EMAS 2900 SUBSYSTEM WORKING NOTE

No. 1
Date 5/4/77

1.1 Introduction

This is the first in a series of notes which will describe features of the initial
subsystem being implemented on EMAS 290¢ There is a need to satisfy two conflictin
requirments.

(1) To provide a stable base for Subsystem users - including VOLUMES and JORBER
(2) To retain freedom to alter the specification in detail.

As a compromise I propose to provide with each routine specification an indication
of its likely stability. In the following notes it can be assumed that EMAS
rules apply unless otherwise indicated.

1.2 File names

Initially I propose that we stick to EMAS] file name limit. These are:-
User (6) . file (8) . member (8)

,This requires 24 characters. For various reasons it may be desirable to extend
these fields so a compromise length of 31 is suggested for all filename paraneters.
.In fact the 2900 IMP parameter passing mechanism does not put strings on the stack
it puts a descriptor there, so precision is not as important as on.current EMAS.

1.3 Subsvstem structure

There will be a small kernel of routines and tables to organise the virtual uwemory
and provide minimal character output - probably only one stream. This will be
used by the SPOOLZR and JOBBER and later by the rest of the Subsystem. My initial
aim is to get this kernel working reliably. The routines provided in it will be
very similar to their counterparts on System 4.

1.4 Basic File manipulation

The processes of creating, destroying, connecting and disconnecting are much as

on EMAS 1. Director does net yet support changes to connect mode,nor changing
size of connected files. These activities will be provided by the subsystem using
disconnect and connect. Where necessary the re—connection will he back at the
same address. The first version of the kernel will contain the follecwing file
manipulation routins:

CONNECT
DESTROY
DISCONNECT
FILELIST
TINFO
OUTFILE

SUB1-1

1.4.1 CONNECT
Specification:

%SYSTEMROUTINE CONNECT (ZSTRING(31)FILE, ZINTEGER MODE, HOLE,
PROTECT, ZRECORDNAME R, ZINTEGERNEME FLAG)

MODE= 1 for write O for read

HOLE= connect hole - in bytes ~ default is current size of file
PROTECT= O normally

R has following format

ZRECORDFORMAT RF (ZINTECER CONAD, FILETYPE, DATASTART, DATAEND)
FLAG values will be supplied later.

Note that this routine can also be used to connect a member of a partitioned fi“-.
Stability - changes of detail likely.

1.4.2 DESTROY

Specification:

ZSYSTEMROUTINE DESTROY (ZSTRING(3L)FILE, ZINTEGERVAME FLAG)

File will be disconnected (if necessary) and destroyed. Can also be used to
destroy a nember of a partitioned file.

Stability -~ unlikely to change.

i.4.3. DISCONNECT

Specification:

ZSYSTEMROUTINE DISCbNNECT (ZSTRING(31)FILE, ZINTEGERNAME FLAG)
Use obvious. Not applicable to member of partitioned file.
Stability - unlikely to change.

1.4.4 FILELIST

Specification:

ZSYSTEMROUTINE FILELIST (ZINTEGER MODE, AD1, ADi)

Get list of files in format according to mode. ADl and AD2 used to provide
addresses of arcas in users program for information. Initially:

MODE= 1
AD1 points to start of ZSTRINC (8) ZARRAY
AD2 points to mnidﬁfr into which is put the number of files.

Stability - significant changes and enhancement intended.
SUB1-2

1.4.5 TFINFO
Specification:

ZSYSTEMROUTINE FINFO (%STRING(31) FILE, ZINTEGER MODE,
" 'ZRECORDNAME R, ZINTEGERNAME FLAG) :

R has following format:

ZRECORDFORMAT RF (ZINTEGER CONAD, FILETYPE, DATASTART, DATAEND, SIZE, RUP, EEP,
MODE, USERS, ARCH, ZSTRING(6) TRAN, ZSTRING(8) DATE, TIME ZINTEGER COUNT, SPARFE1,
SPARE2)

For MODE= 0 the following fields will be filled:

SIZE, RUP, EEP, MODE, USERS, ARCH, TRAN

Stability - significant changes and enhancements intended.

