EMAS 2900 IMP NOTE
No: 1
Date: 10/11/78

IMP Call Sequences

The pre-call sequence is first to odd-align the stack front and then to
store the current LNB at SF (this SF to be the new LNB, i.e. in the called
routine) . The stack front is further raised by 4 words for the link
descriptor (placed in old LNB+1,2 by the CALL) and for the called routine’s
PLT descriptor, to be placed in LNB+3,4 by the post-call sequence. The
purpose of odd-aligning the stack front is so that the link and PLT
descriptors are double word aligned. This is all done by the single
instruction

PRCL 4

Next the parameters are stacked (if required) and LNB is raised by 5 plus
the number of parameter words to point to the new display (starting at the
stack front as it was after the odd-aligning but before the storing of LNB).

Programmers should note the effect of the pre-call aligmment when designing
routine headings. For example

routine ONE(integer A, integername B)

results in the descriptor to B being across a double-word boundary and
requires 2 core cycles to fetch it.

routine TWO(integername B, integer A)

is more efficient.

XNB is set to the called routine’s textually surrounding routine for
internal calls.

Finally the CALL is executed, with operand either

(i) for an intarnal routine: N where N is offset in halfwords
from current PC

(ii) for an external routine: @(XNB+N) where XNB+N has a descriptor
descriptor which points to the
code descriptor in the called
routine’s PLT.

The PLT is conceptually an array of code descriptors for the routines in
the module. An external reference is a descriptor descriptor to one of
these (i.e. a descriptor which points to one of these). The loader fills in
the addresses appropriately.

To summarise, the CALL instruction loads DR with the operand descriptor
(if the operand is indirect). It also places a link descriptor at old
LNB+1,2. LNB has been set up by the pre-call sequence to point to the new
display.

For external routines, the post-call sequence (in the called routine) is
to store DR, which has a descriptor to the descriptor in the called
routine’s PLT, at LNB+3,4, having used INCA to set the address in DR back to
the start of PLT. That is, LNB+3,4 have a descriptor to this routine’s PLT.

IMP1-1

So far,

INCA =N where N is the offset of this routine’s
descriptor from the start of PLT (omitted if
N=0) .

LDB 0

set bound to zero now, but later set to offset

from CST of ON and diagnostic block patched
(ORed) in at end of routine.
STD (LNB+3) and 4.

LNB+4 has the address therefore of PLT (GLA), and this is loaded to XNB

subsequently as required (e.g. for referencing own variables and for making
further copies).

previous LNB

0 ‘ 1 2 3 4 5

! LINK PLT Params .

LNB

The last bit of the stored LNB is used to indicate that SF was

increased by 1 in the pre-call sequence - it should be ignored when
chaining back in dumps, etc.

P.D. Stephens

IMP1-2

EMAS 2900 IMP NOTE
No: 2
Date: 28/8/78

ZNAME Parameters in IMP

The general parameter ZNAME allows any entity to be passed to the called
routine. This facility is used in the sequential and direct access routines
but is not a user facility. It is possible to find out quite a lot about
the actual parameter by examining the descriptor.

For variables as actual parameters the descriptor is a scaled vector
descriptor with the address field pointing at the leftmost byte of the
actual parameter. The size of the item can be obtained from the size code
of the descriptor, as follows:

byte

half (care needed with this - not supported by hardware)
integer or real (32-bit)

long integer or long real (64-bit)

long long real (128-bit)

SNousw
nnuua

The bound field gives the type as follows:
1 = integer
2 = real :
'3 = Boolean (ALGOL(E) only)

For structures (i.e. strings and records) an unscaled byte descriptor is
passed with the bound field containing the size of the entity in bytes.

Having decoded the descriptor, the program can store items back into the
variable using IMP mapping functions; i.e.

BYTEINTEGER(ADDR(namE)) 2= e
STRING(ADDR(name)) = ...

as appropriate.

P.D. Stephens

IMP2-1

EMAS 2900 IMP NOTE
No: 4
Date: 20/3/79

Interactive Debugging in IMP

DEBUG is an interactive debugging aid for IMP programs on EMAS 2900. It
includes commands for examining and modifying data and hence changing the
course of a computation, for setting breakpoints, and for the conditional
execution of DEBUG commands. The breakpoint scheme makes it possible for
the user to gain control during program execution and then specify any
further action he wishes. The conditional execution facility allows DEBUG
commands specified by the user to be stored, and executed only when certain
conditions related to the running program are satisfied, e.g. when a given
line number in the program has been reached.

