EDINBURGH REGIONAL COMPUTING CENTRE

EMAS 2900 SERVICE NOTE

No: 1 (versiomn 5)
Date: April 1980

Conversion to EMAS 2900 for 4-75 Users

N.B. THIS NOTE REPLACES SERVICE NOTE 1 DATED AUGUST 1979.

Introduction

This note is intended for existing users of EMAS on the 4-75 who are
planning to move to EMAS 2900. It primarily concerns differences in the
appearance of the Subsystem, but other areas are mentioned where relevant.
It reflects the state of the System as running on the ERCC 2970 at the time

of writing. More up~to-date information can be found in the ALERT and HELP
information.

Essential background information

It is assumed that the reader has access to

* EMAS 2900 User’s Guide, Second Edition, January 1980

* EMAS 2900 Information Card, Third Edition, February 1980

* For IMP users, the IMP Language Manual, and particularly its Update 1
(February 1978)

Design intention

The user interface has been based on that used for EMAS on the 4=75. The
re-implementation for ICL 2900 Series computers has been used as an
opportunity to tidy up some of the inconsistencies in the command language,
in the light of experience of the problems which users have encountered on
the 4~75. The intention is that it should be possible to carry out all the
same operations - often using identical commands.

The rest of this note should be read in conjuction with the EMAS 2900 User’s
Guid (-9

Chagter 1.

File names are comnstructed as on the 4-=75 except that both file names and
partitioned file member names can be up to 11 characters.

SERV1-1

Chapter 2

The device code .TT is no longer valid. In its place the more general forms
.IN and .OUT must be used. They refer respectively to the current primary
input and output. For foreground sessions these are normally both the
interactive terminal. Hence:

IMP(A,AY, .OUT)

Use HELP(DEVICES) to obtain an up-to-date list of output devices.

Chapter 3

When logging on, respond to the "HOST" prompt with "2970" or "2980", not
with "EMAS".

Chapter 4

Note the distinction between SS# and T# files. Note also that the name of
the default compiler listing file is T#LIST.

Chapter 6
The command FILEANAL is replaced by ANALYSE, which takes three parameters:

ANALYSE (file, option, out)

See page 6-1 for details.

COPYFILE becomes COPY.

Chapter 7

The distinction between Character files and Data files is more significant
on the 2900. In particular the text editors only operate on Character
files. The provision of a format "C" in DEFINE makes it possible to
generate Character files as output from a FORTRAN program.

The first parameter for DEFINE is now an integer; hence:

DEFINE(3,FILEAB) not DEFINE(FT3,FILEAB)

Note that DDLIST is replaced by DEFINE(?).

SERV1-2

Chapter 11

The program loading mechanism is significantly different. However, the
majority of users will not be greatly affected,

INSERT replaces INSERTFILE. It must be called explicitly for object files,
other than main programs, before they are first used.

The function of APPENDLIB is now replaced by a facility provided by the
OPTION command. Briefly:

APPENDLIB (CONLIB.GRAPHICS) becomes
OPTION (SEARCHDIR=CONLIB.GRAPHICS)

There is a new command ALIAS which makes it easy to modify the names of
commands.

Chapter 12
The first 31 characters of entry names are significant.
TESTINT is replaced by INTERRUPT.

SSINFO is replaced by two functions UINFI and UINFS.

Chapter 16

The implementation of BACKSPACE is incomplete. In the case of Character
files there is no restriction. In the case of Data files consecutive calls
of BACKSPACE are faulted.

Chapter 17
The OPTION command provides more facilities than its counterpart on the

4=75. In particular it replaces USERLIB, APPENDLIB and REMOVELIB. See page
17-5 e

Command changes

The list on the next page gives the names of 4~75 EMAS commands, their EMAS
2900 equivalents (where different) and an indication of which commands are
significantly different on EMAS 2900.