1.4.6 OUTFILE

Specification:

ZSYSTEMROUTINE OUTFILE (%STRING(31)S, ZINTEGER SIZE, HOLE, PROTECTION,
ZINTEGERNAME CONAD, FLAG)

File will be created with header containing def.ault values: 32, 32, sized, 0,0,0,0,C
(see 1.5 ~ below) The rest of the file will be cleared

Stability ~ stable apart from minor details.
1.5 File Format
1.5.1 The file header format will be as follows:

Length= 32 bytes = 8 words used as follows:

Word
o Total length of header and data
1 Length of header (default 32)
2 Physical size
3 Type = 0 non-standard
1 object’
"3 character
4 data file (discrete records)
5 partitioned

4 Data last altered (packed)
5 Time last altered (packed)
6 Type dependent
7 Type dpendent

1.6 Ancilliary routines

1.6.1 MOVE

Specification:

ZSYSTEMROUTINE MOVE (ZINTEGER BYTES, FROM, TO)

Move 'BYTES' bytes from address 'FROM' to address 'TO'

Stability - stable
SUR1-3

1.6.2 FILL
Specification:
ZSYSTEMROUTINE FILL (ZINTEGER BYTES, START, PATTERN)

The least significant byte in 'PATTERN' is copied into the 'BYTES' bytes starting
at 'START'

Stability: stable

1.6.3 DUMP
Specification:

ZSYSTEMROUTINE DUMP (ZINTEGER FROM, TO).

The area 'FROM' to 'TO' is dumped on the current output stream.
Stability stable

1.6.4 PHEX

Specification

ZSYSTEMROUTINE PHEX (ZINTEGER N)

‘The value of N is printed as 8 hex. digits

Stability stable

1.6.5 PON, POFF, OUT

These all take one parameter of type ZRECORDNAME with format:

ZINTEGER DEST, SRCE, A, B, C, D, E, F

1.7 Character output

The initial version of Kernel will allow for character output to a single steam -
* the line printer. Output ‘will be put in a file which can be listed an any time

by calling systemroutine CLOSEST. The effect of this routine will be to list

the current output file and reset the output pointer to the start of the flle for
further output. (c¢f System 4 VOLUMES)

Roderick McLeod

SUB1-k4

2,1 Introduction

This

rnotey

VOLUMS is

EMAS 2900 SUBSYSTEM NOTE

Noi 2 '
Dates 21/72/77
develorments

Existing and rrorosed

which
cortaing details of
rrorosed develorments.
rnotes
this rotentizlly increases
sidgnificantly

comrletely deneral in

3 mornths of develorment of the Subsustemy
additional facilities and some discussion of
Ome mador chandge has ocourred since the

follows

first

no londger based on the stondard Subsustem. Whilst
the amount of software to be masintained it
simrlifies the Subsustem inm that it no longer has to be

the file handling area.

Currentlys Alan Andersorn is working onm mounting the Scientific Jobber

Qn

EHAS
from
on some

the

andg this will useys
standard Subswstem.
difficult decisions

kernel of routlines
The future of this develorment dewrends
about comratibility between foredround

initially at leasty a

and bhatch access,

2.2 Filenames

A "final® decision has beenrn reached concerning the lenzsth of

filenames.

The

Although I have

its

filensme will fit irnto the
filenames

good moints

in my

new form is

user(d) . Tile(l1) _member(11)

reservations about this decision I accert that it has
- such the fact that the maximum lensith of a3
string (21i) sarameters I rrorosed for

All existing Subsystem sofltware has bheen

35

last note.

addusted to s@llow for this chande.

2:3 Foregrournd commarnds

warrently the

ACCEFTY
ALGOL
COFY
CFULIMIT
DEFINE
DESTROY
DISCONNECT
ENIT
FILES
FORTRAN
IMP

LINK
LIST
LOOK
METER
OREY
NEWGEN

followins

foredground commands are imrlemented?

(as COFYFILE)

(first rarameter is chanrel no. - e.d. DEFINE 15.LF)

(as FLIST)
(as FORTE)

(as OBLEYFILE)

suB2-1

In

OFFER

FARM

FERMIT Cas PERMITFILE)

RENAME

RUN

STOF

general commards orerate as on Sustem 4 EMAS. There sre 3 few

restrictions and diff@rencem - mebtails are available from me. Manw
of the hash commands are. also svsilable ~ details later.

