Reg|ona|
= Computing
rei Centre

s

Edinburgh IMP Language Manual

A description of the IMP Language
as implemented by ERCC

—
g
@ O
-3
‘Dn'
~] @
=N
=

PREFACE

This edition of the IMP Language Manual is intended to replace in part, the
Edinburgh IMP Language Manual published in 1970. Two associated manuals are
being prepared - the 'Edinburgh IMP/FORTRAN System Library Manual' which will
contain details of all the items in the IMP system library and 'A Syntactic and
Semantic Definition of the IMP Language as Implemented at the Edinburgh
Regional Computing Centre'. This edition contains some material from its
predecessor, and some new material. The sections on Strings, Records,
Conditional Instructions and Input/Output facilities have been completely
rewritten., The references to Job Control requirements have been removed; the
user is referred to the User Manual for the appropriate computer for information
on this topic.

The IMP programming language has been implemented on several computers.
This manual describes the current version running on ICL 4/75 and IBM 370/158
computers., These machines both use 32 bit words and byte addressing. Other
implementations of the language use machines with different word lengths and
addressing. The user who is likely to move his IMP programs to other machines
should ensure that he is aware of these and other differences between
implementations of the language.

The Manual is intended as a reference manual rather than a teaching manual.
Little attempt has been made to order material in a sequence suitable for a
newcomer to programming. It has been assumed that the reader has some knowledge
of programming gn IMP or a similar language. On the other hand facilities which
are not usually found in other high level languages, e.g. Records and Strings,
are described in considerable detail since it is likely that in these areas at
least the manual will have to serve as a teaching manual.

The Manual is the work of many people in the Edinburgh Regional Computing
Centre. Particular mention should be made of the contributions of Keith
Yarwood, Gordon Burns, Peter Stephens and Andrew McKendrick. Anne Tweeddale,
Laura Lang and Dorothy Kidd, together with staff of the Reprographics section
were all involved in the production of the Manual.

Roderick MclLeod

Edfi tor
May 1974

CONTENTS

SECTION TITLE
1 Basic Language
2 Arithmetic Operations
3 Logical Operations
4 Control of Sequence of Instructions
5 Storage Allocation and Block Structure
6 Routines and Functions
7 Store Mapping
8 Strings
9 Records
10 Input/Output
11 Aids to Program Development
12 Compile Time Faults
13 Run Time Faults
14 Fault Trapping
15 Internal Character Code
16 Routines, Functions and Maps in the IMP Library

Index

SECTION 1 - THE BASIC LANGUAGE

TYPING CONVENTIONS FOR IMP PROGRAMS

Programs written in IMP are typed on some form of data preparation

quipment, for example a card punch or a teletype, according to the following
rules:

1.
2.
3.
4,

5.

6.

7.

8.

Only the first 72 character positions in a line may be used.
Statements must be separated by a newline character or a semi-colon,
Apart from text contained within quotes all letters must be in upper case.

Spaces are only significant where they appear within quotes, or where they
follow a word which is a delimiter .

Delimiters, which have a pre-defined meaning in the language, are sequences
of symbols. When these are letters they are preceded by a % sign to
distinguish them from NAMES. The 2% dindicates to the compiler that the
letters which follow are to be treated as a delimiter. The effect of the %
ceases at the first character that is not a letter. So, for example, in the
declaration of an integer it is essential to have a space between the
delimiter and the name being declared.

%ZINTEGER MINE

If the space were omitted the compiler would treat it as one delimiter
*INTEGERMINE" . ;

Text is for some purposes enclosed within quotes. In these cases everything
within the quotes 1is treated as part of the text, including spaces and
newlines., If the quote character is required in the text it has to be typed
as two separate quote characters to distinguish it from the terminators.

If it 1is necessary to continue a statement on to a new line the sequence
'9C' should be used at the end of the first line. It may be used at any
convenient point in the statement. If it is used within a delimiter a '%'
must be used at the beginning of the continued line.

A mis-typed character can be deleted by use of the double quote (") delete

character, immediately after it. Multiple double quote characters can be
used to delete a sequence of wrong characters as far back as the beginning

of the line.

Basic Language 1.1

NAMES
Names are used in IMP programs for the following entities:-

Arithmetic, Logical and String Variables
Records and Record sub-fields

Routines and Functions

Simple Labels

Record Formats and Array Formats

A name consists of a letter followed optionally by a sequence of up to 254
letters and/or numerals in any order. It is recommended that meaningful names be
used where possible in order to improve the 1legibility of programs. The
following are valid IMP names:

ROW1

NUMBER OF BLOCKS

C1900T01970

END POINT
COMMENTS

Comments should be used to make programs more meaningful both to the
originator and to anyone else who needs to work on them, Either the delimiter

ZCOMMENT or | may be used to introduce a comment. A comment is a statement and
must be separated from the statement before it and after it by the usual
separators: newline or semi-colon.

DELIMITERS

These are a pre-arranged and pre-defined set of sequences of symbols which
have fixed absolute meanings to the compiler. They include:

Operators: arithmetic, assignment, relational, logical, sequential
Separators: e.g. , %COMMENT
Brackets: e.g (,), ¥BEGIN, ZEND
Declarators: e.g. %OWN, %LONG, %REAL
Specificators: e.g. ¥LIST, #RETURN,
NOTE

Some symbols of the language have more than one meaning, but are defined in
goﬁ°2§§$§1:2{Ch normally is unambiguous.

| or (operator)

| coment (delimiter)

| modulus sign (used in pairs)

1.2

VARIABLES

Variables are locations in the store of the computer which are used to hold
numeric or textual information. Each variable or group of variables used in a
program is given a name by the programmer. Variables can be divided into three
groups:

Arithmetic variables - see below
String variables - see Section 8
Records - see Section 9

ARITHMETIC VARIABLES
There are five types of arithmetic variable, the first three can only hold

whole numbers, the 1last two can additionally hold nunbers which include
fractional parts.

Type Length in bits Range of Values
Z#BYTEINTEGER 8 0 : 255
ASHORTINTEGER 16 -32768 : 32767
ZINTEGER 32 -2147483648 : 2147483647
ZFREAL 32 ~7@75 : 7@75 approx.;
ZLONGREAL 64 -7@75 : 7@75 (approx.

The format 7075 means '7 multiplied by 10 to the power of 75', see below.

The choice of which integer variable to use can be made on the basis of the
values it is required to hold. The choice between Z%REAL and %LONGREAL will
depend upon the accuracy required. Z%REAL variables can only hold values to a
precision of between 6 and 7 significant decimal digits, whereas %LONGREAL
variables hold values to a precision of between 14 and 15 digits on the ICL 4/75
and between 15 and 16 digits on the IBM 370, Further details of the
representation of variables can be found in the hardware manual for the

appropriate computer.

Basic Language 1.3

CONSTANTS
DECIMAL CONSTANTS
Decimal constants are written in a straightforward notation:
2,538 1 «25 -17.280-1 17
The last two examples mean -1.728 and 10000000, respectively.
The numerical part (mantissa) can be written in a number of ways:
15 015 15, 15,000

all of which are equivalent. The exponent, where present, consists of '@’
followed by optional sign and decimal digits.

THE CONSTANT T

The symbol 'T* can be used in IMP programs. It has the value
3.141592653589793. It can be used in any expression requiring the value of T,
for example:

AREA =TT *RADIUS**2
SYMBOL CONSTANTS

Symbol constants having a numerical value within the range 0 to 127 may be
written by enclosing the required symbol within quotation marks:

Yy

The internal code values of symbols are given in Section 15, A %BYTE can
hold 1 symbol, a ¥SHORTINTEGER 2 symbols and an ZINTEGER 4 symbols. A constant
containing more than 1 symbol is preceeded by '‘m' for example:

M'XYER®
NOTES

1. Spaces and newlines are always significant between quotes and the numerical
values of the symbols (they are not zero) will be included in the value of
the constant if any should appear.

2. If a single quotation mark is required as part of a constant it must be
replaced by two single quotation marks.

3. Each symbol occupies one byte i.e. 8 bits of the ZINTEGER or

%SHORTINTEGER location, any unused bytes at the most significant end of the
location will be set to zero.

1.4

HEXADECIMAL CONSTANTS

A hexadecimal constant consists of a string of hexadecimal digits, enclosed
in quotation marks .and preceded by the letter X. In addition to 0, 1, 2, cccee,
9 which have their usual significance, a hexadecimal digit may also be A, B, C,
D, E or F which stand for the decimal numbers 10, 11, 12, 13, 14 or 15
respectively:

X'2A!

would have the same value as the decimal number 42 i.e. 2 * 16 + 10, since A
represents 10 in the scale of 16 i.e. the hexadecimal scale.

Each hexadecimal digit occupies a location of four bits length; hence a
%¥BYTEINTEGER variable can hold two such digits, a #SHORTINTEGER variable four,
and an #INTEGER variable eight.,

ZINTEGER I
I = X'6789ABCD"

BINARY CONSTANTS

This type of constant consists of a string of binary digits, enclosed in
quotation marks and preceded by the letter B. A binary digit, which occupies
just one 'bit' of store, may be either 0 or 1, Eight may therefore be stored in
a ¥BYTEINTEGER variable, sixteen in a ¥SHORTINTEGER variable, and thirty-two in
an #INTEGER variable.

#BYTEINTEGER M
M =B'01011011"

NOTES

1. Hexadecimal and Binary constants may appear in arithmetic expressions; they
will, however, be most used in conjunction with the logical operators (see
Section 3).

2. If the number of digits or characters which appear in a constant is less
than the maximum permissible e.g. a constant of three hexadecimal digits

being assigned to a ¥SHORTINTEGER variable, then the value assumed is the

same as if the digits or characters had been right justified in a 1location
of 32 bits and the remaining bit positions filled with zero bits,

For a #SHORTINTEGER variable N,
N = X'2AB’
will have the same effect as
N = X'02AB'
3. Both the 4/75 and the 370 computers store integers in twos-complement form.
When writing programs that are 1likely to be moved to other machines

programmers should consider carefully the possible change of arithmetic
value of binary and hexadecimal constants.

Basic Language 1.5

DECLARATION OF VARIABLES

A1l variables must be declared at the head of the block in which they are
used, or at the head of an outer block. (see Section 5). A declaration consists
of a type delimiter followed by one name or a list of names separated by commas:

%INTEGER FIRST
#LONGREAL TOP, BOTTOM, LARGEST

DECLARATION OF ARRAYS

Arrays of variables are declared in a similar manner. The bounds of the
array are written after the name, in brackets:-

ZINTEGERARRAY IN(1:10),0UT(1:20)
Multi-dimensional arrays of up to seven dimensions may be declared:
#SHORTINTEGERARRAY BITLIST (-4:4,1:2,10:100,1:2)

When accessing an individual element of an array the name must be written,
followed by an integer expression for each dimension:

BITLIST (J+I,J,10,1) = 0

The values of the expressions must be within the bounds for the relevant
dimension otherwise the run time fault 'ARRAY BOUND FAULT' will occur.

ARRAYS WITH VARIABLE BOUNDS

It is possible to use integer expressions involving variables for the bounds

of arrays. The variables referenced should be global to the block containing the
declaration. An example of the use of this is:

4BEGIN
%INTEGER TOP
READ (TOP)
4BEGIN
%INTEGERARRAY TABLE (1:TOP)

1.6

%ZOWN VARIABLES

The delimiter %OWN may be written before the type of a variable. It has the
following effects:

1. The variable will remain in existence for the duration of the program. If it
is within a routine or function it will retain its value between calls of

the routine, which is not the case for other variables local to routines and
functions.

2. The variable can be set to an initial value e.g.
ZOWNINTEGER MAXIMUM = 527

The value must be expressed as a constant., If no initial value is provided
the variable will be set to zero.

3. %0WN arrays may be declared, but only of single dimension and with constant
bounds. Elements may be initialised by writing a list of values, separated
by commas and newlines. Note that in this situation the %C continuation
delimiter is not required, even if the 1ist extends on to several lines, so
long as the line is terminated with a comma.

%OWNBYTEINTEGERARRAY HEXTAB (0:15) = '0°,*1°,
lzl. l3.. .4l’ '5" '6l’ l7l’ l8.’ lgl’
lAl’ lBl. lcl. lDl. IEO’ .Fl

Note that there must be the same number of constants as there are elements

in the array. If one constant is to be repeated it may be written once,
followed by a count in brackets:

FOWNINTEGERARRAY IN(1:10) = 1,0(9)

Apart from these points %OWN variables are used in exactly the same way as
normal variables.

ZCONST VARIABLES

The delimiter %CONST may be used in place of %CWN if the variables are to
have a constant value for the duration of the program. Any attempt to assign
values to them other than in the declaration statement will result in a compile
time fault. They are initialised in the same way as #CWN variables.

$EXTERNAL VARIABLES

The delimiter %EXTERNAL written before a variable gives it all the
attributes of an %OWN variable, and additionally makes it available to other,
seperately compiled, programs or routines. (See Section 6)

ZREALSLONG
This statement can appear at any point in a program. Its effect is to cause
the compiler to interpret any subsequent %REAL statements in declarations,

function types, and parameter lists for routines or functions as %LONGREAL. The
s tatement ZREALSNORMAL causes the compiler to revert to its default mode.

Basic Language 1.7

SECTION 2 - ARITHMETIC OPERATIONS

ARITHMETIC OPERATORS

The following operators may be applied to real and integer variables in
arithmetic expressions. Logical operators are described in Section 3.

The Operators

Symbol Meaning
+ addition
- subtraction
* multiplication
/ division
44 integer division

exponentiation (i.e. Y**3 = Y cubed)
NOTE

Implied multiplication should be avoided; in IMP it is only accepted in the
case of a constant followed by a name, e.g. 34X. Thus, whereas in common
mathematical notation XY may mean X multiplied by Y, the IMP compiler will
correctly interpret this as the name XY and will fault the line as variable name
not set. The correct presentation is X * Y,

PRECEDENCE OF ARITHMETIC OPERATORS

Rules, following normal practice, have been established to which the IMP
compilers conform and for arithmetic operators the order of precedence is given
below, whilst for logical and mixed arithmetic logical expressions the rules are
given in Section 3.

Highest precedence (1)

2

Lowest precedence (3;

The programmer may override the natural order of evaluation by using brackets,
Extra brackets are acceptable to ensure clarity and to remove doubts. The left

hand precedence between operators otherwise of equal precedence agrees with
normal mathematical usage.

Expression: Meaning:

A-B+C (A - Bg + C not A - (B+C)
A-(B+C) A) - $B+C)

A/B * C A/B c

A/(B * C) (A)/(B * C)

A* g *(A ** B) *(C

A * (B * () A) ** (B * C)

Arithmetic Operations 2.1

ARITHMETIC EXPRESSIONS

Expressions may be real or integer according to context. An expression is
evaluated as real if it is being assigned to a real variable or passed as a real
value parameter (see Section 6). An expression is evaluated as integer if it is
being assigned to an integer variable, or passed as an integer value parameter,
or occurs in a position where an integer expression is mandatory.

INTEGER EXPRESSIGNS

An integer expression may contain integer constants and variables declared
to be of type integer; these may be simple or subscripted variables, or integer
functions (see Section 6).

There are two division operators in IMP:
Arithmetic Division (/)
Integer Division (//)

Arithmetic Division may occur in real expressions; Integer Division may only
occur in integer expressions.

1. Arithmetic Division (/).
If this operator occurs is an integer expression, it must always yield an
integer result.
N* N-lg/Z is always satisfactory,
but N*((N-1)/2) fails if N is even.

Note that Integer Division dis preferred in the context of integer
expressions,

2. Integer Division (//).
This operation always yields an integer result and is exactly comparable to
the Algol integer division. The result consists of a quotient whose sign is
determined algebraically, and a remainder which is ignored. Note that both
the dividend and the divisor for an integer division must be integer
expressions,
9//2 = 4
100//15 =6
(-9)//2 ==-4

The definitions of division given above ensure that integer expressions
always yield an integer result. Integer expressions are always evaluated single
length (32 bits) and integer overflow will occur if at any point in evaluation
the capacity of a single length variable 1is exceeded. If the calculation
requires a wider range of numbers, real arithmetic must be used.

‘Exponentiation is carried out by repeated multiplication. In integer

expressions the exponent must be an integer expression with a value in the range
0<=n<:63o

2.2

THE INTRINSIC INTEGER FUNCTIONS °'INT' AND ‘INT PT'

The built-in integer function INT yields as its result the nearest integer
from.a real expression, and may be used in an integer expression. The integer
function INT PT yields as its result the the value of the integral part of the
quantity specified on entry. Strictly the result is the integer that is less
than or equal to the expression, hence:

INT PT(-3.7) is -4

REAL EXPRESSIONS

A real expression may have, as operands, simple variables or subscripted

variables declared to be of type real or integer but the result must be assigned
to a real variable (see below).

In evaluating a real expression, the compiler will work to single precision
unless a double precision variable (i.e. 1long real) is encountered; the working
will then be in double precision. Hence, double precision should only be used
where an estimate of the accuracy attainable relative to the inﬁut data requires
it. Double precision working is time and space consuming. evertheless, it
should be noted that floating point arithmetic does not guard against loss of
accuracy due to cancellation of significant figures in addition and subtraction.
This loss of accuracy is reduced by use of double precision, although in the
case of the 4/75 this is slightly less effective than in the case of the 370
computer,

Exponentiation in real expressions is carried out as for integer expressions
except that the exponent must be an integer expression with a value in the range
- 255¢<=n<=255.,

A real expression which contains only integer operands and the operators +,

-, *, is evaluated in integer mode and subsequently converted to real.
O therwise, each integer is converted to real before being used.

Arithmetic Operations 2.3

SUB-EXPRESSIONS

Generally, a bracketed sub-expression is treated as an expression in its own
right and the rules of precision given above apply. Therefore, a real
sub-expression containing only single precision variables will be evaluated
single precision and the result converted to double precision if necessary.

ARITHMETIC ASSIGNMENTS
The two assignment operators are:

1. =

Here, the RHS is evaluated and the value 1is assigned to the destination
given by the LHS provided that the lengths are compatible. The Run Time
Fault 'CAPACITY EXCEEDED' will occur if an attempt is made to assign too
large a value to a variable using this operator.

2. <=
Here, the 1least significant 8 or 16 bits of the RHS are assigned
respectively to the byte integer or short integer location on the LHS. The

remaining bits of the RHS are ignored. For assignment to 32 or 64 bits, <-
is treated exactly as =.

The general arithmetic assignment instruction assigns the result of
evaluating an arithmetic expression to a variable. An integer variable may only
have assigned to it the result of an integer expression but either an integer or
real expression may be assigned to a real variable.

Examples of valid assignments:
A(P,Q) = 1 + 2*COS (2 * N*(X + Y))
X = (U+ V)/(Z + W) + F(M,N)
I=14+1

where A, F are real arrays
X, Y, U, V, Z, W are real variables
I,P,Q,M,N are integer variables

THE INTRINSIC REAL FUNCTION 'FRAC PT!

This built in function returns as its result the fractional part of a real
expression. Note that the fractional part is always treated as being greater
than or equal to zero. Hence:

FRAC PT(-4.6) is .4

2.4

MODULUS OF EXPRESSIONS

Two methods are provided for calculating the modulus or absolute value of an
expression. Modulus signs (!) used before and after an expression bracket the
expression and calculate the modulus without changing its type:

ZINTEGER I,J
%LONGREAL X,Y

I=1J+11
X=3,4% | Y+SIN(Y)!

In the first example the expression is left as an integer expression and in
the second as a real expression. The alternative method is to use the built in
ZLONGREALFN MOD, This always returns a real result, hence can only be used in a
real expression,

ASSIGNMENT OF SYMBOLS

Instrdctions to assign symbols to integer variables are written in a form
very similar to those which assign numbers, but the symbol concerned is written
between a pair of quotation marks:

ZINTEGER I, J, K

I = '
J = M'ABCD*
K=1'7"

Note that the last two instructions assign the SYMBOLS ABCD and 7 to J and
K respectively. On the other hand, the instructions:

J = ABCD
K=7

assign to J the NUMERICAL value currently stored in the variable named ABCD, and
to K the NUMBER 7.

Arithmetic Operations 2.5

SECTION 3 - LOGICAL OPERATIONS

LOGICAL OPERATORS

The logical operators are as follows:

left shift <<

right shift >>

and &

or {
exclusive or Il

not = (ora)
assignment <=

Logical operations are performed on bit patterns stored in integer

variables, including elements of integer arrays, but not in real variables.

The IMP programmer may specify these operations on, by, or between byte

integer, short integer or integer variables and may similarly so assign the
results, but he must take precautions to understand the implications.

The IMP Compiler always makes up the bit pattern to 32 bits before carrying

out the operation, thus:

Byte Integers - the left hand 24 bits are filled with zeros

Short Integers - the left hand 16 bits are filled with copies of the
sign bit (the most significant bit of the
#SHORTINTEGER

As with Arithmetic operations both '=' and '<-' are available as assignment

operators but care should be taken on the assignment of the result of a Tlogical
operation.

1.

2,

The assignment operator '=' treats the result of the logical operation as a
32 bit signed integer and attempts to perform an arithmetic assignment to
the designated variable. Hence it is not always possible to put the result
back in a variable of the same type as that in which the operand was
originally held, (if this was a byte or short integer).

The assigmment operator ‘<-', however, simply copies the requisite bit
pattern to the designated variable so that 32 bits are assigned to an
integer; the 16 least significant bits to a short integer; the 8 least
significant bits to a byte integer.

The choice of assignment operator depends on the context of the program.

Logical Operations 3.1

SETTING UP BIT PATTERNS IN INTEGER VARIABLES

A bit pattern is normally specified in the program as a hexadecimal
cons tant.

1. The compiler sets up the pattern right justified and makes it up to 32 bits
by padding with zeros at the most significant end of the location and stores
it in a table of constants in the User's program. Assignment of a constant
to a short integer or byte integer location therefore needs care.

2, The arithmetic assignment operator = will always copy a constant (set up as
in 1.) into a 32-bit integer variable. ‘

3. The arithmetic operator = will only copy from the 32-bit constant 1location
into a short integer or byte integer if by so doing the numerical value
remains unchanged during the operation:

#SHORTINTEGER I
I = X'FO0O*

will fail, 'CAPACITY EXCEEDED' (Fault 30)

4. The assignment operator <- will treat the constant as a 32-bit pattern (form
of (1) above) and will copy the 32, 16, or 8 least significant bits to the
designated integer variable. Thus, contrary to the example in 3:

%INTEGER J
%SHORTINTEGER I
3 <=X"'F000*

s]

The first‘instruction will not fail, but will set up in I the bit pattern:
1 0000 0000 0000
The second instruction will set up in J the bit pattern:

mm 1 1 LARR 1111 0000 0000 0000

SHIFT OPERATORS

The IMP programmer may specify a first operand (I) to be shifted by a second
operand (N) and the result to be placed either back in the location of the first
operand or in a new location (J). He may declare I, N or J to be byte, short or
integer variables but he must check that these are meaningful.

The Compiler makes the operands (I) and (N) up to a 32 bit pattern (as
described above) before the operation takes place, and then selects the six
least significant bits of the second operand (N) to determine the amount of
shift. The remaining 26 bits of N are ignored, thus the shift will be positive
in the range O to 63.

I >> N has the effect of I >>(N &63)

3.2

NOTES
Left Shift

1. Any bit positions vacated at the right-hand of the 32-bit pattern are filled
with zeros.

2, Any bits shifted off the left-hand end of the 32 bit pattern are lost.
Right Shift

1. Any bit positions vacated at the left-hand end of the 32-bit patte;n are
filled with zeros.

2. Any bits shifted off the right-hand end of the 32 bit pattern are lost.

The explicit 1ibrary function SHIFTC is provided for shifting a bit pattern
cyclically. It takes two integer expressions as parameters and returns as a
result the bit pattern in the first expression shifted by the number of places
specified by the second parameter. Any bits shifted off one end of the 32 bit

pattern re-appear at the other end. A positive shift is to the left and vice
verca.

THE OPERATOR °‘NOT®

This is represented by = and operates on a single operand (I). The IMP
programmer may declare I to be a byte, short or integer variable. The compiler
expands this to 32 bits in the computer location before the operation is carried
out.

The operator ‘not' inverts the values of the bits:

('s are changed to 1's
1's are changed to 0's

If 1 contains the bit pattern
0.0.......0] 00]] ()0 1]

then =l gives leeeeessss10 11 00 11 00

ioeo -l +] = =]

Logical Operations 3.3

THE OPERATORS 'AND', 'OR', 'EXCLUSIVE OR®

These operations are carried out between the bit patterns stored in two
integer variables. HWhether the IMP program has declared these as byte, short or
integer variables the compiler expands each bit pattern to 32 (as explained
above) and the result, a single bit pattern, is held in a 32 bit location. The
programmer must choose an integer of suitable length in to which to assign the
result, and should note the effects of the '=' and '<-' operators in this
context.

‘and' (&) result pattern contains a 1-bit where the two source
patterns both have 1-bits and contains O-bits elsewhere.

‘inclusive or' (1) result pattern contains a 0-bit where the two source
patterns both have 0O-bits and contains 1-bits elsewhere.

'exclusive or' (!!) result pattern contains a 1-bit where the bits in the source
patterns are different and contains O-bits elsewhere.

These rules may be summarised thus:

& ! I
0:0 0 0 0
0:1 0 1 1
1:0 0 1 1
1:1 1 1 0

PRECEDENCE FOR MIXED ARITHMETIC AND LOGICAL OPERATIONS

Arithmetic and logical operators may be mixed in an integer expression. The
rules of precedence are then:

= (most binding)
* o5y <<
*/ /&

+=- 111 (least binding)

3.4

Example of use of operators:

To 'unpack' the contents of an integer location I, into four sections each
of 8 bits length and store them in the positions of a byte integer array B:

YINTEGER I,J
¥BYTEINTEGERARRAY B(0:3)

%CYCLE J=0, 8, 24
B(J/8)= 15>(24-J)& X'FF'
YREPEAT

NOTES

1. X'FF' represents a 'bit pattern' of eight ones in the least significant end
of a location and zeros elsewhere.

2. The shift, having a higher precedence than the &, is effected first.

THE FUNCTION ‘BITS'

The explicit 1library function BITS takes one parameter which must be an

integer expression. It returns as a result the number of bits in the evaluated
expression. For example if the integer IN contained a character read from a
binary paper tape and it was required to check whether it had odd parity one

could write:
->0DD %ZIF BITS(IN)&1=1

Logical Operations 3.5

SECTION 4 - CONTROL OF SEQUENCE OF INSTRUCTIONS

INTRODUCTION

A11 programs require facilities to control the order in which instructions
are obeyed. A variety of facilities is provided in IMP,

1. Routines and Functions: these are used to group instructions together and
give them a name - READ and SIN are examples of Routines and Functions (see
Section 6). S

2. Conditional Statements: these are used to make the execution of single
instructions or groups of instructions, dependent on the result of one or
more tests (see below).