SERV1-3

EMAS 4-75
command

EMAS 2900

equivalent

| Significant |
| differences |
(1f different)|

Notes

ACCEPT
ALERT
ALGOL
APPENDLIB
ARCHIVE
CHERISH
CLEAR
CONCAT
COPYFILE
CPULIMIT
DDLIST
DEFINE
DEFINEMT
DELETEJOB
DELIVER
DESTROY
DETACH
DISCARD
DISCONNECT
EDIT
FILEANAL
FILES
FINDJOB
FORTE
HAZARD
HELP

IMP
INSERTFILE
LIBANAL
LINK
LIST
LOOK
METER
NEWPDFILE
NEWSMFILE
OBEYFILE
OFFER
OPTION
PARM
PASSWORD
PERMITFILE
PERMITLIB
PROJECT
QUEUES
RECALL
REMOVEFILE
REMOVELIB
RENAME
RESTORE
RON

SEND

STOP
SUGGESTION
TIDYLIB
USERLIB

USERS

—— - — o G - D @it T e Gt mmn D D Gy G S e . G G MGE G CHT MR HE GWD S Ghm T G S N mmn — ey S Gned it S G T GDE G — . Gt —— D G o ncs e |— ——

OPTION

COPY

DEFINE(?)

DELETEDOC

ANALYSE

DOCUMENTS

INSERT
ANALYSE

OBEY

PERMIT
PERMIT

DOCUMENTS

REMOVE
OPTION

TIDYDIR
OPTION

SERV1-4

— s D Y o Gt TS —— e N Gm S Gy Sy WD TED S G D S GEm S G MO et GO GRS Gmme THE G R A VP MM GND n . G G SRS m— — D ST AED D D TR Gee — — — — e w— | —

See Chapters 11 and 17

See Chapter 16

Changes in language

See Chapter 17

No direct equivalent

Not available

See Chapters 11 and 17

See Chapters 1l and 17, and
command NEWDIRECTORY

R.R. McLeod

EMAS 2900 SERVICE NOTE
No: 2 (revised)
Date: 18/6/80

Transferring Files between the 2970 and 2980: TO80 and TO70

The commands TO80 and TO70 are available for tramsferring a user file
from one mainframe to another. If it is a character file it is dispatched
immediately along communications lines to the target machine. Otherwise it
is sent along communications lines as a background job, so that in due
course a line printer report of the execution of the job (on the target
machine) will be received. There is no restriction on the type of file
which may be transferred, but the size of the file cannot be greater than
1023 Kbytes.

Establish access to the commands as follows:

Command : OPTION(SEARCHDIR=CONLIB.GENERAL) (2970)

Command : OPTION(SEARCHDIR=ERCLIB.GENERAL) (2980)

There are two forms of the command: TO70 and TO080, where the suffix.
indicates the target mainframe. The parameters for both commands are as
follows:

Coumand : TOxx(file, newowner .newfile, back, overwrite)

file - - the file or partitioned file member to be
transferred (may belong to another user so
long as read access is permitted).

if newowner is omitted the owner of the
process issuing the command is used. If
newfile is also omitted the file is given
the same name on the target machine.

newowner .newfile

back - the background password of the receiving
owner on the target machine.

overwrite - OVERWRITE may optionally be specified: if
file "newfile" already exists in the target
machine process, it will then be
overwritten.

Please contact your local Advisory Service if any difficulties are
encountered in using the above facilities.

A. Shaw

SER2-1

EMAS 2900 SERVICE NOTE
No: 3 (revised)
Date: 10/6/80

Accounting and Charging Routines

These routines are held in object file ACCNTS.PDCHARGE_CHARGEY on the
2970 and 2980; the corresponding source file is ACCNTS.PDCHARGE_ CHARGEnS
(2970 only).

The routines are described below.

externalroutine CHARGES (test)

This routine takes an optional parameter, either a specific username or
the word TEST; in either case a test run is implied. The effects are
described below.

If no parameter is given, CHARGES reads and clears the file index
accounting information for every accredited user in the System. The
information read is put into a store map file called JUSE which is then sent
to the JOURNL process via the SPOOLR JOURNL queue.

Before CHARGES does this, however, it makes use of the file created for
JOURNL to update a weekly accounting file and a "cumulative use" file.

The current accounting week is established and a file for the week’s
accounting is created unless it already exists. The form of the file name
is A29nnmmmn, e.g., A2980JUN2.