In general, the intention has been to allow the user to intervene in the
execution of the running program in a way consistent with the effect that
would be produced by additional source statements in the program. Hence it
is only possible to examine or change variables which are in scope when the
DEBUG command is executed. However conditional commands may be issued at
any time regardless of whether any variables they refer to are currently in
scope. :

Establish access to DEBUG by first typing:
Command : OPTION(SEARCHDIR=CONLIB.GENERAL)

Then compile the program with PARM(DEBUG) set. Additional parms may be set
with the exception of NOTRACE, NODIAG and OPT.

When the program is run, DEBUG will print the current line number and then
prompt for a command:

DEBUG n: (where n is the index number of the command — see Kill)

The user can then input one or more DEBUG commands. Commands take two
forms, simple and conditional. Simple commands, which consist of a letter
followed, if appropriate, by a parameter, are executed immediately and then
discarded. Conditional commands are stored, and only executed when the
specified condition is satisfied. The program will only resume execution
when the command R (see below) is given.

Conditional commands take the form:
<simple command)> .IF {conditional expr>
or, for typing convenience,
<{simple command> @ <{conditional expr>
The following simple commands are available:
A <variabled>=<value> — Assign the value to the variable; it is not

possible to assign a value to an
unequivalenced name type variable.

DMP4-1

B - Set a breakpoint; when executed, accept a
DEBUG command from the console. B is only
used as part of a conditional command.

D <addr>,{length>,{formatd Dump an area of the virtual memory of
<{length> bytes, starting at <addrd> to the
console. <format> may be C for a character
dump or H for a hexadecimal dump. The user
must have determined the relevant virtual
memory addresses prior to the execution of

the program.

F - Print a map of the object file, indicating
the starting line numbers of the routines
and blocks it contains.

H A ~ Halt execution and return immediately to
command level.

I - 1Ignore all stored conditional commands and
continue execution of the program in
non-debug mode.

K <number> - Kill the specified stored commands. The
parameter can include several command index
numbers or ranges of command index numbers
separated by commas, e.g.

K 2,4,6-8

Note that the command index number n is
given in the prompt "DEBUG n:" current wher
the command was input.

M - Execute ZMONITOR.
P <{variable> - Print the value of the named variable.
R - Resume execution of the program. DEBUG will

force a break at the next line unless at
least one conditional command is currently
stored.

S <line no>,<{count> - Print <count> lines of the source listing
starting at line <line no>. A prompt is

issued for the name of the compiler
generated listing file.

Three types of conditional expression are available; they may be used singly
or in combination:

<simple command> @ {conditional expr>
or <simple command> @ {conditional expr>&{conditional expr>

or <simple command> @ <conditional expr>&{conditional expr>&{conditional
expr>

IMP4-2

Only one of each type can be specified in a single command. The three types
are as follows:

C=<variable)

- This is satisfied whenever the specified variable
has its value changed. If the variable is
reassigned its current value, this is not detected
as a change.

R=<routine/block> - This is satisfied when the current line being

executed lies within the specified routine or
block. For blocks, the starting line number should
be given; for routines, functions or maps, the name
should be given. Note that this condition is not
satisfied when the current line lies within a
routine or block which itself lies within the
specified routine or block.

L=<line specd> -~ This is satisfied when the current line being

executed lies within the line spec. The line spec
is defined below.

<line spec> : <1ine>[,<1line specd>]

<{1line> : <{line expr)> ! <line range>

<{line range> : <line no> - <line no>

<line expr> : +<lize 20> ! -<line no> ! *<line no> ! #<line no>

The use of these is explained below:

L=n

L=n-m

L=4n

L=-n

Satisfied when the current line number is n.

Satisfied whenever the current line number lies between n and
m.

Satisfied when the line number equals the current line number
plus n (i.e. the line number current when the command was
given + n)

Satisfied when the line number equals the current line number
minus n.

Commands involving these expressions are permanently stored. However two
temporary forms are provided which cancel themselves once satisfied:

L=*n

L={#n

Satisfied when the current line is encountered for the n’th
time. This is intended for skipping through an iterative
sequence without stopping at every iteration.

