EMAS 2900 FEP NOTE
No: 1 (revised)
Date: 2/5/79

The EMAS 2900 Front End Processor

Contents

1. Introduction

2. Software Components
2.1 AM] Handler
2.1.1 "Internal" transactions with the 2900
2 Data tranmsactions with the 2900

3 Interface to the high-level protocol tasks
4 AM]1 handler fault messages

2.1.
2.1.
2.1.
3. Operation of FEP
3.1 Loading procedure
3.2 Powering off procedure

3+3 Dumping the system

3.4 Processing a Front End dump

3.5 Responding to crashes

1. Introduction

This note describes the system software running in the EMAS 2900 Front
End Processor, which is a DEC PDP11/34. It also describes operating
procedures.

Section 2 summarises each software compo§nent in turn; subsection 2.1
then described the AM]1 handler in greater detail. It is intended that
further subsections will be added in due course, each likewise dealing
with a single component in detail.

Section 3 is taken largely from the EMAS 2900 Operator’s Manual. It
describes the operational aspects of the FEP.

Figure 1.1 below indicates how the software components of the FEP are
interlinked, and, for the ERCC 2970 installation, how the FEP is
connected to the EMAS 2900 mainframe on the one hand and the Regional
Computing Organisation (Rco)kon tge other. The protocol hierarchy for
interactive and non-interactive operation is shown diagrammatically in
Figures 1.2 and 1.3, and for completeness the formats of the various
protocol packets are also given (Figure 1.4).

FEP1-1

c-laaa

—— RC.0. Nelivorh——|

|
|
| I
| |
|
g
m H4/34 (B 0 fdw) ! NSI. “Nadeq | PDP11 Terminal Gn) Rucesso
| Gesiding in. PDRI1/45° '
l Mal‘ml:? GalA1 £, (\)mr.fW\ l ei-gm' trbr:ﬁ‘l?
' l r\Ovd \e« . an ; v
7
NST. node kewnal |]
3320 g ’ (pocket sualcher I :,dsorgcl
' M'\J lev
| | ‘
STN | g A vy a | Spe
l;'_°i’§°.2. | e I i
1 y NN
. I ing| W i ad
4 4) [} 4 s
—'W\-IJ e I,
. v
Jb'f Rt}tﬁﬁ4 ' Live piiubf Calivockive
Cowd render Torwminal
NGESZ e - '\hovﬂd-w TRewminad Rd’bcol

NST. ~ Node Shhmdord Lwhwfa&
CS lik = Ghinbuwrgl Univatly Dept. of Compualor Sinimea Lin

AML - kooligbia. Mo lorplaval Gnlisllen
B:gﬂw-hrmb Mb-Qn.Q.ICL‘zsUU Sevias Govarnd fonnf O

Figure 1.1: Hardware and Software Configuration
for ERCC 2970

T PDPIL TTrwainal Cnbidl Prococron

—— T

In ICL 2970 aund PDP41/34 fork end

g-Lamg

Th 2970 T. 14/34
z?%jggﬁ?hﬁrﬁv
User. Virtual Term in
oI l IT.P. handlev l _ .,_'M‘ﬁ,}d | 17P Randlew R ‘;\‘:‘ .lfif-
N o MG pll\a
4 A
r h
NS.I. proboca] - VV&@?) NS. T profocdl
hawndy - conackom hand @
4) (aerSS mhﬂﬂ’\fﬁ) 4

SpLC prtecdl | ik Juvel SDLC probcdl
tm.nclﬂw Cavwzcl'ioL handlov

4

[ovie howdliw e~ o 2evice herdlov]
t .

No"es; TTP =~ r“ta,,,bﬁ;,e Teeminal Prlded? |
NST. — Noda Stando~d Iv\t'b%ck

Dohitﬂgu>- e

Figure 1.2: RCO Metwork Protocol Hierarchy - Interactive

Tn ICL 2970 and PDPLL/34 front and T PP Rewinal Guliyl Procasson-

— I T

1. 2970 Tn 1434
Bw&dw/wprw
pwloed]
SFOOLR praass 1 J RTE pwTocdl Physiéal
pro | P RIE pwoloedl ool ohr orc.
l"a“d-aﬁﬁf' L\G“d'&f J’“‘D;":“V
4
5‘4 NSL:T;&ZMCM J— \Qf::%_ — N-S-:. P mmh‘a
NN Con [\
2 ‘v (m;?“f;m"&ﬂ) >
4
Y
sbLC. profocst Lk Quel SDLC prstoce]
havdle. wanechion hondler
]
Tovie hondloe unre Device handllov
Neles: N.S.I. — Node Sndavd Thlavface.

Te Stuclire fov = Rle Wansfor RBIces! (FT P) is am\ﬁéﬂﬂj e sama, aﬂﬁ.wg(,
& walh nom ko uced fov ma.‘:\f}a,m.n/ma,.‘-«fm convaunscallo,

Dalis fows —

Figure 1.3: RCO Network Protocol Hierarchy - Non-interactive

G-lamd

SoLC packul-
(05 on w;t\e)

NST Packal

ITP fackel-

AdRess cowTRORL

Moux imum 'ijft?.‘?'l fy;/bf

< LiF
DArA LoLLSu-.
Chyle
Msfumaw DATA
(el Wi |Pde Jumgl] Teempn. DATA

Nelie: TTP — IDbvactive Toweal $oloeol
NST. - Node Slandavd rntz«{?aco_

Figure 1.4: RCO Network - Packaging of Interactive Data

2. Software Components

The software consists of a number of co-operating programs, each running
as a task under the operating system DEIMOS. (DEIMOS is a general
purpose operating system designed for use in PDPlls with memory
management.)

The left hand part of Figure 1.l above shows the conmections between the
programs which drive the FEP. The arrows indicate the interfaces
between the tasks. In addition all the tasks interface to the buffer
manager and to the common TT output handler.

It should be obvious that nearly all the above tasks are critical; e.g.
if the NSI handler crashes, then everything will stop. The only

exception is the RJE handler, the failure of which will only bring dowm
the RJE part of the service.

Each of the programs in the 2900 FEP is now summarised in turn.
1) AM]1 Handler [Task name: AM1H]

The AM1 handler handles the "protocol" necessary on the AM1
interface. For example, the 2970 will inform the handler that it
is prepared to make a transfer on a stream ‘n’. The handler
determines what use the stream is put to, and instructs the
appropriate protocol handler. The ITP handler, for example, will
then read (or write) characters from the 2900, enclose the ITP
packet headers round it and pass the "message" to the NSI interface
module. This module adds on the NSI packet header, and passes the
"message" to the CS link handler for transmission into the Network.

2) Interactive Terminal Protocol (ITP) Handler [Task name: ITPS]

This program handles the protocol-dependent features of the ITP For
example, after receiving user output from the 2900, it will add the
protocol header to the output and, obeying the protocol flow
control rules, will pass the output to the Network Standard
Interface (NSI) protocol handler, for transmission into the RCO
network.