The format of the file is as follows:
(1) "ddmmyyddmmyy"
the dates (inclusive) of the accounting week
(2) #m dd/mm/yy

n specifies the charge code 1, 2, 3, 4 ceceee
dd/aom/yy gives the date on which the charges following were incurred

(3) hh.mm.ss AAAAnn ppp

hh.mm.ss is the time of day at which the charge was calculated
AAAAnn is the relevant user number
PPP is the charge (in pence) incurred

Line (1) appears once only, at the start of the file. Following each
occurrence of a line with format (2) there are a number of lines with format
(3). The charge code determines what sort of charge is being made in the
lines following:

use of 2980 or 2972

file space on 2980 or 2972
use of 2970

file space on 2970

S LN -

SER3-1

On each call of the CHARGES routine (with the exception of test rums),
two sets of charges, use and file space, are calculated for the relevant
machine and appended to the current -accounting week file. This file is then
normally accessed during the following accounting week (i.e. when it is
complete).

The "cuulative use" file is called CUSE. It is created by CHARGES if
necessary. It can be listed, in whole or in part, by use of the command
LISTCUSE, described below.

When CHARGES is called with a parameter, a test run is carried out. In
this case the file indexes are examined but not cleared, the weekly charge
filename is not prefixed by A29nn, and the names of the files generated
(JUSE, CUSE, MMMn) all have "TEST" appended. JUSETEST is not transferred to
the JOURNL process; it will be overwritten in any subsequent test rum.

If the parameter is a user name then only the charges for that user are

calculated. If the parameter is TEST then the charges for all accredited
users are calculated.

Notes

* If file JUSE is found by CHARGES to exist, CHARGES starts by sending it
to the JOURNL queue. This should not happen, since CHARGES should have
done this the previous time it was called.

* The structure of the JUSE file is described below.

* The structure of the "cumulative use'" file is described below.

* At the time of writing, CHARGES is invoked nightly by a batch job which
causes itself to be run the next day also. Thus the charging scheme is

automatic and no operator intervention is required.

* The processing of the completed weekly accounting files is carried out as
a separate stage.

externalroutine LISTCUSE (string(255) S)

This routine either creates and initialises the "cumulative use" file
added to by CHARGES (see above), or, if the file exists, lists the contents.

The form of a call of the routine is as follows:
Command : LISTCUSE(usermask,out ,file)

All three parameters are optiocnal.

usermask can be null (the default), meaning that information om
all users is to be output, or
a six character username, meaning that information om
that user only is to be output, or
a name including one or more ‘?° signs, specifying a
group of users about whom information is to be output;
e.g. ERCCI?? would give information omn all users whose
names started ERCI.

SER 3-2

out can be null (the default), meaning that output is to be
sent to the primary output device (normally the user’s
terminal), or
an output device (e.g. .LP), or
a filename.

file by default this is CUSE. If a test CUSE file is to be
examined (see above), this parameter must be specified
as CUSETEST.

If usermask is non-null and does not contain six characters, an error is
flagged.

externalroutine LISTJUSE (string(255) S)

This routine lists the complete contents of the store map file JUSE (or
JUSETEST). The form of a call of the routine is as follows:

Command :LISTJUSE(file,out)
file 1is JUSE by default
out is .OUT by default

Refer to the description of DSFI in the EMAS 2900 Subsystem Writer’s Manual
for explanations of the various items listed.

externalroutine GETUSE(string (6) USER, integer FSYS, RESET, AIR)

This routine returns accounting information in a record array starting at
ADR, for all accredited EMAS users (if FSYS is -1), or for all users on the
disc pack specified by FSYS, or for a single user (if USER is non-null). In
the latter case FSYS can be used to specify where the user’s file index
resides, if known.

The record array starting at ADR is assumed to be (O0:n) (STATSF):
recordformat STATSF(string(6) USER, ¢

integer NEXT, FSYS, KINST, PTURN, KBTSLDEV, KBFSLDEV, c
MSOCP, CONNECT, AFILE, AKB, DFILE, DKB, CFILE, CKB)

The records are held in a list structure to give alphabetic order (_NEXT
giving the next item in the list). This list is terminated by a dummy
record held in array element 0, with (0)_USER="22ZZZZ". The genuine last
user record thus has NEXT=0.

The Oth record, om return from GETUSE, holds two items of informatiomn:
(0) NEXT gives the FIRST record in the list structre

(0):?SYS gives the TOTAL number of (genuine) user records in the
structure.

SER3-3

If on entry (0) NEXT is non=zero, this indicates that a record array
structure already exists. In this case each user’s accounting information is
added in to the corresponding record (unless no such record currently
exists, when on is created). When (0)_NEXT is non-zero on eantry, it is
assumed to point to th start of the structure, and (0)_] FSYS is assumed to
give the total number of user records in the structure.