3. Conditional Repetition and Cycles: these are used to execute a sequence of
instructions repeatedly. - The number of repetitions can be controlled by a
variable or by a condition,

4. Jumps to Switch Labels: these are used where a program is required to take
one of many different paths depending on the value of an expression,

5. Jumps to Simple Labels: these are available as alternatives to 2, 3 and 4
above. ‘

CONDITIONS

Conditions are described here in the context of a simple conditional
statement for reasons of clarity but they can also be used in more complex
conditional statements and cycles as described later. An example of a simple
conditional statement is:

%IF A>2 %THEN PRINT(A,5,3)

which can be represented as:
%IF <condition> ¥THEN <unconditional instruction>

The following types of statement can be made the subject of a condition and
are known as ‘unconditional instructions’'. The phrase ‘unconditional
instruction' is used to denote a single instruction which is executed once each.
time it is reached. Examples of instructions in this group are:

Type Example Notes

Assignments A = 27

Routine Calls Print (A,2,3) .

Jumps ->27 See below

Special Jumps ZRETURN See Section 6
ZRESULT= - See Section 6
xSTOP See below
FMONITORSTOP See Section 11
WMONITOR See Section 11
%EXIT See below

Control 4.1

The <condition> part is made up of two expressions separated by a relational
operator. The relational operators and their meanings are:

equal

greater than

less than

- >= greater than or equal
<= less than or equal

not equal

AV 1l

A double sided condition may be used, in which case the whole condition is
true only when both sides of the condition are true, for example:

- %IF 9>=I>=0 ZTHEN #PRINTTEXT'IN RANGE'

The %PRINTTEXT instruction will only be executed if I is less than or equal
to 9 and at the same time I is greater than or equal to O.

More generally multiple conditions may be linked using the %AND and %OR
operators, These take their logical meanings; example:

%IF A=1 %0R A=10 ZTHEN NEWLINE

Note that if both ZAND and %0R are used in the same conditional statement,
then in order to avoid ambiguity the conditions they link must be separated from
each other by brackets

ZIF A=10 %AND (S="NOW' %OR S='SOON' %OR S='LATER') XTHEN A=0

In future examples <condition> implies any of the above forms.

FURTHER USE OF CONDITIONS

The unconditional instruction which was made conditional in the first
example can be replaced by a sequence of unconditional instructions enclosed in
the bracket pair %START and #FINISH. In this case the ¥THEN may be omitted, if
preferred.

%IF <condition> [¥THEN] %START
A=1
NEWLINE

L]

ZFINISH

Alternatively where a small number of instructions is involved they can be
1inked with the operator %AND, Note that here %AND is as in common usage, and

the linked instructions are ocbeyed in the sequence in which they appear 1in the
text of the statement.

Example: %IF <condition> ZTHEN NEWPAGE %AND LINE = O

4,2

ALTERNATIVE PATHS

The ZELSE operator can be used to indicate the path to be taken when the
condition is found to be not true

%IF <condition> ¥THEN A=1 %ELSE A=0
and hence

%IF <condition> [ZTHEN] %START

(A XX KN X]

[A XXX RN

ZFINISH ¥ELSE #START

ZFINISH

USE OF %WNLESS

In all the examples above ZIF can be replaced by #UNLESS. This has the
effect of testing that the condition is not true. Hence

%IF A#8 ZTHEN A=0 and
FUNLESS A=B %THEN A=0

will have the same effect.

FURTHER SIMPLIFICATIONS

The simple condition can be written with the unconditional instruction first
if preferred; example:

A=0 ZIF A=B

Note that #THEN is no 1longer needed, but note also that neither Z¥START
ZFINISH, ZELSE nor linking of instructions with %AND can be used with this form.

REPEATED EXECUTION OF INSTRUCTIONS AND CYCLES
In many situations it is useful to execute a single instruction or group of

instructions repeatedly, the number of repetitions being controlled by a
condition or by a control variable.

Control 4,3

CONDITIONAL REPETITION
The simplest form is

IWHILE <condition> %THEN <unconditional instruction>

The condition is tested and if found to be true then the unconditional
instruction 1is executed. The whole operation is repeated until the condition
ceases to be true. For example

ZWHILE NEXTSYMBOL= ' ' ZTHEN SKIPSYMBOL

has the effect of skipping any space characters on the input stream. The inverse
form is

ZUNTIL <condition> #THEN <unconditional instruction>

In this case the unconditional instruction is executed first and then the
condition is tested. The whole operation is repeated until the condition is
found to be true. Note that when using ¥UNTIL the unconditional instruction is

always obeyed at least once whereas when using ZWHILE the condition is tested
before executing the unconditional dinstruction and may be false at the first
test.

EXTENSIONS TO CONDITIONAL REPETITION
The unconditional statement in the above examples can be replaced by a group
of unconditional statements 1linked by %AND, or enclosed by %CYCLE and
YREPEAT; examples:
ZUNTIL J=999 %THEN READ(HOLD(J)) %AND J=J+1
#WHILE NEXTSYMBOL#NL [%THEN] %CYCLE
READSYMBOL (I)

$=8,TOSTRING()
%REPEAT

An alternative form where only one unconditional instruction is involved is
<unconditional instruction> WHILE <condition>

for example SKIPSYMBOL %WHILE NEXTSYMBOL=NL

4.4

ZCYCLES WITH CONTROL VARIABLES

Instead of using a condition to control the number of repetitions of a
#CYCLE a control variable may be used. The control variable must be a variable
declared to be an ¥INTEGER. (A ¥SHORTINTEGER or %BYTEINTEGER may not be. used).

The cycle is written:
%CYCLE <control variable> = <start>,<step>,<fina1>-
where <start>, <step> and <final> are all integer expressions; example:
%CYCLE I=1, 1, 10
IN%I}aO
IN1(I)=0
#REPEAT
On entry to the #CYCLE statement a check is made that <step>#0 and that
(<final> - <start>)/ <step> is a positive integer.

If the test fails the fault 'INVALID CYCLE' will occur which will normally
cause the program to terminate (see Section 13). Otherwise the control variable
is set to the value <start>., The instructions between %ZCYCLE ‘and #REPEAT are
executed, a test is made for equality between the control variable and <final>
and if unsuccesful the control variable is incremented by <increment> and the
sequence is repeated until the control variable reaches the value <final>, .

The control variable can be used in expressions within the cycle but it
should not have anything assigned to it. The effect of doing so is undefined.

Control 4.5

THE ZEXIT INSTRUCTION

This may be used at any point within a #CYCLE - %REPEAT block. The effect is
to go to the instruction following the #REPEAT, preserving the current value of
the %CYCLE variable.

%CYCLE N=4, -1, =100

L]

SIF IN(N)=' ' %THEN %EXIT

YREPEAT

INDEFINITE CYCLES

The delimitors ¥CYCLE and %REPEAT may also be used without a condition or a
control variable. The effect is to repeat the instructions between the #CYCLE
and %REPEAT indefinitely. An %EXIT or a jump should be included among the
instructions,

NESTING CONDITIONS AND CYCLES

Conditions and Cycles can be nested to any depth so long as all of the
instructions relating to the nested condition or cycle are contained between the
%START = %FINISH or %CYCLE - %REPEAT of the outer condition on cycle; example:

READSTRING(TEST)
YWHILE TEST # 'END' %CYCLE
ICHECK FOR NON-ALPHA CHARACTERS IN NAMES
CYCLE I=1, 1, LENGTH TEST&
JUNLESS *A'<s CHARNO(TEST,I)<='Z' %START
ZPRINTTEXT' INVALID NAME
NEWLINE
%4STOP
%FINISH
REPEAT
NAME(POINTER) = TEST
POINTER=POINTER+1
READSTRING(TEST)
SREPEAT

4.6

SWITCH VECTORS

Switch vectors are used in situations where it is necessary for a program to
take one of several paths depending on the value of an expression. Switch
vectors must be declared at the beginning of the block or routine in which they
are used, together with declarations of variables. The declaration consists of a
name followed by a pair of integer constants which define the range of vectors

to be used, for example:
ZSWITCH SWA(1:10)

At the point at which the branching is to take place a statement such as

->SWA (I+J)

should be wused. The expression I+J can be replaced by any suitable integer
expression which has a value in the range declared for SWA,

Finally at the points to which control is to pass the 1label should be
written, example

SWA(3): PRINT(N,3,4)

Note that the maximum range allowed for switch vectors is =32767 to +32767., It
is not necessary to include labels for all positions declared. If an attempt is
made to Jjump to a non-existent label a run time fault 'SWITCH VECTOR NOT SET'
occurs.,

JUMPS TO SIMPLE LABELS

Simple labels may be used in IMP, EitherIMP NAMES or unsigned positive

integers in the range 1 to 16383 may be used. In order to improve the legibilit
of programs the use of meaningful names for labels is recommended. The 1labe

declaration comprises the identifier followed by a colon, for example:

ENDFILE:
27:

2222:

Note that if NAMES are used they do not conflict with names of variables,
routines etc, because they are held in a seperate list by the compiler,

Control 4.7

Jumps may be made to labels from anywhere in the same block; examples:

=>ENDFILE
->2222 %IF FLAGS=1

The following restrictions exist in relation to the use of labels and jumps.
1. A1l declarations of variables, arrays etc., must precede any labels or jumps
in the same block.

2. No attempt should be made to enter a #CYCLE - #REPEAT block other than
through the #CYCLE.

3. When using the sequence:-

o00e BSTART

¢ o o o [

ZFINISH ZELSE..e..

Then no attempt should be made to jump into the block between
#START and ZFINISH,

%STOP AND ¥MONITORSTOP

The Unconditional Instruction %STOP can appear at any point in a program.

When it is reached the pro%ram is terminated and control is returned to the
operating system. A #STOP statement is effectively compiled at the statement
#ENDOFPROGRAM, The statement ¥MONITORSTOP has the same effect as %STOP with the

added feature of printing a trace of the program and values of scalar variables
before termination. (see Section 11)

4.8

SECTION 5 - STORAGE ALLOCATION AND BLOCK STRUCTURE

THE STACK

At compile time the Compiler translates the user's IMP program into machine
instructions and this object code is loaded by the Loader which then passes
control to the user's program. The data space which is required by the user's
program is then allocated in a dynamic fashion as the program proceeds. The
following simplified description of the data store (the stack) illustrates the
principles of storage allocation.

| STACK POINTER (ST)

PROGRAM CONSTANTS & CELLS IN FREE CELLS
(FIXED IN SIZE) TEXT USE

Each cell represents a unit of computer store and can be used to hold an
arithmetic or string variable or a #RECORD, A cell may be imagined as being of
variable size from 8 bits upwards, appropriate to the length of the entity being
held.

At any time during the running of a program the stack pointer (ST) points to
the next available location - that is, it contains the address of the next free
cell,

In the following examples shaded areas represent locations which hold
information essential to the program, such as array dimensions, but of no
interest to the user since he cannot access them., Cells which are allocated to
variables are indicated by the name given to the variable,

STORAGE ALLOCATION DECLARATIONS

The following declarations are typical of those which allocate storage
space:

FREAL % INTEGER %REALARRAY % INTEGERARRAY
To 11lustrate the stack mechanism the following example is considered:
#¥BEGIN
#REAL A, B, C ; ZINTEGER I, MAX
#REALARRAY X(1:3),Y(1:4)
After the above declarations the stack would be:

ST1 |sT2
A B C I MAX ZX(]) X(2) xm)%v(l) Y(2) Y(3) Y(4)

Block Structure 5.1

ST1 is the position of ST before #BEGIN and ST2 its position after the
declarations. Any further declarations advance ST by the appropriate amount,
1ikewise any activity initiated by the instructions in the body of the block may
cause ST to be advanced (either explicitly or implicitly) still further.
Final%z whegT%RETURN (in routines) or %END or %ENDOFPROGRAM is executed, ST
reverts to .

Variables declared by #REAL and %INTEGER (and associated types) are called
FIXED VARIABLES, because the amount of storage space required is determined at
compile time. Array declarations, however, may have general integer expressions
as the parameters and hence have dynamic significance.

For example, the space allocated by a declaration such as
PREALARRAY X,Y (1:M, 1:N)

will depend on the computed values of M and N and cannot be determined at
compile time. The stack pointer, ST, is thus advanced in several stages
following the initial step which reserves space for all the fixed variables,

BLOCK STRUCTURE OF PROGRAMS
This is il1lustrated by the following example:

¥BEGIN

ZREAL A,B,C

A=1 ; B=2 ;
¥BEGIN
%REAL A,B,D
A=2; D=al; B=C; C=4
%END

A=A+B+C

%END

C=A+B

The associated stack is:

ST sT2 | ST3
%9 B CAAA B DI
23 456

Before the first ¥BEGIN, ST is at ST1 and moves to ST2 on entering the outer
block, After the second ¥BEGIN, ST is at ST3 and reverts to ST2 when %END fis
executed. At the second %END, corresponding to the first #BEGIN,ST assumes its
original position, STI,

5.2

In the diagram, positions 1,2,3 correspond to the declarations of the outer
block and 4,5,6 to those of the inner block. After the instruction C=A+B, the
value 3 is feft in position 3; while the 1inner block dinstructions Tleave the
values 2,1,3,4 in the positions 4,6,5,3 respectively. The last instruction of
the outer block leaves the value 7 in position 1. This example dindicates the
importance of understanding the scope of influence of the declarations made 1in
the inner and outer blocks.

The variables A,B of the inner block do not conflict with A,B of the outer
block and are termed LOCAL names; a reference to C in the inner block is taken
to refer to the variable of that name declared in the outer block and is a
NON-LOCAL or GLOBAL name to the inner block.

Note also that the information stored in the variables of the inner block is
lost, when the block is left, unless it is a variable of type %ZOWN, and that one
cannot refer in the outer block to any variable declared in the inner block.

These simplified concepts are amplified in the following notes:

1. Blocks may contain any number of sub-blocks and blocks may be nested to a
depth of 10,

2, Names declared in a block take on their declared meaning in the block and in
any sub-blocks unless re-declared in the sub-block. Thus global variables
must be used to comunicate between blocks.

3. Declarations must appear at the start of a block before any instructions
which may cause a jump to occur or any labels.

4, Labels and. switch labels, unlike variables, are always local to a block.
Thus a block may only be entered through its head and it 1is impossible to
Jump from one block to another,

5. Each loop control pair, e.g. #CYCLE - #REPEAT must be in the same block as
must XSTART - ZFINISH pairs.

6. The outermost block of a program is terminated by ¥ENDOFPROGRAM which causes
the process of compilation to be terminated and transfers control to the
next stage.

Block Structure 5.3

USE OF BLOCK STRUCTURE

It is often convenient to regard a complete block as one compound
instruction. With this view of an inner block in mind, the following are among
the reasons for nesting blocks of program. A

1. It is often necessary to use an array whose effective bounds are not known
until some stage in the execution of the program. Rather than declare an
array whose size will always be adequate the following example indicates an
economical use of available storage:

ZBEGIN
%INTEGER N
#CYCLE

READégeGIN

%INTEGER I
FINTEGERARRAY A(1:N)
#CYCLE I= 1,1,N
READ (A(I))
%REPEAT

L X XN X N)

%END
%REPEAT
#ENDOFPROGRAM

Here, the required size of the array is read in the outer block and the
necessary array declared in the inner block. Note that the space used by any one
set of data will be recovered when the inner block is left, thus allowing us to
repeat the process without incurring successively increasing demands for space.

It might be imagined that a simpler solution is to declare an array, after
all other declarations, which uses the whole of the remaining space in the
machine, While this is probably true on a system where the user has the whole
machine to himself, core store is the most expensive form of memory on a
computer system and operating systems on large general purpose machines normally
attempt to optimise its use by a variety of techniques. Thus on such systems, a
requirement for large amounts of core storage (which is often largely unused)
will incur penalties both in priority and cost.

5.4

2,

3.

Since the declarations at the head of a block are cancelled on executing the
ZEND of the block it is often possible to economise on storage space if a
program consists of several distinct tasks, each requiring large amounts of
store. The general procedure is illustrated in the following example in
which each task is written as a distinct block.

#BEGIN

(A X N N N J

[XN R KN J

#BEGIN
%REALARRAY XYZ(1:5000)

4END

%BEGIN
%INTEGERARRAY IJK(1:20, 1:250)

%END

(A AR RN J

%END

In developing a complicated program it is often a great advantage if each
sub-block can be developed separately. A program is generally much clearer
if its sub-blocks are related to the blocks of its flow diagram. A closely
related method of breaking a program into sub-units 1is by the use of
routines which are discussed in Section 6.

Block Structure 5,5

SECTION 6 - ROUTINES AND FUNCTIONS

INTRODUCTION

There are many occasions when it is necessary to perform a similar operation
several times in different sections of a program, or even in distinct programs
(perhaps written by different people). It has already been explained that a
block may be regarded as a single compound instruction. Instead of writing out
this block in full every time it is required one may give it a name which is
then written (as a single instruction) each time the block is to be executed.
Such a named. block is called a ROUTINE and this Section contains a discussion of
this basic concept and its extensions.

ROUTINES WITHOUT PARAMETERS

There are three operations involved in incorporating a routine into a
program:

1. Declaration (or specification)
2. Calling
3. Description

Consider the example which uses a routine to interchange the values of two
variables X and Y, .

1. Declaration
FROUTINESPEC INTERCHANGE The name INTERCHANGE is to be
the title for a routine Sa
block of declarations an
instructions) which will be
described later.
2. Call ,
INTERCHANGE Carry out the routine which
has the title INTERCHANGE
3. Description
¥ROUTINE INTERCHANGE . The routine INTERCHANGE consists
#REAL Z of the single declaration and
Z=X 3 X=Y ; Y=Z three instructions.
%END
NOTES

1. A Routine description has the same structure as a block except that
#BEGIN is replaced by ZROUTINE followed by its name.

2. In the example X and Y are global variables.

3. The first line of the description is always the same as the declaration but
with %SPEC omitted.

Routines and Functions 6,1

7.

8.

A routine may be called in any block interior to the one in which it is
declared (and described). In this way one can think of local and globa]
routines, in just the same way as local and global variables.

The compiler inserts instructions to jump round a routine description at run
time. Thus the instructions constituting the routine are only cbeyed as the
result of a call on that routine,

A routine call is an instruction and may be made conditional:
%IF P = 10 %THEN INTERCHANGE

Normally, instructions in the routine are obeyed in sequence until reaching
#END, If it is desired to return from the routine at some other point, the
instruction #RETURN may be used. This is equivalent to jump to %END and
hence cannot be used in an inner block of the routine. %RETURN may be made
conditional.

Declaration of a #ROUTINE is not required if the description precedes the
call,

Example: Interchange X and Y ard square them if they are both positive.

NOTE

redu

6.2

ZROUTINE INTERCHANGE AND SQUARE

%INTEGER Z
Z=X;X=Y; Y= Z
%IF X'<= 0 %0R Y <= 0 %THEN %RETURN
= X*X; Y = Y*Y
%END

A second ZRETURN could be written immediately before %END, but would be

ndant.

GLOBAL VARIABLES IN ROUTINES

When using global variables within routines, it is necessary for them to be
global to the routine description. It is not sufficient for them to be global to
the call, as shown by the following example:

%BEGIN
ZINTEGER A
#ROUTINESPEC SQUARE

(A XX KN NN NN]

A =10
ZBEGIN
ZFINTEGER A
A=5
SQUARE
ZEND
ZROUTINE SQUARE

NOTES

1. It is the variable A of the outer block which is global to the routine
description, so the result of the SQUARE instruction above will be to set A
a]000

2. The above remarks apply equally to other global names e.g. routine and
function names.

ROUTINES WITH PARAMETERS

The previously described routine 'INTERCHANGE' will exchange the values of
X and Y, but will be of no use to interchange any other pair of variables.

In IMP, to facilitate the use of the same routine in different contexts
within a program, the user is permitted to write the routine using formal (or
dummy) names for some or all of the variables global to it. In each call of the
routine, these formal names are replaced by the appropriate actual names.

If formal names are used in the writing of a routine, then the following
modifications must be made to the procedures for declaring, describing, and
calling the routine:

1. In the declaration and descrition of the routine, its name must be followed
by a bracketed 1ist of the formal parameters used, together with a statement
of their type.

2, In calling the routine, the name must be followed by a bracketed list of the

actual parameters which are to replace the formal parameters on this
occasion.

Routines and Functions 6.3

The designation ‘parameter' has been used above in anticipation

of

facilities which permit quantities other than names (for example, elements of

arrays and arithmetic expressions) to be passed on to routines.

Example 1: ZREAL U,V
#INTEGER I
#REALARRAY A(1:10)
#ROUTINESPEC INTERCHANGE (%REALNAME X,Y) ; | DECLARATION

[A X NN N NN XX]

[A XX N R NN NN]

INTERCHANGE (U,V) ; | CALL 1
#CYCLE I = 1,1,5 '

INTERCHANGE (A(I) , A(11-1)) s | CALL 2
FREPEAT

¥ROUTINE INTERCHANGE (¥REALNAME X,Y) ; | DESCRIPTION

%REAL Z

Z=X;X=Y;Y=12
END

NOTES

1. Here X and Y are the formal parameters.

| 2. The actual;parameters must be placed in the same order as the formal
Barameters‘to which they correspond. In call 1, X is replaced by U and Y by

In call 2, X is replaced by A(I) and Y by A(fl-l).

3. In the example the type #REALNAME was used. In an analogous fashion any
valid type may be specified as formal parameters. The actual parameters

must, of course, correspond in type to the formal parameters.

4, The statement of parameter type is omitted in calling the routine but the
compiler checks the actual parameters listed and will generate a compile

time fault message if tney do not correspond to the declaration
Section 12).

(see

Parameter N in the example below illustrates the use of a different type of

formal parameter, that called by value.

Example 2: eececccnce

ZINTEGER SHRIEK
ZROUTINESPEC FACTORIAL (ZINTEGERNAME Y, ZINTEGER N)

FACTORIAL (SHRIEK, 10)

(A X EN A NN XX]

FROUTINE FACTORIAL (#INTEGERNAME Y, ZINTEGER N)
%INTEGER 1

Y=13;1I=1

ZWHILE I<=N %THEN Y=I*Y ZAND I=I+1
%END

6.4

The difference between the formal parameter types used in Examples 1 and 2
is important and must be carefully noted.

In Example 1 the formal parameters X, Y are of type YREALNAME and are the
names of the variables to which the results are assigned, and the corresponding
actual parameters must be names, in this case the names of ¥REAL variables.

A reference to Y inside the routine is essentially a reference to the
non-local variable named by the actual parameter.

In Example 2, on the other hand, the formal parameter Z%INTEGER N_can be
replaced by an integer arithmetic expression, which is evaluated and assigned to
the local variable N which is specially created in addition to any 1local
variables declared in the routine. N is an essentially local quantity which is
Tost on exit from the routine. Consequently the routine should place the
information it produces in variables which are called by NAME (such as X and
Y), or in variables which are global to the routine. The formal parameter N is
said to be called by VALUE in so far as it is only the value of the
corresponding actual parameter which is of interest.

Note that a value is assigned to the local variable N by use of the '='

operator., Thus a CAPACITY EXCEEDED error could occur if the formal parameter is
of type #SHORT (or ¥BYTE) #INTEGER, or %STRING.

Routines and Functions 6.5

However, when it is necessary to pass complete arrays to routines these may
only be passed by means of NAME parameters. This is because the creation of
1ocal arrays and the necessary copying of them is both time and space consuming.

Example 3 illustrates the use of ZREALARRAYNAME parameters:

Example 3: %ROUTINE MATMULT (%REALARRAYNAME A,B,C %INTEGER P,Q,R)
%INTEGER I,J,K 3 %REAL T
%YCLE I = 1,1,P
%CYCLE J = 1,1,R
T=0
4CYCLE K = 1,1,Q
T=T+A(1,K)*B(K,J)
¥REPEAT
C(1,J)=T
YREPEAT

%REPEAT
%END

This forms the product of a 'P x Q' matrix A and a 'Q x R* matrix B, The
result, a 'P x R' matrix, is accumulated in C, The routine assumes that the

zirst element of each matrix has the suffix (1,1). A typical call sequence might
e:

#REALARRAY H(1:20,1:20),X,Y,(1:20,1:1)

MAT MULT (H, X, Y, 20, 20, 1)

In IMP, parameters called by name are completely determined by the actual
values of all relevant quantities (including global variables) at the time of
call, For example, it may happen that a routine with a parameter list containing

say
.0..0.000.(%REALNAME X, %INTEGERNAME I......o...)

is called with the actual parameters
'.OQOOOQOO(A(J). J. 0.00.'.0.0)

where A is the name of a previously declared real array. If the value of J at
the time of the call is, say, 10 then in the execution of the routine the formal

parameter X 1is replaced everywhere by A(10) no matter how J varies during
execution of the routine.

The reader is warned that the alternative convention whereby, in the above
example, the array element replacing X would be determined by the current value
of J during the execution of the routine is used in some other programming
1anguages (e.g. Algol).