Satisfied when the n’th executable line after the current
line is encountered. This allows control to be returned to
the user after a test and branch operation, the result of
which is not known in advance.

IMP4-3

Examples

Several examples of command lines follow:

DEBUG 3:P VAL @ C=VAL & R=COMBINE — Print variable VAL, whenever its
value changes within routine
COMBINE.

DEBUG 1:A S=""HEADING" - Assign "HEADING" to string variable
S.

DEBUG 4:B @ L=10-20 & C=JIM - Break whenever the value of JIM

8.

changes and the current line lies
between 10 and 20.

DEBUG 8:R : - Resume execution of the program.
Notes
1. A newline terminates a command line unless it is part of a string (i.e.

preceded by a quote). Spaces are not significant unless enclosed in
quotes.

The index number n printed in the prompt DEBUG n: is incremented only if
a storable (i.e. conditional) command is specified. When commands are
Killed, the index number is unchanged except for the case in which all
commands are Killed, when its value returns to 1.

If more than one C=<variable> commands are given for the same variable,
then the same R=<{routine)> expression (if used at all) must be used in
every case. This ensures that a single copy of the variable’s value is
held and hence avoids inconsistencies.

All the simple commands, with the exception of K (kill) and F (file
map), may be used with a conditional expression to form a conditional
command .

Commands B (break) and R (resume) operate by setting a-single switch.
Hence if a B conditional command succeeds but is followed by am R
conditional command which also succeeds, the effect of the B is lost and
no break occurs.

Except in line specification, a number may either be expressed in
decimal or hexadecimal form, e.g. 32 or X20.

At present, users should only DEBUG one object file at a time. Thus a
program and an external routine which it calls must not both be compiled
with PARM DEBUG.

When a command such as B @ C=JIM is given, the condition is evaluated
every time a line of the program is executed. In this case the
evaluation involves a search for a declaration of the variable JIM; if
it is not found, this is treated as a fault. In addition if there is
more than one declaration of JIM in a program (or in the line range
specified), the first accessed is used subsequently and the second,
whenever encountered, is treated as a fault. Hence to avoid numerous
error messages it is best to give a qualifying L= or R= expression with
any C= expression.

IMP4-4

9.

10.

Variables of all types except records may be referred to in Assign and
Print commands or C= conditions. However, array elements must be
specified with constant subscripts.

For every line of a program compiled with PARM DEBUG, a call is planted
to the DEBUG routine which, consequently, is called many times in the
execution of the program. To minimise overheads it is advisable to
reach that part of the user program which is of interest before setting
up several stored commands. In particular, repetitive operations like
the initialisation of arrays become very slow if several stored commands
have their conditional expressions evaluated on every line executed.
However if only a single command of the form B @ L=n is stored, this
will incur minimum overheads.

Sandy Shaw

IMP4-5

EDINBURGH REGIONAL COMPUTING CENTRE
February 1982

IMP80 om EMAS 2900: Differences from IMP9

Contents
Page
1. Compiler name 2
2. Lower case input 2
3. Continuation 2
4. Comments 2
5. == and ## 3
6. Available types 3
7. Keyword and operator altermatives 3
8. own initialisation 3
9. Switch labels 4
10. Cycles 5
l1. start/finish blocks 6
12. Coumstants 7
13. Strings 8
15. Records 9
15. external items 10
16. Procedures as parameters 11
Introduction

This document is intended for users of the programming language IMP on EMAS
2900 who wish to know how the new version of IMP, IMP80, differs from the
current version, IMP9.

It should be noted that IMP80 on EMAS 2900 differs in certain respects from .
other implementations of IMP80, and that this document should not be trusted
as far as other implementations are concerned.

Some of the features of IMP80 described below exist in IMP9. They are
included here either to help explain some other feature or for completeness.

D{P80 Differences

1.

2.

4.

The command invoking the compiler is IMP&Q, not IMP.

Except within single or double quotes, lower case text is not
distinguished from upper case. Thus

Zinteger a and ZINTEGER A

are both acceptable and treated as eqdivalent. Note that
Zinteger Item la

is not distinguished from
ZINTEGER ITEMIA

The convention in this document is that IMP keywords are lhnderlined
and given in lower case, with identifiers in upper case. Thus:

integer A

Continuation of statements. Statements can be continued on the next
line by terminating the current line with c. The ¢ is not required
if the break comes immediately after a comma. (This applies to all
statement types, not just own array initialisatioms.)