In addition, the handler controls the virtual connections along
which the data to and from each Terminal Control Processor (TCP)
flows. Each TCP sets up one connection to the FEP along which all
terminals connected to that FEP communicate.

3) RJE Protocol Handler [Task name: RJES]

This handler controls all remote file transfers to and from the
EMAS 2900 mainframe.

Data formatting and flow control on each virtual connection is
performed by this module. Messages from operator consoles, i.e.
logons and queue enquiries, are passed through to the mainframe
with the protocol headers removed. Messages to operator consoles
are processed into the correct form and passed to the NSI handler.

FEP1-6

4) Network Standard Interface (NSI) Protocol Handler {Task name: NSIH]

This handler processes the protocol-dependent features of the RCO
NSI, passing the information contained within to the high-level
protocol modules (ITPS and RJES), in a near network-protocol-
independent manner. For example, when a high-level protocol
accepts a data packet from the handler, it forms the network-
dependent "SEND BLOCK RESPONSE" packet and transmits this through
the network. In the case of a different protocol, e.g. X25 level
3, the handler would construct a "window change" or ‘RR’ packet
from the same response from the higher level.

5) Computer Science Asynchronous Link Handler [Task name: CSLK]

The handler receives blocks from the NSI handler and transmits
them, one character at a time, down the link. It blocks up the
character record from the link and passes them in a block to the
NSI handler. In addition, in contains watchdog timers to establish
when the link goes down.

6) File Transfer Protocol (FTP) Handler

This module is still to be written; its function will be to
transmit and receive files from the network in the EPSS Study Group
3 FTP protocol.

7) Buffer Manager [Task name: BUFF]

This program controls all the data buffers used in the FEP system.
All other tasks send requests for buffers to the buffer manager and
return buffers to it after they have been used.

8) HDLC Protocol Handler [Task name: PROT]

On systems which communicate to the network via a synchrous line an
HDLC protocol handler is used instead of the CS link handler. This
module performs the same functions as CSLK, but ensures an
error-free path by implementing HDLC at the link-to-link level.

For details of how these tasks communicate with each other, and other
features of the FEP system, consult the DEIMOS User Manual, by
B.A.C. Gilmore (ERCC).

FEP1-7

2.1 The AMI Handler

The AM1 handler controls the PDPl]l hardware interface with the 2900
mainframe. In the case of the 2900 P series the interface is via the
GPC, with 2900 S series via the DCU. The handler also controls the
low-level functions of the software "protocol” that is used to
communicate between a 2900 and a PDPll.

The handler has three distinct functions:

1) To handle "internal" transactions with the 2900

2) To handle data transactions with the 2900

3) To interface to the higher-level protocol tasks

These are described in turn below (subsections 2.1.1 - 2.1.3).

2.1.1 "Internal” tramsactions with the 2900

There are a number of control signals identified by bit 0 set in
the receive status register sent out by the 2900 which are
completely handled by this task. The response to each is defined
either by the 2900 interface hardware or software.

The functions, and their responses, are:

a) Send Property Codes
This is sent to the PDPll on every IPL of the 2900, and is used
by the 2900 hardware to establish how many front ends (if any)

are currently available.

The response is 4 data bytes, followed by a normal primary
status:

14,0,0,0, 16 + control bit.

The ‘14’ defines a front end to EMAS 2900.

b) Identify
Identify is produced by the GPC microprogram (in a P series
2900) to determine which of the possible mechanisms on the
interface has set an "attentionm bit" in primary status. This
is not actually used in the FEP case, as there is only one
mechanism, but nevertheless the identify must be replied to.

This response is two data bytes and a normal primary status:

0,X’80’, l6+control bit.

FEP1-8

¢) Sense

This command is normally generated by EMAS 2900 software to
obtain the secondary and tertiary status bytes after certain
conditions, e.g. send property codes. Currently no "real"
information is actually transferred to the mainframe.
Response: 2 data bytes and primary status:

0,0, l6+control bit.
d) Limit

Limit is sent by the 2900 when it has read the number of bytes
specified in its current command. The action taken depends on
the state of the handler. If it is handling one of the above
control signals, e.g. identify only expects two data characters
(so that a limit is seen before the primary status can be
transmitted), then a primary status is sent and earlier, still
pending, actions are ignored.

In the second case, the interface will be in a "user pending or
writing to the 2900" state (see below). The action in this
case is still to send a primary status.

There are other possible control signals, e.g. initialise,
autoload, which are not used by EMAS 2900. If any is actually
received, the response is a primary status with "unsuccessful” set.

2.1.2 Data transactions with the 2900

All data transactions to or from a 2900 consists of two parts.
First, a four-byte part describing the logical stream which the
transfer is to to be on (this also determines the direction), and
the maximum length of that particular transfer. This four-byte
"header" always goes from the 2900 to the FEP. The second part of
the transaction is the actual data; this can be transferred in)
either direction.

From the point of view of the handler, the actual transaction is as
follows:

a) A write control command signal, followed by four data bytes -
two for the stream number and two for the length of tramsfer,
followed by a limit command - to cate the end of that part.

b) The handler must now send a primary status to the 2900, to
signal the completion of the command.

¢) The 2900 will now send either a READ command or a WRITE command,
depending on the direction of the transfer. A number of data
bytes is thus transferred in the relevant direction and the
command again terminates by a primary status.

FEP1-9

There are two distinct types of data transfer: a control stream
transfer, and a transfer on any other streams. The distinction is
only made for the convienience of handling control stream transfers
(see below) which are done by the AM1 handler itself.

A control stream transfer (stream numbers -1 and -2) is done in
units of 24 bytes. In the case of an outward transfer, the 2900
sends up to 8 units simultaneously. These are read by the handler,
the stream number to which they refer is determined, and the entire
message is then passed to the higher level protocol which "owns"
that particular stream. In the case of inward transfers, the
higher level protocol tasks send messages containing 24 bytes to
the handler which queues them and, when permitted, sends up to 8 of
them into the 2900 in any one transfer.

Control of transfers

If the link is idle, the 2900 may at any time start up a transfer
to the FEP. If the FEP wishes to-initiate a transfer to the 2900,
it must send an ATTENTION to the 2900, which should then respond
with a request to do an inward control transfer. If a transfer is
in progress, the FEP may indicate its desire for a transfer by
setting the ATTENTION bit in the next (and subsequent) primary
statuses that it sends to the 2900.

Note: All transfers from the FEP to the 2900 are initiated with a
control transfer on a stream that requests the 2900 to initiate an
actual data transfer on the particular stream. Several of these
may be outstanding at any time, and it is the prerogative of the
2900 to decide which it honours first.

Stream transfer

When a transfer is initiated on a stream other tham the two control
streams, the handler passes physical control of the link over to
the higher level protocol task and lets it do the actual transfer.
When it is finished, or when the other task senses a command on the
link (e.g. a LIMIT), it passes control back to the handler, which
performs the primary status.