6.6

The following table is a complete list of formal

parameters together with

the permissible forms for the actual parameters:

ZBYTE
ZSHORT

ZLONG

#BYTE
ZSHORT

% LONG

%BYTE
% SHORT

ZLONG

ZBYTE

ZLONG

%BYTE
ZSHORT

% LONG

FUNCTION ROUTINES

Formal Parameter:

#INTEGER
ZINTEGER
ZINTEGER
ZREAL
ZREAL
%ZSTRING

%INTEGER
ZINTEGER
%INTEGER
ZREAL
ZREAL
%STRING

ZINTEGER
ZINTEGER
ZINTEGER
ZREAL
ZREAL

4STRING (n)

%INTEGER
ZINTEGER
ZINTEGER
#REAL
ZREAL
ZSTRING

ZINTEGER

ZINTEGER
ZINTEGER
ZREAL
ZREAL
%STRING

#RECORD
%RECORD

%ARRAY
%ARRAY
ZARRAY
%ARRAY
#ARRAY
%ZARRAY

#ROUTINE
ZEN
%FN
ZFN
TFN
ZFN
ZFN

$MAP
ZMAP
#MAP
AMAP
PMAP

ZARRAY

NAME
#NAME
ZNAME
ZNAME
#NAME
SNAME

%NAME
#NAME
ZNAME
#NAME
ZNAME
#NAME

ZNAME
ZNAME

Corresponding Actual Parameter:

of a YBYTEINTEGER variable
of a %SHORTINTEGER variable
Name of an %INTEGER variable
Name of a %REAL variable

Name of a %LONGREAL variable
Name of a #STRING variable

Name of a %BYTEINTEGERARRAY
Name of a #SHORTINTEGERARRAY
Name of an ¥INTEGERARRAY
Name of a %REALARRAY

Name of a %LONGREALARRAY
Name of a %STRINGARRAY

Name
Name

An integer expression

A general expression
(i.e. a real or integer expression)
A string expression

Sometimes it is required to pass on
the name of a routine, or function
(see below) as a parameter, The
actual parameter is the name of a
routine or function which must
correspond in type and specification
with the formal parameter, the
specification of which will be

found in the routine body.

The name of a map function (see

Section 7). .
The name of a map function may
be passed to a routine in the same

context as a routine or function name.

The name of a ZRECORD
The name of a %YRECORDARRAY

When a routine has a single output value it may be written as a function

routine and then used
permanent functions (COS, SIN etc.).

in an arithmetic expression

in the same way as the

The declaration, call and description of routine and functions are compared
in the following table:

Routines and Functions 6.7

Routine: Function:

Declaration: SROUTINE %SPEC.... <type> %FN %SPEC....

Result of Call: Execution of an A value of the appropriate
1 instruction type and length

Description: FROUTINE.... <type> #FNeoeo

where the type of function may be any one of the allowed real or integer types,
i.e. ¥SHORTINTEGER, #LONGREAL etc.,or of type #STRING. For example, the routine
FACTORIAL described earlier may be rewritten as a function routine as follows:

%INTEGER SHRIEK
%INTEGERFNSPEC FACT 1 (%INTEGER N)

SHRIEK = FACT 1 (10)

ZINTEGERFN FACT 1 (%INTEGER N)
#INTEGER PROD,I
%IF N=1 ZTHENRESULT = 1 ; %COMMENT NOTE 1, BELOW
ROD =1
#CYCLE I = 2, 1, N ; %COMMENT NOTE 1. BELOW
PROD = I * PROD
ZREPEAT

#RESULT = PROD
%END

NOTES

1. The reader should study carefully the two occurrences of the assignment of

the value of -the function to #RESULT . Depending on the value of N, either
is a possible exit point., The two lines marked with a ZXCOMMENT could be
combined, as in the routine FACT, but the similarity to the example later in

this Section on recursion would be lost.
2. Both the routine call FACTORIAL (SHRIEK, 10% and the assignment
SHRIEK=FACT1(10) produce identical results.
FUNCTIONS AND ROUTINES AS PARAMETERS

This is illustrated by the following example dinvolving an integration
routine:

#ROUTINESPEC INTEGRATE(%REALNAME Y, %REAL A,B, %INTEGER N, %REALFN F)
which integrates a function F(X) over the range (A, B) by evaluating
Y = (F(O) + 4*F(1) + 2*F(2) + ooo + 4*F(2N-1) + F(2N))*(B=-A)/(6*N)
where F(I) = F(A + I*(B-A)/(2*N))
An auxiliary function is required to evaluate F(X) and details of it must be

passed on to the integration routine. This is done by means of the routine type
parameter and the body of the routine might then be:

6.8

ZROUTINE INTEGRATE (%REALNAME Y, REAL A, B, ZINTEGER N,%C

4REALFN F)
[¥REALFN] %SPEC F(%REAL X)
ZREAL H; %INTEGER I
$ = (B-A)/(N*2)
= 0

%CYCLE I = 0,2,2*N-2
Y = Y42*F (A+I%H)+4*F (A+(I+1)*H)
%REPEAT
Y = (Y-F(A)+F(B))*H/3
%END

To enable instructions such as:

Y = Y4+2*F (A+I*H)+4*F (A+(I+1)*H)
to be translated, a specification of the formal parameter F is required. In this
case the delimiter ZREALFNSPEC can be abbreviated to %SPEC since the type of the

function is given explicitly by the formal parameter itself. Now consider a
program to evaluate

Z = EXP(-Y)*COS(B*Y)

for various values of B read from a data file, the last value being followed by
1000, using for N the integer nearest to 10B.

BEGIN
FROUTINESPEC INTEGRATE (%REALNAME Y,%REAL A,B,%INTEGER %C
N,%REALFN F)
%REALFNSPEC AUX' (%REAL Y)
REAL Z, B
%COMMENT SIMPSON RULE INTEGRATION
%CYCLE
READ (B)
3IF B = 1000 2THEN NEWLINES(10) ZANDSTOP
INTEGRATE (Z, 0, 1, INT(10B), AuX)
NEWLINE
PRINT (B, 1, 2);SPACES(2);PRINT (Z, 1, 4)
%REPEAT

ZREALFN AUX(%REAL Y)
%E JRESULT = EXP(-Y)*COS(B*Y)
ND
YROUTINE INTEGRATE (¥REALNAME Y,%REAL A,B,%C
%INTEGER N,%REALFN F)

ZEND
ZENDOFPROGRAM

NOTES

1. The names given to the auxiliary routine and its parameters need not be the
same in the 1integration routine as 1in the main program but they must
correspond in type.

Routines and Functions 6.9

2. Since the result of the integration is a single quantity, the routine could
be rewritten as a ¥REALFN:-

 ¥REALFNSPEC INTEGRATE(%REAL A,B, #INTEGER N, ¥REALFN F)
and called by:
PRINT(INTEGRATE(0,1,INT(10B) ,AUX),1,6)

LANGUAGE LIBRARY

A complete 1ist of the routines and functions in the IMP Language Library is
jven 1in Section 16. Note that certain of the ‘routines', those described as
ntrinsic, for example READ and WRITE, are not strictly routines and their names

cannot be substituted as actual parameters in place of formal parameters of
routine type. They would first have to be re-defined as formal routines. For
example the intrinsic routine write could be re-defined thus:

#ROUTINE MYWRITE (%INTEGER A,B)
WRITE(A,B) ;!THIS IS INTRINSIC ROUTINE WRITE
%END

¥ROUTINE WRITE (%INTEGER A,B)
MYWRITE (A,B)
%END

This solution involving two routines MYWRITE and WRITE is needed when it is
necessary to use intrinsic routines as parameters to other routines or
functions, and to preserve their usual names or when one wishes to alter the
effect of an intrinsic routine.

SCOPE OF NAMES

In general all names are declared at the head of a routine, or function,
either in the routine heading or by the declarations Z%INTEGER, %REAL,
% INTEGERARRAY etc., and the various routine specifications. They are local to
that routine and independent of any names occurring in other routines. However,
if a name appears in a routine which has not been declared in one of the above
ways, then it is looked for outside i.e. 1in the routine or block in which it is
embedded, If it is not declared there it is looked for in the routine or block
outside that and so on until the main block is reached.

Now the main block is itself embedded in a hypothetical outer block, so that
if a name is not found in the main block it is looked for here. This outer block
effectively contains all the implicit and intrinsic library routines, functions
and maps which have preassigned names., These preassigned names may in fact be
redeclared locally at any level, but clearly it would be unwise to assign new
meanings to such routines as LOG, PRINT etc. Very often, the only non-local
names used in a routine will be the preassigned names.

Routines and functions themselves have the property of being global to any
block interior to the one in which they have been declared and described.

6,10

USE OF %OWN VARIABLES

When a routine or block is left, any information stored in variable
corresponding to 1local declarations in that routine is normally lost, and no
further reference may be made to it. In some cases. it may be desireable to
retain some of this information and be able to refer to it on a subsequent entry
to the routine. this may be accomplished by prefixing the relevant declaration
by %own as described in Section 1, o

RECURSIVE USE OF ROUTINES AND FUNCTIONS

Routines and functions have the property of being global to any block
interior to the one 1in which they are declared. In particular, a routine or
function can be used within the description of that routine or function itself.
This process is called RECURSION., Such a routine may also call itself indirectly
by invoking other routines which make use of it. On each activation of 'the
routine a fresh copy of the local working space is set up in the stack, so that
there will be no confusion between variables on successive calls. (This does not
apply however to %0WN variables. See above). Some criterion within the body of
the rout;ne must eventually inhibit the calling statement and allow the process
to unwind., - -

Example: A function RECFACT equivalent to the function FACT described earlier
can be defined recursively as follows:

RECFACT§1) 1
RECFACT(N) = N * RECFACT(N-1)

This is easily pfogrammed:

%INTEGERFN RECFACT é%INTEGER N)
#IF N = 1 #THENRESULT = 1

YRESULT = N * RECFACT (N-1)
END

Note, however, that in this example it would have been more efficient to use
recurrence rather than recursive techniques.

The following example, however, cannot be easily rewritten as a cycle:

QUICKSORT: Quicksort 1is an elegant method of sorting numbers (or any other
quantities) into order.

The basic routine,

1. Selec?s some member of the set to be sorted, and uses this as the 'partition
bound®.

2. Partitions the remainder of the set into two groups, one containing members
not greater than the partition bound, and the other containing members not
less than it. These groups are positioned to the left and right of the
bound.

3. Calls itself recursively to sort each of these two groups.

Routines and Functions 6.11

A possible description of this routine, in which the partitioning bound, D,

has been arbitrarily chosen to be right-hand member, and in which the elements
to be sorted are members of a string array, is:.

%ROUTINE STRINGSORT (ZSTRINGARRAYNAME X, %INTEGER A, B)
| SORTS ELEMENTS OF STRINGARRAY X FROM X(A) TO X(B)
ZINTEGER L, U

%sfklnsizss) D

YRETURNIF A >= B
L=A; U=8B s ISET POINTERS
D= XﬁU) s IDUMP PARTITION BOUND
-> FIND

UP: L=1L+1 s ITHIS SECTION MOVES
-> FOUND ZIF L = U s IL FORWARD UNTIL

F IND: => UP FUNLESS X(L) >= D s IFIND A MEMBER >= D
X(U) = X(L)

DOWN: U=sU-=1 ITHIS SECTION MOVES

-> FOUND %IF L = U
-> DOWN ZUNLESS X(U) <= D

K- 10

IU BACK UNTIL WE
IFIND A MEMBER <= D

we wo wo

FOUND: X(U) = D s IPARTITIONING COMPLETE
STRINGSORT (X, A, L - 1 ; 1SORT FROM X(A) TO X(L-];
STRINGSORT (X, U+ 1, B ; ISORT FROM X(U+1) TO X(B
%END

6.12

INCLUSION OF ROUTINES IN LIBRARY FILES

A user who has developed and tested a set of routines may wish to save these, in

their compiled state, for use by subsequent programs. The required commands or

gCL statements to create such files are described in the appropriate User's
uide.

The Language requirement is as follows.
1. There must be no #BEGIN at the start of the text.
2. Each routine must be prefaced by %EXTERNAL.
3. The text must be closed by %ENDOFFILE rather than by %ENDOFPROGRAM,

4, Variables which are global to the set of routines must be declared as
#0WN or %CONST variables,

5. External routines may call any other external routine in the same file
grovided it has been compiled first, or a routine spec has been given for
t.

Example FOWNINTEGER A
ZOWNREAL X

#STRINGMAPSPEC THIRD(%STRING S&
%EXTERNALRGUTINE FIRST(ZINTEGER I)

! Th;se routines may reference A and X as global variables

ZEND
ZEXTERNALREALFN SECOND(Z%INTEGER J,%REAL Y)

| SEEOND may call FIRST as FIRST has already been compiled

% SECOND may call THIRD as a routine spec has been given
END

ZEXTERNALSTRINGMAP THIRD(XSTRING S)

L]

ZEND.
ZENDOFFILE

A program which wishes to call these routines must include the appropriate
%EXTERNXEgOUTINESPEC statement - as for system library routines. It is essential
that the parameter 1list in the ¥EXTERNALROUTINESPEC statement is identical to
that for the Y¥EXTERNALROUTINE itself, except that the names of the parameters
are not significant. If the number or type of parameters differ the program may
still compile apparently successfully, but at run time obscure faults may occur.

Routines and Functions 6.13

ZEXTERNAL VARIABLES

An alternative method of communicating between ZEXTERNAL routines and the
programs and other routines that call them involves the use of ¥EXTERNAL
variables., These are declared as global variables in a program or file of
ZEXTERNAL routines and functions, as are ZOWN variables. They have all the
attributes and restrictions of ZOWN variables i.e. they retain their values
between calls and they can be initialised in the same way as %OWN variables.
Additionally they can be accessed by the calling program or by other
ZEXTERNAL routines by declaring them as ZEXTRINSIC variables. The ZEXTRINSIC
declaration does not result in any space being allocated, instead it generates a
1ink to the ZEXTERNAL variables of the same name. For example:

YEXTERNALINTEGER FLAG
%EXTERNALBYTE INTEGERARRAY LINE(1:72)=' *(72)
YEXTERNALROUTINE INPUT

END
YENDOFFILE

ZBEGIN

#EXTERNALROUTINESPEC INPUT
ZEXTRINSICINTEGER FLAG
%EXTRINSICBYTEINTEGERARRAY LINE(1:72)

INPUT %UNTIL FLAG=1
STOP %IF LINE(1)='*"

ZENDOFPROGRAM

It is important to ensure that the name and type of the %EXTRINSIC
declaration is identical to that of the ZEXTERNAL declaration, and that the

bounds of arrays are the same. e

LENGTH OF ZEXTERNAL NAMES

The names given to ZEXTERNAL routines, functions and variables can be up to
255 characters, as for names of other entities in IMP programs. However only the
first 8 characters are used for linking separately compiled object files. Thus
two ZEXTERNAL routines called TWEEDLEDEE and TWEEDLEDUM for example, would give

a fault at run time 'DUPLICATE ENTRIES®. This groblem can be avoided by ensuring
that names of ZEXTERNAL entities differ in their first 8 characters.

6.14

SECTION 7 - STORE MAPPING FACILITIES

INTRODUCTION

Facilities are provided in IMP to allow the programmer to use alternative
names for the same variables. This is useful for the following reasons:

1. to save space in core

2. to access a variable both as declared, and as a set of sub-variables,
for example an ZINTEGER can be accessed as four separate #BYTEINTEGERs

3. to access a particular array member as a scalar with consequent saving of
machine time '

4, to improve the clarity of a program
5. to access a RECORD using different formats.

Store mapping facilities are very powerful, On the other hand by allowing
the user to operate on addresses they increase the chance of causing program
errors which can be very hard to diagnose.

STORE MAPPING FUNCTIONS

The store mapping function can facilitate the storage of large but partially
redundant arrays. For example, if a two-dimensional array is symmetrical,
X(i,J) = X(J,i), only the values of X(i,j) with i>=j need be stored. By keeping
only these values in the one-dimensional array, A(p), and providing alternative
location names, X(i,j) for the elements of A through a store map, we can have
the most economical use of store without losing the symmetrical appearance of
the array X.

The store mapping function is declared by:
| <type> AP ZSPEC

where type depends on the nature of the variable to be renamed and may be
¥BYTEINTEGER, ¥SHORTINTEGER, ¥INTEGER, ¥REAL, ¥LONGREAL or %STRING.

Store Mapping 7.1

The general form of a store mapping function W is written:

<type> TMAP W(YINTEGER 1,,....)
%RESULT’n A(exp](I,J....),epo(I,J....)..o)
%END

In this case the array A is to be given the alternative name W, and the suffices
of A, expl, exp2 etc. are general expressions in terms of the suffices of W -
I,J, etc. There is no restriction on the number of suffices that can be
associated with W. It is assumed above that A is global to the description of
the mapping function, but A could have been declared as a formal parameter in
the function heading, thus:

'%SHORTINTEGERMAP W(%INTEGER I,J, %SHORTINTEGERARRAYNAME A)

As an example, the map for the case of the symmetrical two-dimensional array
X stored in A described above is:

ZINTEGERMAP X(%SHORTINTEGER

1,
RESULT== A(I*(1-1)/2 + J}
ALI*(J- I

)

FIF 1>J
¥RESULT== 1)/2 +

%END

Like functions, mapping functions can appear in arithmetic expressions but
have the added property that they can appear on either the left or right-hand
side of an assignment statement. On either side, the result of a mapping
function is an address from which, or to which a value is fetched or stored
according to context.

The saving in storage space achieved by using mapping function is obtained
by sacrificing speed in the execution of the compiled program. For this reason
mapping functions are not recommended in situations where they would be called
frequently.

THE BUILT IN MAPPING FUNCTIONS

There are seven built in mapping functions available to the user, for simple
variables:

ZINTEGERMAPSPEC INTEGER (ZINTEGER Ng
ZSHORTINTEGERMAPSPEC SHORT INTEGER (#INTEGER N)
#BYTEINTEGERMAPSPEC BYTE INTEGER (#INTEGER N)
ZREALMAPSPEC REAL (ZINTEGER N&

#L ONGREALMAPSPEC LONG REAL (%INTEGER N)
#ZSTRING (255) ¥MAPSPEC STRING (%INTEGER N;
#RECORDMAPSPEC RECORD (%INTEGER N

7.2

They all give locations of a particular byte having as its absolute address
in_the main store the value N. BYTE INTEGER picks up only the byte; SHORT
INTEGER picks up 2 bytes; REAL and INTEGER pick up 4 bytes; LON% REAL picks up 8
bytes; and STRING picks up the number of bytes determined by the string length
given in the first byte. An address error occurs if SHORT INTEGER attempts to
pick up two bytes which are not correctly halfword aligned, if REAL or
INTEGER attempts to pick up four bytes not correctly fullword aligned, or if
LONG REAL attempts to pick up eight bytes not correctly double word aligned.

In contrast to user defined maps the above built in maps are very efficient
in terms of speed and space. For example an ZINTEGER can be unpacked into its
four component ¥BYTEINTEGERs thus:

%INTEGER I,J
%BYTE INTEGERARRAY B(0:3)

Igooooo.oo

 %CYCLE J=0,1,3
B(J) = BYTEINTEGER (ADDR(I)+J)
%REPEAT

(A X NN NN N NN

It is sometimes necessary to do the reverse of that shown above; say to
reform a long real variable, X, from two components stored in ZINTEGERS J1 and
J2. The following example shows the use of a mapping function on the LHS of an
expression,

%LONGREAL X
FINTEGER I,J1,J2

""" INTEGER(ADDR(X))= J1
INTEGER(ADDR (X)+4)=J2

POINTER VARIABLES

Pointer variables provide an additional mapping facility. A pointer variable
is declared in the same way as a normal scalar variable except that %NAME is
added to the type.

Example: #INTEGERNAME I,J,K
#LONGREALNAME P1

The declaration does not result in any space being allocated for the
variables, it merely causes the compiler to record the names. Before being used
the pointer variable has to be equivalenced to a declared variable using the ==
operator. From then on both the original name and the name of the pointer
variable can be used to access the variable. For example if a three-dimensional
array is being accessed in such a way that frequent reference is made to its
first element it would improve the efficiency of the program to equivalence the
first element to a pointer variable.

ZINTEGERARRAY TABLE(1:10,1:10,1:10)

Y INTEGERNAME BASE
BASE=aTABLE(1,1,1)

Store Mapping 7.3

Additionally pointer variables can be used in conjunction with the built in

maps to provide a more elegant solution in the situation where it is required to
reference the same space in two different ways. For example if it is required to
‘reference a ¥BYTEINTEGERARRAY as a ¥STRING the following code could be used:

¥BYTEINTEGERARRAY IN(0:80)
ISTRINGNAME LINE
LINE==STRING(ADDR(IN(0)))

From this point onward the array can be referenced either as an array or as
the string, LINE, Obviously the length byte, IN(0), will have to be set to an
appropriate value.

ARRAY MAPPING

Apart from mapping for individual variables it is possible to use the built
in map ARRAY. This takes two parameters: an address and the name of an
ZARRAYFORMAT, In the following example the two-dimensional array ATWO is mapped
on to an array AONE which is declared as a one dimension array:

FINTEGERARRAY AONE(1:10000)

FINTEGERARRAYNAME ATWO
%INTEGERARRAYFORMAT AFORM(1:100,1:100)
ATWO==ARRAY (ADDR (AONE (1)) ,AFORM)
ATWO(27,27)=928

The %ARRAYFORMAT statement is used to describe the characteristics of the
- array ATWO - i.e. number of dimensions and bounds for each dimension. As an

alternative to usinaAthe name of an ZARRAYFORMAT for the second parameter, the
name of another %ARRAY can be used, if one with suitable characteristics has
been defined in the program.

RECORD MAPPING
This is described in Section 9.

7.4

SECTION 8 - STRINGS

INTRODUCTION

A 'string' in the IMP language is a string of between 0 and 255 characters.
Space and newline characters may be included.

Strings in IMP are declared and manipulated in ways largely analogous to
those for the arithmetic entities in IMP., They can be declared singly or in
arrays of one or more dimensions. They are declared at the head of blocks or
routines. The space which they occupy can be allocated dynamically, or they can
be declared as #%0WN, %CONST, ¥EXTERNAL or ZEXTRINSIC. The same scope rules apply
as for the names of arithmetic types. Strings may appear as the results of
functions, and may be written into programs as constants. They may be referenced
as elements of records and through mapping functions and pointer variables.
They may be passed as parameters to routines, functions and mapping functions by
'value' and by 'name’, and these modes are analogous to those for the arithmetic
types.

String expressions may be tested in conditions. The elaboration of a string
condition is sometimes markedly different from that of an arithmetic condition,
but a set of IMP statements can be made conditional by prefixing or suffixing a
string condition in a manner similar to prefixing or suffixing an arithmetic
condition, and the lexicographical forms are similar.

Finally, the IMP run-time diagnostic package treats strings in essentially
the same way as other IMP variables and provides for detection of run-time
faults such as 'unassigned variable' and the listing of string type variables in
the diagnostic routine trace-back. String manipulation fault conditions may be
trapped using the standard fault-trapping mechanism. (see Section 14)

This section describes features of string declaration and manipulation in so
far as they differ from those of the arithmetic entities in IMP, and in
particular describes string operations and conditions.

TERMINOLOGY

The 'value' of a string means the sequence of characters forming the string.
In the context of this section, ‘value' and ‘string' are practically synonymous,
except that a 'value' normally describes the result of evaluating a ‘string
expression', The value of a string is denoted where necessary by the characters
of the string enclosed in single quotes, except that each single quote within
the string 1is denoted by two single quotes. The ‘length' of a string is the
nuTbes oflgharacters forming the string. It may be zero, when the string is (has
value) null,

Strings 8.1

Within this section except where otherwise stated,

'location’ means ‘string location'

‘constant’ means 'string constant'

‘variable’ means ‘'string variable'

'function’ means ‘'string function'

'mapping function' means ‘'string mapping function'

‘record element' means ‘'string-type element of a
record’

'expression’ means ‘'string expression’

'value' means ‘value of a string or string
expression’

‘assignment’ means ‘'string assignment using

the '=' or '<-' operator'

A11 these terms are defined in.the text.,

STRING LOCATIONS

A 'string location' is a portion of storage which a program accesses using
string operators. Thus string declarations cause space to be allocated as a set

of one or more locations. A location has an associated 'maximum length', which
may be specified as part of a declaration, or in defining a function or mapping
function. The number of bytes occupied by a location is one greater than this
maximum length. A location has no special alignment.

When a location holds data (a string, or ‘value'), the data format in the
location is as follows. The first byte of the location holds the length of the
string. Successive bytes (so far as necessary) hold the characters of the string
as a sequence of ISO character values. Clearly the length of the value held
cannot exceed the maximum length of the location.

A location may be referenced in the following ways:
1. using the name of a variable,
2. using a subscripted array name,
3. using a mapping function name (possibly subscripted with parameters), (see
4, 3:?:;02 Zgéord name subscripted with a record element name, (Section 9), or

5. using a pointer variable name (Section 7).

A reference to a location implies using the address of (the first byte of)
the location, and this is the address produced by the built-in function ADDR
when applied to a location (Section 7).

8.2

STRING CONSTANTS

A 'string constant' is denoted by its value enclosed in single quotes,
except that each single quote contained within the string is denoted by two
single quotes. Examples are: ,

'IT''S MINE'
:TESTING

The second example denotes a constant whose value has eight characters (whose
length is eight), the eighth being newline. The third example (two adjacent
single quotes) denotes a null constant.

Constants may appear 1in ‘expressions', and in declarations where
initialization is permittea.

STRING VARIABLES

A 'string variable' is an unsubscripted name used to reference a location.
A declaration of a variable causes (either static or dynamic) allocation of
space for the 1location which it references. The declaration must specify the
maximum length of the location by enclosing this 1in parentheses after the
delimiter '%#STRING' e.g.
%STRING(255) U
#STRING (20) LH,RH

%OWN, %CONST and %EXTERNAL variables may be initialized explicitly by
specifying an initializing constant, thus:

ZOWNSTRING(19) FILENAME='ERCCOO,TEST'

If the explicit initialization is omitted, the variable is given an initial
value of null,

STRING ARRAYS

A 'string array' is an array of one or more (maximum seven) dimensions of
locations which may be referenced using the array name and one or more
subscripts. A11 locations of a given array must have a common maximum length,
which should be stated in the array declaration or array format statement.
Examples of array declarations are:

%ZSTRING(63) %ARRAY FIELDS(1:5)
%STRING(63) %ARRAY NAMES1,TAGS(0:9,-1:0)

#0WN, ZCONST and YEXTERNAL arrays may be explicitly initialized by giving a
list of constants, possibly with repetition factors, as for comparable
arithmetic type arrays. '
For example:

JONNSTRING(6) %ARRAY F(0:4)= 'FRED','A',''(3)

uIf the explicit initializations are omitted, each location is initialized to
null,

Strings 8.3

STRING FUNCTIONS

Analogously with arithmetic functions (Section 6), a 'string function' may
appear in a 'string expression' (see below). A string function is declared in
exactly the same way as an arithmetic function, except that the maximum 1length
of the value which the function can yield is stated in the declaration. Thus:

¥STRING(20) %FN FIELD (%INTEGER I)

Execution of a string function terminated at a #RESULT statement must assign

a 'string expression’, described below, to %RESULT, which causes this value to
be used 1n the 'string expression' at the place the function was called.