If all the file systems are searched and more thasn one file index is
found for a particular user, then the accowmting information for each is
stored in a separate record of the record array.

If RESET is O on entry, the accounting information is merely read from
the user’s file indexes. If it is 1, the file indexes are also reset.

It is expected thet GETUSE will be called on a regular basis with
RESET=1, and that either all the discpacks will be searched in a single
call, or that GETUSE will be called for each discpack in turn, the calling
program having used GET AV FSYS beforehand.

The user of GETUSE must be rurining at an ACR levéel of 5 or less.

Structure of JOURNL File JUSE[TEST]

This file has a standard Edinburgh Subsystem file header. It is a store
map file.

Following the file header, the first two words contain the packed date-
and-time and the pattern X’FFFFFF03’ respectively.

The remainder of the file is used to hold a record array of the structure
described in GETUSE (above).

Structure of Summary File CUSE{TEST]

This file has a standard Edinburgh Subsystem header. It is a store map
file.

Following the header, there are two 8-byte strings (each allocated ten
bytes) which give the start and finish dates corresponding to the
information held.

Thereafter a record array is mapped onto the file, from byte 20 after the
end of the Subsystem header. The record array is defined as folows:

record format CRECF(string(6) USER, integer NEXT, USEP, FILEP)

recordarray CREC(0:1024) (CRECF)
where USER is a user name NEXT points to the next user (in alphabetical

order) USER is the accumulated use charge in pence for that user
FILEP is the accumulated file charge in pence for that user.

SER3-4

Note that:

CREC(0)_USER = "zz22ZZ"

CREC(0)_NEXT = array element containing first genuine user
alphabetical order)

CREC(0)_USEP = total number of genuine users in array.

The Oth element of the array is used to terminate the list. Thus
CREC(i) NEXT=0 if the user in element 1l is the last ome in the alphabetical
list.

JeM. Murison

SER3-5

EMAS 2900 SERVICE NOTF
No: 3
Date: 23/6/78

S mrrcrmercseareme e mdececrccnaantloccl s cc s

These routines are held in the object file ERCIOS.CHARGE (the
corresponding source file is ERCI0S.CHARGES); and are as follows:

This routine takes no parameters. It reads and clears the file index
accounting infornation for every accredited user in the Systen. The
information read is put into a store map file (currently called JUSE) which
is dispatched to the JOURNL process via the SPOOLR JOURNL queue. .

Before CHARGES does this, however, it makes use of the file created for
JOUENL in 3 ways:

1) A character file (currently called AddanlU; where ddnnm is part of the date
of the run of the progran) is created and dispatched to Systen 4 ENAS
process ACCNT4. The fornat of each line of this file is:

hh.nn.ss AAAARN ppp

where hh.an.ss is the timne of day
AAAANN is @ user number

[/] is the charge in pence attributed to the user because of
his use of the machine (hence the U at the end of the
filenane).

The contents of the JOURNL file are used tp calculate the tharges, the
current charging forsula keing used. This charging fornula is

explanation of the constants involved is given there in coament
stalenents,

2) A character file (currently called AddanF) is created and dispatched to
Systen 4 EMAS process ACCNTA. The format of each line of the file is
identical to that for the previous file. The charge (ppp) is that
attributed to the user because of the file space currently belonging to
hin (hence the F at the end of the filenane).

The contents of ihe JOURNL file are used to calculale the charges, the
current file space rates being used. These rates are implemented in

3) A store map file (currently called CUSE) is updated if it exists at the
tine CHARGES is invoked. This is @ "cumulative use” file whose contents
can be output, in whole or in part, by use of the comamand LISTCUSE,
degcribed below.

SER3-t

-

t I o JOURNL file 1s found by CHARGES to exist, CHARGES starts by sending
it to the JOUKNL queue. This should not happen, since CHARGES should
have done this the previous tine it was called.

% 1f either of the characler files of charqing infornation is found by
CHARGES to exist, then CHARGES appends the charges calculated in its
current call to these files. Again, this should not happen.

¥ The structure of the JOURNL file is described bkelow.