FEP1-10

2.1.3 Interface to the high-level protocol tasks

There are six messages from the handler to a higher task
(parameters in brackets):

0 Pass interface address

{physical address of interface)

1 Do input (stream, max trf)

2 Do output (stream, max trf)

3 Message (address of message)

4 Mainframe up

S Mainframé down

There are five messages from high level

handler (parameters in brackets):

0 Send high level control message
(address of message)

1 Send low level control message

(address of message)

2 Here I am (stream no)

3 Return control (action)

4 Stop

do data transfer from 2900
do data transfer to 2900
control message from 2900
state of mainframe

state of mainframe
protocol tasks to the AM1
to be sent on inward

control stream

to be sent on inward
control stream

claim of stream no

pass control of link back
to the handler

tells the handler to close
down

There are a number of actions that can be performed on "return

control”.

0

1

The values and actions are:

Send normal primary status

Send normal primary status
+ short block

Send normal primary status
+ long block

significant information
transferred, e.g. EOF

transaction not satisfied -
2900 should put another omne
on

Send unsuccesful primary status

Send primary status + condition

Same as 0

In addition, if the top bit of the flag is set, then the handler
should accept the test characters sent from the 2900; otherwise it
should not.

FEP1-11

2.1.4 AM] handler fault messages

The AM1 handler produces error messages (on the FEP console) of
the following form:

AM]l: FAULT x nl,n2

where: X is a character indicating the class of fault
nl,n2 specify a subclass and/or give extra information

Note: except where stated otherwise, "input", "output",

"receiver" and "transmitter" are with respect to the PDP
11/34.

Classes

x= T - Timeout (character level) - a character from the 2900 was
expected (i.e. in the middle of a sequence) but did not
arrive within 20 ms (approx).

nl= state of receiver side of AM]
n2= state of transmitter side of AM1

x= I - Input fault

nl= 1 - after initial WRITE CONTROL (w.r.t. 2970), four
characters should be received before a limit; n2

gives the number of characters actually received.

2 - a transfer request has been made by the 2970, on a
stream that has not been CLAIMED by a higher level
task; n2 is the stream number.

3 - a READ (w.r.t. 2970) has been issued on a stream >0
but a number of non-control characters have also
been received; n2 is the number of characters in
error.

4 - same as 3 except a WRITE (w.r.t. 2970) has been
issued.

5 - an unexpected control character has been received
from the 2970; n2 is the control character.

6 - non—-control characters have been received before a

control character; n2 is the number of characters.

x= S - A CONTROL message (high or low level) has been issued to a
stream that has not been CLAIMED by a higher level task.

nl= number of offending stream
n2= offset into the entire block received from the 2970

FEP1-12

Unexpected QUTPUT interrupt. An interrupt has been
generated on the transmitter side of the AMl - this should
not have occurred.

nl=0
n2= output state of AMI1

Transmitter state fault. The transmitter side of the AMI]
has got into an error state.

nl= output state of AMI
n2= previous output state of AMI

Return control fault. A RETURN CONTROL has been received
from a higher level task at a time when the AM]l handler has
not released control.

nl= input state of AMl (w.r.t. 11/34)
n2= output state of AMl (w.r.t. 11/34)

Clock timeout (or major timeout). A request for transfer
on the control stream, or an output interrupt, has been
outstanding for 15 seconds. This will generate a message
to the higher level tasks informing them that the 2970 has
gone down.

nl= 2 - transfer outstanding
n2= 1 - interrupt outstanding

FEP1-13

3. Operating the EMAS 2900 Front End

The following description relates specifically to the operation of the
FEP on the ERCC 2970.

The EMAS 2900 Front End Processor, a DEC PDP 11/34, is connected to both

GPCs on the 2970 mainframe by a locally produced NRPI link. Figure 3.1
illustrates this connection.

2900

GPC-A GPC-B

AM1 AM1

Y ¥ A
11/34 output——)J <«——11/34 input ————>] [€———11/34 output

PDP 11 PDP 11
interface interface

11/34

Fig. 3.1: Connection of FEP to Mainframe

As explained above, the FEP is linked to the 2970 via the AMI
interfaces. It uses only one of these — the other is for backup. The
FEP is also linked to the PDP 11/45 Network Control Processor via a

1 Megabit Computer Science asynchronous link. All interactive and RJE
traffic to the 2970 uses this link.

FEP1-14

3.1 Loading Procedure

The procedure is as follows:

* If the RUN light is on, hold the CTRL button down and press HALT,
then release the CTRL button.

* Boot the machine: hold the CTRL button down and press BOOT, then
release the CTRL button.

* The bootstrap should now identify itself with something like the
following (the actual numbers do not matter):

010000 160200 170000 000002

To load the system from disc drive O:

* Ensure the LOAD/RUN switch is at RUN.

* Type DK (cr).

* After a pause the system identifier "DEIMOS VSN 6" appears, and
after a further pause of a few seconds the system prompt "%"
appears.

The programs that drive the link etc. must now be loaded, by typing:
LOGON 15 (cr)

When the prompt reappears, type either
GPCA (cr) or GPCB (cr)

depending on which connection to the mainframe is currently in use.

The Front End is now ready for use.

Notes:
* In this section: (esc) = ESCAPE, (cr) = RETURN, _ = space.
* Ensure that both GPCs are switched on.

* “ATTACHED OK" indicates that the NCP (11/45) has recognised the
11/34.

* Each TCP, as it "connects" to the 11/34, produces a message of the
form:

TERMINAL x_CONNECTED

* After a reload of the NCP (11/45), connection of the 11/34 must be
re—established by typing

(esc) INT R CSLK (cr)

FEP1-15

3.2 Powering Off Procedure

1) The Front End should be closed down by typing on its console:
(esc) INT D GATE (cr)
The reply
GATE: REMOVED OK

should be received.
2) The Load/Run switch on the disc should be switched to LOAD.
3) The machine should be halted by holding down Ctrl and pressing Halt.

4) Finally, power the machine off.

FEP1-16

3.3 Dumping the System

A dump should be taken if the 11/34 stops; that is, if the run light
goes out. The sequence for taking a Front End dump is:

*

*

Holding CTRL down, press HLT.
Press CLR.

Press 1 then 4 then 0.

Press LAD.

Holding CTRL down, press START; the disc lights on unit 0 should
blink and the run light will go on then off again.

Fill in the front end dump log and process the dump (See 3.4).

FEP1-17

3.4 Processing a Front End Dump

A front-end dump always occupies the same site on the RK05 system disc
and it is important to process this dump immediately before reloading
the service system, as any future dump would overwrite the one already
on the dump site. Three other sites are reserved on the system disc to
hold processed dumps and these should be used cyclicly and their use
recorded in the Front End dump log. The three sites are referred to as
DMPOO1, DMP0OO2 and DMPQO3.

The procedure is as follows:

* Load the Deimos operating system, as in 3.1, until the first system
prompt appears.