Assignment to #RESULT does not at present cause the 'CAPACITY EXCEEDED'
run-time fault, though later compilers may take note of the maximum length
included in the function declaration.

STRING MAPPING FUNCTIONS

String mapping functions provide a means of referencing an area of storage

as a string location. A map name (possibly subscripted with parameters) is a
synonym for a location whose address is the #RESULT of the mapping function.
For example, if the mapping function:

ZSTRING(3)#MAP XA (%INTEGER I)

ZRESULT = ADDR(A(I))

ZEND
is declared, where A is a (0:5) #INTEGER array, then XA(I) is synonymous with
the string location which has the same address as the Ith element of A.

The declaration of the mapping function includes the maximum length of the
locations which it 1is to reference, but assignments to such locations cannot
cause the 'CAPACITY EXCEEDED' run-time fault (see below). Thus, as always with
mapping functions, care 1is required to ensure that a program does not

unintentionally overwrite data not directly being referenced.

The intrinsic mapping function STRING may be of particular use. Its effect

is that of the following:
%STRING?ZSS) ZMAP STRING (%INTEGER ADDRESS)
¥RESULT = ADDRESS

ZEND

8.4

STRING EXPRESSIONS : CONCATENATION

A 'simple operand' is a constant, a string function or one of the
denotations for referencing a 1location (listed above in the section defining
locations).

A 'string expression' is a simple operanda ur a denotation composition of one
or more operations on simple operands. It has a value, namely that of the simple
operand or that which results from performing the operations on the simple
operands.

Only one kind of operation is permitted in string expressions:
concatenation, denoted by dot (.). This is a binary operator, and its two
operands are written on either side of it, thus:

A.B

The result of concatenating two operands is the string comprising the value
of the first operand followed by the value of the second operand. Thus the
expression:

'HASTINGS'.*1066"
has value denoted:
'HASTINGS1066"
It is not commutative (A.B#B.A).
Unlike arithmetic expressions, string expressions may not contain sub-
expressions, Thus a string expression must always be written as a sequence of

say N simple operands separated by N-1 dots (N>0). For example, the following is
an expression:

'CONST"* ,VAR,TOSTRING(I+J)
vwhere VAR is a variable and TOSTRING is a function.

When an expression comprises more than one concatenation of simple operands,
the concatenations are performed starting from the left of the expression. If a
concatenation results in a value (intermediate or final) whose length exceeds
255, the 'CAPACITY EXCEEDED' run-time fault may occur (see Section 13).

Strings 8.5

STRING ASSIGNMENTS

The value of an expression may be assigned to a location %referenced in one
of the ways listed in the section above defining string locations) or, in a

function, to %RESULT,

There are two types of assignment, analogous to the arithmetic assignments,
denoted by '=' and '<-'. The former is called simply '(ordinary) assignment' and
the latter is called 'jam transfer', Examples are:

SARR(J)=S
S<-A.B.c

where A,B,C,S are string variables, J is an integer variable and SARR is an
array.

For the '=' assignment, the value of the expression on the right-hand side
is assigned to the 1location denoted by the left-hand side. The 'CAPACITY
EXCEEDED' run-time fault may occur (see Section 13).

The '<-' assignment operates exactly as the '=' assignment except that the
'CAPACITY EXCEEDED' run-time fault cannot occur: if the length of the value
denoted by the right-hand side exceeds the maximum length N of the left-hand
side location, assignment only of the N left-wst characters of the right-hand
side value occurs. This assignment may be used intentionally to truncate the

value being assigned.

STRING RESOLUTIONS

A further type of operation provides a powerful tool for analysing strings
and assigning 'substrings'. Explicitly, a string S is a 'substring® or a string
Ttif itTcan be concatenated with two other (possibly null) strings to form the
string T.

A ‘string resolution' 1is a left-to-right operation denoted by '->', Its
left-hand operand must be a location (referenced in one of the ways listed above
defining strin? locations). Its right-hand operand must be a sequence
alternately of locations and expressions. The locations and expressions must
each be separated by a dot (.) separator, and the expressions must further be
enclosed in parentheses.For example: :

L->M. (E)<N.(F).P

where L,M,N,P are locations and E,F are string expressions.

8.6

To describe the effects of resolution, we take the simple case of the
following resolution:

L=>M. (E).N

When executed, the resolution may 'succeed' or 'fail', It 'succeeds' if the
value of the expression E is a substring of the value at the location L. This
value is now considered as three substrings: that part which precedes the
left-most occurrence of E in it; that part which is the left-most occurrence of
E; and that part which follows the left-most occurrence of E. The location L
remains unchanged, but the first substring above is assigned to M and the value
of the third substring above is assigned to N. (M or N may be assigned null
values in the resolution). The 'CAPACITY EXCEEDED' run-time fault may occur
during these assignments (see below). Otherwise the resolution always succeeds
if the value of E is null.

If the value of E is not a substring of the value at 1location L, the
resolution 'fails' and no assignments take place. In this case (unless the
resolution forms part of a 'string condition', described below) the ‘resolution
gailz' r¥n-time fault (Fault number 26) occurs. This fault may be trapped, see

ection 14,

The following is an example of the simple resolution so far described. If
location L contains ‘HASTINGS1066' then

L=>M.('10").N
succeeds and causes 'HASTINGS' to be assigned to M and '66' to N.
Consider now the more complex resolution:
L=>M, (E).N. (F).P

This is executed exactly as though a private location PRIV, of maximum length
255, existed and the resolutions:

L->M. (E).PRIV
PRIV->N, (F).P

were performed. The resolution succeeds if both of these resolutions would
succeed; otherwise it fails,

The general resolution is executed in an analogous way, hypothetically using
further ‘private' 1locations to split the resolution into simple resolutions,
Note that in the general resolution some of the intermediate assigmments or
other consequent actions (such as the execution of functions or mapping
functionsz may have been effected before the resolution fails or before a
possible 'CAPACITY EXCEEDED' run-time fault occurs.

Strings 8,7

The following is an example of a more complex resolution. If location L
contains value 'ERCCOOINDEX2' and E has value 'INDEX' then

L->M. ("ERCC*)N, (E).P

succeeds and causes M to be assigned a null value, '00' to be assigned to N and
'2' to be assigned to P.

Finally, inia resolution the initial or final locations, or both, with their
associated separator operators ('.'), may be omitted, provided that the
right-hand side' of the resolution still contains at 1least one expression in
parentheses and at least one location. Examples are:

L- .
LB

The first example succeeds if the value of E is a substring of L and there is no
non-null substring of L to the left of the occurrence of E in L. The second

succeeds if the value of E is a substring of L, Note that there is asymmetry
between the cases of these examples: the second is equivalent to

‘L->M. (E).SINK

where SINK is an unwanted location of length 255, However, the first example is
not equivalent to

L")SINK. (E) .M
Explicitly, if location L contains 'HASTINGS' then

L->§'HA' M succeeds
L->("'TING').M fails

L->M, ('TING') succeeds
L->M, ('TINGS') succeeds .

STRING CONDITIONS

'String conditions' are analogous to arithmetic conditions in that %IF,
ZUNLESS, #WHILE and %UNTIL may cause tests to be made on locations and cause the
sequence of* execution of statements to depend on the outcome of the tests. A set
of IMP statements may be made conditional by adding string conditions and the
lexicographical forms are essentially the same.

The tests performed may be of two kinds, The first kind is a relational
test, analogous to an arithmetic test, in which two (or three) expressions are
compared, specifying one (or two) of the relational operators <,<=,=,>=,>,#,
(Three expressions with two relational operators form a double-sided condition,
whose effect is analogous to that of a double-sided arithmetic condition). The
second kind is a test of a resolution, as described above.

Examples of the two kinds are:

%IF S<'WATER' %THEN ->LAB
%IF L->M.(.1NGS').N %THEN ->LAB

8.8

RELATIONAL STRING CONDITIONS

The' expressions to be tested are first evaluated (the order. of evaluation is
not defined). A test of a relationship between the two values commences with up
to M character comparisons, where M is the minimum of the lengths of the two
values. The comparisons are based on the internal codes for the characters of
the strings, namely the ISO character codes. The test may continue with a
comparison of the lengths of the two values.

If the relational operator is '=', the relationship is TRUE if and only if
the values are identical, that is:

1. the lengths L of the two values are equal, and

2, if L>0, the i-th characters of each are equal for O<i<=L,
Otherwise the relationship is FALSE. These truth values are reversed for the

relational operator ‘'#'.

If the relational operator is '<', the relationship is TRUE if and only if
the left-hand value precedes the right-hand value in a 'dictionary ordering' of
the two values, based on the internal code for the characters. Thus if M is the
minimum of the lengths of the left-hand and right-hand values, the relationship
is TRUE if and only r:

le if M>0, the i-th character of the left-hand value has internal code 1less
than that of the i-th character of the right-hand value for 0O<i<=M, and

2, if M=0 or if the i-th characters are equal for O<i<=M, the length of the

left-hand value is less than the length of the right-hand value.
Otherwise the relationship is FALSE. These truth values are reversed for the

relational operator '>=', Analogous comparisons are made for the relational
operators '>' and ‘<=',

Thus:

‘AB'<'C' is TRUE
'AB'<'ABC’ is TRUE,
"IMP'<'FORTRAN' is FALSE

‘Double-sided' conditions are permitted. An example where S and T are

string expressions is:
%IF 'AB' < S < T %THEN -> LAB

RESOLUTION STRING CONDITIONS

The resolution which is the subject of the condition is elaborated exactly
as described in the section concerned with ‘string resolutions', except that the
'resolution fails' run-time fault cannot occur. If the resolution succeeds the

condition is TRUE, and if it fails the condition is FALSE,

The statements of the following example remove all ‘'leading' space
characters from the string S.

IWHILE S->(* ').S %CYCLE; ¥REPEAT

Strings 8.9

THE *CAPACITY EXCEEDED' RUN-TIME FAULT

The ‘CAPACITY EXCEEDED' run-time fault (Fault number 30) is a ‘trappable'
fault which 1is normally ‘'enabled'. For assignment operations only it may be
'‘disabled' (that is, execution will be allowed to proceed without diagnostic
message), in a program by specifying the compiler option NOARRAY when the
program is compiled. If the fault is disabled it cannot be ‘trapped'. Disabling
the fault enables shorter and faster object code to be produced by the compiler,
but should be used with discretion,

The fault occurs during expression evaluation when the 1length of an
intermediate or final result exceeds 255. It also occurs, when enabled, during
assignment (by the '=' operator or during resolution but not by the ‘<-'

operator) when the length of the value being assigned exceeds the maximum length
of the location being assigned to.

Note that when this fault occurs during the evaluation of a complex
expression or during the elaboration of a resolution, some of the intermediate

assignments or other consequences (such as execution of functions or mapping
functions) may already have been effected.

If the 'CAPACITY EXCEEDED' condition arises during assignment when the fault

is disabled, the results will be unpredictable (for example through consequent
over=writing of locations not intentionally referenced). It is therefore very
undesirable that this fault be disabled before a program 1is well-proved to

execute without the condition arising, or that adequate cognisance has been
taken of the consequences,

Note that the '<-' assigmment (described above) can be used to circumvent
the 'capacity exceeded' condition in a controlled way.

STRING MANIPULATION FUNCTIONS

The following functions are either in the intrinsic or implicit category and
hence can be called without being specified in the program (see Section 16).

%INTEGERFN CHARNO (%STRINGNAME S,%INTEGER N)

This returns the internal code value of the Nth chara?ter of string S. If N
is greater than the current length of S then the result is undefined. _

%STRING(ZSS!%FN FROMSTRING(%STRINGNAME S,%INTEGER I %g . .
The result is the sub-strlng of S comprising the ! to Jth (inclusive)
characters of S. The fault "STRING INSIDE OUT' will occur unless l<=I<=J and

J is not greater than the current length of S.

ZINTEGERFN LENGTH (#STRINGNAME S)

The result is the current length of the string, for example if S currently
gontains the string 'FIRE' then the result of a call of LENGTH(S) would be
our,

¥STRING(1)%FN TO STRING(%INTEGER I)

The result is a string of length 1 whose value is the character defined by
the least significant 7 bits of the integer I.

8.10 ~

STRING INPUT/OUTPUT ROUTINES

The routine provided for the input and output of strings are all 1in the
implicit or intrinsic category, so do not need to be specified. They operate on
the currently selected input and output streams. (See Section 10).

ZROUTINE READSTRING(#STRINGNAME S)

This routine which takes the name of a #STRING variable as its parameter and
is used to read a string into the variable. The string should be written as
described under the heading ‘'STRING CONSTANTS', above. Any spaces and
newlines are ignored before the first quote character of the string. The
trappable faults ‘'CAPACITY EXCEEDED' will occur if an attempt is made to
read a string into a variable which has not been defined to be sufficiently
long. Also °'INPUT ENDED' and ‘SUBSTITUTE CHARACTER IN DATA' faults can
occur, (See Section 10).

#ZROUTINE READITEM(%STRINGNAME S)

This routine takes the name of a string variable as its parameter. It is
used to read the next symbol from the current input stream and to put it
into the variable as a string of 1length 1, Faults appropriate to
READSYMBOL can occur.

#STRINGFN NEXTITEM

This is a string function which takes no perameter, It returns as its result
a string of length 1 whose value is that of the next symbol on the current
input stream, As with the function NEXTSYMBOL the pointer to the input
stream is not moved by this function. Faults appropriate to NEXTSYMBOL can
occur,

FROUTINE PRINTSTRING (%STRING(255)S)

This routine takes a string expression as its parameter, of maximum Tlength
255 characters. The expression is evaluated and the resulting string of
characters is printed on the current selected output stream. RINTSTRING
effectively uses PRINTSYMBOL to output characters so all the characteristics
of PRINTSYMBOL apply.

Strings 8.11

SECTION 9 - RECORDS

INTRODUCTION

'Records' in the IMP language provide a means of handling collections of
data types as single entities. Like an array, a 'record' has an identifier which
can be used to refer to the whole collection of data within it. Unlike an array,
however, the sub-fields (elements) of it may have different types. Whereas an
array element is referenced using the array identifier subscripted with an
expression which evaluates a numerical index, an element of a record is
referenced by subscripting the record identifier with the required sub-field
identifier. The syntactic form of the subscript also is different for a record
element, as will be made clear below.

The content of this section of the manual may be subject to change
in matters of detail with later versions of the IMP compiler.

RECORD FORMATS

A 'record format' defines the collection of objects which are to form a
record. An IMP record format statement comprises a format identifier foI]owed by
a list of sub-field identifiers enclosed within parentheses.

Each sub-field identifier must have a 'type' which is one of the types of
entities in IMP, namely

#BYTE or #SHORT XINTEGER, ¥INTEGER, ¥REAL, %LONGREAL, or %STRING,

Also arrays (but with single dimension and constant bounds) of the above types,
ZNAMEs and %ARRAYNAMEs (‘pointers') of the above types may be used.

Additionally, a sub-field type may be %RECORD, ¥RECORDARRAY or
#RECORDNAME and these are discussed below.

An example of a record format statement is:

YRECORDFORMAT F(¥BYTEINTEGER A, %STRING(8) S, %C
ZINTEGERARRAY M,F(1:100), ZREAL Y)

Record format statements do not cause allocation of storage (Section 5).
Sub-field identifiers need not be distinct from identifiers of other entities in
the program, block or routine, , since identifiers of sub-fields always occur in
conjunction with the name of a record, as described below. Record format
s tatements are placed at the head of a block or routine along with the
s torage-allocating declarations, and the same scope rules apply for these
identifiers as for those of other entities in IMP,

Sub-fields named in record formats have 'lengths' and 'alignments' equal to
those of the corresponding types of IMP entities; the record format likewise has
a 'length' which is implied by the lengths and alignments of 1its sub-fields.
This is discussed more fully below.

Records 9.1

RECORDS

Records are declared in the same way as the arithmetic and string types of
entities in IMP, They are declared at the heads of blocks or routines. The space
which they occupy can be allocated dynamically, or they can be declared as
%OWN, #CONST, ZEXTERNAL or %EXTRINSIC. However, the space occupied by these
latter types may not be initialized explicitly, and will be initially all zeros
(a1l bits will be zero). The same scope rules apply for record identifiers as
for arithmetic and string type identifiers. Space is allocated, and subsequently
referenced, according to the record format whose identifier forms part of the
record declaration. The required record format identifier, which must be
previously declared and in scope, is written in parentheses following the record
identifier., Several records of a given format may be declared in a single
s tatement, as in the following examples: :

YRECORDFORMAT F(%INTEGER A, %STRING(8) S)
%RECORD R(F)
4RECORD PP, QQ, RR(F)

The amount of space allocated is equal to the length of the record format.
The first sub-field of the record is double-word aligned. A fuller discussion of
lengths and alignments is given later in this section.

Each sub-field of a record can be referenced as an IMP location of
appropriate type by subscripting the record identifier with the sub-field
identifier: the record identifier is followed by the underline '_' character
followed by the sub-field identifier. Thus, following the above format and
record declarations, one may write:

ZIF'R_S='INC' %THEN R A=R A + 1
A further example follows:

%RECORDFORMAT PE(ZINTEGER I, REALARRAY X(0:10))
YRECORD P(PE)

%INTEGER J

‘P X(J+1) = PX(J) * 2

RECORD ARRAYS

'Record arrays' are entirely analogous to the arithmetic and string types of
arrays. Each element of a record array is a record of format specified in the
record array declaration, The identifier of the format which is to be applied to
gachdele?ﬁnt is written in parentheses following the record array identifier and

ounds. Thus:

%RECORDFORMAT F(¥INTEGER A, ¥REALARRAY X(1:5))
%RECORDARRAY RA(1:100) (F)

Then the fifth element of sub-field X in the 100th record array element may be
referenced:

RA(100)_X(5)

9.2

As with other types of array, several record arrays having the same bounds
and format may be declared in a single statement. Thus:

ZRECORD %ARRAY RR1, RRZ (1:100) (F)

The space for a record array may be allocated dynamically, or the array may
be ZOWN, ZCONST, ZEXTERNAL or ZEXTRINSIC. These latter types may not be
initiallzed exp11c1t1y, but a1l bits will be initially zero. The first sub-field
of the first element of the array is double-word aligned, but subsequent
elements are given an alignment which provides the closest packing of the
e lements of the array consistent with the format of each element. ’

RECORD 'POINTER' VARIABLES

Analogously with the #NAME ('pointer') variables for the arithmetic and
string entities, (see Section 7) 'record names' and ‘'record array names' may be
declared; they must be given an associated format by writing a record format
identifier (previously declared and in scope) in parentheses following the
pointer variable being declared., For example:

RECORDFORMAT Fé%INTEGER A, %REALARRAY X(0:5))
%RECORDNAME F1(F)

%RECORDARRAYNAME Z,H(F)

These pointer variables are assigned to using the ‘'==' operator, the

right-hand operand of which must be a reference to a record location having the
same format as that specified for the pointer variable which is the left-hand
operand. Following the assignment, the pointer variable identifier is synonymous

with that of the location reference which was assigned to it.
Thus, taking the declarations of the previous example, one may write

%RECORD Q.Rﬂ
ZRECORDARRAY A(1:10) (F)

Then
Fl==(Q makes F1 a synonym for record Q,
F1==A(10) makes F1 a synonym for the 10th element of A,
yAL) makes Z synonymous with A,

Records 9.3

A reference to a record location which 1is of particular value 1is the
built-in special record mapping function RECORD, whose single parameter is a
suitab]¥-a119ned address. This function may appear as the right-hand operand of
an ‘'==' assignment to a ZRECORDNAME variable, which then provides a means of
accessing sub-fields of the area starting at the address given as parameter
(even though that area may not previously have had a format applied to it, or if
it had previously been referenced as a location of different format). The
following example illustrates both these points.

%INTEGER J

YINTEGERARRAY 11(1:100)

4RECORDFORMAT A(ZBYTEINTEGER I,J,K,L)
%RECORDFORMAT B(%SHORTINTEGER P,Q)
%RECORDNAME X (A

%RECORDNAME Y (B

X==RECORD (ADDR(I1(J)))

Y==RECORD (ADDR(I1(J)))

Now for example
‘X_I is a reference to the left-most byte of I1I(J)
Y P is a reference to the left-most half-word of II(J).

SUB-FIELDS OF TYPE 'Z#RECORD'

A sub-field in a record format statement may itself be of type ¥RECORD, The
format for the sub-field identifier is written after it in parentheses as in the
following examples:

 YRECORDFORMAT P(%INTEGERARRAY X(0:4), %INTEGER I)
YRECORDFORMAT F1(%INTEGER A,B, RECORD D(P))
4RECORDFORMAT F2§%RECORD J,K(P))

%RECORD ENT(F1)
4RECORD JAK(F2)

An arbitrary ‘depth' of subscription can thus obtain, depending only on the
scope rules for the declarations. With the above declarations, the following are
valid references to record elements:

ENT_D-X(1)

JAK J_I.

9,4

SUB-FIELDS OF TYPE '¥RECORDNAME': '¥RECORDSPEC'

Additionally a sub-field of a format may be of type ZRECORDNAME but in this
case a format is given to the sub-field identifier not in the format statement
itself, but in a separate and subsequent %¥RECORDSPEC statement, which is
analogous to the ASPEC statement requirement for a #ROUTINE or %FN parameter
(Section 6). For example:

%RECORDFORMAT F(#INTEGER I, ¥RECORDNAME J)
%RECORDFORMAT K(Z%REAL X,Y)
#RECORDSPEC 'F_J- (K)

The following example is interesting in that the recursive nature of the
format and sub-field format definitions facilitates the creation of a list
s tructure:

%RECORDFORMAT F(%INTEGER DATA, ¥RECORDNAME LINK)
%RECORDSPEC 'F_LINK(F)
#RECORDARRAY P(1:1000)(F)

The structure may be initialised as follows so that the 'link' field of each
element of the array P 'points' to the subsequent element:

INTEGER J

Ju1

TWHILE J<1000 %CYCLE
P(J)_LINK==P(J+1)
Jad4

YREPEAT

The 'link' field of the last element may be set zero using the built-in special
record mapping function RECORD with a parameter of 0. Thus:

P(1000)_LINK==RECORD(0).

Records 9.5

RECORDS AS PARAMETERS TO ROUTINES: *#RECORDSPEC'

Records may be passed as parameters to routines, functions and mapping
functions only by ‘name'. Where a routine is declared having a ¥RECORDNAME
parameter, the identifier in the formal parameter 1ist as usual has scope which
is the textual extent of the routine but excluding contained blocks in which the
identifier is re-declared, But the record location to be referenced by that
jdentifier has no format implicitly associated with it within that routine.
Before the formal parameter identifier can be used, it is necessary to include
within the routine a '#RECORDSPEC' statement, which associates a record format
identifier, in scope at that textual position, with the %RECORDNAME formal
parameter identifier., The format thus associated with the parameter need not be
identical with any format used outside the routine to reference 1locations
outside the routine, although great care should be used in the use of different
formats for the same record.

The record format didentifier is written in parentheses following the
identifier with which it is to be associated. Thus:

YROUTINE R(ZRECORDNAME P)
YRECORDFORMAT F(%BYTEINTEGER A,B,C,D)
%RECORDSPEC P(F)

RECORD ASSIGNMENTS

Whilst sub-fields of records may be assigned and manipulated exactly as if
they were IMP entities of corresponding type, it is possible additionally to
assign a whole record from one location to another, As with arithmetic and
string assignment two assigmment operators are permitted, namely '=' and ‘'<-'.
Both require that the left and right-hand operands are references to record
locations, except that in the case of '=' a right-hand operand of zero is
permitted, which has the effect of setting all bits in the left-hand location to
zero. The '=' operator further requires that the formats associated with the
left and right-hand operands have the same length; the '<-' effects a transfer
of the number of bytes which is the smaller of the lengths of the two record
formats. In both cases the transfer is without regard to considerations of
format within either record.

The following example shows uses of the ‘=' assigmment:

YRECORDFORMAT F(%INTEGER X,V ZA)
ZRECORDFORMAT Q(%BYTE INTEGERARRAY B(0:15))
%RECORD J(F)

YRECORDARRAY K(1:100) (Q)

J=K(1)

K(1)=0

9.6

LENGTH AND ALIGNMENT

The length of a record format, and the amount of space occupied by a record
of given format, is the total number of bytes occupied by all the sub-fields,
with the sub-fields, with the first sub-field double-word aligned and a minimum
number of 'sqacing' bytes inserted between adjacent sub-fields where necessary
to achieve alignments appropriate to their types.

For example, the record format
ZRECORDFORMAT F(#BYTEINTEGER B, #INTEGER I)

has length 8. Three bytes (not referenced explicitly through this format
s tatement) must follow the sub-field B when the format is applied to an area of
s torage having double-word aligmment in order that sub-field I s groperly
aligned. The requirement to double-word align a record may also result in up to
7 non-referenceable bytes being assigned,

The aiignments and lengths of possible sub-fields of records formats are
shown in the following table.

Type Alignment Length
¥BYTEINTEGER and array byte 1 2and N*1]
#SHORTINTEGER and array half-word 2 (and N*2
ZINTEGER and array word 4 (and N*4)
¥REAL : and array word 4 (and N*4

% LONGREAL and array double-word 8 (and N*8
ZSTRING and array byte L+1 (and N*(L+1))
%RECORD doub le-word R

#ARRAY ZNAME word 8

other ZNAME word 4

where N is the number of elements in the array,
L is the length of the string,
R is the length of the record.