2.4 Nata handling

244,

Character I/0 for IMPF amd aLGOL ha
com=letelwy rewritterr 10CF., ITte ma

X

244,

1 Cheracter Files

been imrlemented using a
n differences are as follows?

=
i

no lime reconstruction — hence no trailing srace deletion nor
detection of SUR character. :

no mardgins — the comrilers currently do their own inerut framing
stream selectiom no londger vorks on 38 record basis - it can now

be dome between individuasl charscters

2 Iata Files

Currentls I am working orn this., 0On its our it is reasonably
straightforuard, The Fortran I1/0 saclhkade from Geoff’s srour has
fairly well -defined interfsces. The snadgds concern mixed asccess to

the

same file or device - e.d. the irreut teleture bheing used both to

read commands (thne command interreter beindg written inm IMP of course)
and for imrut to 3 Fortran erodram, The switch between the two is

rnot

essy to ordanise in an elessnt waw.,

2.0 Lompatibility.

I am constantly cornsidering the imerlications of comeratibility with
Sustem 4 EMAS. Although there is the rossibility of external use of
EMAS 2900y my erimary interest is still dim its use by our current

EMAS fraternity, I am quite sure that the auest Tor comratibility
st not be sllowed to hasmrer develosment st this time but there are
obhvious advantades in allowing & straightforward Lramnsfer of work

from

the Sustem 4 to the 2900. There are two raris to the

com~etihility sroblem?

X Chandges to foredround commasnds affect everwvone but are srobasbly

X

fairly easy to dset used to.
Changes to commnands called Trom erodrams measn alterations to

exisling working srograms. This will involve sidgnificent work
for seorle transferring such rrodgrams from Sustem 4 to 2900,

3uB2-2

2:941 Compatibility of files

Currently the rocsition is 3s follows?

Ture ‘Comratibility
Character Vital - mo drest sroblem.

Liata YV format files will rnot be comratible - 3

conversion wutility should be straightforward.
F format files OK.

Obdect Files Not needed.

N+R+ Obdect Files Currently comratible but oudght to change to
conform to standard file header format.

Library Inde: files Not comratible.
Partitioned files Almost comratible - existing directoruy format

has room for 11 character member names.
Header format not cuite right,

245.2 Comratibhility - other features

One difficult one is TT. Most of wus wowuld find dresat difficulty in
defining our intersctive terminals other tham as .TT I susrect.
Nevertneless i1t is an outdzted sbhbreviation. One rossibility is
something like .IT for *intersctive terminzsl® - but currently I
#roros2 to introduce the sseudo devices IN and JGUT, These would
direct imrut 3nd outrut to the current wmairn inrFut and outrut deviczs,
Ilurirg foredround sessions this would normally be the intersctive
terminal ~ unless an OEEY command was beindg executed.

2+6 Conclusion

As 8luavys I welcome comments on the above idesas.

Roderick MclLeod

suB2-3

EMAS 2900 SUBSYSTEM NOTE
No: 3 (revised)
Date: 11/5/79
User process information

The SSINFO facility provided on the System 4 has proved to be a clumsy
solution to the problem of providing information about a user’s process, in
that the user has to provide a long record format even when he only requires
one minor item. The equivalent information on the 2900 is provided by a
pair of functions: a string function for textual information, and an integer
function for integer information.

They have to be specified:

externalstringfnspec UINFS (integer ENTRY)

externalintegerfnspec UINFI (integer ENTRY)

The parameter ENTRY in each case specifies which piece of information is
required. If a value is given which is out of the current range then the
result will be a null string or zero, as appropriate. Currently the
following values of ENTRY can be used:

UINFS
1 User name
2 Delivery information
3 Session start time hh.mm.ss
4 PROMPT text
5 Active directory
6 Subsystem version

UINFI

1 File system number

2 Mode: result = 1 implies foreground
result = 2 implies background
Tesult = 3 implies foreground OBEY

3 Users currently logged on

4 ACR level

5 Current CPU limit (seconds)

6 Max size in Kilobytes for DEFINE

7 SYNCIDEST

8 SYNC2DEST

9 ASYNCDEST

10 Address of Director USERINF record

11 Process number

12 DEFINE level

13 Process incarnation number

14 AUXSTACK size (Kilobytes)

Further entries will be added as required.