* Log on to user number 16 rather than user 15:
XLOGON 16

* Process the dump using the program DPAL and the following replies to
its prompts:

X DPAL_/DMPnnn where nnn specifies the next dump site

DPAL: T
DPAL: M
DPAL: Q 47
DPAL: Q_51
DPAL: Q 52
DPAL: S

* Continue with the normal load as described in 3.1 by logging on to
user number 15.

FEP1-18

3.5 Responding to crashes

The 2970 FEP will normally run without the need for operator
intervention. However, under certain circumstances action is necessary.

1. GPC TIMEQUT + FEO DOWN on the 2970 Oper
a) If this message is accompanied by
AMl: Fault C 2, O
EMAS 2900 DOWN
~on the FEP console, then a dump of the FEP is not necessary, but
(esc)INT_F EAMS5
should be typed on the FEP console, to obtain monitoring
information. Once it finished, a reload of the 2970 will be

necessary, but not a reload of the FEP.

b) If a message of the form:

xxxx: BAD SEGMENT - followed by two numbers or
xxxx: ADDRESS ERROR or
BUFF: NO SMALL BUFFERS *#*%* or

~ BUFF: NO BIG BUFFERS ***
has been printed on the FEP then a dump (see 3.3) is necessary.

N.B. The last two messages above can appear without the system
crashing; a dump should only be taken if the FEP is not
responding to users.

2. If no users can log on to the 2970 and the 11/45 front end to the

4/75 link is up

In this case, the 2970 FEP should be dumped and then reloaded.

B.A.C. Gilmore
J.M. Murison

FEP1-19

2970 FEP -~ COMPILING NEW VERSIONS (1)

A1l the Fep modules are on file system 15, so a LOGON 15 should be done

before editing or compiling a module.

To compile a module, the command is:-

IMPS source,.TT/object

If the 1st pass of the compiler succeeds, — n statements compiled, the
compiler proceeds to the 2nd and 3rd pass, efter the end of the 3rd
pass, - code = n bytes etec., the LINKING stage will prompt for data:-
NAME :
STACK :
STREAMS :
The date typed is different for each module and is given below in the
form:— GATE,300,1 - e:xch bit, i.e. 'Gate' is typed in cz & line by itself.

Modules {name of source and object file is given)

A) AMl Handler
There are two versions,
1) EAM5/EAM5Y - this is the unmodified interface kandler
2) EAM5X/EAMS5XY — +this is the modified interface hendler
in both cases the linking parameters are:- EAM5,300,1

B) ITP protocol handler
ITPSR/ITPSRY ,parameters ITPS,500,1

C) RJE protocol handler
RJESR3/RJESRY parameters RJES,300,1

D) NSI Protocol handler (Gate)
EGATE /EGATEY parameters GATE,300,1

E) C.S. Links handler
CSLK3S/CSLK3Y parameters CSLK,200,¢

F)/

F) Buffer Manager
BUFFR/EBUFFY parameters BUFF,200,0

G) Common Output Handler
COMMS/COMMY parameter COMM,200 ,@

Note: For security, the original object file should be transferred to
file system ¢ before you compile the new file
T RJESRY/RJESRY({)
and if the new object fails, the old object file can be recovered by:
T RJESRY(@)/RIESRY

EMAS 2900 2970-FEP LISTING SOURCE MODULES

The best way of obtaining a listing of a source module after it has been
compiled is to produce an 'ALIST' (see USER manual) of the program and list
it on the Computer Science line printer.

1) ALIST ITPSR,ITPSRY/.LP -~ to alist the ITP handler.

2) Type (esc)T LR6/LP on the Computer Science ISYS system.

EMAS 2900 2970-FEP LISTING A PROCESSED DUMP

After a FEP is processed (see operating instructions) it can be listed
on either the CS line printer or on & network line printer, this should

be done before the Dump slot is overwritten.

A) Via CS Line Printer
1) 10GON 16
2) T DMPOOL/.IP - do list DMPOOL
3) on the CS ISYS machine, type (esc)T LR6/LP

These commands may be typed while the normal system is running, but

'escape' must be typed to produce the prompt '¥' before each command.

B) Via the network

This must be done while the normal system is running.

1) (esc)RJELPY DMPOO1(16) - to list DMPOOl

2) the program will then prompt:-
a) Node: - type ¢ and return
b) TERM: - type 23 and return to list on the slow devices T
e¢) FACILITY: - +type I end return

When IP23 becomes free, it will print the dump, with delivery to B.GILMORE.

EMAS 2900 FEP

AM1 HANDLER MONITORING QUTPUT.

The AML handler (EAM5) outputs the list 255 transactions whenever it thinks
that the 2900 has gone dovn (version of 10APR.79). It can also be

requested to output the information by typing:-
(esc)INT F EAMS

The format of the monitoring is a single character and a number, the

meanings of each character are:—

c

I
D
D

n

-

11

a .control character 'n' has been rec'd from the 2900
a data character 'n' " " "
a data character 'n' has been sent to the 2900
a control character 'n' has been sent to the 2900
note: this always comes as a pair with a D n,
e.g. D 16)

D -16 ;+prima:y status X'20' has been transmitted
'n' is the stream number that the 2900 is going to do a
transfer on, it is purely 'internal' monitoring, rather
than & character transmitted or rec'd.

a 'Poff' rec'd by the task , the values of rn determine what

n=243 - input interrupt
=242 - output interrupt
=1& - control message from a higher task to go to 2900
=3 — a higher task returning control to EAMS

a 'limit' has been rec'd and the current O/P sequence is
terminated.

n=current state (This is a normal event on an identity).

EAMS has re—asserted 'accept chr' after the 2900 has accepted
the primary station, n is meaningless.

In a timeout sequence, n is the timeout count.

Example of monitoring output from the AMl link handler showing
1) an ATTN sent to the 2900 and its setting up of an inward control
transfer.
2) at the end of 1), it then asychronously starts up a transfer to
stream 13.

3) the handler accepts this and passes control to the relevant user.

program.
-32) D 255
32) attn D 255
0 D 255
10 identify D 0
0 D 0
128 D 8
0 D (0]
12 1imit D 0]
L D 0
g) D 150
-1 . D 0
16) terminate D 129
0] D 129
5 write control D 129
255 D 129
250 g i’g terminates NB is only one byte
192 M O inst (now M 243)
12 1imit C 5 write control
-2 monitoring I 0
ig; terminate i :lLf input data
0O INT 1 T0
2 READ (wrt 2970) C 12
0] v S 13 monitor of stream
11 data (control stream= D _16)term
0 oy byte) D 16)
10 C 3 write (Mus 2970+11/34)
0 M 42)return control from (N.B. from
1 2 3)10/4/79 this comes as M 3)
0 D -1 t inat
186 D 16 erminates
255 U-13680 accepts last character sent

Yoy yuogoRgddilaHHHHQROOREXOZIoboaxguy

2960 FEP - NOTE ON 2970 DOCUMENTATION

1. VWhere '.IP' is specified - i.e. in 'LISTING SOURCE MODULES'.
.TT will have to be used.

2. The source module of 'GATE' is called KGATE

Edinburgh Regional Computing Centre

Memorandum
To r. gager | From George Howat
Planse pass fo Btew Date 1L4-10-81 Extension 261k
,&x;~nwds .
Ref. Ref.