In the case of ZRECORDARRAYS the first record in the array is double word

%Aign$d. Any subsequent records are aligned as necessary for the elements
erein,

Records 9.7

SECTION 10 - INPUT/OUTPUT FACILITIES

INTRODUCTION

Input/Output (I/0) facilities are provided to enable programs to read data
from input devices and files and to output data to output devices and files.
This section describes the routines and functions provided by the IMP System in
terms of their program characteristics. A11 the routines refer in some way to
logical I/0 CHANNELS. These channels are assigned numbers in the range (0 - 99,
of which channels 0 and 81 -99 are reserved for system defined devices. Channel
numbers in the range 1 - 80 can be used for purposes defined by the user,
subject only to the rule that there must be no conflict between channel numbers
used for differaft types of file. Each implementation of the language provides
facilities for linking these logical channels to particular files or devices and
information on this subject is contained in the User Manual for the appropriate
computer.,

CHARACTER AND BINARY INFORMATION

The primary I/0 facilities in IMP use character information, that is
information which can be represented in sequences of printable characters. A
variety of routines is provided to handle individual characters, or to interpret
sequences of characters as numeric values, or string values.

Additionally I/0 routines are provided to handle binary information, as a
direct copy of the internal representation of values held in the computer's core
s tore, Two types of binary I/0 are provided - Sequential for use when data is
accessed in the order in which it is held in the file, and Direct Access for use
when data is accessed randomly from all parts of the file.

A11 the routines associated with character 1/0 are intrinsic or implicit -
that is no declaration of them is needed before they are called. A1l1 the binary
I/0 routines are explicit, that is they must be declared in each program in
which they are used.

CHARACTER CODES

A1l the character handling routines in IMP use an Internal Character Code
based on the ISO Code for the Interchange of Data, see Section 16 of this
manual. Some implementations of IMP may use other codes e.g. EBCDIC to represent
characters on storage devices but this need not concern the IMP programmer since
the necessary translation to and from the Internal Code will be carried out by
the operating system,

Input/Output 10,1

CHARACTER STREAMS

A11 character handling routines and functions operate with respect to either
the currently selected INPUT STREAM or the currently selected OUTPUT STREAM., On
entry to a program the system selects default streams for input and output., At

any ggint in the program it is possible to redirect character input or output by
a call of

#ROUTINE SELECTINPUT(#INTEGER I)
or #ROUTINE SELECTOUTPUT(%INTEGER I)

Each of these routines takes one integer parameter which should have the value
of the logical channel number required.

Examples: SELECTOUTPUT (3)
SELECTINPUT (I + 17)

After a call of SELECTINPUT all calls of character input routines will
operate on the selected input stream, until another call of SELECTINPUT is made,
or the end of the program is reached. The same rule applies to SELECTOUTPUT and
character output routines.,

Both input and output characters are buffered by the operating system into
lines. This has the following effects on the use of SELECTINPUT and
SELECTOUTPUT, If an input stream is re-selected later in a program the first
character read after re-selection will be the first character in the line
following that last accessed. Thus it is possible that part of a line will be
lost. When an output stream is re-selected output will continue after the output
that has already been put out. Additionally when SELECT OUTPUT 1is called a
newline character is output on the current output stream if there is anything in
the line buffer, before selecting the new stream.

CHARACTER INPUT ROUTINES

The following routines and functions operate on the currently selected input
s tream,

#¥ROUTINE READSYMBOL (¥NAME I)
This routine is used to transfer the internal value of the next symbol from

the1:g§rent input stream into an #%INTEGER, #SHORTINTEGER or #¥BYTEINTEGER
var e,

Example: READSYMBOL (IN)

ZINTEGERFN NEXTSYMBOL

This integer function which takes no parameter, returns the internal value
of the next symbol on the current input stream. It does not move the pointer
to the stream so the next call of this or any other character input routine
will access the same character again.

Example: %IF NEXTSYMBOL='A' ZTHEN

10.2

#ROUTINE SKIPSYMBOL

This routine, which takes no parameter, moves the pointer to the current
input stream along one symbol without transferring any information to store.
In the following example SKIPSYMBOL and NEXTSYMBOL are used together to skip
over a series of space characters.,

PWHILE NEXTSYMBOL=' ' %THEN SKIPSYMBOL

#ZROUTINE READ(%NAME I)

This routine 1is used to read numeric data into arithmetic variables. The
single parameter should be a variable of type %INTEGER, #SHORTINTEGER or
ZBYTEINTEGER if the number being read is known to be integral or of type
Z#REAL or %ZLONGREAL if the number being read is 1likely to include a
fractional part. The numbers being read should be written as described under
the heading 'DECIMAL CONSTANTS', in Section 1. Note the following points:

1. READ will skip over any SPACE or NEWLINE characters which precede the
number., Thus space or newline characters can readily be used as
separators between numbers.

2. On returning from READ the input pointer will be left pointing to the
character immediately following the number.

3. The fault 'REAL INSTEAD OF INTEGER IN DATA' will occur if an attempt is
made to read a real number, or a number with an exponent, into an
integer variable.

4, The Ffault °'SYMBOL IN DATA' will occur if the first character of a
number is neither a sign, a decimal point or a decimal digit.

XROUTINE READSTRING(%STRINGNAME S)
This routine, which is described in Section 8 is used to read a value into a
#STRING variable.

FROUTINE ISOCARD‘%BYTEINTEGERARRAYNAME B)
This routine, which is intended for use with fixed format data, is used to
read a card image into a #BYTEINTEGERARRAY, The parameter should be the name

of the array, and the card image will be read into elements 1-80 of it.

Example: ¥BYTEINTEGERARRAY INCARD(1:80)
ISO CARD (INCARD)

Input/Output 10,3

LINE RECONSTRUCTION

A11 the above routines except ISOCARD operate on data which has undergone a
process known as line reconstruction. The main features of this are:

1. A1l characters before the left hand margin and after the right hand margin
are suppressed. (See SET MARGINS below).

2. A11 space characters at the right hand end of the line are suppressed.

3. Double quote deletion is performed - that is each double quote (") character
and the character preceeding it is suppressed, as far back as the beginning
of the line.

4. A11 marked characters (see Section 16) are suppressed.

5. A1l illegal characters are translated to SUB (decimal value 26). In
addition, when an attempt 1is made to read the first character of a line
containing a SUB character the fault ‘SUBSTITUTE CHARACTER IN DATA' occurs.
This fault may be trapped (See FAULT TRAPPING) in which case the next
attempt to read the first character of the line will be successful although
the user must be prepared for it, or at least one character in the line, to
be a SUB.

AVOIDING LINE RECONSTRUCTION

It is occasionally useful to be able to read all characters from the input

s tream before line reconstruction has been performed. The routine READCH is
provided for this purpose.

FROUTINE READCH‘%NAME 1 ,
This routine, 11ke READSYMBOL requires one parameter which must be a
variable of type ZXINTEGER, #SHORTINTEGER or ¥BYTEINTEGER. A call of

READCH will transfer the next character from the input stream to store in
internal code, without regard for Margin Settings, double quote deletion,

trailing space, or Marked Character suppression or illegal character
conversion.

INPUT ENDED
A1l of the above input routines cause the fault 'INPUT ENDED' if an attempt

is made to read beyond the end of a file. This fault can be trapped (See
FAULT TRAPPING).

10.4

CHARACTER OUTPUT ROUTINES

A number of routines are provided to write individual characters or
sequences of characters to the output stream. Although most routines only output
part of a 1ine it is important to appreciate that the characters are initially
put in a 1line buffer which is only output on the file or device when a
NEWLINE or NEWPAGE character is output. This fact is particularly relevant when
using a TELETYPE or other terminal as an output device. The basic character
output rogtine is PRINTSYMBOL; most of the other output routines operate via
this routine.

%ROUTINE PRINTSYMBOL (4INTEGER I)

This routine takes one parameter which should be an integer expression. The
expression is evaluated and the least significant 7 bits only are used by
the routine. If the value of this corresponds to a symbol in the IMP
extended character set gsee Section 16) it is sent to the output stream., If
not, the character SUB (decimal 26) is sent.

Examples: PRINTSYMBOL ('A’)
- PRINTSYMBOL (I+J+32)

TEXT OQUTPUT ROUTINES
The following routines are provided to simplify the output of text:

SPACE - no parameter - outputs one space

SPACES(n) - where n is an integer expression - outputs n spaces
NEWLINE - no parameter - outputs one newline character
NEWLINES(n) - where n is an integer expression - ocutputs n spaces
PRINTSTRING(s) - where s is a string expression - outputs the string.

See Section 8.

YPRINTTEXT ' TEXT - This is not a routine call, it is a built in phrase
known to the compiler. Any characters may be included in
the quotes following 2#PRINTTEXT, Note that all
characters included within the quotes will be printed
including spaces and newlines. Note that the routine
PRINTSTRING has a similar effect and is a preferred
alternative to ZPRINTTEXT, However since a
PRINTSTRING is a routine its parameter must be contained’
within brackets. Hence, for example the two following
1ines would have the same effect:

PRINTSTRING('MY PROGRAM')
%PRINTTEXT'MY PROGRAM'

Input/Output 10,5

OUTPUT OF NUMBERS

Three routines are provided for the output of numeric information. WRITE is
used to output the value of integer expressions, PRINT and PRINTFL are used to
output the value of real expressions, the latter in floating point form,

ZROUTINE WRITE(ZINTEGER I,J)

This routine takes two parameters, both should be integer expressions. The
first is the value to be output, the second is the number of positions to be
used. To simplify the aligmment of positive and negative integers an
additional position is allowed by the routine for a sign, which is only
printed for negative numbers. If the value being output is too large for the
number of positions specified more positions are taken. . '

Examples: WRITE(I,4)
WRITE(TOTAL+SUM+ROW(I),6)
WRITE (SNAP ,P0S+4)

ZROUTINE PRINT(%LONGREAL X,%INTEGER I,J)

This routine takes three parameters. The first should be the real expression
whose value is to be printed, the second and third should be integer
expressions specifying the number of places to be allowed before and after

the decimal point. The same arrangements apply for the sign and for
insufficient space for the integer part as for WRITE. If necessary the
fractional part will be rounded.

Examples: PRINT(A,2,3)
PRINT(COS(A-B),1,10)

ZROUTINE PRINTFL(¥LONGREAL X ,%INTEGER I)

This routine takes two parameters; the first is a real expression whose
value is to be printed, the second is an integer expression specifying the
number of digits to be printed after the decimal point. The printed number
takes up the specified number of places plus 7 additional places.

Example: PRINTFL(X,4)
If X has the value 17,63584 this would be printed as 1.7636€ 1. The number
is standardised in the range 1<=x<10, and as for WRITE a space is allowed
for a sign for both the mantissa and the exponent.
PRINTING NON-STANDARD CHARACTERS
Occasionally it is useful to print characters that do not appear in the
extended IMP character set. The routine PRINTCH has the same effect as

PRINTSYMBOL except that any character whose internal code value is in the range
0-127 can be output.

OUTPUT EXCEEDED

If an attempt is made to output more data than can be accommodated on the
gurrent output stream then the fault 'OUTPUT EXCEEDED' will occur. This cannot
e trapped.

10.6

CLOSING STREAMS

A11 input and output streams are closed automatically at the end of a Job.
If it is necessary to close a stream during a job the routine CLOSE STREAM can
be used, It takes one parameter which should be an integer expression whose
value is the number of the stream to be closed. Note the following points.

1. An attempt to close the currently selected input or output stream will fail,

2, If a stream 1is closed and selected later using SELECTINPUT the pointer to
the stream will be positioned at the start of the file. This makes it
possible to re-read a file, or to read a file which has been written earlier
in the program.

3. If a stream is closed and selected later for output, the output will be
Yritten from the start of the file. Any other output in the file will be
ost. ‘

SET MARGINS

Associated with each input and output stream are settings for the left hand
and right hand margins. Some of these settings are defined by the IMP system and
this information will be found in the relevant User Manual. A11 other streams
use default settings of 1 and 80. Margin settings can be altered by a call of
the routine SET MARGINS, This routine takes three parameters, all being integer
expressions. The first is the stream number, in the range 1 - 80, which must be
that of either the currently selected output stream or the currently selected
input stream, The second and third should be the left hand margin setting and
right hand margin setting required.

For input streams the margins mhst be in the following range:
1<=LHM<=RHM<=160

The characters on a line to the left of the left hand margin and those to the
right of the right hand margin will be ignored.

For output streams the margins must be in the following range:
1<=LHM<=RHM<=132
The effect of altering the left hand margin will be to tabulate the output, for
example if the left hand margin is set to 10 all output lines will be preceeded
. by 9 spaces. The right hand margin is used to 1imit printing on a line. If an
attempt is made to print beyond the right hand margin then a newline character
is inserted and printing continues on the next line.

If a stream is reselected its margins should be set again using SET
MARGINS.

Input/Output 10.7

BINARY FILES

Binary files can be used for storing intermediate results of computations,
either during the execution of one program, or for use by subsequent programs,
The data stored is a direct copy of the contents of the core store, The file
hand1ing routine calls all make explicit references to the logical channel being
used, there is no equivalent to the currently selected stream used for character
I1/0. The variables accessed by binary I/0 calls are normally held in arrays and
the read and write routines each require a specification of the area of core
store to be accessed, For example the WRITESQ routine uses its second and third
parameters to specify the area of the store to be output.

Example: #INTEGERARRAY IN(1:1000)
WRITESQ(CHAN,IN(1),IN(500))

In this example the first 500 elements of the array IN will be written out
to the sequential file defined for channel CHAN.

The following notes refer to all the binary file handling routines.
1. Each routine call should reference only one array.

2. The type of an array used in a call of a binary input routine should be the
:gme as that used for the call of binary output routine that created the
le.

3. When using multi-dimensional arrays the whole array should be written and
read, unless the full implications of the layout in store of the array are
unders tood.

SEQUENTIAL BINARY FILES

Sequential binary files (SQFILES) are accessed by the routines OPENSQ,
WRITESQ, READSQ and CLOSESQ. A11 these routines are in the explicit category,
that is they must be declared at the head of the program or routine in which
they are used. The specifications of the routines are given below, The precise
characteristics of the file handling routines may vary from one implementation
to another, and further information should be sought from the User Manual for
the appropriate computer,

ZEXTERNALROUTINESPEC OPENSQ(%INTEGER I)
This routine takes one parameter, the channel number of the file to be
opened, It must be called before READSQ or WRITESQ is called for that
annel, If a file is closed in a program and then re-opened it will be
reset to the start. By this means it can be reread or information that had
been written earlier in the program can be read. In the case of writing
after re-opening, since the file is positioned at the start all information
in it will be lost.

SEXTERNALROUTINESPEC CLOSESQ(%INTEGER I)

A1l files are closed automatically at the end of a job. CLOSESQ is only
required if it is necessary to re-open a file.

10.8

ZEXTERNALROUTINESPEC WRITESQ(#INTEGER I,%NAME A,B)

Each call of the WRITESQ outputs one logical record. The operating system
may store records in a variety of ways on its storage device but this need
not concern the programmer, The routine takes three parameters; the channel
numbe; and two #NAME parameters to define the area to be written out (see
above).

Example: WRITESQ(2,A(27),A(426))

$EXTERNALROUTINESPEC READSQ(#INTEGER I ,ZNAME A,B)

This routine reads in one record, normally written out by a call of
WRITESQ. The first parameter defines the channel to be used and the second
and third the area of store into which the record is to be read.

Example: READSQ(2,A(1),A(400))

YEXTERNALINTEGERFNSPEC LENGTHSQ

This function returns as its result the length, in bytes of the last record
read by a call of READSQ. It is useful in situations where the length of
records vary. Note that the length is that of the user data read into the
program variables., It does not include any system information which is
sometimes appended to the record. :

SEQUENTIAL FILE FAULTS

The fault 'INPUT ENDED' will occur if an attempt is made to read beyond the

end of a file. This fault can be trapped. None of the following faults resulting
from use of sequential file handling can be trapped.

1.
2.
3.

4.

Attempting to use READSQ, WRITESQ or CLOSESQ for a file which is not open.

Attempting to OPEN a file which is already open.

Attempting to write or read an area such that the address of the first

element is higher than that of the last element, for example:
WRITESQ(1,IN(100),IN(1))

Attempting to mix READSQ and WRITESQ calls for the same channel, without the
use of an intermediate CLOSESQ and OPENSQ.

Input/Output 10.9

DIRECT ACCESS BINARY FILES

Direct Access Files (DAFILES) are used for similar purposes to SQFILES.
There are two main differences in the method of use.

1. Records can be accessed in a random order.
2. Calls of both WRITEDA and READDA are legitimate on an open channel.

A11 the DAFILE routines are in the explicit category, that is they must be
declared before they are used. The specifications of the routines are given
below. Each record of a DAFILE contains a maximum of 1024 bytes. Records are
referenced by their position in the file, starting at 1.

$EXTERNALROUTINESPEC OPENDA(Z%INTEGER I)

This routine takes one parameter, the channel number of the file being
opened. It must be called before a call of READDA or WRITrun for the file,
When OPENDA is used for the first time with a particular file it initialises
the file by writing the unassigned pattern to all the records. Thus, if an
attempt is made to read from a record to which nothing has been written an
;UNASSIGNED VARIABLE' failure will occur when the data which has been read
s accessed,

ZEXTERNALROUTINESPEC CLOSEDA(#INTEGER I)

A11 DAFILES are closed automatically at the end of a job so this routine is
rarely needed. It may be required to minimise the number of files which are
concurrently open,

$EXTERNALROUTINESPEC WRITEDA(%INTEGER I,%INTEGERNAME J,%NAME A,B)

This routine is used to write data from an area of core store to a file. A
call of WRITEDA will result in one or more records being written, depending
on the number of bytes in the area defined. For example if 256 elements of
an ZINTEGER array are written out then only one record will be used, whereas
if 1024 ZINTEGERs are written four records will be used. If the area written
is not an exact multiple of 1024 bytes then the end of the 1last record
written will be filled with rubbish. The first parameter is an integer
expression which defines the channel number, the second is the name of a
ZINTEGER variable. On entry this should contain the number of the first
record to be written. On exit it will contain the number of the last record
written by this call, which may be used for checking purposes. The third and
fourth parameters define the area of store to be written, as for SQFILES.

ZEXTERNALROUTINESPEC READDA(¥INTEGER I ,%¥INTEGERNAME J,ZNAME A,B)

This routine is used to read data written by WRITEDA, The parameters are
used in the same way and if an attempt is made to read into an area which is
not an exact multiple of 1024 bytes, the area is filled and the rest of the
last record is ignored.

10.10

DIRECT ACCESS FILE FAULTS

None of the following faults associated with the use of DAFILES can be
trapped:

1. Attempting to use READDA or WRITEDA before opening a file,

2. Attempting to access a record with a number that is less than 1 or
greater than the number of the last record in the file.

3. Attempting to access an area such that the address of the first element
is higher than that of the last.

Input/Output 10,11

SECTION 11 - AIDS TO PROGRAM DEVELOPMENT

INTRODUCTION

The IMP compilers normally operate in diagnostic mode. This means that when
compiling a source program, additional code is planted to enable the program to
give useful diagnostics in the event of an error occurring at run time. The type
of checks which are made are 1listed below, under their standard compiler
options. The User Manual for the computer being used will provide information
about selecting suitable compiler options.

CHECK (Unassigned checking)

Checks are made that all variables, except byte and short integers, are assigned

to, before being used. Parameters passed to routines by value are checked at

time of passing but those passed by name are not checked at all at present.

?nassigned checking can be suppressed by use of the compile time option
NGCHECK',

ARRAY (Array bound checking)

Checks are made to ensure that the declared bounds of arrays are not exceeded.
Checks are also made to prevent either too large an entity being assigned to a
byte or short integer variable, or too many characters being assigned to a
string variable, Additionaly checks are made for attempts to Jjump to ®%SWITCH
labels that are not set, or are ocutside the bounds declared for the #SWITCH.
These checks can be suppressed by using the compile time option 'NOARRAY'. Note
that the current release of the IMP compiler suppresses array bound checking on
all arrays when 'NOARRAY' is used. This was not the case with earlier releases.

TRACE (Routine traceback)

Code is planted to allow a routine trace back to be given., This facility can be
suppressed by 'NOTRACE'. '

DIAG (Line number updating and local variable values)

Code is planted to save the line numbers of IMP statements and thereby 1ink any

diagnostics to a specific line of IMP code. Code is also planted to enable the

local scalar variables to be printed during a routine traceback, unless
:NOTRACE‘ has been selected. These diagnostics can be suppressed by use of
NODIAG®,

Should a program fail, the diagnostics package is entered after the cause of
the failure has been reported. It is also entered on execution of the
instructions, YMONITOR and ¥MONITORSTOP. The function of the diagnostics package
is as follows:

1. To identify (subject to TRACE being operative) the 1logical block 1i.e.
routine, function, map or block in which the failure occurred by printing
out its name, in the case of a routine, function or map, and the number of

its first line if in a block. For example:

ROUTINE/FN/MAP FRED STARTING AT LINE 31
BLOCK STARTING AT LINE 6

Programming Aids 11,1

2. To print out ssubject to DIAG being operative) the values at the time of
failure of all the scalar variables (up to a maximum of 100) declared in the
logical block. If no value has been assigned to a variable, this is
indicated. Records and arrays are not printed.

EOCAL SCALAR VARIABLES
= 10

TABLEOFC= 4001
SHOLD="THIS IS'

K= NOT ASSIGNED

Note that the names of scalar variables are truncated at eight symbols, and
that string values are enclosed in quotes.

3. If the logical block is a routine, function or map, to print out the number
of the line from which it was called. This may be in the current routine,
function or map if the call was recursive.

4, To repeat the above three functions for the logical block from which the
previous logical block was entered. Thus routines, functions or maps, which
are used recursively, will have the values assigned to the variables in each
occurrence printed out.

There is one overall restriction on the amount of diagnostics given. After
400 lines of diagnostics the output is terminated and the message

DIAGS OUTPUT EXCEEDED
is given,

Certain source statements which are indicated below may also be included in
a program under development to provide further information for de-bugging
purposes.

PROGRAM LISTING

A line by 1line transcript of all statements in an IMP program is
automatically given for each compilation unless the compiler option 'NOLIST' has
been specified in the Jjob control when a program is compiled. Then a short
Tisting in which only the start and finish of each ‘begin', ‘'routine‘,
'function' or 'map' block is produced.

Selective listing of statements in particular sections of a program may be
obtained by enclosing each required section between the statements %LIST and
#¥ENDOFLIST and giving the compiler option 'NOLIST' in the job control or command
language. Note that apart from saving paper the 'NOLIST' option will result in
faster dcompi1ation, and hence should be used unless a full 1isting is really
required, '

11.2

EFFICIENCY

The following suggestions are given to enable a programmer to program in a

way which will make more efficient use of machine time,

1.

2.

3.

4.

The parts of a program in which efficiency is particﬁlarly important are
those which are executed many times.

%CYCLE I=1,1,100
#CYCLE J=1,1,100
<code>
¥REPEAT
¥REPEAT

In the above example, any minor improvement made in the code in the inner
cycle will result in a total saving in time of 10,000 times that small
amount,

Whenever some part of an expression which is a constant factor, is required
many times, it should be evaluated once and stored as shown in the right
hand version of the example below.

KaK*22/7

%CYCLE I=1,1,100 CYCLE I=1,1,100
A£1)=A(If*K*22/7 A(1)=A{T§*K

IREPEAT YREPEAT

It takes longer to move numbers in and out of array elements than to access
simple variables. The right hand version of the example given below is the
more efficient.

A(I,d)=0 X=0
4CYCLE K=1,1,15 %CYCLE K=1,1,15
A(1,9)=A{1,3)+B(K) X=X+B (K)
REPEAT YREPEAT
A(I,J)=X

Integer to real conversion 1is costly and it is often worthwhile to use
b;aﬁkets to separate out integer sub-expressions, as shown below on the
right.

REAL X 4REAL X
ZINTEGER I,J,K ZINTEGER I,J,K
XaX+1+d-K X=X+(1+J-K)

Programming Aids 11.3

5.

6.

7.

8.

9.

.4

If an arithmetic expression contains a mixture of real and long real
variables then it 1is evaluated double length. It is slow to stretch real
variables to long real variables and brackets can often be used to minimise
the cost of conversion, as shown below on the right.

REAL X,Y,Z 2REAL X,Y,Z
%LONGREAL 'A,P %1 ONGREAL ‘A ,P
P=X*A/COS(Z)*Y/Z P={X*Y/Z)*A/C0S(2)

It is particularly important to note this effect when making a call on
library routines such as SIN, COS etc., which are all double length, from a
program having mostly single length real variables.

When array bound checking has been suppressed, array suffices of the form
(I+constant) are more efficient than (I-constant). The example given below
left may be reprogrammed more efficiently as shown on the right.

%YCLE I=1,1,N YCYCLE I=-1,1,N-2
B(I)=X+C(I-2)*C(I-3) B(I+3)=X+C(I+2)*C(I)
%REPEAT 4REPEAT

Output should be reduced to the minimum which is really useful to the
programmer in the interest of saving machine time and money. To this same
end, answers should be printed across the line printer page where possible
as the cost is proportional to the number of lines printed.

Once a program has been thoroughly tested, its efficiency can be greatly
increased by turning off certain or all of the diagnostic checks made by the
compiler. This results in a great saving in space as well as time, A1l
programs which are past the initial testing stage should be compiled without
the unassigned checking option. As more production experience with the
program is obtained it may be possible to compile without some of the other
options, array bound checking for example. Programs should be made as
efficient as possible by other means, however, before removing any of the
checks.

There is a compile time option 'OPT' which has the effect of switching off
array bound checking, unassigned checking and diagnostics for 1line numbers
and values of local variables. Additionaly some optimisation of the program
is carried out and other checking is suppressed. Although the result is a
program that executes more efficiently this facility should be used with
caution, It should not be used on programs which have Compile Time Faults
since the error messages that are produced may be misleading. Further it
should only be used for programs or %EXTERNAL routines which have been
thoroughly tested. Much time may be wasted trying to diagnose faults which
result from the use of 'OPT' with incorrect programs.

SECTION 12 - COMPILE TIME FAULTS

INTRODUCTION

As the compiler processes a source program and produces a map or listing, it

may encounter errors in the syntax or the semantics of certain statements. If
this occurs, the compiler issues a message to describe the sfituation of the
error and as far as possible, its nature.

