortem, and execution ceases.

SEMANTICS 2.21

THE SEMANTICS OF ARITHMETIC EXPRESSIONS

AE1l

2,22

INTEGER EXPRESSION

COMPILE TIME »

1. A check is made that all operands are integer operands (i.e. integer
variables or integer functions valid at the current 1level, or integer
constants).

2. :f ?onstant precedes a name without an operator, then a multiplication

s Implied,

3. Word, short and byte integers may be mixed at will in an expression.
All integer expressions are calculated in a 32 bit field. The sign bit
of 2SHORTINTEGER variables is propagated to maintain the same (positive
or negative) value. Zeros are propagated for %BYTEINTEGER variables, so

~ that they may hold only positive integers.

4, Valid constant forms of operand are

A decimal integer e.g. 117

A binary constant e.g. B'10101°'.

A multi character 1SO constant e.g. M'XY'.
A hexadecimal constant e.g. X'FF11l'.

5. Constants are assembled at the lower end of a 32 bit word. Each item of
a binary constant takes 1 bit, each item of a hexadecimal constant takes
4 bits and each item of a multi character constant takes 8 bits. A fault
Is recorded if the assembled constant is more than 32 bits long. (N.B.
newlines and spaces are not ignored between quotes and to represent ' in
a nulti: character constant it must be written as ''). ‘

6. If an operator is found to be acting on two constant operands, then the
operation is interpreted at campile time. If overflow occurs during
interpretation, FAULT 38 is recorded.

RUN TIME

7. Z%INTEGER variables are held in 32-bit twos-complement fixed point form
and must therefore lie in the range =2%#31 (-2147483648) to 2#*31-1,
%SHORTINTEGER variables are held in 16=bit twos-complement fixed point
form and must therefore lie in the range =2##15 (=32768) to 2#*15-1,
%BYTEINTEGER variables are held in 8~bit fixed point form and must 1lie
in the range 0 to 255 (2#%%8-1),

8. Sub-expressions in brackets (or modulus signs) are evaluated first.
After this, the order of precedence between operators is (highest
precedence first):

** (D>

*/ /] &

+ =111
Where two adjacent operators are of equal precedence, operations are
carried out from left to right.

9. An initial minus sign is treated exactly as '0-'.

10. An initial 'not' has highest precedence and has the effect of 'exclusive

{exprn>

This phrase is treated as either an %INTEGER expression, a %REAL
expression, or a %STRING expression depending upon the context.

or' with X'FFFFFFFF', Thus TA**B is exactly equivalent to
(X'FFFFFFFF'} 1A)»*B, ‘

AE2

11,
12,

13,
1y,
15,

16.
17.

The program is monitored 'INTEGER OVERFLOW' if at any point in the
calculation the 32 bit capacity Is exceeded.

Exponentiation is carried out by repeated nultiplication. The program is
monitored immediately 'ILLEGAL EXPONENT' if the exponent n lies outside
the range 0<=n<=63. (Note that smaller exponents may also cause a
moni tor signal by overflowing while attempting to execute, for example,
2#%50),

0**0Q gives the result 1 (as, of course, does any other quantity raised
to the power zero).

The operators '&', '!', '1!' have the effects of logical AND, OR and
EXCLUSIVE OR respectively.

There are two forms of division, represented by '/' and '//°. For the
former, the program is monitored 'NON INTEGER QUOTIENT' whenever a
division results in a non-integral quotient. In the case of the latter
the remainder is ignored. Rounding in both forms of division occurs so
that the remainder has the same sign as the dividend. Thus:

5//2
=5//-2

2 5//=2 = =2
2 =5//2 = =2

Note the significance of the order in which operations are carried out
in the following examples in which | is an integer:-

1=(1+1)/2*| (fails if | is even)
I=1%(1+1)/2 (valid for all values of 1|)

An attempt to divide by zero causes the program to be monitored
'DIVIDE ERROR'.

The operators '<<' and ">>' denote LOGICAL LEFT shift and LOGICAL
RIGHT shift respectively, No overflow can be caused; bits shifted out
are lost; spaces created are filled with ZEROS. The bottom six bits only
of the second operand are considered. Thus, the effect of a<<b is the
same as that of a<<(b&X'3F'). Thus a<<b is NOT the same as ad>>(-b)
places. Care should be exercised with arithmetic e.g. (=1)>>1 = 2##31-1,
but -1>>1 = 0.

REAL EXPRESSION

COMPILE TIME

1. Operands can be either real or integer, except that the operand
inmediately following the operator '#+' must satisfy the conditions for
an integer expression.

2. If a oconstant precedes a name without an operation, then a
multiplication is implied.

3. A real expression is evaluated double length if the LHS is double length
or any of the operands are double length. Otherwise single length
arithmetic is used. A sub expression containing only single length
operands is evaluated single length.