TCP Setmode Command Changes

It is acknowledged that the current implementation of setmodes (Local and Remote)
contains deficiencies and irritating features. Therefore, in the next TCP Software
release, I propose to alter existing and add "new" setmode functions. This will
involve changes in all server and/or front-end software and documentation for
mainframes which implement the ITP setmode control mechanism, (I believe that

only the 2976 and INFO will remain unaffected), The modifications are not

too drastic. Alterations to current practice are described below. For
completeness, the appendix summarises the full RCO set.

User Terminal Interface

Three pairs of "new-format" commands are proposed:

i) vV, -V : enter, exit video delete mode
ii) G, - G : " " graph mode
iii) F, - F : " " flow control mode (XON/XOFF output)
Note:
i Is an unambiguous set video-delete mode, removing the present
"toggle"
ii) Currently, exit from graph mode also involves entering upper-case

mode and exit from binary input mode. The three functions graph,
binary, upper-case are now to be decoupled.

iii) Gives the user access to XON/XOFF output mode locally at the terminal
i.e. can be used on any system which does not implement ITP setmode -
this has been requested by Glasgow (who cannot - will not send setmode
commands) and users of micros emulating terminals.

All other user setmode commands are unaltered but their action is modified e.g.
"U" imposes upper case only; binary input and graph mode flags are unaltered.

Mainframe Commands

The above changes have impact on the mainframe software: both bytes in video
and graph commands (15 and 11 respectively) are now significant (see Appendix).
The EMAS user interface will also have to be changed e.g. GRAPH = ON/OFF;

G, — G etc.

The new command to be introduced at the request of the EMAS team, command value 28,
is a "RESET DEFAULTS", see appendix.

Comments and/or suggestions to me please.

‘Anpendix: Sumrrary of Setmode (ommands (chtaroes rarked with asterisk)

H 2-255 (deciral

kermote
Command

¢

1
) 2

W 15-160 (decimal) 3

T 1-160..,
(decimal or %)

* €,-6
L
* U

P 0-10 (deciral)

* V,=-V

* F,-F

1C

11
12
13
14

15
16

17

18

19-22
23

Value(s)

0/1

5-255

15-160

0-255

0-255
0-255

0-255

071
1-16C...

071

0-10

071
0-255

071

0-255

0/1

APF-1

Not used
Echo off/on

Set paoe size and
enter paoce mode

Fold line after n
characters

Return current parameters
{core map)

Set rdata forwvarding
character

Set escape character

Set character delete
character

Set huffer delete
charzcter

Einary input mode off/on

Set tab position
(seven values only)

6raph mode off/on
Select upper & tower case
Select upper case only

Insert n pad characters
efter carriage return

Video-delete mode off/on

Append character to
server prompt

XON/¥OFF output mode
off/on

Enter bulk input mode
with stop char in 2nd byte

Used by Kent.

SCREED mode off/on

2L-2¢7 0-~-25¢ L byte bit mesk

2t - teset default modes

Notes:

'-* as ¢ 'vezlue' nmeans not gionificant. Under the °User' column, means
cannot te set loczlly by the user.

befault rmodes and parareters:
Echo on
Page rode off
Fold Line after &0 characters (currently 72)
Datea forwardinoc charzcter = CR
Escape character = ESC
Character delete = DEL
Buffer delete = DC3
Binary mode off _
Tab values: 1, 6, 9, 12, 15, 18, 40, %20
6Graph rode off
Unoer case only
Zero pad characters
Viden-delete off
No append to promnts
XON/XOFF rode off
Bulk input mode off
SCREEL mode off

APP=-2

GRAPHIC OUTPUT FILE FORMAT

Each file comprises 3 header records followed bv the actual plotting data all
in fixed 80 byte records.

Header Blocks

1. 80 EBCDIC 'X' characters o
2. 8f ISO characters — of which the first 40 are typed on the PDP-8 teletype
preceded and succeeded bty CRLF
BYTES CONTENTS
1-3 spaces
4-11 jobname, eg "ERCC@S'
12-18 spaces
19-26 data, eg 16/06/74
27-30 spaces
31-38 time, eg '14:53:54"'
39-40 spaces
41 device code, 'P' = plotter
'B' = binary & selectric
42 plotter code, '¢' when byte 41 = 'B', otherwise
'1' = ERCC Calcomp 936
'2' = Social Science 3¢"
l3l = 1" " 11"
'4' =-Calcomp 564 0.lmm
'S' = Calcomp 564 0.005in.
43-44 2 digit paper length requirement if >10ft or 3m, otherwise set at
’ l¢¢l .
45 delivery information.indicator
X'FF' = no information
'A' - '4', ie 65-94 (N-64) characters of user's
address informationm
46-49 spaces ‘
50-75 spaces if byte 45 = X'FF', otherwise (N-64) delivery information
characters
76-80 spaces
3. 8¢ EBCDIC 'Y' characters
Data Blocks
BYTES CONTENTS
1-2 data block count modulo 4096 - starts at 1 - in the form
P T T 7 T _1) - CRE N
a1 afathia1®2%0807 108 1 Ta | 1231280231520, 100
1, S T B T e oo
Yy | TR DU B y SR I T S
3-4
5-6
. data
79-89¢

The data may be 1, 2 or 4 bytes in length, dependent upon the next vector

type.

a. Short Vector

2 bytes - which can cope with vectors <32 increments long, in the form
P | PR | P : T 1 T
8 1fei [2%12312%121100 ar s |24 23122021 2°
i gl v 4 1, Bal vV 1 0y
y | I T | . vl | I N N
&X (2's ccmplement) AY (2's complement)

i. possibly preceded by 1 byte (value 2910) to specify CHANGE PEN STATUS
(up/down) if required prior to this move. and

e
el
.

also possibly preceded by 1 byte as a signal (value 3110) to specify
CHANGE TO SHORT VECTORS.

b. Long Vector

4 bytes - which can cope with vectors <1¢23 increments long in the form
%4 ” S. ot T P T 1T
ar. | 1| Pe | g | 29128127128 3. | 1] 2% 2% 23 2% 2k 2O
1t n “n } \ . lt 1 | 1 ' i
y I y | I N N T

AX (2's complement)

- N 1 1 1 P] T 1)
a1 % 8 [2%28 27 2® a, | 1|2%12%123122121, 20
n T | lt LI T
y 01] 1 | y [1 1 1 1

AY (2's complement)

i. possibly preceded by 1 byte as a signal (value 3010) to specify
CHANGE TO LONG VEZTORS.