R.R. McLeod

SUB3-1

EMAS 2900 SUBSYSTEM NOTE
No: 4
Dater 15/3/78

1 have had a few connents about ny proposal (Systen Note 5) for packed
date and tine. Apart froa treating bit 2#231 as the nost significant bit
. of “year’ (hence giving a range 1970-2033), I propose using the format in
the Subsysten and will be changing to it during the next few weeks.
FILEANAL will only give the tine and date for recently altered fTiles.

To enable users to more readily write their own file analysis routines I
an providing a new general-purpose systesroutine ANALYSE. This will

return inforaation in a recordarray for the user to analyse. It will be
useful for Object, Directory and Partitioned files in particular. The
standard connand FILEANAL will call this new routine. Full details

later.

This new coanand allovs you to add an alias to a procedure nase. The
- tornat is

ALIAS(procnane,alias)

Hence if you want to access the comnand (procedure) INP ucing the alias
I, you should type

ALIAS(INP,T)
Jo resove all the aliases of a-given name onit the second parameter; e.g.

ALIAS(INP)

neuw externalstringfn INTERRUPT is available. It replaces TESTINT. It

-2 2237 %4

than one character froa the user terminal. A null string is returned if
no nulti-character interrupt has occurred or if the last one has already
been returned by INTERRUPT. MNote that anulti-character interrupts are not
queued. Single-character interrupts are reserved for Subsystem use.

Exanple:
INT = INTERRUPT
if INT = "STOP" then return
11 INT = “RESET" !bgﬂ eessssssne

SuB4-1

=220 P 220 TR NP 2P 2 LR R PR PR3 3 TP

Directory files serve a similar role to library index files on the 4-73,
Their functions are:

¢ For each procedure entry nane or data entry name in a directory, to
contains the entry,~§£-ia another directory (from which the nane of
the appropriate object file can be found, directly or indirectly).

% To hold the ALIAS infornation (see above).

NEWDIRECTORY

This consnand is used to create a new directory file. Only one
paraneter is required, the name of the directory. Currently this must
be ‘SSUDIR’ since the other connands only operate with respect to this
directory; later it will be possible to create other directories. Tuwo
further paraneters can be used to specify the size of the directory -
see Hac for details.

INSERT

This command is simnilar to INSERTFILE on the 4-75. Note however that
it has to be called explicitly once for each object file. Once it has
been called for an object file, that object file will be RENOVEd from
and INSERTed into the currently selected directory every tine it is
conpiled into. If 2 compilation into the file fails, only the object

. tile nane will remain “inserted”, but all the information will be put
back when it is successfully recompiled.

INSERT has only one paraseter - the name of the object file.

It is not necessary to INSERT main progras object files.

REXOVE

This connand is the equivalent of REMOVEFILE on the 4-75. Only one
object file can be removed at a tise.

o b ot s - -

The program loader can now handle external data linking. Note that a
check is enforced on the lengths of external and extrinsic items. The
order of satisfying references differs frosn that on the 4-75. The change
has been nzde in the interests of efficiency, and does currently restrict
the generality coapared with the 4-75. 1If necessary I shall provide
additional facilities to enable users to override standard coamand nanes.
The nechaniss works as follous:

¢ There is a session directory of all currently loaded entries; at

process start-up this includes only the standard connands which are
fn the basefile.

SUB4-2

¢ If a standard connand is accessed which is outwith the basefile, e.q.
one of the Subsystem editors or a cospiler, then the necessary files
are loaded for the rest of the session and their entry inforsation is
added to the session directory.

% If a user-written connand is accessed, it is loaded,
and_then_unloaded on return to cosnand level. A facility will be
provided to noninate user object files which are to be loaded for the
whole session. *)

* Uhen searching for a procedure nane the loader first searches the
session directory, then the user’s own SSHDIR (if it exists), then
the Subsysten base directory. There are two inplications:

% it is not possible to override comnands in the basefile

. ¢ it is not possiblé to override other Subsystem comnands if they have
been accessed earlier in the session

- For example, if you wish to use a new IHP compiler you sust insert it in
your directory. Even so you will not be able to access it if you have

already used the standard IMP coapiler during the session. If you log
off and then on again you will obtain access to the new compiler.