4, Conversions of single length to double length are slow. Mixed length
expressions should be avoided where possible.

5. |If an operator is found to be acting on two constant operands, then the

operation is interpreted at compile time., If overflow occurs during
interpretation, FAULT 38 is recorded.

SEMANTICS 2.23

AE3

RUN TIME

6. Real numbers are held in floating point form (one sign bit, 7-bit
hexadecimal exponent, 24-bit mantissa for %REAL or 56 bit mantissa for
%LONGREAL)., Integer quantities occurring Iin a real expression are
immediately converted to floating point form, except where a
sub-expression in brackets or modulus signs consists wholly of integer
operands and the operators '+', '-' and '+', In this case the
sub-expression is evaluated fixed point, and then converted. The range
of possible values of real numbers Is approximately =-7+10+*75 to
7#10#»75,

7. Sub=expressions in brackets (or modulus signs) are evaluated first.
After this, the order of precedence between operators is (highest
precedence first):

:t*

* /

+ -
Where two adjacent operators are of equal precedence, operations are
carried out from left to right.

8. An initial minus sign is treated as '0-'.

9, The program is monitored 'REAL OVERFLOW' if at any stage in the
calculation a number with a hexadecimal exponent outside the range 0-127
is produced.

10, Exponentlation is carried out by repeated multiplication. The program is
monitored inmediately '"ILLEGAL EXPONENT' if the exponent n lies outside
the range =-255¢=n<=255. If n is negative, x**n is evaluated as 1/x##*n,

11, 0»+0 gives the result 1 (as, of course, does any other quantity raised
to the power zero).

12, An attempt to divide by zero causes the program to be monitored,
'DIVIDE ERROR'.

STRING EXPRESSIONS

COMPILE TIME

1. All names and constants are checked to be of type string.

2. Bracketed sub expressions are not allowed.

3. Only the concatenation operator '.' is permitted.

RUN TIME

4. The concatenations are performed from left to right but the program Iis

2,24

monitored immediately if the resultant string exceeds 255 characters.

AEL STRING RESOLUTIONS

COMPILE TIME

1. All names must be of type string and all the resolution expressions must
be enclosed in brackets and satisfy all the conditions for string
expressions (g.v.).

RUN TIME
2. In the simple resolution

<namel> -> <name2>.(<exprn>).<{name3)
the following sequence of events occur:

<{exprn> is evaluated as a string expression.

<namel> is searched to find this expression and the
program is monitored if it cannot be found.

The part of <namel> before the resolution expression
is assigned to <name2> as if by <assop> =.

The part of <name2)> after the resolution expression
is assigned to <name3> as if by <assop> =.

Either or both of <name2)> and <name3)> can be set as
a null string by this operation.

The program will be monitored if either <name2) or
<name3> is not 1long enough to hold their
respective components.

3. The general resolution
<namel> -> <name2>.(<exprn>).<name3>.(<exprn2>).<{namel> etc.,
is treated exactly as
<namel> => <name2>.(<exprnl>).<private nameA>,

{private nameA> => <{name3>.(<exprn2>).<{private nameB>
etc.,

where the private names are strings of length 255 declared by the
compiler,

4. The resolution may be the subject of a condition. The condition is true
if the resolution can be compiled and false if failure occurs. (N.B. the
program will still be monitored as in 2 above where relevant). As a
result of 3, some variables may be assigned if a multi-stage conditional
resolution fails in the second or subsequent stage.

SEMANTICS 2.25

THE SEMANTICS OF CONDITIONAL PHRASES

CP1

CcP2

2.26

<cond>

ARITHMETIC CONDITIONS

COMPILE TIME

1. Any constituent expression which contains

a real varlable, real function or real constant
or
either of the operators '/' or 'w!

Is compiled as a real expression. All other expressions are compiled as
Integer expressions.

RUN TIME

2. <exprn><comparator><exprn>
The left-hand expression is evaluated first, followed by the right-hand
one. If one Is an integer expression and the other real, the former is
converted to floating point form before comparison. |f one is %REAL and
the other %LONGREAL then the former is stretched before comparison.

3. <exprn><comparator><exprn>{comparator><{exprn>
The first two expressions are evaluated and compared. The third
expression is only evaluated if the required condition between the first
two is satisfied. Conversion is carried out if necessary as in 1.

k., <simple cond> %AND <rest of and cond>
<{simple cond> %0R <rest of or cond>
The oconditions are tested from left to right, stopping as soon as
?ufficlent information is obtained to give the overall verdict true or
alse,
STRING CONDITIONS

COMPILE TIME

1. A check is made that all operands are of type string and that double
sided conditions do not include resolutions.

2. The effect of using '<' and '>' comparators is to perform lexicographic
comparisons based on the 1SO character set and its internal codes.
Thus WHISKEY > WATER is true.