* The structure of the "cusmulative use” file is described kelow.

e cnm -

X 2% N S R-P SR P-4 ¥) - em o

This routine either creates and initialises the "cumulative use" file added
to by CHARGES (see above), or, if the file exists, lisis the contents. In
the latter case it also gives the user the option to re-initialise the file.

The fors of @ call of the routine is as follows:
CONNAND:LISTCUSE(usernask,out)
Both parameters are optional.

usernask can be null (the default), meaning that information

on all users is to ke output '

or a six character usernane, #eaning that inforaation on
that user only is to be output

or a name including one or more ‘7?7 signs, specifying @
group of users about whom information is to be
output; e.g. ERCCI?? would qive information on all
users whose names started ERCI.

out can be null (the default), meaning that outpul is to
be sent to the primary output device (normally the
user’s terninal) '
or an output device (e.q. .LP)
or & filenane.

If usernask is non-null and does not contain six characters, zn error is
flaqged.

In all cases however the user is pronpted:
Reset CUSE?
to which he should reply
Y <CR> if the file is to be cleared

or N <CR> or just <CR> if it is not to be cleared.

- en S5 as we o v =L e e0 o e = - ot e

This routine returns accounting information in a record array starting at
ADR, for all accredited EMAS users (if FSYS is -1), or for all users on the
disc pack specified by F5YS, or for a single user (if USER is non-null). 1In
the latter case FS5Y5 can be used to specify where the user’s file index
resides, if known,

The record array starting at ADR is assumed to be (0:n) (STATSF):

integer NEXT, FSYS, KINST, PTURN, KBTSLDEV, KBFSLDEV, ¢

HSOCP, CONNECT, AFILE, AKB, DFILE, DKB, CFILE, CKB)

The records are held in a list structure to give alphabetic order (_NEXT
qiving the next item in the list). This list is terninated by a dumny
record held in array elenent 0, with (0)_USER="2Z2Z1Z". The genuine last
user record thus has _NEXT=0.

The 0th record, on return fros GETUSE, holds two items of information:

(0)_NEXT gives the FIRST record in the list structure
(0)_FSYS gives the TOTAL nunber of (genuine) user records in the
structure

If on entry (0)_NEXT is non-zero, this indicates that a record array
structure already exists, In this case each user’s accounting information
is added in to the corresponding record (unless no such record currently
exists, when one is created). When (0)_NEXT is non-zero on eatry, it is
assuned to point to the start of the structure, and (0)_FSYS is assuned to
give the toial number of user records in the structure.

If all the file systens are searched and more than one file index is found
for a particular user, then the accounting information for each is stored in
a separate record of the record array.

If RESET is 0 on entry, the accounting information is merely read fron the
users’ file indexes. If it is 1, the file indexes are also reset.

1t is expected that GETUSE will be called on a regular basis with RESET=i,
and that either all the discpacks will be searched in a single call, or that
GETUSE will be called for each discpack in turn, the calling program having
used GET AV FSYS beforehand. ‘

The user of GETUSE must be running at an ACR level of 5 or less.

3ER3-3

This file has a standard Edinburgh Subsysten file header. It is a store map
file.

Following the file header, there is a standard identification string. This

2R -2 0P85

the start of the user data and a code string indicating the use of the file.
JHEAD inseris the identification string in the file, and updates the address
to point to the next free space in the file. :

The renainder of the file is used to hold a record array of the siructure
described in GETUSE (above).

T2 22T 8 T2 T -3 1 2 % "P-2-3-PNe-3- -2

This file has a standard Edinburgh Subsystem header. It is a store map
file.

Following the header, there are two 8-byte stirinas (each allocated ten
bytes) uwhich give the start and finish dates corresponding to the
infornation held.

Thereafier a record array is napped onto the file, fron byte 20 after the
end of the Subsysten header. The record array-is defined as follows:

L X-2-P- 2P0 8 3294 X212 - o = -

where USER is a user nase
NEXT points to the next user (in alphabetical order)
USER is the accumulated use charge in pence Tor thalt user
FILEP is the accunulated file charge in pence for that user.

Note that:

CREC(O)_USER = "27712Z" ,
CREC(0)_NEXT = array element containing first genuine user (alphabetical
order) .

CREC(0)_USEP

total nusber of genuine users in array.

The Oth elenent of the array is used to terminate the list. Thus
CREC(i)_NEXT=0 if the user in element i is the last one in the alphabetical
list.

J.M. Hurison

SER3-4