1. Extensions and improvements to FILEANAL.
2, Provision of an COPTION comanand. This will incorporate APPENDLIB.
3. Provision of full I/0 facilities for INP and FORTRAN.

Rocderick MclLeod

Sup4-3

ENAS 2900 SUBSYSTEM NOTE
Hos 3
Dates 17/4/78

- - L2329 S-F-2-3 PR3- P - E-T-T P R -]

This note supersedes all earlier descriptions of file headers. It contains
infornation about the contents of headers of files produced by the Edinburgh
Subsysten. It also contains sose coanents on backward conpatibility with
4-75 files. Object files s5till have o format which does not fit in with
other types. 1 am awaiting changes to LPUT fros Geoff Hillard, but I have
to varn that there will be considerable upheaval when the change is nade.

L2 R 2P R P-4 22 PR - LT -1-7-3

The first six integers are used as follows:
t. Useful lengith of file: this is the sum of the length of the header and
the length of the data (bytes).

2. Length of header (bytes).

3. Physical size of file: this will normally be the total size of the
nininusa number of full pages needed to hold the useful length (bytes).

4. File types: 1 Object file (eventually)

2 - Directory file

3 - Character file

4 - Data file (discrete records)
)

- Partitioned file

These are also the values returned by CORNECT.

5. This word is reserved for an optional sua-check. The facility of
sun-cherking vital files on the 4-75 (e.q. compilers) has proved to be
very useful. A siailar but standardised schene is envisaged here;
further details later. MNote that in the case of fixed-up Birector and
Subsysten files this word nay have to be used for a PC velative jump,
since the Local Controller and Director respectively connot readily read
an offsel fron file; so always set the PC to 14 bytes fron the start of
the file. There is no obvicus resolution to this.

6. Packed date and time of last writing to the file. This is updated
whenever the file is connected by the Subsystem in write node. The
fornmat is described in EMAS Systen Note 5.

5UBS~1

Iotegers 7 and 8 are used in type-specific ways, as follows:

Type 7 8
Directory 0ffset of P list (Hote a), Spare
Character Spare Spare
Data Record foraat and No. of records
naxinun or fixed record
size (Note b).
Partitioned O0ffset of directory of No. of aenbers

nenbers (Note c).

Rotes

a)

The internal format of a directory file will be published later.
Briefly a directory conprises two partss a hashed table of eatry
nases and aliases, each of which points to = nane in the "P list".
Additionally, for long nanes in the hashed table the first part of
the nane goes in the table, together with a pointer to the rest of
the nane in the P list,

b) The fornat of this integer is
(R<<18) 1 (F)
where R is the maxinum or fixed record length and F is 1 (fixed), 2
(variable) or 3 (unforanatted). An unfornatied file is the equivalent
of an SH file on the Systea 4.
c) The directory of nenbers is an array of records with the following

fornat:

SU35-2

- e > o 4 e e W foe e e S 50 5 e e e e wp o 0o e o e oa

In the short ters files will be transferred between the 4-75 and 2900 via
controlled routes, and utility prograns can be provided on ezsch machinz to
carry out the necessary conversions. Eventually it is proposed to have a
conuon formnat for archive and backup tapes between the systems. The
desirable aiu of saintaining identical file fornats between the tuwo
Subsystens has been sacrificed in the interests of a tidier situation on the
new Subsysten. In detail, only three types of file can sensibly be
transferreds

Character Binor change: dual standard could be accomnodated in both
Subsystens. :
Bata Significant changes: will require conversion progranm,

which vill only be #ade available on the 2970.

Partitioned Minor change: will require 3 conversion progran; also a
problea of individual senbers having the "wrong" format;
also a backward transfer probles in that weaber nzaes of
up to 11 characters are alloved on the 2970, while only 8
characters are allowed on the 4-75.

Even with a connon fornat for Systes archive and backup tapes the ready
transfer of files between Systens, other than character files, will not be
achieved.