Two main types of error are defined; syntactic errors and semantic errors.
SYNTACTIC ERRORS

These are errors which cause the form of the statement to be unrecognisable,
since the strict rules of syntax have not been obeyed. Mistakes such as omission
of statement separators or misspelling of key words are examples. This type of
error is indicated by the message

* 111 SYNTAX

where 111 is the 1ine number of the incorrect statement. A copy of the offending
source statement is output on the next line of the program map or listing.

Where possible, the compiler indicates the exact position of the SYNTAX
error by ocutputting a marker (1) under the character where the analysis failed.
Sometimes, however, this marker can only be approximate as, for example, in the
following case:

If the statement
¥ROUTINE SPECIFY ORBITALS

FROUTINESPECIFY ORBITALS
the failure message would be
* 111 SYNTAX ROUTINESPECIFY ORBITALS
!

is mistyped as

The marker is misplaced to the right as the erroneous line more nearly
corresponds to a ‘'ZROUTINESPEC' statement than the intended ‘ZROUTINE®
s tatement.

The compiler will continue to process the remainder of a program after
detecting such an error, but will not allow the program to be executed.

Compile Time Faults 12.1

SEMANTIC ERRORS

These occur when a statement is syntactically correct, but causes ambiguity
in meaning or is totally meaningless. Examples are the declaration of a name for
t:o gies in the same context, or the use of a name which has not been declared
at all,

The following 1ist describes the semantic errors detected by the compiler
and diagnosed by messages of the type

* 125 FAULT n

where 125 is the number of the faulty line and n the number of the fault. The
fault number will be followed by an abbreviated description of the fault which
will usually be sufficient for the programmer to identify his mistake. Fuller
descriptions of current Compile time faults are given below. If a program
produces any fault not listed below then the user should contact the Advisory
Service for further information. A1l will cause rejection of the offending
program at the end of compilation.

FAULT 1 (Too Many %REPEATS)

A %REPEAT instruction 1is encountered for which no %CYCLE statement earlier in
the same block can be matched uniquely.

FAULT 2 <label> (Label Set Twice)
The current instruction bears a label which has already been used to identify a
statement in the same block. This will clearly cause ambiguity. Also occurs if a
numeric label is not within the permitted range of 1<=label<=16383.

FAULT 3 (%SPEC Faulty)
The offending statement is a ¥SPEC in the short form, within a routine, function
or map, which specified a name not appearing in the formal parameter list of the
current block, or which appears in a #%BEGIN block context.

FAULT 4 (%ZSWITCH Vector Not Declared)

A name used in the context of a switch label has not been declared as a
¥SWITCH name in the current block or routine.

FAULT 5 (¥SWITCH Label Error)
The subscript appended to the name used as a ZSWITCH label is not a single
integer constant or is outside the range defined by the declaration of the
switch, (See also FAULT 18),

FAULT 6 (Switch Label Set Twice)

The current instruction is identified by a switch label which has already been
used to label a statement in the same block.

12,2

Fault 7 <name> (Name Set Twice)

A declaration statement declares 'name'’ which is already set in the current
block, except when the name is that of a #ROUTINE, %FN or #MAP description which
has been previously specified but not described within that block.

If the statement declared a number of names, any of these not already set is
set in the normal fashion. The diagnostic will appear once for each name which
is already set.

FAULT 8 (Too Many Parameters in Routine Type Description)

A routine type description is encountered for which a declaration already
exists, and the number of parameters declared in the description exceeds that in
- the declaration,

FAULT 9 <name> (Parameter Fault in Routine Type Description)

The type of a formal parameter name appearing in a routine type description
differs from the corresponding parameter appearing in an earlier declaration.

FAULT 10 (Too Few Parameters in Routine Type Description)

A routine type description is found to declare fewer parameters than the
corresponding specification.

FAULT 11 <label> (Label Not Set)

On encountering an %END statement, it is found that the label, <label>, has been
referenced in a jump instruction in the current block, but has not been
jdentified with any statement in that block. This message appears, therefore,
immediately before the ‘END OF BLOCK' message. Note that #ROUTINE, 2%FN or
#MAP descriptions are treated as separate blocks. (On 'END OF PROGRAM' this also
refers to labels appearing in ZFAULT statements that are unset).

FAULT 12 (Type General Parameter Misused)

An attempt has been made to store or fetch into a type general Rarameter (e.qg.
ZNAME). These are only used by the input/output routines and this fault should
not normally be encountered.

FAULT 13 (¥REPEAT Missing)

This diagnostic appears at the end of a block, and indicates that a_ ¥CYCLE has
been opgned in pghat block but has not been matched uniquely with a ZREPEAT

instruction in the same block.
FAULT 14 (Too Many %ENDS)

An %END statement is encountered which matches logically with the opening
%BEGIN of the program. It should rightfully be an ¥ENDOFPROGRAM, Compilation
ceases and the job terminates. Any subsequent text is not scanned.

Compile Time Faults 12.3

FAULT 15 (Too Few ZENDs)

An %ENDOFPROGRAM statement is found to correspond to the opening of a block
internal to the main program level, showing a lack of block ends.

FAULT 16 <name> (Name Not Set)

A name employed in the offending instruction has not been declared. The name
quoted is artificially declared as an #INTEGER so that this diagnostic 1is
suppressed on later appearances of the name. However, other faults may occur
Tater if the 'name' is used subsequently, in any other context e.g. as a
%ZREAL name which will cause FAULT 24,

FAULT 17 (Not a #ROUTINE Name)
A statement having the form of a routine call is encountered. The name quoted in
this statement is that of an item declared as something other than a routine.
(FAULT 16 will indicate the case where the name has not been declared at all),

FAULT 18 (%SWITCH Vector Error)
In a &%SWITCH declaration, the upper or lower subscript bound quoted for any
switch named is outside the range -32767 to +32767. Both bounds are set to zero.
The offending switchname(s) will be valid in the present block, but any
reference may generate a diagnostic. (See FAULT 5).

FAULT 19 <name> (Wrong Number of Parameters or Subscripts)

A reference to the name of an array is made, but the number of subscripts
appended to it does not agree with the dimensionality declared for that array.

This diagnostic also occurs when the number of actual parameters attributed to a
routine call is not equal to the declared complement of formal parameters.

FAULT 20 (%SWITCH Vector or #RECORDFORMAT name in Expression)
A name apgearin in an arithmetic expression has been found to identify a
ZSWITCH in which circumstances it 1is patently illegal. Also occurs if a
ZRECORDFORMAT name is found in an expression.

FAULT 21 (Routine Type or %RECORD Name Not Yet Specified)
A SROUTINE, %FN or WMAP named as a formal parameter of another routine type
block is referenced in that block before the parameter has been specified (by a
%SPEC statenent*. Hence its own parameter 1ist is unknown. Also occurs if a
YRECORDNAME variable 1s used before being specified.

FAULT 22 (Actual Parameter Fault)

In a reference to a routine type name, an actual parameter is of incorrect type
as defined in the declaration of that routine.

FAULT 23 <name> (%ROUTINE Name in Expression)

A name appearing in an arithmetic expression has been found to didentify a
ZROUTINE, in which circumstances it is patently illegal.

12.4

FAULT 24 (Real Quantity in Integer Expression)

In anﬁ exEression assigned to an ZINTEGER variable or otherwise expected to have
an ZINTEGER value, a ZREAL constant, variable or function name has been employed
i1legally. If the expression occurs in an array declaration, as a dimension

bound, the array name remains set. Also occurs if a logical operator is found in
a real expression,

FAULT 25 (%CYCLE Variable Not Integer Type)

The control variable named on the left-hand side of a %CYCLE assignment is not

an Z%INTEGER variable. N.B. ¥BYTEINTEGER and #SHORTINTEGER variables are not
permitted as control variables.

FAULT 26 (Fault Statement Not at Basic Textual Level)

The #FAULT statement is allowable only in the outermost block of the program,
and must refer to labels existing in that block only. Appearance of a #FAULT
s tatement in any internal block will result in this message.

FAULT 28 <name> (¥ROUTINE Body Not Described)

Occurs at the end of a block when a specification appears in that block for a
routine type name which is not described, whether referred to or not. The name
given is that quoted in the offending *ROUTINESPEC.

FAULT 29 (LHS Not a Destination or Name is Not an Address)

In an assignment statement, the name appearing on the 1left-hand side of the
assignment is not a variable name,

FAULT 30 (%RETURN Out of Context)

A ZRETURN statement occurs in a block other than a %ROUTINE in which
circumstances it is meaningless.

FAULT 31 (Result Out of Context)

A %RESULT statement occurs in a block other than a %FN or #MAP body in which
circumstances it is meaningless.

FAULT 34 (Textual Level > 8)

This occurs immediately after the opening statement of a new begin block or
routine tgpe description which causes nesting of blocks to 8 levels (the main
program being at level 1, allowing for the compiler level). The compiler is
unable to monitor this depth of nesting during execution, and hence subsequent
object code produced is lost, However, the compiler contrives to scan subsequent
text in the normal way for further syntactic or semantic errors.

FAULT 35 (Routine Level > 5)

The routine level (initially one) is increased every time a %ROUTINE %FN and
%MAP statement 1is encountered and decreased when the corresponding %END is
found., Insufficient addressing registers are available on Systems 4 and 370 to
allow more than five routine levels. The compiler will continue to check
subsequent text for errors,

Compile Time Faults 12,5

FAULT 36 (Attempt to Trap an Untrappable Fault)
in a #FAULT

This diagnostic occurs if an untrappable fault number appears

s tatement,
FAULT 37 (Array Has Too Many Dimensions)

In this implementation, arrays are restricted to a maximum of seven dimensions.

FAULT 38 (Overflow)

Overflow has occurred while compiling the statement.
constant that is too large for the type of variable involved.

FAULT 39 (Real Quantity as Exponent)

A ZREAL constant, variable or parenthesised expression appears immediatelyT ?o
his

the right of an exponentiation symbol, in which position it is illegal.
diagnostic replaces the diagnostic 'FAULT 24' in these circumstances.

This is caused by using a -

FAULT 40 (Declarations Misplaced)
In

Declarations must be placed at the head of the block in which they occur.
FFAULT statements, Jjumps,

particular they must come before any labels,
conditional statements or cycles in the same block.

FAULT 42 (%STRING Variable in Arithmetic Expression)
In any expression deemed by context to be arithmetic, a ¥STRING variable or the
concatenation operator ,(.), has been found.

FAULT 43 (Bound pair inside out)

In a declaration, a bound pair consisting of two constants has the 1lower bound
Both bounds are set to the lower bound and the

greater than the upper bound,
declaration is accepted, in order to reduce the number of subsequent error

messages.
FAULT 44 (Const Error)

A constant of incorrect type has been used to inftialise an %OWN variable.
be a %REAL constant for an ZINTEGER variable or too large a constant for the

variable,

May

FAULT 45 (%0WN Array Error)
An own array has been declared where the number of constants does not correspond
with the bounds.

FAULT 46 (%EXTRINSICS)

An attempt has been made to dinitialise an %EXTRINSIC variable.
varisbles exist in a separately compiled module and thus cannot be initialised.

Extrinsic

12.6

FAULT 47 (Dangling %ELSE)

An ZELSE has been found after a ZFINISH which is not associated with a
condition,

FAULT 48 (Substitute Character in Program)
The substitute character has been found in a line of program which is listed.
No attempt is made to analyse the offending 1ine as this would merely result in
a SYNTAX fault.

FAULT 51 (Spurious ¥FINISH)
A ZFINISH has been found for which no #START exists.

FAULT 52 (Missing %REPEAT Inside #START/FINISH)

This diagnostic occurs at a #FINISH and indicates that a %CYCLE has been started
within a #START- ZFINISH block but the corresponding %REPEAT has not been found.

FAULT 53 (%FINISH Missing)

Within a block or routine there exist more %START statements than %FINISH
s tatements,

FAULT 54 (%EXIT out of context)
An ¥EXIT statement has been found which is not within a #CYCLE-%REPEAT context.
FAULT 55 (%EXTERNALROUTINE in Program)

An ZEXTERNALROUTINE has been found in a program. %EXTERNALROUTINEs are only
allowed in 1ibrary files (see Section 6).

FAULT 56 (%ENDOFFILE Out of Context)

An ZENDOFFILE statement has been found in a program, Z%ENDOFFILE is only allowed
when compiling 1library files. This fault also occurs if ZENDOFPROGRAM occurs
when compiling a library file (see Section 6).

FAULT 57 (Level 0 Used)

Statements have been found at level O, The first Z%BEGIN has probably been
omi tted, When compiling 1library routines, %O0WN, %CONST, #%EXTERNAL and
%EXT?INSIC variables may be declared at level 0 and used to conmunicate between
routines,

FAULT 62 (Wrong Format)

An attempt has been made to declare an entity of type %RECORD by reference to a
name which is not currently declared as a #RECORDFORMAT.,

FAULT 63 (%RECORDSPEC in Error)

An attempt has been made to assign a format to an entity not of type %RECORD or
to a ¥RECORD whose format is already known.

Compile Time Faults 12,7

FAULT 64 (Subname Omitted)

A reference to a %RECORD element does not specify a subname.
FAULT 65 <name> (Wrong Subname)

The indicated subname cannot be found in the %RECORDFORMAT statement referenced
by the ¥RECORD declaration.

FAULT 66 (Record assignment)

An attempt to assign one record to another cannot be compiled as the records are
of different sizes.

FAULT 69 (Subname Out of Context)
A subname has been attached to an entity which is not of type ZRECORD.
'FAULT 70 (Invalid Length in String Declaration)

The maximum length of the string being declared has either been omitted or 1lies
outside the range 1 to 255.

FAULT 71 (String Expression Contains a Variable)

A variable of type other than ZSTRING has been found in a string expression.
FAULT 72 (String Expression Contains Invalid Operator)

An operator other than '.' has been found in a string expression.
.FAULT 73 (Resolution Comparator Out of Context)

The resolution comparator, =->, has been used with a variable which is not a
string or else in a double sided condition.

FAULT 74 (Resolution Format Incorrect)

The bracket expression 1s not correct. This is usually caused by the omission of
the brackets themselves.

FAULT 75 (String Expression Contains Subexpression)
Bracketed subexpressions are neither required nor permitted in string

expressions, Brackets may only occur in string expressions as described under
resolution, (see Section 8).

12,8

FAULT 81 (Item == <exprn>)

The address assignment operation 's=' has been used to equivalence a variable to
an expression, which is patently absurd.

FAULT 82 (Not an Address)

The address assignment operator has been used to assign an address to a variable
that is not of #NAME type.

FAULT 83 (Non Equivalence)

The '==' operator has been used to equivalence operands that are not of
identical type.

FAULT 84 (RECORD Misused)
The special mapping function RECORD has been misused.
FAULT 98 (Addressability)

The program or one of its data areas exceeds the 1imit of addressability (at
present 1/4 megabyte).

Compile Time Faults 12.9

CATASTROPHIC COMPILE TIME FAULTS

Some errors which exceed the physical 1imits imposed on the compiler by its
particular operating environment are catastrophic and result in compilation
ceasing at the point the error occurred. These faults have numbers greater than
100.

FAULT 101 (Source Line Too Long)
The 1line of source text to be analysed is larger than the input buffer
(currently 300 characters). The statement should be broken down into several
simpler statements.

FAULT 102 (Long Analysis Record)

The current statement requires too many compiler recursions in its analysis.
The statement should be broken down into several simpler statements.

FAULT 103 (Dictionary Overflow)
FAULT 104 (Too Many Names)
Too many or too long names are currently declared. The remedy is either

1. To use the block structure so that names are undeclared when not required.
or

2. Use shorter names and replace name labels by integer labels.
FAULT 105 (Too Many Levels)

Textual level 10 has been reached.
FAULT 106 (String Constant > 255 Symbols)

This fault will occur if a string constant contains more than 255 symbols. Note
that the text in a #PRINTTEXT statement is treated as a string constant.

FAULT 107 (ASL Empty)

The compiler tables are full - this is unlikely to occur and the User should
contact the Advisory Service,

FAULT 108 (End Message Character in Program)

The end message character was found in the IMP program. This could be caused by
the omission of the ¥ENDOFPROGRAM statement.

Faults greater than 200 indicate compiler errors which should be reported to the
Advisory Service.

12.10

SECTION 13 - RUN TIME FAULTS

INTRODUCTION

Various faults can occur during the execution of an IMP program. Some of
these are described in the relavent sections of the manual, they are all
described below, Some Run Time faults can be trapped. (See Section 14).
TRAPPABLE FAULTS

INTEGER OVERFLOW
REAL OVERFLOW

On the evaluation of an expression a number has been generated which is too
large to be contained in a register of the appropriate type.

INVALID %CYCLE

A ZCYCLE instruction has been executed where it is impossible to reach the final
value of the control variable.

NOT ENOUGH STORE

On executing a declaration, insufficient space is available in the store to
accommodate the variables requested.

SQRT NEGATIVE
LOG NEGATIVE

A negative argumenf has been passed to the appropriate routine.
ZSWITCH VARIABLE NOT SET

An instruction of the form -> SW(<EXPRN>) has been executed and the required
label cannot be found.

INPUT FILE ENDED

The current file of input data has been exhausted,

NON-INTEGER QUOTIENT

A quotient of two ZINTEGER ?uantities when evaluated in an 1integer context is
found to have a non-integral value.

ZRESULT NOT SPECIFIED

An attempt has been made to exit from a ¥FN or WMAP via the %END instruction.
Control can only be returned from these blocks via a ZRESULT= statement.

SYMBOL IN DATA S

In executing a read instruction, the non-numeric symbol S has been found.

Run Time Faults 13,1

REAL INSTEAD OF INTEGER IN DATA

A real value has been found on execution of a read instruction which expects an
%INTEGER value. This will also occur if an integer of modulus >(2**31-1) is
read, or if an exponent is given which is not an integer.

DIVIDE ERROR

A digision has been attempted that would cause overflow (usually division by
zero).

SUBSTITUTE CHARACTER IN DATA

If a 1ine contains the substitute character (placed in the character stream if
an invalid code is read), the above trappable fault occurs on attempting to read
the first symbol of the line. (See Section 10).

(GENERAL GRAPH PLOTTER FAULT)
The details are given in the 'ERCC Graph Plotting Reference Manual’,
ILLEGAL EXPONENT

An exponent greater than 255 (or 63 in an‘integer context) has been found., This
restriction is to avoid excessive looping required to complete the evaluation
with a probable occurrence of overflow.

TRIG FN INACCURATE

The argument of a SIN, COS or TAN function is so large (>187) that the results
are no longer guaranteed.

TAN TOO LARGE

The argument passed to the TAN function is so near a multiple of TI/2 that an
overflow condition would exist.

EXP TOO LARGE

The argument passed to the EXP function is so large that overflow would be
caused by evaluation,

LIBRARY FN FAULT n

This 1is a general library function fault which may arise from any one of several
different function calls.

n=1 The parameter passed to ARCSIN is not in the range -1 to +1

n=2 The parameter passed to ARCCOS is not in the range -1 to +1

n=3 The parameters passed to ARCTAN are both zero.

n=4 The modulus of the parameter passed to HYPSIN is >=172.694.

n=5 The modulus of the parameter passed to HYPCOS is >=172,694

n=10 The value of X**2 or the value of (X**2+Y**2) is greater than the
largest real number allowed.

13.2

RESOLUTION FAILS

An unconditional resolution cannot be completed as the string to be resolved
does not contain the symbols being searched for.

INTPT TOO LARGE
The modulus of the required integer is too large for a fixed point register
(23*2;-1). Also caused by INT function as this is interpreted as INTPT (<exprn>
+ 0,5),

ARRAY INSIDEOUT

A dynamic array declaration has been executed in which the lower bound for any
dimension exceeds the corresponding upper bound.

CAPACITY EXCEEDED

Too large an entity has been assigned to a #%BYTE or #SHORT dinteger by the =
operator, (The <~ operator can be used to avoid this test and assign the least
significant bits onlyg.

Also caused by %STRING assignments if a string >255 characters is produced or if
the LHS of a string assigmment is too small,

UNASSIGNED VARIABLE
An attempt is made to use a variable to which no value has been assigned. This
can also occur on a %REPEAT if the corresponding #CYCLE has not been executed -~
in this case, the compiler's copy of dincrement and final values are not
assigned,

ARRAY BOUND FAULT n

An array suffix (n) has been found to be outside the declared bounds.

Run Time Faults 13.3

NON-TRAPPABLE FAULTS
TIME EXCEEDED

The time for this job as given in the dJob Control statements, or foreground
Command (or by default) has been exhausted. The program may be stuck in an
unproductive loop.

OPERATOR TERMINATION

The operator has prematurely terminated the job. A memorandum explaining the
reason should be received, unless the ‘operator' is the user running the program
from an interactive terminal.

CUTPUT EXCEEDED

The available amount of output as specified by the Job Control statements (or by
default) has been exceeded.

CORRUPT DOPEVECTOR n (formerly WRONG DIMENSION OF ARRAY)

The dope vector for an array, which is an area of store containing dimension
information about the array, is not as expected. It may have been overwritten,
for example by incorrect use of mapping functions, or more commonly occurs if
the array passed as an ZINTEGERARRAYNAME or ZREALARRAYNAME has the dimension, n,
which is not the dimension expected by the called routine.

ADDRESS ERROR
The address error interrupt has occurred. Likely causes include running a faulty
program which has been compiled with the option 'NOARRAY', wrong use of mapping
functions, or incorrect declaration of ZEXTERNAL routines or functions. The user
is advised to check these suggested faults before seeking the assistance of the
Advisory Service,

ILLEGAL OPCODE

An illegal instruction has been obeyed. This can be caused by a -> SW(I)
instruction when NOARRAY has suppressed the bound checking.

UNEXPLAINED INTERRUPT

Some other interrupt has occurred - contact the Advisory Service.

13.4

SECTION 14 - FAULT TRAPPING

INTRGDUCTION

In certain cases when a run time fault occurs, it is not desirable for the
run to be terminated. For example, if a particular program processes a series of
data sets, it may be preferable to continue to the processing of the next data
set rather than terminate the whole job in the event of, say, FAULT 5(SQRT
NEGATIVE) occurring.

An instruction is provided which enables certain faults to be trapped
causing control to be transferred to a preassigned point in the program:

¥FAULT N -> <LABEL>

where N is the number of a trappable fault, see 1ist below, and <LABEL> is a
simple label (a #SWITCH label cannot be used). More than one fault can be
directed to the same label, and groups of faults directed to separate labels can
be combined in one #FAULT statement. for example:

ZFAULT 1,2,6 ->99, 3,5 -> FAIL

means, 'if a fault of type 1,2 or 6 subsequently occurs then go to label 99: and
if a fault of type 3 or 5 occurs then go to label FAIL'.

The effect is to preserve all the necessary control data to enable control
to revert to this point in the program (and then jump to 1label 99 or 1label
FAIL) should one of the specified faults occur at some lower (or the same)
Tevel. ‘

NOTES

1., #FAULT statements can only appear in the outer block of a program; they
cannot appear in ¥EXTERNAL routines,

2. The label to which the fault refers must also be in the outer block.

3. #FAULT ‘statements can appear at any point in the block after all
declarations within the block.

4, More than one ¥FAULT statement can appear in a program for the same fault,
In the following example the fault INPUT ENDED is trapped twice:

$BEGIN
YINTEGER I,J,K
SELECTINPUT(1)
¥FAULT 9 -> INEND1

INEND1: %FAULT 9 ->INEND2
SELECTINPUT(2)

INEND2:

Fault Trapping 14.1

LIST OF TRAPPABLE FAULTS
Number Description

1 Integer Overflow

2 Real Overflow

3 Invalid %CYCLE

4 Not Enough Store

5 SQRT Negative

6 LOG Negative

7 ZSWITCH Variable Not Set
9 Input Ended

10 Non-integer Quotient

11 ZRESULT Not Specified

14 Symbol In Data

16 Real Instead Of Integer In Data
17 Divide Error

18 Substitute Character In Data
19 Graph Plotter Fault

21 I1legal Exponent

22 Trig Function Inaccurate
23 TAN Too Large

24 EXP Too Large

25 Library Function Fault
26 Resolution Fails

27 INTPT Too Large

28 Array Inside Out

30 Capacity Exceeded

31 Unassigned Variable

32 Array Bound Fault

Further information about these faults is given in Section 13.

14,2

SECTION 15 - INTERNAL CHARACTER CODE

INTRODUCTION

The IMP internal character code is based on the code for data interchange
defined by the International Standards Organisation (IS0). This code currently
assigns graphical or control characters to code values 0 - 127, Most of the
control characters will only concern users of special hardware such as graphical
display devices, but they are listed overleaf for convenience.

NOTES

1. In the case of some characters there is a discrepancy between the graphical
representation on different peripherals. For example the ISO character 33 is
printed as either exclamation mark or vertical bar. The most common
alternatives are given below.

2. Characters followed by an asterisk in the table below are 'marked' during
LINE RECONSTRUCTION and hence are ignored by all character input routines
other than READ CH. (See Section 10).

3. Imp pro%rammers should rarely need to refer to the code value of a
particular character. If a comparison is required the preferred method is to
use a character constant., The required character 1is enclosed in single
quotes and the result is a constant having the internal code value of that
character. For example if it is required to skip a sequence of letters the
following statement could be used:

SKIP SYMBOL #WHILE ‘'A'<=NEXT SYMBOL<='Z'

The built in function NL can be used to avoid writing a NEWLINE character
within quotes:

%IF I-NL %THEN XXX XXXy

4, It should be noted that in this code upper case letters appear in 26
consecutive 1locations, as do Tlower case letters. This fact simplifies
sorting and text manipulation. Note also that the numeric characters have
values lower than letters. In these and other respects this code differs
from some other data exchange codes, e.,g. EBCDIC, and programmers involved
}n ch:erting programs to IMP from other languages should bear these points

n mind.