Examples:
if A=23 and K<=l4 then ¢
L=17 and M=18

integer A, 8, C, D, E,
F, G, H, I, J

A blank line following a line terminated by ¢ 1is ignored.

Comments. A semi-colon does not terminate a comment - it can only be
terminated by a newline. Comment statements can be continued by use
of ¢, OR BY BEING BROKEN AFTER A COMMA (see 3 above).

A new type of comment is introduced; it is delimited by curly
brackets, ‘{’ and ‘}’. Such a comment can appear between atoms of a
statement (an atom is an identifier, constant, keyword, operator or
delimiting symbol).

Example:
A(I{month}, J{salary}) = 927.4

The comment text can contain any symbols except ‘}’ and newline. The
closing ‘}’ can be omitted, in which case the comment is terminated
by the next newline.

{eee} comments are particularly useful for explaining owm array
initialisations.

IMP80 Differences

5. == and ## (or \==)
The == operator can be used in conditioms:

Example:
EA--B chen o0 00900

The condition is only true if A and B refer to the same variable;
i.e. address and type equivalence is required. The operator ## (or
\==) can be used to express the inverse condition:

£A #4’ B tmn 6008000

Note that == and ## can only be used to compare references to scalar
variables, not to arrays.

6. Available types

byte integer

half integer

integer

all of these can be
followed by array or
Name or array name

L)
B
Nt N N N N s N N

A half integer variable requires 16 bits (2 bytes) of storage. It
holds an unsigned integer value, in the range 0-65535.

The statements reals long and reals normal are not available in
m™P80.

7. Keyword and operator altermatives

! or | for comment

fn for function

const for constant

byte for byte integer

half for half integer

\ for ** (real expomentiatiom)

\\ for *%** (jinteger exponentatioa)
< or \= for #

~ for \ (logical "not’)

\== for ##

8. own initialisation

a) The statement

own integer A

declares an own integer variable A and initialises it to 0 (the
default value when no value is specified).

IMP80 Differences 3

The statement
own integer X, Y, Z=4

declares X, Y and Z and initialises them to 0, O and 4

respectively. In IMP9 this statement causes X, Y and Z to be set
to 4, 4 and 4., Note the difference!

It is bad practice to rely on default initialisation values,
especially in IMP80, where existing implementations dg not have
the same defaults. The statements above should have zeen given

as

ovn integer A=0
own integer X=0, Y=0, Z=4

These are wunambiguous , whichever version of IMP is used.

b) For convenience, constants used in own array initialisations can
be followed by a repeat count, in brackets. This repeat count
can be given as ‘(*)’ where * represents the number of remaining
array elements to be initialised.

Example:
own integer array VALUES (1:50) = Zc
17, 4, 6(3), 9, 22(17),
100(*) {all the rest}

This also applies, of course, to constant and external array
initialisation.

c) Own arrays can be multi-dimensional. As before, the bounds must
be constants or constant expressions. The order in which array
elements are assigned the initialising values is such that the
first subscript changes fastest. Thus, for an array A(l:2,1:3),
the order of assigmment would be A(l,l), A(2,1), A(1l,2), A(2,2),
A(1,3), a(2,3).

9. Switch labels
Consider the following:

switch LETTER(a’:’2")

! Deal with the vowels here
LETTER(*):
! All the rest (i.e. the cousonants)

Instead of using a constant to specify a specific element of a swicch
vector , * can be used. It represents all the elements of the switch
vector not defined elsewhere. Note that it does not have to come
after the specifically defined switch labels.

IMP80 Differences

10.

Cycles

The permissible forms of cycle are these:

a)

b)

c)

d)

cycle (endless cycle)
régeat
while condition cycle

repeat
czcle

repeat until condition

for var = init, inc, final cycle

regeat

The unconditional instructions continue and exit can be used inside a
cycle of any type. continue causes a branch to the next repeat; exit
causes a branch to the statement following the next repeat.

Notes on the cycle types:

b)

c)

d)

while cycles are executed zero or more times. When the cycle
body consists of a single statement, the form

statement while condition
can be used.