In AX the pen bit indicator is

c
. i . ()
¥ raise pen before mov1ng; i ntr below
1 lower pen before moving) 0

c

o]
and in AY the “tr
0
é =
1=
¢ =
) =
2 =
3=
4 =
5 =
6 =
7 =
8 =
e =
10 =
11 =

NOTES

change pen
" "

1. Each plotter file has in

-3 -

bit indicator is

= these 4 bytes are a LONG VECTOR
these 4 bytes are a CONTROL SEQUENCE when the AX value means

to black biro

to blue

to green
to red

to ¢.1mm
to ¢.2mm
to ¢.3m
to @.4mm
to @.5mm
to (.6mm
to ¢.8mm

1 1)
"
-
"
"

new sub—file (plotter origin change)

liquid ink
[1] "

"
"
",
"
n

the first 7 bytes of DATA BLOCK 1

block count

3¢ = LONG VECTOR INDICATOR

ar. 1 | ooooo0 ar. 11 oooool
i
t t
Yy y
"Joool1110
P P,
a
T, 1110 o000 ar. 000000
b} 1
t t
Yy b4
Pa pa
T. ljolo o000 Y. 000000
i 1
t t .
Yy Yy

2. Each suB-file or pen colour change request

first 7 bytes containing

lower the pen

X = ¢

this is'a vector
= 4

AY

starts on a fresh record with the

block count

3¢ = LONG VECTOR INDICATOR

Pa Py
x. 1] BLOCK r. 1] COUNT
i i
t t :
y Yy
ooollllo
P P
ari 1] 1| o o000 ar. 1] AX
t t
y Y
Pa Py
X, 1 0 0000 r. 1] oooooo
i
t t
y y

lower the pen
AX = - ¢ for subfiles
1-11 for pen chang

CONTROL SEQUENCE INDICAT(

-4 -

Only complete 1, 2 or 4 byte groups will appear on any record - there
will be no splitting between records

On a subfile, or pen change request, or when a 1, 2 or 4 byte grouping
will not fit, the current record is padded out with the prevailing VECTOR
TYPE INDICATOR (31 for SHORT VECTORS, 3¢ for LONG)

SHORT VECTORS will be used whenever possible. 2 SHORT VECTCRS will be
used in preference to 1 long one when the move is <63 increments long.

M.D. BROWN
16 January 1976

REGIONAL COMPUTING ORGANISAIION
PLOTTER FILE STAHDARD

1.0

2.0

3.0

4.0

5.0

6.0

700

8.0

CONTENTS

Introduction
Data Structure
Bytes

Commands
4,1 Vector Commands

4,2 Directive Commands
Racords

Steps
6.1 Vector Steps

6.2 Directive Steps
Files

Programming Standards
8.1 Gemerating Software

8.2 Interpreting Software

Appendix

(V]]

10

10

10
10
1

13

Regional Juwpueing Organisation
Plottar ELL Standard
i.0 INTRIODUCTIICH
The Technical Adviscry ¥anal of the RCC set up a workiag party,
inicially to advise on the cegirability of a standard for plot files,
and subsequently co groduce a standard. This report gives the
proposed standard. Tnzs standard 1s necessarily subject to continuing

review as experience is gainsd ond new facilities implemented.

The design goals wer

'-‘
w

1. To allow pack

zges ruaning on any computer within the
Tegicn to be plot

ted on any plotter.

2. To allow files ints
be diverted to snot
distortion.

nded for a particular plotter to
p P
her plotter with a minimum of

3. To ensurz that tha format of the file is sufficiently
2 to allow plotters with advanced features to

4. To have a consistent and easily implementable format.

A file standard is not sufficient to ensure portability; there
must also be operational and programming standards. Some attempt has
been made to include these, but further work will be necessary. 4s an
example the standard does not specify what should happen if a plot
exceeds the sizs of the plotcer

2.0 DATA STRUCTURE

There is a five level hierarchy of information within the plotter
file. 1In increasing order of complexity, the five levels are:

1. Bytes

2. Commands

3. Records
4, Steps
5. The file

The plotter file consists of steps, which consists of records,
which consist of commands, which consist of bytes.

Page 3

3.0 BYTES

The basic unit of representation is the 7-bit byte. If 8-bit
bytes are sent, the most significant bit will be ignored. The
information bits within a byte are numbered from right to left, with
bit O being the rightmost (least significant) bit, and bit 6 the left—
most (most significant) bit.

In byte strings representing characters the IS0 standard
character set is used. :

4.0 COMMANDS

All commands consist of a control byts normally followed by
data bytes. No command is split across a record boundary (see below).
There are two classes of commands - vector ccmmands and directive
coumands .

4.1 Vector Ccmmands
These are commznds to draw visible and invisible vectors. Both

absolute and relative vectors are allowed. A vector command consists
of a control byte followed by from O to 6 data bytes.

&.1.1 Control Byte -

The control byte has the following form:

Bit 6 is always zero.

A-field: This is a one bit field. The vector is absolute if this
bit is one, and relative if it is zero.

V-field: This is a one bit field. The vector is visible (pen dowm)
if this bit is one, and not visible (pen up) if it is zero.

X-field: This is a two bit field containing a count cf the data
bytes that follow for the X co~ordinate of the vector.
Values from O to 3 are allowed.

Y-field: This is a two bit field containing & count of the data
bytes that follow for the Y co-ordinacte of the vector.
Values from O to 3 are allowed.

Page 4

Note: Data bytes are stored following the controel byte as X co-ordinate
data bytes, if any, followed by Y co-ordimate data bytes, if any.
4.1,2 Data Bytes -

X (or Y)=0: There are no X (or Y) data bytes. For action see note
belcw.

X (or Y)=1:

Byte |

6 0

X (or Y) co—-ordinates stored as sign in bit 6 and modulus
in bits 5 to O.

X (or Y)=2
Byte | Byte 2
13 7 6 0
X (or Y¥) co-ordinates stored as sign in bit 13 and modulus
in bits 12 to 7 and 6 to O.
X (or Y)=3

Byte 1 Byte 2 Bycte 3

29 14 13 7 6 0

X (or Y) co~ordinates stored as sign in bit 20 and modulus
* in bits 19 to 14, 13 to 7 and 6 to 0. (see § 1.1)

4.1.3 Notes - the following byte sequences have the effects indicated.

1. 00(8) Raise the pen withogt changing positionm.
2, 40(8) Raise the pen and move to origia.
3. 20(8) Lower the pen without changing positiom.

4, 60(8) Lower the pen and move to origin.

Page 5

4.2 Directive Commands
A directive command counsists of a control byte, a count byte
(containing the number of data bytes), and data bytes if appropriate.

The only exception is the null command (4.2.2.1), which has no count
or data byte,

4,2.1 The Control Byte

The general form of the control byte is:

1 nd n4 n3 u2 nl n0

The control byte for a directive always has bit 6 = 1, and nas
a 6-bit type code N.

4,2.2 Commands -

4,2.2.1 N=0, The Null Directive -

The null directive is used for padding out records. It is not
followed by & count or data bytes.