Internal Code 15.1

INTERNAL CHARACTER CODE

0 NUL 32 SPACE 64 @ 96
1 SOH 33 Ul 65 A 97 a
2 ST 34 " 66 B 98 b
3 EWX 3% # 67 C 9 ¢
4 EOT 36 $(m) 68 D 00 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL ki 7N 6 103 g
8 BS 0 72 H 104 h
9 HT a1) 73 1 05 i
10 LF(NL) 42 * 74 3 06 j
n vt 43 + 75 K 07k
12 FF 44 76 L 108 1
13 CR %5 - 77 M 109 m
14 SO %6 . 78 N M0 n
15 Sl 47 |/ 79 0 m o
16 OLE 48 0 80 P Nz p
17 Y 9 1 81 0@ M3 q
18 ©C2 50 2 82 R Mna r
19 D3 51 3 8 S N5 s
20 DC4 52 4 84 T Nt
21 NAK 53 5 86 U M7 v
2 SWN 54 6 86 v s v
23 ETB 55 7 87 MW M9 w
24 CAN 56 8 88 X 120 «x
25 EM 57 9 89 Y 121y
2% SuB 58 90 z 122 2
27 ESC 59 91 [123
28 FS 60 < 92 =) 124
29 GS 61 = 93] 125
30 RS 62 > 9 |) 126
31 Us 63 2 95 127

15.2

SECTION 16 - ROUTINES, FUNCTIONS AND MAPS IN THE IMP LIBRARY

INTRODUCTION

The routines, functions and maps provided for the IMP programmer are listed
in the table below. They are divided into three classes INTRINSIC, IMPLICIT and
EXPLICIT, Items 1in the first two classes can be used without explicit
declaration since their names and characteristics are known to the compiler.
Items in the EXPLICIT class, however, must be specified before they are used.
The specification provides information to the compiler as to the name and
parameter list of the routine, function or map. It also causes the compiler to
generate an entry in a table to ensure that the necessary module is loaded when
the program is run, It is most important to type the specification accurately,
in particular the number and types of parameters must be correct (the names of
parameters used are not significant). The specification of an item in the
EXPLICIT class is preceded by the delimiter ZEXTERNAL, hence for the routine
WRITE SQ the specification would be:

ZEXTERNALROUTINESPEC WRITE SQ(%INTEGER I ,%ZNAME A,B)

There is one restriction in the use of IMPLICIT routines and functions.
Because they are compiled (for efficiency reasons) as part of the program rather
than being proper calls to routines compiled seperately, they cannot themselves
ge gassg? as parameters to routines. This limitation can be overcome (see

ection 6).

The routines etc. listed below are either described in this manual, in which
case an appropriate section number 1is given, or 1in the Edinburgh
IMP/FORTRAN System Library Manual, in which case the reference ‘LM' is used.

Library Routines 16.1

NAME TYPE CLASS PARAMETERS REF
ADD MATRIX | ZROUTINE EXPLICIT | SLONGREALARRAYNAME A,B,C, | LM
%INTEGER 1,J
ADDR FINTEGERFN INTRINSIC | INTEGER I 7
ARCCOS %LONGREALFN IMPLICIT | %LONGREAL A
ARCSIN %LONGREALFN IMPLICIT | %LONGREAL A LM
ARCTAN LONGREALFN IMPLICIT | %LONGREAL A,B LM
ARRAY FARRAY MAP INTRINSIC | ZINTEGER I,%ARRAYNAME J 7
BITS FINTEGERFN EXPLICIT | SINTEGER I 3
BYTE INTEGER | %BYTEINTEGERMAP | INTRINSIC | SINTEGER I 7
CHARNO FINTEGERFN INTRINSIC | %STRINGNAME S,%INTEGER I | 8
CLOSE DA %ROUTINE EXPLICIT | ZINTEGER I 10
CLOSE SQ %ROUTINE EXPLICIT | %INTEGER I 10
CLOSE STREAM | %ROUTINE IMPLICIT | %INTEGER I 10
COPY MATRIX | %ROUTINE EXPLICIT | SLONGREALARRAYNAME A,B, LM
FINTEGER I,J
cos %L ONGREALFN IMPLICIT | ZLONGREAL A LM
CPUTIME %LONGREALFN EXPLICIT | NONE LM
DATE %STRINGFN EXPLICIT | NONE LM
DET %LONGREALFN EXPLICIT | ZLONGREALARRAYNAME A, LM
FINTEGER 1
DIV MATRIX | %ROUTINE EXPLICIT | SLONGREALARRAYNAME A,B, LM
INTEGER 1,4,
%LONGREALNAME C
ERFN %LONGREALFN EXPLICIT | ¥LONGREAL A,B

16.2

NAME TYPE CLASS PARAMETERS REF

ERFNC ZLONGREALFN EXPLICIT | ¥LONGREAL A,B LM
EXP ZLONGREALFN IMPLICIT { %LONGREAL A LM
EXP TEN %LONGREALFN EXPLICIT | %LONGREAL A LM
FRAC PT ZLONGREALFN INTRINSIC | ¥LONGREAL A 2
FROM STRING #STRINGFN IMPLICIT | %STRINGNAME S,%INTEGER I,J | 8
HYPCOS ZLONGREALFN EXPLICIT | %LONGREAL A,B LM
HYPSIN ZLONGREALFN EXPLICIT | %LONGREAL A,B LM
HYPTAN ZLONGREALFN EXPLICIT | #LONGREAL A,B LM
IFD BINARY %INTEGERFN EXPLICIT | #SHORTINTEGERARRAYNAME I, LM
ZINTEGER J,K,¥INTEGERNAME L
IFD ISO ZINTEGERFN EXPLICIT | #BYTEINTEGERARRAYNAME I, LM
#$INTEGER J,K,ZINTEGERNAME L
INT ZINTEGERFN INTRINSIC | ¥LONGREAL A 2
INT PT ZINTEGERFN INTRINSIC | #LONGREAL A 2
INTEGER % INTEGERMAP INTRINSIC | ZINTEGER I 7
INVERT ZROUTINE EXPLICIT | ¥LONGREALARRAYNAME A,B, LM

ZINTEGER I,%LONGREALNAME J

ISO CARD ZROUTINE EXPLICIT | #BYTEINTEGERARRAYNAME K 10
LENGTH ZINTEGERFN INTRINSIC | #STRINGNAME S 8
LOG %LONGREALFN IMPLICIT | %LONGREAL A | LM
LOGTEN ZLONGREALFN EXPLICIT | ¥LONGREAL A LM
LONG REAL %LONGREALMAP INTRINSIC | ¥INTEGER I 7
MOD - : ZLONGREALFN INTRINSIC | ZLONGREAL A 2
MULT MATRIX ZFROUTINE EXPLICIT | ¥LONGREALARRAYNAME A,B,C, LM

%INTEGER 1,J,K
MULT TR MATRIX| ROUTINE EXPLICIT | %LONGREALARRAYNAME A,B,C,
YINTEGER I,J,K

Library Routines 16.3

NAME TYPE CLASS PARAMETERS REF
NEWLINE ZROUTINE IﬁTRINSIC NONE 10
NEWLINES ZROUTINE INTRINSIC | ¥INTEGER I 10
NEWPAGE ZROUTINE INTRINSIC | NONE 10
NEXT ITEM #STRINGFN INTRINSIC | NONE 8

NEXT SYMBOL %INTEGERFN INTRINSIC | NONE 10
NL ZINTEGERFN INTRINSIC | NONE 15
NULL ZROUTINE EXPLICIT | #LONGREALARRAYNAME A, LM

%INTEGER I,J

OPEN DA %ROUTINE EXPLICIT | #INTEGER I 10
OPEN SQ ZROUTINE EXPLICIT | #INTEGER I 10
PRINT ZROUTINE IMPLICIT | ¥LONGREAL A,%INTEGER I,J 10
PRINT CH ZROUTINE INTRINSIC | ¥INTEGER I 10
PRINT FL FROUTINE IMPLICIT | ¥LONGREAL A,¥INTEGER I 10
PRINT STRING | ¥ROUTINE INTRINSIC | ¥STRING S 8

PRINT SYMBOL | #ROUTINE INTRINSIC | ¥INTEGER 1 10
RADIUS ZLONGREALFN IMPLICIT | %LONGREAL A,B LM
RANDOM %REALFN EXPLICIT | $INTEGERNAME I,%INTEGER K LM
READ #ROUTINE IMPLICIT | #NAME A 10
READ CH ZROUTINE INTRINSIC | ZNAME I 10
READ DA #ROUTINE EXPLICIT | ¥INTEGER I,%INTEGERNAME J, | 10

INAME K,L

READ ITEM FROUTINE INTRINSIC | #STRINGNAME S 8

READ SQ FROUTINE EXPLICIT | #INTEGER I,%NAME J,K 10
READ STRING FROUTINE IMPLICIT | ¥STRINGNAME S 8

READ SYMBOL %ROUTINE INTRINSIC | ¥INTEGER 1 10

REAL ZREALMAP INTRINSIC | #INTEGER I 7

16.4

NAME TYPE CLASS PARAMETERS REF
RECORD SRECORDMAP INTRINSIC | ¥INTEGER I 9
RFD BINARY | %LONGREALFN EXPLICIT | %SHORTINTEGERARRAYNAME 1, | LM
$INTEGER J,K,SINTEGERNAME L
RFD IS0 %L ONGREALFN EXPLICIT | %BYTEINTEGERARRAYNAME I, | LM
FINTEGER J,K,%INTEGERNAME L
SELECT INPUT | %ROUTINE INTRINSIC | $INTEGER I 10
SELECT QUTPUT | %ROUTINE INTRINSIC | $INTEGER I 10
SET MARGINS | ZROUTINE IMPLICIT | SINTEGER I,J,K 10
SHIFT C $INTEGERFN EXPLICIT | INTEGER I,J 3
SHORT INTEGER | ¥SHORTINTEGERMAP | INTRINSIC | INTEGER I 7
SIN %LONGREALFN IMPLICIT | %LONGREAL A LM
SKIP SYMBOL | %ROUTINE INTRINSIC | NONE 10
SOLVE LN EQ | $ROUTINE EXPLICIT | %LONGREALARRAYNAME A,B, LM
SINTEGER I,%LONGREALNAME C
SPACE %ROUTINE INTRINSIC | NONE 10
SPACES SROUTINE INTRINSIC | INTEGER I 10
SQRT %LONGREALFN IMPLICIT | LONGREAL A LM
STRING ASTRINGMAP INTRINSIC | $INTEGER I 8
SUB MATRIX | %ROUTINE EXPLICIT | SLONGREALARRAYNAME A,B,C, | LM
%INTEGER 1,J
TAN %LONGREALFN IMPLICIT | ¥LONGREAL A LM
TIME 4STRINGFN EXPLICIT | NONE LM
TOSTRING %STRINGFN INTRINSIC | %INTEGER 1 8
TRANS MATRIX | SROUTINE EXPLICIT | %LONGREALARRAYNAME A,B, LM

ZINTEGER 1,J

Library Routines 16.5

NAME TYPE CLASS PARAMETERS REF

UNIT ZROUTINE EXPLICIT | ZLONGREALARRAYNAME A, LM
%INTEGER I

WRITE ZROUTINE INTRINSIC| #INTEGER I,J 10

WRITE DA ZROUTINE EXPLICIT | ¥INTEGER I,ZINTEGERNAME J, | 10
ZNAME K,L

WRITE SQ ZROUTINE EXPLICIT | ZINTEGER I,ZNAME J,K 10

16.6

APPENDIX: DIFFERENCES IN 2900 IMP

The following is a 1list of the differences between the IMP Tlanguage
implemented on ICL 2900 series computers and the language described in the body

of this Manual. It should be noted that some of these changes have been
incorporated in the System 4 EMAS implementation and, to a lesser extent, in the

NUMAC 0S implementation. They are expressed here as changes to the Manual
description. : , : ,

1. Abolition of the modulus operator '!...!' coupled with the introduction of a

standard integer function IMOD, corresponding to the existing real function
MOD, to yield the absolute value of an integer.

The change removes a source of ambiguity (e.g. meaning of A!!B!!C).

Examples: I = IMOD(IVALUE) where 1 and IVALUE are integer
: variables.
R = MOD(VALUE) where R is a real variable and

VALUE is real or integer.

2. Abolition of the use of a special'symbol for m in favour of a standard long
real function PI.

The special symbol is not found in standard character sets.

4

Example: CIR = PI*DIAM where CIR is a real variable and
DIAM is real or integer.

3. 'Re-specffication of the standard procedures LENGTH and CHARNO as maps rather
than functions.

The extension permits a number of string-manipulation operations to be
effected more neatly.)

Example: ZBEGIN
%STRING (255) S, T
%INTEGER 1
S = "FIRST LINE
SEC?ND EINE“; ! Note the use of "..." (see item 9 below).
! =
! Below, S is truncated at the first newline.
!
%CYCLE I = 1,1,LENGTH(S)

LENGTH(S) = I-1 %AND %EXIT %IF CHARNO(S,I) = NL
FREPEAT

! Below, each newline character in T is replaced by a space.

%CYCLE T = 1,1,LENGTH(T)
CHARNO(T,I) = ' ' %IF CHARNO(T,I) = NL
ZREPEAT ,
PRINTSTRING(S); NEWLINE
PRINTSTRING(T); NEWLINE
%ENDOF PROGRAM '

A.l

A.2

When this program is executed, the following output is produced by it:

FIRST LINE
FIRST LINE SECOND LINE

Abolition of numéric labels.

Most current programming languages provide only alphabetic labels, in order
that labels may be meaningful in the same way as other identifiers. The

need to use labels at all 1in IMP, as compared with Atlas Autocode, is

greatly reduced by the availability of such program-structuring facilities
as compound conditional statements and loop control clauses.

Example: 233: D=B*B-4*A*C; ! Not valid in 2900 IMP.
L233: D=B*B-4*A*C; ! Valid.
LAST PART: D=B*B-4*A*C; ! Valid and more meaningful.

Restriction of the division operator '/' to yield a result of type real in
all cases.

The integer-division operator '//' becomes obligatory where an integer
result is intended. The effect of this and items 6, 7 and 9 4s to remove
all remaining cases of type ambiguity from the language.

Example: K=1/Jd where I, J and K are integer
variables, would fail since the
right hand side is always a real
expression (even when J divides
exactly into 1).

Restriction of the exponentiation operator '**' to yield a result of type
real in all cases, coupled with the introduction of an integer-

exponentiation operator '**xx',
The case of exponentiation becomes exactly parallel to the case of division.

The reverse slant, \ for real and \\ for integer, is an alternative notation
for these operators.

Examples: K = I****x) or K = I\\J where 1, J and K are integers,
is valid.
K = I**J where I, J and K are integers,

would fail, since the right hand
side is a real expression.

Restriction of the form of integer constants to disallow the inclusion of
decimal points and exponent symbols.

A constant form like 0.1@1 is technically an integer in System 4 EMAS and
NUMQC 8SIIMP, because it has an integral value. Such forms are not allowed
in 2900 IMP.

10.

Abolition of double quote deletion (page 1.1, item 8).

Introduction of a distinctive quote symbol for strings (double-quote in
place of single-quote).

The main effect is to make it possible to distinguish a single character
string from a character constant.

"THIS IS A STRING" where ASTRING is a string
variable.

‘A’ where ASYMBOL is an integer
variable.

Examples: ASTRING

n

ASYMBOL

Extension of the set of ranges of integer to include %ZLONGINTEGER (64;bits).

Long integers were implemented to allow the easy hand]in? of a 'syétems
software feature of 2900 machines, rather than for manipulating very large

numbers. However, most long integer arithmetic will give the expected
results.

The following characteristics of long integers should be noted:

* A long integer can be assigned a decimal value only in the range
+214783647 (+2% -1). If an attempt is made to assign to a-long integer
a value outside this range, the fault

REAL IN INTEGER EXPRESSION

will occur. A larger number may however be stored in a long integer by
using an explicit hexadecimal or binary pattern to represent the number.
For example, if L is a long integer variable,

X'1FFFFFFFFFFFFFFF’ - (16 hex digits) will succeed,
999999999999999 "~ (15 decimal digits) will fail.

L
but L

* Input/Output: long integer values (i.e. in the range +2%°-1) may be read
into long integer variables using the input routine READ. They may be
printed out using the output routine PRINT, with the third parameter set

to 0. However, numbers outside the range +10° are floated and printed
in exponential form. '

* A variable of type %LONGINTEGER can be shifted by up to 63 bits left or
right, using the << and >> operators. However, an attempt to shift
either way 64 bits will have no effect (it might be expected to clear a
long integer to 0).

* In general, integer arithmetic is done with a precision of 32 bits if
all the operands are of 32-bit length. This has some implications when
long integer variables are used. For example:

%INTEGER 1,J

SLONGINTEGER K :

K = (I<<32)!J; ! Effect is K = J, since 32-bit working is used.
K = I; K=(K<<32)!J; ! This assigns K as intended.

A.3

11.

12.

13.
14.

15.

16.

17.

A.4

* If a long integer is set to a negative integer (32-bit) value, the sign
bit is propagated through the long integer, resulting in a negative long
integer. Thus

L = X'FFFFFFFF'
where L is a long integer, sets X'FFFFFFFFFFFFFFFF' (the value -1) in L
and not X'O0COO000FFFFFFFF'. The latter value may be set by including
the leading zeros in the assignment statement.
Changes to the set of ranges of reals.
The 2900 implementation of fers three precisions for reals: 32-bit (somewhat

inefficient), 64-bit and 128-bit. These are specified as %REAL, %LONGREAL
and LONGLONGREAL, respectively. Working is either in 64 bits or in 128

bits. Thus type %REAL is only effective in storing values in scalars and
arrays: a variable of type %REAL will have its value lengthened when used in
any calculation.
Additions to the built-in mapping functions:

%LONGINTEGERMAP LONGINTEGER(%INTEGER ADDRESS)

’

%LONGLONGREALMAP LONGLONGREAL(%INTEGER ADDRESS)
Abolition of type %SHORTINTEGER.
Abolition of the functions IFD BINARY and RFD BINARY.

Provision of functions for changing lengths of reals and of integers:
LENGTHENI(K) Parameter of type ZINTEGER, result of type ZLONGINTEGER.
SHORTENI(K) Parameter of type %LONGINTEGER, result of type %INTEGER.
LENGTHENR(S) Parameter of type %LONGREAL, result of type %LONGLONGREAL.
SHORTENR(S) Parameter of type %LONGLONGREAL, result of type %LONGREAL.
These functions need only be used when it is desired to change the length of
an operand in an expression.

Change in the interpretation of grave sign ().

The grave sign stands for itself; i.e. it is not mapped onto @ on input.

Abolition of the YMONITORSTOP statement.

It is now necessary to give the two statements ¥MONITOR; %STOP.

18.

19.

20.

Abolition of the %PRINTTEXT statement.

Abolition of implied multiplication.

In System 4 EMAS and NUMAC 0S IMP, constructions such as 23A(6) are allowed,
i.e. constant followed, without an asterisk, by a variable or array element.
This is not allowed in 2900 IMP, and would have to be written as 23*A(6).

Abolition of fault trapping in favour of an event mechanism.

It has long been agreed that the structure of fault trapping in System 4
EMAS and NUMAC O0S IMP is inadequate, especially in respect of the forced
return to the main program and the inability to trap faults in external
routines. The architecture of the 2900 Series has enabled a more structured
approach to be adopted and the following notes describe it.

The term %EVENT is introduced to describe the class of conditions which may
be detected or signalled. It is broader than the %FAULT concept, in that it
may include user-defined events as well as the conventional ‘'faults', such
as division by 0.

The following 1list groups certain faults to provide a set of events, of
which 1-10 are predefined and events 11-14 may be user defined.

Event Classes ‘
No. Name Fault Numbers

1 Arithmetic overflow 1,2,17,22,23,24,27
2 Excess store (or other resource) 4

3 Substitute character in data 18

4 Invalid data 14

5 Invalid arguments 3,5,6,7,21,28

6 Out of range 30,32

7 Resolution failure 26

8 Unassigned variable 31

9 Input ended 9

10 Library subroutine error 25

*]11-14 GENERAL PURPOSE
*11 is also used by the Graph Package (EMAS/NUMAC fault 19)

Within an event class, the individual faults are assigned different sub-
event numbers. The faults are thus categorised as follows:

Fault
Number Description Event/Sub-event no.
1 Integer Overflow 1/1
2 Real Overflow 1/2
3 Invalid %CYCLE 5/1
4 Not Enough Store 2/1
5 SQRT Negative : 5/2
6 LOG Negative 5/3
7 %SWITCH Variable Not Set 5/4
9 Input Ended 9/1

A.5

A.6

Fault

Number Description Event/Sub-event no.
10 Non-integer Quotient *
11 FRESULT Not Specified *
14 Symbol in Data 4/1
16 Real Instead of Integer in Data *
17 Divide Error 1/3
18 Substitute Character in Data 3/1
19 Graph Plotter Fault 11/n
21 I11egal Exponent 5/5
22 Trig Function Inaccurate 1/4
23 TAN Too Large 1/5
24 EXP Too Large 1/6
25 Library Function Fault 10/n
26 Resolution Fails 7/1
27 INTPT Too Large 1/7
28 Array Inside Out 5/6
30 Capacity Exceeded 6/1
31 Unassigned Variable 8/1
32 Array Bound Fault 6/2

The following System 4 EMAS/NUMAC OS IMP faults are omitted from the event
classes:

* Non-integer quotient (10) - redundant in 2900 IMP.
- * Result not specffied (11) - redundant because of a compile-time check.

* Real instead of integer in data (16) - in 2900 IMP an integer ‘read'
terminates on a '.' sign or ‘@' sign, in addition to its EMAS/NUMAC
definition.

The syntactic structure is:

%0ON %EVENT nlist %START e.g. %ON ZEVENT 1,7,12 %START

ZFINISH 2F INISH

This structure must follow the declarations at the head of a block (routine)
and may be regarded as the last declaration of the block. The code within
the %START .. %FINISH is not executed on entry through the head of the block
but dis jumped to should an event which is contained within the list occur.
The flow of control then depends on the contents of the %START .. %FINISH.

An event may be forced by the unconditional instruction:
%SIGNAL %EVENT n, exprn
where n is the event required and 'exprn' is an optional integer expression

which may be used to specify sub-event information. n must be given as a
constant, and 'exprn' must yield an integer in the range 0-255.

%SIGNAL %EVENT statements are the only way of causing user-defined events to
occur, although they can also be used with the predefined events (1-10).

If an event is forced by a %SIGNAL %EVENT statement in an %ON %EVENT
%START/%FINISH block which includes the occurring event in its event list, a

branch is not made to the head of that block, since such a branch would
probably cause looping. Instead the event is traced up the stack through

each superior block until either a suitable %0N %EVENT statement is found or
the user environment is left.

In parallel with these language statements two implicit integer functions
are introduced which enable the programmer to determine further information
when an event occurs. They may only be meaningfully called in a block which
has an %0N %ZEVENT statement within it:

%INTEGERFN EVENT INF

returns (event no<<8)!sub-event no for the 1last event which has
occurred. Fault 16 occurs at compile time if the function is called in
a block with no %0ON %EVENT statement, and an unassigned variable will
result at run time if no event has in fact occurred when the function is

called.
%INTEGERFN EVENT LINE

returns the program line number at which the last event occurred during
execution of the block in question (provided the program was compiled
with line number updating; otherwise 0 will be returned). If no event
has occurred, an unassigned variable will result.

If an event is not trapped in the block in which it occurs then it is traced
up the stack through each superior block until either a suitable %0N %EVENT

statement is encountered or the user enviromment is left, the diagnostic
package being entered in the latter case. When a suitable %ON ZEVENT
statement is encountered in a superior block, program control is transferred

to its %START/%FINISH block.

As a result of these facilities it follows that, for example, 'input ended’
may be detected and dealt with from within an external routine or a routine
within a main program.

Two examples of the use of the event mechanism are given on the next page.

A.7

System defined events

ZINTEGER SUBCLASS, EVENTNO
%CONSTSTRING(ZI)%ARRAY MESSAGE(1:2)="CAPACITY EXCEEDED",
"ARRAY ‘BOUNDS EXCEEDED"

0N ZEVENT 6 %START |
SUBCLASS = EVENT INF&X'FF'

EVENTNO = EVENT INF>>8 & 15

%IF 1<=SUBCLASS<=2 %THEN PRINTSTRING(ME SSAGE (SUBCLASS)) %ELSE %C
PRINTSTRING("INVALID SUBCLASS")

NEWLINE
->ERROR EXIT
FFINISH .

ERROR EXIT:

User defined events

BINTEGER EVENT, SUBEVENT
%0N %EVENT 12 %START .
PRINTSTRING("EVENT 12 HAS BEEN TRAPPED") NEWLINE

->EVENT 12
%FINISH

SUBEVENT = 2
%SIGNAL %EVENT 12, SUBEVENT

EVENT 12:

COMPATIBILITY OF SYSTEM 4 EMAS IMP WITH 2900 IMP

The IMP compiler on System 4 EMAS will issue a warning for each of the first 30
statements in any compilation that dre acceptable to System 4 IMP but not to

2900 IMP.

The IMP compiler on System 4 EMAS will accept an %0N %EVENT statement as

descr1bed above, provided it occurs in a main program block only. The statement
is not comp1led but is transposed into %FAULT statements which are compiled.

This arrangement enables the majority of programs that use fault trapping to be
written in a way that is acceptable to both System 4 IMP and 2900 IMP.

The System 4 compiler, however, does not accept the %SIGNAL %EVENT statement, or
calls on EVENT LINE or EVENT INF.

ADDRESSING ON 2900 SERIES MACHINES

On 2900 series machines, all the 32 bits of the address field are significant.
Thus a 'negative' address is not necessarily invalid.

A.8

WRITING PORTABLE IMP PROGRAMS
FOR EMAS AND ICL 2900 SERIES MACHINES

For several years many users have found it useful to transfer IMP
programs between EMAS and IBM 360 series machines. By this means they

have been able to exploit the convenient program development environment
provided by EMAS and the powerful batch job enviromment provided on our

local 370 and more recently at NUMAC.

While only batch facilities are available on the ICL 2980 at the Bush
Estate, it is likely that some users will have a requirement to write
{nP gggrams which can be run without change at NUMAC, on EMAS and on

e L] N

This note indicates areas of difference between the IMP compilers on
the three machines. These areas must be avoided if compatible IMP
programs are to be written for running unchanged on more than one

machine. Note that, in general, the NUMAC and EMAS compilers are the
same (the two exceptions are noted in the text).

Constants

* Integer constants

Integer constants which contain decimal points or exponents must be
avoided.

* Use of =

The read-only variable PI should be used. The use of the ISO
currency symbol for this purpose must be avoided.

* Strings
Both single quote (') and double quote (") are permissible string
constant delimiters. At some date, to be announced, only double
quote string delimiters will be accepted.
N.B. ONLY single quotes are allowed in NUMAC IMP.