Example:
SKIP SYMBOL while NEXT SYMBOL=’ °*

The IMP9 form while condition then statement is not allowed.
until cycles are executed one or more times. The simple form is

statement until condition
The IMP9 form wuntil condition then statement is not allowed.

for cycles: the cycle variable must be of type integer; it should
not be changed explicitly within the cycle body; (final-init)
must be exactly divisible by inc; the cycle body is executed
(final=init)//inc + 1 times or zero times, whichever is the
greater; if the cycle body is not executed the cycle variable is
set to be unassigned. It follows from this that a cycle starting

for I=10,1,8 cycle

will not be executed, but it will not be faulted either. This
differs from IMP9, where the equivalent form

cycle I=10,1,8

would be faulted.

IMP80 Differences 5

The simple form of for is

statement for var = init, in¢, final

Example:
A(I)=0 for I=20,-1,1

[Going down in steps of =1 to l happens to be more efficient
on EMAS 2900 than the more usual 1,1,20 form.]

11, start/finish blocks

The general form is

if cond 1 then start

else iﬁ cond 2 then start
else if cond n then start
finish else start

h

Notes

* Every start matches with the next occurring finish. If they
enclose only one statement then they can be replaced by that

statement.
Example:
if cond 3 then start
statement

finish else 1if .e.ve.s

can be expressed as
if cond 3 then statement else if
* then start can be replaced by start.

* if can be replaced by unless, the effect being to negate the
condition following.

* Any of the statements starting "finish else'" in the general form
can be omitted, including the last one.

* If the condition controlling a start/finish block can be
determined at compile=-time then the IMP80 compiler may do so, and
might not generate code for statements that cannot logically be
executed. This is known as "conditional compilacion'.

IMP80 Differences

. 12.

Constants

a)

b)

An integer comnstant of any integer base from 2 to 36 may be
specified. The form is

ba se_constant

where base is a decimal value and coustant 1s an integer
expressed with respect to the base. The letters A, B, ..., Y, Z
can be used to represent the digits 10, 11,, 34, 35 in the
integer.,

Examples:
2_1010 ten in binary
8 12 ten in octal
16_A ten in hexadecimal

An altermative form is provided for binary, octal and hexadecimal
constants:

B‘1010° ten in binary
K12’ ten in octal
X’A’ ten in hexadecimal

Named constants

Variables of all types can be given the attribute constant. This
can be considered a special form of own variable, which cannot be
changed from its initial value. However it is probably better to
consider such variables as ""named constants", since 1) this
accords with their intended use, i.e. for replacing arithmetic or
string constants within code by meaningful names; and 2) they do
not have addresses, unlike other variables (but like comstants).

Wherever a constant is permitted in an IMP80 program, a "comstant
expression” can be used instead. A constant expression is one
which can be evaluated at compile-time, 1i.e. its operands are
constants or named cConstants.

Example:
string (73) DELIVERY

can be replaced by

constant integer MAXNAME=20, MAXADDRESS=52
string (MAXNAME+l {for the newline}-+MAXADDRESS) DELIVERY

Example:
constant integer NO=0, YES=l,
INPUT=1, CALCULATION=2,
OUTPUT=3
switch PHASE(INPUT:OUTPUT)

.

->PHASE(OUTPUT) if DONE=YES

PHASE(OUTPUT): ! Now print the results

.

IMP80 Differences 7

13. Strings

a) The keyword string may always be followed by a length
specification.

Thus string(10)array name
and string(255)name

are permitted.

In EMAS 2900 IMP80, no use is made of the maximum length
specification for string name and string array name variables.

[In other IMP80 implementations, however , a string name variable
must have a maximum length specification and can only refer to
("be pointed at") a string variable of the same maximum length.
The forms

string(*)array name
Strina(*)name e 0000 c0 00 e

are also provided, however, to enable declarations of reference
variables which can point at any string variable.]

b) The string function FROMSTRING is remamed SUBSTRING.

¢) A string resolution of the form
S => (A).B

succeeds in IMP9 only if string S starts with string expression
A. In IMP80, however, the resolution is interpreted as being

equivalent to S => JUNK.(A).B where JUNK is a "hidden" string
(255) variable; that is, the resolution will succeed if A appears

anywhere wi chin Se.