1. control byte: 106(8)

4.2.2.2 N=1, Start of File Directive =
1. control byte: 101(8)
2. count: (12 + size of account record) <76
3. data bytes:
byte 1: - override byte

= 1 plot the file even if the required
hardware facilities do not exist

#
o

abandon plotting a fiie if any
hardyyre facilities do not exist

bytes 2,3,4: maximum x extent of plot in plotter steps.

Page 6

bytes 5,6,7: maximum y extent of plot in plotter steps
bytes 8,9: number of steps/unit
byte 10: plotter uaits:

s 1| centimetres

= 2 inches

byte 11: number of simultaneous pens or linetypes
required.
byte 12: hardware character set:

= 0 ncne raquired

> 0 required type of hardware charactar
set (currencly undefined)

bytes 13-a: user name/account left justified.
(n < 76)

The start of file directive must be contained in a directive stap (see § 6.2).

4.2.2.3 N=2, Start of Step Directive -

l. control byte: 102(8)

2. count byte: 8

3. data byte 1: step number (modulo 128)
4, data byte 2: overlay byte:

= 0 non overlaid step
> 0 overlaid step
5. 'data bytes 3-5: maximum z value of frame in plotter steps

6. data bytes 6-8: wmaximum y value of frame in plotter steps

Note: This must be the first directive on the first record of the new
step.

4.2.2.4 N=3, Pen/Linetype Selection Directive -

This directive selects the pen or line type required for
subsequent vector drawing. Pen/Linetypes are numbered consecutively
from zero to (n-1), where n is specified in byta !l of the start of
file directive (§4.2.2.1).

Page 7

I control byte: 103(8)
2. count: i
3. data byte: 0-7 selects pen O to pen 7

8-127 not yet defined

4.2.2.5 N=4, Pen/Line-Definition Change Directive -

This directive carries pen/line information for those devices

that can utilise it. = R
Mmm—*e—fequa:re&-ee—eh-aage—me- It s a directive o mul-?
Hra "AHQ of f@\ ﬂ-l?h“m entries. The ‘wevmos directive s'vu«(:ces o p‘yswu\ pen d\«nje-

I. control byte: 104 (8)
2. count: 4
3. data byte I: pen type/speed

= @ - ballpoint pen

= | - ink pen

= 2 - felt tip pen
4. data byte 2: colour/tone

= @ -black

= | -red

= 2 -blue

= 3 - green

5. data byte 3: width

= ¢g-0.] om

= 1-0.2 mm

= 2-0.3mm etc.

6. data byte 4: pen number. Pen position or line type
referenced above.

The definition of this directive is subject to changes in the
details of the data bytes. The directive is used to redefine pen/line
charactaristics. The actual implementation of the raquired change will
be organised in various differsat manners depending on the acctual
hardware involved.

Page 8

4.2.2.6 N = 5, Operator Message not Requiring Intervention -

This types a message. on the operators comnsole and continues
plotting.

1. control byte: 105(8)
2. count: 1-72

3. data bytes up to 72 ISO characters to be typed

Note: No format effectors should be included in any message.

4,2,2.7 N=6, Operator Message Requiring Intervention -

Similar te 4.2.2.6. but plotting is suspended until the operator
signals it to comtinue.

1. control byte: 106 (8)
2. count: 1-72
3. data bytes: up to 72 ISO characters to be typed

Note: No format effectors should be included in any message.

4.2.2.8 N=7, dardware Character String Directive -

This is a string of characters to be plotted, and is intended
for plotters with hardware character sets. Plotters without hardware
characters may or may not simulate them.

1. control byte: 107(8)
2. count: 1-72
3. data bytes: up to 72 ISO characters to be plottad

Note: See Section 8.1.9

4.2,2.9 N=8, Hardware Character Striag Parameters Directive -

The format of this directive has aot yet been defined. It is
intended for setting up parameters such as size and orientation on
plotters with hardware character sets.

1. control bytes 108(8)

2. count: not defined
3. data bytes: not defined

4,2,2.10 9<=n<=31 Reserved for Future Use =~

These directives have not yet been defined, and are reserved
for enmhancements to the regional standard.

4,2,2.11 32<=n<«=262 Reserved for Local Use -

These directives are reserved for local use, and it is
permissitle for interpreting software to ignore them.

4$,2,2.12 N=63, End of Plot Directive -
1. controi byta: 177(8)
2. count: C

This directive must be the final directive in the terminating directive
step (§6.2).

5.0 RECORDS

A record consists of 80 bytes. The first byte is the step
number, the second the record number within the step modulo 128.
Commands may not be split across a record boundary, any unusad bytes
‘at the end of a record being padded with null directives. Records are
numbered from C and are in strictly ascending sequence. A special

catagory of record with a step number of zero and record number of @
constitutes a directive step (see § 6.2)

6.0 STEPS

A step consists of a number of plotter records, and is a
logical subdivision of the plotter file. For example, a plot file
consisting of several graphs might be divided into steps such that

each graph is a separate step. In some implementations a step may be
.a restart point.

A step may be overlaid on a previous step. In such cases the
first step should occupy the largest frame.

Page 10

6.1 Vector Steps

A vector step commences with a step directive (§ 4.2.2.3).
Each record within a step contains the step number in the record
header. Thereafter the record may contain both vector and directive
commands. A vector step may be overlaid on a previous step. In such
cases the first step should occupy the largest frame. Steps are
numbered from ! in sctrictly ascending order.

6.2 Directive Steps

Directive Steps are numbered @ and do not contain a start
of step directive. They are essentially records with step aumbar
and record number @ and contain omnly directive commands (see for
instance 54.2.2.2 and § 4.2.2.12).

7.0 FILES

The plot file may comtain header and trailer information
(such as produced by HASP). The plot information starts with a record
of 80 bytes with values @ to 79. This is used for framing the file
into records in stream orientad input systems., The second record
consists only of (4.2.2.2) a directive step holding a start of file
directive command.

8.0 PROGRAMMING STANDARDS

Programming standards are to allow the recording of standard
practices as these are found desirable through experience of various
implementations of the Plotter File Standard. No list should be
assumed to be exhaustive and implementors should check the current
status.

8.1 Generating Software

To date the following standards to be observed by software
generating plotter files are established.

8.1.1 Many interpreters will only accept vectors up to 15
significant bits (+ sign bit). Hence any larger vectors
should be generatad as a succession of such 15 bit
vectors. An absoluts vector greater than I35 bits can be
gensrated as an absolute zero (invisible) plus a
succession of invisible vectors to the required poiat.

8.1.2 The initial default setup should be assumed by any
generating software. See Appendix |.

8.1.3 Whenever steps in a plot are to be overlaid the first
step will be assumed to occupy the largest frame.

8.1.4 Each step should close by positicning forward for the
next step.

8.1.5 Each file should contain a message not requiring
operator intervention displaying user name, job name
and delivery information on the operators console.