ZPRINTTEXT must not be used.

. Arithmetic operators

* Division operators '/' and '//'

The use of '/' must be restricted to expressions which yield a real
result. '//' should be used in all cases where the result must be of
type %%NTEGER, e.g. where the result is being assigned to an integer
variable.

* Multiplication

Implied multiplication must be avoided.

* Exponentiation operator '**'

The ‘**' operator gives a result of type %REAL. If an integer result
is required then INT can be used; for example, K = INT(I**J).

* Modulus functions
The intrinsic functions MOD (for reals) and IMOD (for integers) must
always be used.

Variable types

The following variable types can be used:

4BYTEINTEGER SLONGREAL

% INTEGER 2STRING

%REAL %RECORD
Labels

Labels must be standard IMP names, i.e. the first character must be a
letter; e.qg. L100:

Control statements

* YMONITORSTOP
This must be coded as two separate statements: ¥MONITOR; %STOP

* Fault trapping

In implementing IMP on the 2900 series the opportunity has been taken

to redesign the fault trapping mechanism, in the light of frequent
complaints of inadequacy of the %FAULT facility. In order to be

completely portable, programs must ot use fault trapping.

N.B. The EMAS compiler does allow limited use of the 2900 %0N %EVENT
statement by translating it into a-standard EMAS IMP %FAULT
statement. The following restrictions apply:

a. The %0N ZEVENT statement may only appear in the outermost block

of a main program.
b. Only a simple jump statement may be placed within the

20N %EVENT %START;; %FINISH
block.
For example: %0ON ZEVENT 9 %START
-> INPUT END
FINISH

Conclusion

It is hoped that users will keep these suggestions in mind when
writing programs which are likely to have a lifetime of more than a few
months. By so doing they will minimise the work needed to transfer them
to a 2900 series machine should this become necessary or desirable.

M.D. Brown
R.R. McLeod

September 1977

accuracy
of real arithmetic 2.3
actual parameters 6.3
addition 2.1
ADDRESS ERROR 13.4
alignment 7.3
of record sub-fields 9.1
#AND 4.2
arithmetic
assignment 2.4
division 2.2
expressions 2,2
operations 2.1
operators 2.1
variables 1.3
array bound checking 11,1
array bound fault 1.6
ARRAY BOUND FAULT 13.3
ARRAY INSIDEQUT 13,3
array mapping 7.3
ARRAY 7.4,11.1
%ARRAYFORMAT 7.4
arrays
-declaration of 1.6
dynamic 1.6
FRECORD 9.2
%STRING 8.3
with variable bounds 1.6
assignment
of arithmetic expressions 2.4
of logical expressions 3.1
of records 9.6
of strings 8.6
of symbols 2.5
to pointer variables 7.3

%BEGIN 5,4

binary files 10,8

bit patterns 3.2

BITS 3.5

block structure 5.2,5.4
built in maps 7,2
ZBYTEINTEGER 1,3
BYTEINTEGER 7,2
¥BYTEINTEGERMAP 7,1

calling routines 6.1

CAPACITY EXCEEDED 13.3
in arithmetic operations 2.4
in logical operations 3.2
in string assignment 8,5
in string expressions 8,5
in string functions 8.4

INDEX

using strings 8.10
character

code 10,1,15.1

input routines 10,2

marked 10.4,15.1

output routines 10,5

streams 10,2

SuUB 10,4
CHARNO 8,10
CHECK 11.1
CLOSE STREAM 10,7
CLOSEDA 10,10
CLOSESQ 10.8.
comments 1.2
compiler options 11,1
concatenation of strings 8.5
condition

string 8.8
conditional repetition 4,4
conditional routine calls 6.2
conditional string resolution 8.9
conditions 4.1
%CONST

records 9.2

string variables 8.3
%CONST variables

declaration of 1.7
constants 1.4

binary 1.5

decimal 1.4

hexadecimal 1.5

quotes in 1.4

spaces and newlines in 1.4

string 8,3

symbol 1.4
CORRUPT DOPE VECTOR 13, 4
cycles 4,3

conditional 4.4

with control variables 4.5

declaration
location of 5.3

of arrays 1.6
of routines and functions 6.1

of variables 1.6
delimiters 1.2

rules for typing 1.1
DIAG 11.1
diagnostics 11.1
DIAGS OUTPUT EXCEEDED 11,2
direct access files 10,10
DIVIDE ERROR 13.2
division

in integer expressions 2,2

in real expressions 2,2 inclusive or 3.4

double quote deletion 1,1 indefinite cycle 4.6
double sided conditions 4,2 initialisation
dynamic arrays 5.4 of const? variables 1.7

of ZOWN variables 1.7
of strings 8.3

EBCDIC 15.1 INPUT ENDED 10.4,10.9,13.1
efficiency 11.3 input/output 10.1
ZELSE 4.3 INT 2.3
%END 5.4,6.1 integer division 2.2
¥ENDOFFILE 6,13 integer expressions 2.2
ZENDOFLIST 11.2 INTEGER OVERFLOW 13.1
ZENDOFPROGRAM 5.3 ZINTEGER 1.3
exclusive or 3.4 INTEGER 7,2
ZEXIT 4.6 FINTEGERMAP 7.1
EXP TOO LARGE 13.2 INTPT TOO LARGE 13.3
exponentiation 2,1 INTPT 2.3
in integer expressions 2,2 intrinsic routines 6.10
in real expressions 2.3 INVALID CYCLE 4.5,13.1
#EXTERNAL IS0 15.1
records 9.2 ISOCARD 10.3

string variables 8.3

ZEXTERNAL routines 6,13

ZEXTERNAL variables 6,14 Jumps 4.7
declaration of 1.7

#EXTERNALROUTINESPEC 6.13,16.1

ZEXTRINSIC Tabels 4.7
records 9,2 length
FEXTRINSIC variables 6.14 of record sub=fields 9.7

of variables 1.3
LENGTH 8.10

ZFAULT 14.1 LENGTHSQ 10.9
faults library 6.10
compile time 12,1 files 6,13
run time 13.1 1ist of contents 15.1
trappable 14,2 LIBRARY FN FAULT 13.2
trapping 13,1,14.1 1ine number 11.1
files line reconstruction 10,4
character 10,1 ZLIST 11,2
direct access 10,10 LIST 11.2
library 6.13 listinngf programs 11.2
sequenttal 10.8 LOG NEGATIVE 13.1
Z#FINISH 4,2 logical
formal garameters 6.3 and 3,.1,3.4
FRACPT 2.4 } assignments 3.1
FROMSTRING 8.10 channels 10.1
functions 6.1 not 3.1,3.3
in system library 16.1 operations 3.1
string 8.4 operators 3.1
’ ~ or 3.1,3.4
FLONGREAL 1.3
global variables 6.1 #LONGREALMAP 7.1
GRAPH PLOTTER FAULT 13,2
mapping
%IF 4,2 of arithmetic variables 7.1
ILLEGAL EXPONENT 13,2 of records 9.4 .
ILLEGAL OPCODE 13.4 of strings 7.1,8.4
implicit routines 6,10 maps 7,1

implied mu1t1p11cat§on 2.1 in system 1ibrary 16.1

margins ' PRINTFL 10.6

input 10.4,10,7 ‘ ‘ PRINTSTRING 8.11,10.5
output 10,7 : PRINTSYMBOL 10.5
marked character 10.4 T ZPRINTTEXT 10.5
MOD 2.5 ' : programs :
modulus 2.5 ' continuation of statements 1:1
modulus signs 2,5 efficiency of 11.3
ZMONITOR 11,1 listing of 11.3
ZMONITORSTOP 4,8,11.1 testing 11.4
multiplication 2,1 typing conventions 1.1
names 1,2 READ ITEM 8.11
of ZEXTERNAL entities 6.14 READ STRING 8,11
scope of 5,3 READ 10,3
~ used for labels 4.7 READCH 10.4
nesting READDA 10.10
of blocks 5.3 READSQ 10,9
of conditions 4,6 READSTRING 10.3
of cycles 4,6 READSYMBOL 10.2
NEWLINE 10,5 real
NEWPAGE 10.5 expressions 2.3
NEXT ITEM 8,11 precision of variables 1,3,2.3
NEXTSYMBOL 10,2 REAL INSTEAD OF INTEGER IN DATA 10,3,13.2
NOARRAY 11,1 REAL OVERFLOW 13.1
NOCHECK 11,1 #REAL 1.3
NOLIST 11,2 REAL 7.2
NON INTEGER QUOTIENT 13,1 #REALMAP 7.1
NOT ENOUGH STORE 13,1 #FREALSLONG 1,7
NOTRACE 11.1 ¥REALSNORMAL 1.7
#RECORD 9.1
arrays 9.2
OPENDA 10,10 PRECORDFORMAT 9,1
OPENSQ 10.8 #ZRECORDMAP 7,1
OPERATOR TERMINATION 13.4 #FRECORDNAME 9,5
OPT 11.4 records
Z0R 4,2 sub-fields of 9.1
OUTPUT EXCEEDED 10,6,13,4 #RECORDSPEC 9.5
% OWN recursive routines 6.11
records 9.2 ZREPEAT 4.3
string variables 8.3 resolution
Z0WN arrays 1.7 conditional 8.9
XOWN variables of strings 8.6
declaration of 1.7 RESOLUTION FAILS 13.2
in routines 6,11 RESULT NOT SPECIFIED 13.1
initialisation of 1.7 #RESULT 6.8
of maps 7.2
#RETURN 6,2
parameters 6.3 routines 6.1
actual 6,3 explicit 16.1
formal 6.3 ¥EXTERNAL 6.13
of type YRECORDNAME 9.6 implicit 6.10,16.1
to maps 7.2 in system library 16.1 -
pointer variables 7.3 intrinsic 6.10,16.1 \
of type %RECORD 9,3 recursive 6.11 /
precedence with parameters 6.3 :
of arithmetic operators 2,1 #ROUTINESPEC 6.1 s
of logical operators 3.4
PRINT 10,6

PRINTCH 10,6 scope of names 5.3

SELECTINPUT 10.2
SELECTOUTPUT 10,2
semantic errors 12,2
sequential files 10,8
SET MARGINS 10,7
shift operators 3.1,3.2
SHIFTC 3.3
#SHORTINTEGER 1,3
SHORTINTEGER 7.2
#SHORTINTEGERMAP 7,1
SKIPSYMBOL 10.3

SPACE 10.5

%SPEC 6.1

SQRT NEGATIVE 13,1
stack 5.1

s tack pointer 5.1
#START 4,2

%STOP 4.8

s torage allocation 5.1
s tore map functions 7.1
s tore mapping 7.1

s tring resolution 8.6
ZSTRING

conditional resolution 8.9

constants 8.3
STRING 7,2,8.4
#STRINGMAP 7.1
strings 8.1
sub-expressions 2.4
sub-fields 9.1

of type %RECORD 9.4

of type #RECORDNAME 9,5

suB 10.4

SUBSTITUTE CHARACTER IN DATA 10,4,13.2

subtraction 2,1

SWITCH VECTOR NOT SET 13.1

switch vectors 4.7
#SWITCH 4.7

SYMBOL IN DATA 10.3,13.1
syntactic errors 12.1

TAN TOO LARGE 13,2
$THEN 4,2

TIME EXCEEDED 13.4

TO STRING 8.10

TRACE 11.1

trappable faults 14,2
TRIG FN INACCURATE 13,2

unassigned checking 11.1
UNASSIGNED VARIABLE 13,3

UNEXPLAINED INTERRUPT 13.4

ZUNLESS 4.3
ZUNTIL 4.3

variables 1,3
arithmetic 1,3

%CONST 1.7
declaration of 1.6
YEXTERNAL 6.14
SEXTRINSIC 6.14
%0WN 1.7

pointer 7.3
string 8.3

ZWHILE 4.3
WRITE 10.6
WRITEDA 10,10
WRITESQ 10,9

SC= 2 | Edinburgh

e I(R’:egional I M P 1

= omputing - i

Faas | oMb Language Manual Update
o Mrs L. Brewin o MrJ . Murison ;:;U::rYf 1978

The second edition of the IMP Language Manual was published in May 1974
and until now there have been no updates. It is still largely accurate for
the System 4 EMAS and NUMAC 0S implementations of IMP, but the
implementation on ICL 2900 series machines contains a number of important
departures from what is described in the Manual. It has therefore been
decided to issue an Appendix detailing these differences (attached); it

should be inserted between Section l6 and the Index.

A sheet dated September 1977 is also attached: it gives advice on
writing IMP programs to be compatible with NUMAC 0S IMP, System 4 EMAS IMP

and 2900 IMP.

It is recommended that this cover note be filed at the end of the

Manual, as a record that it has been updated.

EDINBURGH REGIONAL COMPUTING CENTRE
February 1982

IMP80 on EMAS 2900: Differences from IMP9

Contents
Page
1. Compiler name 2
e Lower case input 2
i Continuation 2
4, Comments 2
5. == and ## 3
6. Available types 3
7 Keyword and operator alternatives 3
8. own initialisation 3
9. Switch labels 4
10. Cycles 5
11. start/finish blocks 6
12. Constants 7
13. Strings 8
15. Records 9
15. external items 10
16. Procedures as parameters 11
Introduction

This document is intended for users of the programming language IMP on EMAS
2900 who wish to know how the new version of IMP, IMP80, differs from the
current version, IMPO.

It should be noted that IMP80 on EMAS 2900 differs in certain respects from
other implementations of IMP80, and that this document should not be trusted
as far as other implementations are concerned.

Some of the features of IMP80 described below exist in IMP9. They are
included here either to help explain some other feature or for completeness.

IMP80 Differences 1

The command invoking the compiler is IMP80, not IMP.
Except within single or double quotes, lower case text is not
distinguished from upper case. Thus
Zinteger a and %#INTEGER A
are both acceptable and treated as equivalent. Note that
%“integer Item la
is not distinguished from
ZINTEGER ITEMI1A

The convention in this document is that IMP keywords are underlined
and given in lower case, with identifiers in upper case. Thus:

integer A

Continuation of statements. Statements can be continued on the next
line by terminating the current line with c. The ¢ is not required
if the break comes immediately after a comma. (This applies to all
statement types, not just own array initialisations.)

Examples:
if A=23 and K<=14 then ¢
L=17 and M=18
integer A, B, C, D, E,
F, G, H, I, J

A blank line following a line terminated by ¢ is ignored.

Comments. A semi-colon does not terminate a comment = it can only be
terminated by a newline. Comment statements can be continued by use
of ¢, OR BY BEING BROKEN AFTER A COMMA (see 3 above).

A new type of comment is introduced; it is delimited by curly
brackets, “{’ and “}’. Such a comment can appear between atoms of a
statement (an atom is an identifier, constant, keyword, operator or
delimiting symbol).

Example:
A(I{month}, J{salary}) = 927.4

The comment text can contain any symbols except “}’ and newline. The
closing “}’ can be omitted, in which case the comment is terminated

by the next newline.

{eee} comments are particularly useful for explaining own array
initialisations.

IMP80 Differences

8.

== and ## (or \==)
The == operator can be used in conditions:

Example:
if A == B then .ceccse

The condition is only true if A and B refer to the same variable;
i.e. address and type equivalence is required. The operator ## (or
\==) can be used to express the inverse condition:

EA!##; B then ® ¢ 048 090

Note that == and ## can only be used to compare references to scalar
variables, not to arrays.

Available types

byte integer
half integer
integer

long integer
real

long real

long long real
string (n)
record (format)

all of these can be
followed by array or
name Or array name

A half integer variable requires 16 bits (2 bytes) of storage. It
holds an unsigned integer value, in the range 0-65535.

The statements reals long and reals normal are not available in
IMP80.

Keyword and operator alternatives

! or | for comment

fn for function

const for comstant

byte for byte integer

half for half integer

\ for ** (real exponentiation)

\\ for **** (integer exponentation)
<> or \= for #

~ for \ (logical ‘not’)

\== for ##

own initialisation

a) The statement
own integer A

declares an own integer variable A and initialises it to 0 (the
default value when no value is specified).

IMP80 Differences

The statement
own integer X, Y, Z=4

declares X, Y and Z and initialises them to 0, O and 4

respectively. 1In IMP9 this statement causes X, Y and Z to be set
to 4, 4 and 4., Note the difference!

It is bad practice to rely on default initialisation values,
especially in IMP80, where existing implementations do not have
the same defaults. The statements above should have been given
as

own integer A=(Q
own integer X=0, Y=0, Z=4

These are unambiguous , whichever version of IMP is used.

b) For convenience, constants used in own array initialisations can
be followed by a repeat count, in brackets. This repeat count
can be given as ‘(*)’ where * represents the number of remaining
array elements to be initialised.

Example:
own integer array VALUES (1:50) = Z%Zc
17, 4, 6(3), 9, 22(17),
100(*) {all the rest}

This also applies, of course, to constant and external array
initialisation.

c) Own arrays can be multi-dimensional. As before, the bounds must
be constants or constant expressions. The order in which array
elements are assigned the initialising values is such that the
first subscript changes fastest. Thus, for an array A(1:2,1:3),
the order of assigmment would be A(1,1), A(2,1), A(1,2), A(2,2),
A(1,3), A~2,3).

9. Switch labels

Consider the following:

switch LETTER("a":"2")

LETTER(a’):
LETTER(e’):
LETTER(1"):
LETTER(0"):
LETTER(u’):
! Deal with the vowels here

LETTER(*):
! All the rest (i.e. the consonants)

Instead of using a constant to specify a specific element of a switch
vector , * can be used. It represents all the elements of the switch
vector not defined elsewhere. Note that it does not have to come
after the specifically defined switch labels.

IMP80 Differences

10.

Cycles

The permissible forms of cycle are these:

a) cycle (endless cycle)

reEeat

b) while condition cycle

repeat
e) cyele

repeat until condition

d) for var = init, inc, final cycle

reEeat

The unconditional instructions continue and exit can be used inside a
cycle of any type. continue causes a branch to the next repeat; exit

causes a branch to the statement following the next repeat.
Notes on the cycle types:

b) while cycles are executed zero or more times. When the cycle
body consists of a single statement, the form

statement while condition
can be used.

Example: .
SKIP SYMBOL while NEXT SYMBOL=" ’

The IMP9 form while condition then statement is not allowed.
c¢) until cycles are executed one or more times. The simple form is

statement until condition

The IMPS form until condition then statement is not allowed.

d) for cycles: the cycle variable must be of type integer; it should
not be changed explicitly within the cycle body; (final-init)
must be exactly divisible by inc; the cycle body is executed
(final=init)//inc + 1 times or zero times, whichever is the
greater; if the cycle body is not executed the cycle variable is
set to be unassigned. It follows from this that a cycle starting

for I=10,1,8 cycle

will not be executed, but it will not be faulted either. This
differs from IMP9, where the equivalent form

cycle I=10,1,8

would be faulted.

IMP80 Differences |

11.

The simple form of for is

statement for var = init, inc, final

Example:
A(I)=0 for I=20,-1,1

[Going down in steps of -1 to 1l happens to be more efficient
on EMAS 2900 than the more usual 1,1,20 form.]

start/finish blocks

The general form is

Eé_cond 1 then start

finish else‘ii cond 2 then start

finish else if cond n then start

finish else start

finish
Notes

* Every start matches with the next occurring finish. If they
enclose only one statement then they can be replaced by that
statement.

Example:
if cond 3 then start
statement
finish else if

can be expressed as

Ez_cond 3 then statement else Ei S .

* then start can be replaced by start.

* if can be replaced by unless, the effect being to negate the
condition following.

* Any of the statements starting '"finish else" in the general form
can be omitted, including the last one.

*# 1f the condition controlling a start/finish block can be
determined at compile-~time then the IMP80 compiler may do so, and
might not generate code for statements that cannot logically be
executed. This is known as 'conditional compilation'.

IMP80 Differences

12.

Constants

a)

b)

An integer constant of any integer base from 2 to 36 may be
specified. The form is

basg_constant

where base is a decimal value and constant is an integer
expressed with respect to the base. The letters A, B, ..., Y, Z
can be used to represent the digits 10, 11, ..., 34, 35 in the
integer.

Examples:
2_1010 ten in binary
8 12 ten in octal
16_A ten in hexadecimal

An alternative form is provided for binary, octal and hexadecimal
constants:

B“ 1010’ ten in binary
K12’ ten in octal
XA ten in hexadecimal

Named constants

Variables of all types can be given the attribute constant. This
can be considered a special form of own variable, which cannot be
changed from its initial value. However it is probably better to
consider such variables as '""mamed constants", since 1) this
accords with their intended use, i.e. for replacing arithmetic or
string constants within code by meaningful names; and 2) they do
not have addresses, unlike other variables (but like constants).

Wherever a constant is permitted in an IMP80 program, a 'constant
expression"” can be used instead. A constant expression is one
which can be evaluated at coppile—tﬁme, i.e. its operands are
constants or named constants.

Example:
string (73) DELIVERY

can be replaced by

constant integer MAXNAME=20, MAXADDRESS=52
string (MAXNAME+ {for the newline}-+MAXADDRESS) DELIVERY

Example:

constant integer NO=0, YES=1,
INPUT=1, CALCULATION=2,
OUTPUT=3

switch PHASE(INPUT:OUTPUT)

~

~->PHASE(OUTPUT) if DONE=YES

.

PHASE(OUTPUT): ! Now print the results

IMP80 Differences 7

13. Strings

a) The keyword string may always be followed by a length
spec1f1cation.

Thus string(l0)array name

and string(255)name
are permitted.

In EMAS 2900 IMP80, no use is made of the maximum length
specification for string name and string array name variables.

[In other IMP80 implementations, however, a string name variable
must have a maximum length specification and can only refer to
("be pointed at") a string variable of the same maximum length.
The forms

string(*)array name
string(*)name ..sesesssse

are also provided, however, to enable declarations of reference
variables which can point at any string variable,]

b) The string function FROMSTRING is renamed SUBSTRING.

c) A string resolution of the form

succeeds in IMP9 only if string S starts with string expression
A. In IMP80, however, the resolution is interpreted as being

equivalent to S => JUNK.(A).B where JUNK is a "hidden" string
(255) variable; that is, the resolution will succeed if A appears

anzwhe re wi thin S.

When converting an IMP9 program to IMP80, the following
translation is recommended:

beccmes if S -> NS1.(B).NS2 and NS1="" then C=NS2 and ...
in IMP80

[NS1 and NS2 are new string (255) variables]
This translation is still valid when the .IMP9 statement is
if s => (B).S
i.e. when C is S.

Unconditional resolutions can normally remain unchanged; they
might succeed in IMP80 where they would fail in IMP9, but this is
not significant unless you are expecting them to fail.

IMP80 Differences

14,

Records

a)

b)

The syntax of declarations in IMP80 differ from those in IMP9.
They are of the form

record (format) ident, ...

record (format) array idemnt, ...
record (format) name ident, ...
record (format) array name ident, ...

"fomat" is either the name of a record format previously

described, the name of a record previously declared, or the
actual record format itself.

Example:
record format RF(integer I, J, K)
record (RF) R

and
record (integer I, J, K) R

are both valid and have the same effect, except that the first
version declares a record format with identifier RF, which can be
used elsewhere, clash with other identifiers, etc. Either of the
above forms could be followed by the statement

record (R) P

which would declare a record with the same format as that of
record R.

To summarise: the keyword record in IMP80 must be followed by the

keyword format or by a bracketed format or format reference or
record reference.

[This syntax change can cause difficulties when translating IMP9
programs: a routine spec such as

routine spec NAMEl(record name NAME2, ...)

must now be converted to

routine spec NAMEl(record (FORM2) name NAME2, ...)

The record format FORM2 is presumably declared somewhere in the
program, since a record of this format is required in order to
call the routine; but it might not be in scope at the routine
spec statement, and may have to be moved so that it is.]

record spec statements are not allowed in IMP8O.

The syntax of record format statements has been extended to
permit alternative formats, i.e. to enable all or part of a
record to be interpreted in different ways.

Example:
record format RF(integer A or byteinteger B, C, D ¢

or long real E)

record (RF) R

IMP80 Differences 9

10

c)

The record R can be considered to consist of an integer or three
byte integers or a long real. Each alternative starts at the
same address. Thus it follows that in

record format RF2 (byteintegerarray A(0:10) or c

string(10) S)

record (RF2) R2

R2_A(i) holds the ith character of string R2-S.

Note that all the sub-fields in a record format must have
distinct identifiers.

In the first example above, the three alternatives were of
different sizes. This is permitted: the altermatives have
padding bytes appended to them to bring them up to the size of
the largest. Thus when calculating the size of a record, use the
size of the largest altermative.

When only part of a record is to have alternative formats, the

alternatives must be bracketed within the record format
statement.,

Example:
record format RF3(integer TYPE, real RATIO,
(byte integer array A(1:20) ¢
or string (10) S ¢ -
E record (RF2) DATA),
string(*) name SN)

More than one set of alternmatives can be given within a single
record format; in addition, they can be nested. Redundant
brackets round alternatives are allowed.

Records can contain records. The format of such a record must
have already been defined, or be explicit. [A record clearly
cannot contain a record with the same format as it itself has.]

Records can contain multi-dimensional arrays of fixed bounds, of
any type.

Records can contain record names. The format of such a record
name can be the same as that of the record containing it; thus

record format RF4(integer X, record (RF4) name NEXT)

is permitted.

15, external items

a)

The IMP9 keyword extrinsic is replaced by external ... spec .

Example:
extrinsic integer array A(1:500) in IMP9

becomes

external integer array spec A(1:500) in IMP80

IMP80 Differences

16.

b)

External variables can be initialised, like own variables, in
declaration statements, but not in specification statements.

Example:
external integer array A(1:500) = 25(10), 14(72),-
16(22), 63(*)

External variables or procedures méy be given an alias. The form

alias "..."

can follow the identifier name, in declaration statements or
specification statements.

Example:
external real function spec SIN alias "MATHS$DSIN'"'(real A)

The string constant specifies the string to be used for extermal
linkage (i.e. the external reference). From within the program
the item is referred to by its identifier, in the usual way.

Procedures as parameters

When a procedure has a procedure parameter the specification of the

latter is given in the parameter list, not in a subsequent spec
statement.

Example:

routine X(integer Y, routine Z(real A), string (10) S)

John M. Murison

IMP80 Differences 11