RUN TIME

3. Expressions and conditions are evaluated and tested from left to right
as for arithmetic conditions.

k., A resolution is treated as true if it can be completed and false
otherwise.

5. Note that variables can be assigned by a compound resolution condition

that subsequently fails (see AE4).

SECTION 3 = FAULT LISTS

Compile Time Faults

1.

2.

3.

L.

5.

6.

7.

8.

9.

10.
11.
12,
13.
14,
15,
16.
17.
18.
19,
20.
21.
22,
23,
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
3,
35,
36.
37.
38.
39.
4o.
41.
L2,
43,
by,
45,
46.
u7.
L3,
49,
50.
51.
52,
53.

Too many %REPEATs

Label set twice or out of range’

%ZSPEC faulty

Switch vector not declared

Swi tch label error

Switch label set twice

Name set twice

Too many parameters in Routine type declaration

Parameter fault in Routine type declaration

Too few parameters in Routine type declaration

Label not set

Type general parameter misused

ZREPEAT missing

Too many %ENDs

Too few %ENDs

Name not set

Not a routine name

Switch vector error

Wrong number of parameters or subscripts

Swi tch vector or record format name in expression

Routine type or record name not yet specified

Actual parameter fault

Routine name in expression

Real quantity in integer expression

Cycle variable not integer type

4FAULT statement not at basic textual level
(Unassigned)

Routine body not described

LHS not a destination or name is not an address

%RETURN out of context

ZRESULT out of context
(Machine code fault)
(Machine code fault)

Textual level > 8

Routine level > 5

Attempt to trap an untrappable fault

Array has too many dimensions

Constant overflow

Real quantity as exponent

Declarations misplaced
(Unassigned)

String variable in arithmetic expression

Bound pair inside out

Const error ’

Own array error

Attempt to initialise an extrinsic

Dangling %ELSE

Substitute character in program
(Unassigned)

Incorrect use of %DEFINE

Spurious %FINISH

Missing ZREPEAT inside %START-%FINISH block

ZFINISH missing

FAULT LISTS 3.1

54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72,
73.
74,
75.
76,
117,
780
79.
80.

82,
83.
8“;
85.
86.
87.
88.
89.
90.
91.
92.
93.
9L,
95.
96,
97.
98.
99,

3.2

%EXIT out of context

ZEXTERNALROUTINE in program

ZENDOFFILE out of context

Level 0 used illegally
(Machine code status fault)
(Machine code status fault)
(Unassigned)

(Unassigned)
Format wrong

%RECORDSPEC in error

Subname amitted

Wrong subname

Faulty record assignment

Invalid LHS of equivalence statement
(Unassigned)

Subname out of context

Invalid length in string declaration

String expression contains a variable

String expression contains invalid operator

Resolution comparator out of context

Resolution format incorrect

String expression contains subexpression
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)

Variable equivalenced to expression

LHS not an address

Equivalenced operands not of same type

RECORD or ARRAY misused
(Unassigned)
(Unassigned
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)
(Unassigned)

Addressability 1imit exceeded

No base register cover

Catastrophic Compile Time Faults

101.
102,
103,
los,
105.
106.
107,
lo0s.

A Fault number greater than 200 indicates a compiler error.

Source line too long

Analysis record too long
Dictionary overflow

Too many names

Too many levels

String constant > 255 symbols
ASL Empty

End Message character in program

Trappable Run Time Faults

1.
2,
3.

32.

INTEGER OVERFLOW

REAL OVERFLOW

INVALID CYCLE

NOT ENOUGH STORE

SQRT NEGATIVE

LOG NEGATIVE

SWITCH VARIABLE NOT SET
INPUT FILE ENDED

NON=INTEGER QUOTIENT

RESULT NOT SPECIFIED

SYMBOL IN DATA s

REAL INSTEAD OF INTEGER IN DATA
DIVIDE ERROR

SUBSTITUTE CHARACTER IN DATA
(GENERAL GRAPH PLOTTER FAULT)
ILLEGAL EXPONENT

TRIG FN INACCURATE

TAN TOO LARGE

EXP TOO LARGE

LIBRARY FN FAULT n
RESOLUTION FAILS

INTPT TOO LARGE

ARRAY [INSIDE QUT

CAPACITY EXCEEDED

UNASSIGNED VARIABLE

ARRAY BOUND FAULT n

Non Trappable Run Time Faults

ADDRESS ERROR

CORRUPT DOPEVECTOR n
| LLEGAL OPCODE
OPERATOR TERMINATION -
OUTPUT EXCEEDED

TIME EXCEEDED
UNEXPLAINED INTERRUPT

FAULT LISTS 3.3