Roderick NcLeod

suB5-3

ENAS 2900 SULSYSTEHX NOTE
Ho: 6
Iate: 21/7/78

Riagnostic_Aids_in_the_Edinburgh_Subsystem

EE R R L Y PR 2 PR 00 0 0 L JE0-S 4 K-9 S Be 2N

The following conmands are available for diagnostic purposes; in the main
they replicate facilities on the 4-75. Note that:

* The fact that they are described here should not be taken as a guarantee
of their long ters support.

* In all relevant cases lengths are expressed in bytes.

-2 2 P22 P23 9]

Each connand has a # as its first character. MNole that hash commands do
not invoke the Loader and there is no one-te-one correspondence between each
hash comnand and an external routine. Therefore hash comnands canmot be
called from programs.

The paraneters to hash conmands include numeric tonstants. These can be
typed as decisal integqers in the normal way, or as hexadecimal nuabers, in

which case they should be preceded by an “X’. For exanple, the following
two connands would have the sane effect:

#SUORD(X840000,256)

#SWORD (XB840000,X100)

2R PRS2 2T R TP -3 L9 5

The hasl comnands available are as follows:

HACR
prints out the current ACR level.

HCONNECT(f?ilenane)
tonnects the file, if possible in write node, otherwise in read mode.
Prints the connect address. Can also be used for a menber of a
partitioned data cet, but the menber ig always connected in READ
node., Since @ file connected by HCONNECT remains connected on return
to comnand level, it is advisable to disconnect il explicitly when
any operations upon it have been completed.

$DEC(hex value)
converts the hexadecinal value to decimal.

HDUNP (address, bytes)

dunps the specified area to the line printer.

SURG-1

HOURFFILE(filename, offset of start, byles)

dunps the specified area of the file to the line printer.
HHEX(decimal value)

converts the decimal value to hexadecimal.
#PCONM(inteqer)

prints out the value of the specified location in COMREG,
HFHESS(inteqer) |

prints out the Subsystem error messmge mssociated with the specified
fault nunsber,

PV

prints table of connected files.
HOUIT

logs off even when the session directory is corrupted.
#REGS

prints out registers at the time of the nost recent failure
contingency. Note that information on the last four contingencies is
held; the three previous ones can be obtained using HREGS(-1),
HREGS(-2) and HREGS(-3).
. #SBYTE(=address,value)
sets the specified byte to value. Clearly the byte aust ke
accessible-in write node. This can be achieved by connecting the
file using HCONNECT.
#5C0H(integer,value)
sets the specified location in COMREG to value.
HSETEASE(filenane)

sets the nane of the basefile to be used for subsequent sessions. If
the paraneter is onitted the default Subsystem Lasefile will ke used.

"#SNAP(address,bytes)

dunps the specified arez on .0UT. The anount printed on a line will
depend on the current setting of OPTION ITUIDTH.

#SNAPCODRE(address,bytes,out)

deconpiles code and prints it on the device or file specified.
Default is .OUT.

#5NAPCH(address,bytes)

prints the specified area as IS0 characters on .OUT.

SURS-2

HSSTRING (address,"string")

sets the string at the address specified to the string given. Note
that the siring should be enclosed in double quote characters.

HSWORD(address,value)

setg the word at the address specified to value,

Additional comnands will be added in the light of experience.

Roderick Mcleod

SURL-3

EMAS 2900 SUBSYSTEM NOTE
No:8B
Date:20/3/79

Dynanic_Loazding

This note describes the initial dynamic loading facilities in the Edinburgh
Subsystes. For the user of IMP and ALGOL they are very straightforward and
operate nmuch as on the 4-75. For the FORTRAN user there is a complication
because of the way in which the FORTRAN conpiler uses the stack.

It is important to appreciate that for a routine to be loaded dynamically it
_is not necessary to modify the routine in any way. It is the program or
procedure that references the routine that must be marked to infors the
loader that the reference should be satisfied dynamically. Eventually this
will be done at compile time, thus: ‘

ALGOL+FORTRAN: comnpile with PARM(DYNAMIC) - all.references are marked
for satisfying dynamically.