8.1.6 Generating software should cause the same information
to be plotted on the output device, if appropriate.

8.1.7. Operatcr messages should not contain carriage control
information. It is the respomsibility of the interpreter
to format such messages.

8.1.8& A negative absolute vector should not be generated.

8.1.9 Every hardware dependent operaticn involving a pen
movement should be followed by an absoluta pen
positioning command.

8.1.10 Vectors should be representad by the smallest number of
vector data bytes possible,

8.2 Interpreting Software

Interpreting software will be as diverse as the devices available
for plotting. The following paragraphs are intanded to clarify the
action of interpretars in areas where implemencations may be radically
different, in addition to defining standards for interpreters to follow.

8.2.1 Pentype Selection

The number of simultaneous pens/line types is limited by the
number requested in the start of file directive. For example, if three
pens are requestad only pen/line types O0,! and 2 may be used. Within
this restriction any pen type may freely be selected (4.2.2.4) by the
generating software. If it is necessary to use a greater number of pen
types, one of the permitted pens must be redefined by the change pen
directive (4.2.2.5). When implementing generating software note that
most interpreters will only handle satisfactorily a small number of
simultaneous pen types (see default setup in Appendix 1).

8.2.2 Interpreting Pen Type Selection

Normally the interpreter will accept as many pen types as are
available on the hardware. However it is feasible for the interpreter
to accept a greater number, when the interprecing software must organisa
the changing of pens as different pen types are selected. In this case,
the pen select command may cause plotting to stop while the operator is
instructed to change the pen. This is not feasible if pen changes are
frequent!

If a greater number of pens are requested than the interpreter
can handle, and it is decided to plot the file anyway, it is invisaged
that all 'extra' pen types would be treated as, say, pen §.

8.2.3 Pen/Linetype Definition Change

This command redefines one of the available pens or defines
pens additional to that assumed in the default setup. It is the
business of interpreting software to organise the mapping of different
pen/linetype definitions onto the physical pens or linetypes available
on a particular device. Any operator intervention required is
organised by the interpreting software.

DEFAULT DEVICE SETU?

Software generating files to this standard and satellite software
interpreting these files to a graphic device, should both assume that
the foliowing pen/line type initial conditions apply at the start of
each file, (ref. Pen/Line Change Directive).

OQutput Device

Pen/Line Tyve Graph Plocter Tektronix VDU
9 Black biro Solid line
l Red biro Dottad line
2 Blue biro Chained line
3 Green birc Short dashed line
4 - Loug dashed line

Commands creating these conditioms will not appear in the file;
it is the task of satellite software to reset these conditions at the
start of each file if necessary.

Mg_ggaﬁeg MWMpecT &> FEP

I'\ s DIRECT
@ LOﬁfN\
@ Node dalta

© re.je dod wessage

DI ™ Man;.'os

) en | en grrl,v, o) bt >c9 el ;&)‘%J
Len | e J] mek das 1
L{-:N}‘F_,‘fs‘J ' {LE@P v«l’% NJ:J}J meesage 4,\
[LEN ¥ Spare :L—)’;;t‘- ,,j
[Len q\’ e "r,‘“ pffé’a ‘;%:,,;‘) hxt

Yué!\l N || wr ommands

TCP Action codes on a SETMODE call

16
l?’18 19
20

21

22
23

End of setmode sequence

If Byte 2 = § then echoing off, else on
Set page length to byte 2 lines

Set line length to byte 2 chars

Bulk 'getmode'. Returned as "ITP control +
setmode" transfer ‘

Set CR char to byte 2

ESC

DEL

CAN

If byte 2 = @# then "binary input mode" off, else on
Set tabstops, seven values in bytes 2 - 8
Graphical o/p mode omA;m

Lower case input allowed

Turn off graphmode, binary input mode, lower mode
Set number of pads to byte 2 (=N nulls after CR)
Peggle video mode onfatf (;aw¢ s .23)
Alz::l,em ("k& W)

Not used at Kent. NOP's

Preset input buffer. Byte 2 = count.
Bytes 3 on = chars to be loaded into i/p buffer..
Use for em 'open'

Byte 2 = ¢ then tabs are expanded into spaces on
i/p, else tabs are sent as themselves to host.

Set all user options in one go - bulk setmode
Reliable video mode. Byte 2 = @ for off, else on

N.B. setmodes can be strung end to end within one transfer if
so desired. No terminator is required, since the TCP
effectively appends a @ byte to your transfer.

Bulk

setmode/getmode variables

Byte 2

Byte 3

Byte 4

Byte 5
Byte 6
Byte 7
Bytes 8 - 14
Byte 15
Byte 16
Byte 17
Byte 18

Bytes 19 - 34

preceded by a 22 for setmode

not used
Echo flat 1
Graph mode 1
Lower mode 1l
Binary i/p mode
7 Not used
Plon. A ((’—“—m)
Not used
Video mode 1
Not used
Hardware tab i/p mode 1
Raw mode 1 = on

Not used

Flags 1.

on
on

N

Flags 2.
= On

DWW O Wy W wwww
NS WS s wNYHS

Pad count

don't echo

1l = on

'Not used’
bits unde-
fined'on
> getmode.
Masked out
on setmode

-

Spec says physical line number - in fact it is

undefined

Linelength

Pagelength

Undefined (in fact it is always 1)
Tab vector 7 bytes

CR char

ESC char

DEL char

CAN char

Raw mode mask (128 bits)

Least sig bit byte 19 for NUL (2272)
Most sig bit byte 34 for DEL (177)
bit = 1 means treat as line break char.

If B:6 of byte 2 = ¢, this mask may be
omitted on a bulk setmode.

Use of Raw Mode

Raw mode is selected by setting B:6 of byte 2 in a bulk
setmode (action code 22). Bytes 19 - 34 of the setmode define
a 128 bit mask, one bit per ascii character. Setting a bit to
@ indicates that the character corresponding to that bit posi-
tion is to be buffered on input and not immediately sent to the
host. Raw echo will be performed by the TCP, but no transla-
tion will be performed - e.g. TABs will not be expanded into
spaces. When the user types a character whose corresponding
bit in the mask is set to 1, all buffered input together with
that character will be sent to the host. The "line-break"
character will not be echoed by the TCP.

The maximum input line which can be buffered is 120 charac-
ters. Should the user type 120 consecutive non-line-break
characters, the TCP will send the buffer to the host.

To avoid problems in some ITP implementations, CR is mapped
into CR+128.

The INT: character is recognised at all times. This offers
the user some protection against programs which "die" in raw
mode. The character can be changed via byte 16 of a bulk set-
mode if programs are really desperate.

Should a program rely on multiple line-break characters, it
should be aware of ITP goahead restrictions. If the TCP runs
out of goaheads it will reject user input and eventually force a
"console failure" disconnect.

All output from the host is passed to the user with no
translation. When the user inputs a line-break character,
further echoing of non-line-break input is deferred until the
host has responded with output. This guarantees the state of
the user's VDU for programs such as screen editors.

A. L. Ibbetson
April 1981