When converting an IMP9 program to IMP80, the foliowing
translation is recommended:

if S © (B).C then ... in DP9

becames if S -> NS1.(B).NS2 and NS1="" then C=NS2 and ...
in IMP8O

[NS1 and NS2 are new string (255) variables]
This translation is still valid when che‘mP9 statement 1is
if s = (B).s
i.e. when C is S,

Unconditional resolucions can ﬁomally remain unchanged; they
might succeed in IMP80 where they would fail in IMP9, but this is
not significant unless you are expecting them to fail.

IMP80 Differences

14,

Records

a)

b)

The syntax of declarations in IMP80 differ from those in IMP9.
They are of the form

record (formac) ident, ...

record (format) array ident, ...
record (format) name ident, ...
record (format) array name ident, ...

"fomat" is either the name of a record forumat previously

described, the name of a record previously declared, or the
actual record format itself.

Example:
record format RF(integer I, J, K)
record (RF) R
and
record (integer I, J, K) R

are both valid and have the same effect, except that the first
version declares a record format with identifier RF, which can be
used elsewhere, clash with other identifiers, etc. Either of the
above forms could be followed by the statement

record (R) P

which would declare a record with the same format as that of
record R.

To summarise: the keyword record in IMP80 must be followed by the
keyword format or by a bracketed format or format reference or
record reference.

{This syntax change can cause difficulties when translating IMP9
programs: a routine spec such as

routine spec NAMEl(record name NAME2, ...)

must now be converted to

routine spec MNAMEl(record (FORM2) name NAME2, ...)

The record format FORM2 is presumably declared somewhere in the
program, since a record of this format is required in order to
call che routine; but it might not be in scope at the routine
spec statement, and may have to be moved so that it is.]

record spec statements are not allowed in ITMP80.

The syntax of record format statements has been extended to
permit alternative formats, i.e. to enable all or part of a
record to be interpreted in different ways.

Example:
record format RF(integer A or byteinteger B3, C, D ¢

or long real E)

record (RF) R

MP80 Diifferences 9

The record R can be considered to consist of an integer or three
byte integers or a long real. Each alternative starts at the
same address. Thus it follows that in

record format RF2 (byteintegerarray A(0:10) or ¢
string(10) S)

record (RF2) R2

R2_A(1) holds the ith character of string R2-S.

Note that all the sub=fields in a record format must have
distinct identifiers.

In the first example above, the three alternatives were of
different sizes. This is permitted: the alternatives have
padding. bytes appended to them to bring them up to the size of
the largest., Thus when calculating the size of a record, use the
size of the largest alternative.

When only part of a record is to have alternative formats, the

alternatives must be bracketed within the record format
statement.

Example:
record format RF3(integer TYPE, real RATIO,

(byte integer array A(1:20) c
or string (10) S ¢
or record (RF2) DATA),

string(*) name SN)

More cthan one set of alternatives can be given within a single
record format; in addition, they can be nested. Redundant
brackets round altarnatives are allowed.

¢) Records can contain records. The format of such a record must
have already been defined, or be explicit. [A record clearly
cannot contain a record with the same format as it itself has.]

Records can contain multi-dimensional arrays of fixed bounds, of
any type.

Records can contain record names. The format of such a record
name can be the same as that of the record containing it; thus

record format RF4(integer X, record (RF4) name NEXT)

is permitted.

15. extermal items

a) The IMP9 keyword extrinsic is replaced by external ... spec .

Example:
extrinsic integer array A(1:500) in IMP9

becomes

external integer array spec A(1:500) in IMPS0O

IMP80 Differences

»6.

' External variables can be initialised, like own variables, in

declaration statements, but not in specification statements.

Example: :
external integer array A(1:500) = 25(10), 14(72),
16(22), 63(*)

b) External variables or procedures méy be given an alias. The form

alias "..."

can follow the identifier name, in declaration statements or
specification statements.

Example:
external real function spec SIN alias "MATHSDSIN"(real A)

The string constant specifies the string to be used for extermal
linkage (i{.e. the external reference). From within the program
the item is referred to by its identifier, in the usual way.

Procedures as parameters

When a procedure has a procedure parameter the specification of the
latter is given in the parameter list, not in a subsequent spec
statement.

Example:

routine X(integer Y, routine Z(real A), string (10) S)

John M. Murison

IMP80 Differences 11