INP: use ZDYNAMICROUTINESPEC in place of ZEXTERNALROUTINESPEC for all
routines and procedures which are to be loaded dynamically. It will
also be possible to use PARM(DYNANIC), as for ALGOL and FORTRAN.

Current cospilers do not recognise the dynamic requests, so for a short
period it will be necessary to proceed as follows:

Conpile the file with any required PARMs.
Mark the file by use of the comnand DYNANIC(object file).

To check the references in an object file, use

ANALYSE(objectfile, R)

For INP and ALGOL there is no further special action required. The progran
is run or command called just as at present. When the file containing the
dynamnic references is loaded any references to procedures already loaded are
satisfied immediately., All others are left until the first call of the
procedure. At this point a jump is made to the loader and an attempt nade
to load the required procedure. If this fails then nessages of the form

Failed to load RESET dynamically RESET not found

are output, followed by diagnostics and program termination. If it is
successful then the reference is filled in the programs GLA (general linkage
area) and the routine is called. Subsequent calls behave exactly as for
calls to statically loaded routines.

FORTRAN

Where the routines being loaded dynamically include FORTRAN code there is an
additional requirement. FORTRAN uses part of the User Stack for its
variables, but unlike INP and ALGOL this space is allocated all the time the
file is loaded - not just during the execution of the routine. This so
called INITIALISED STACK nust be put at the bottom of the user stack, and
for this to be possible a space must be allocated. With dynamic loading the
loader cannot allocate space because, until execution begins and the
additional routines are loaded, it has no information about how much space
to leave The method therefore is for the usser to specify how much space is
to be allocated for the FORTRAN initialised stack.

This number can be calculated by using the “S” option in AMNALYSE in respect
of all the FORTRAN files that are to be loaded in any one RUN. The output
includes a table which contains a line of the fora

ISTK 00003BEE 00002ABO

The second of these two numbers gives, in hexadecimal, the length of
initialised stack for this object file. By adding all of these it is
possible to get an accurate figure. This figure should then be specified as
the size of the initialised stack using

OPTISNC(INITSTACKSIZE=n)

Note that the parameter is in Kilobytes, and that the number specified must
be at least 32 (Kilobytes) less than the size of the USERSTACK.

As a simple starting point the following values will probably serve the
mnajority of users:

OPTION (USERSTACKSIZE=128)
OPTION (INITSTACKSIZE=60)

For those running very large FORTRAN programs or packzges, the naxisun
settings allowed are:

OPTION (USERSTACKSIZE=252)

OPTION (INITSTACKSIZE=1090)

Conclusion

It is hoped that these facilities will prove useful. They may be nrodified
slightly in the light of experience.

R.R. Mcleod

SUB8-2

EMAS 2900 SUBSYSTEM NOTE
No: 9
Date: 23/10/78

Edinburgh 2900 Compilers: Object File Format

This Note describes the format of the object files created by ERCC 2900
compilers using LPUT. It is an intermediate format in the sense that ICL
standard object files will be generated from this form, which will not
necessarily reside in a permanent file, other than on EMAS. This format is,
however, appropriate to the provision of ‘fast loaders’ in a conventional
ICL file system or when object files can be directly mapped into the virtual
MEemory.

The object file may contain up to seven areas in addition to red tape and
linkage information, laid out in a contiguous area as below

area code

standard file header
code

sst

plt

gla

ust

initcmn

initstack

linkage data

object file map

N W

The standard file header consists of eight words defined for use on EMAS,
and which will be retained on all systems to assist mobility of object code
and utilities. These words are used as follows:

word O offset of end of data from start of file
1 displacement of start of code from start of file (used by
EMAS basic system loaders and compatible with current
practice)
physical size of the file (bytes)
1 (file type for 2900 object)
sum check (optional)
date and time when flle was last written to
offset of load data from start of file
offset of object file map from start of file

~SNoounmppewN

The object file map consists of twenty-two words with the format:

(integer N, recordarray R(1:7))

where
N is the number of areas defined
R has the following format

(integer START, L, PROP)

SUB9~-1

where R(i) describes area i and
START is the displacement of the start of the area from the
start of the object file
L is the length of the area
PROP will be used to define properties of the area (zero
at present)

The contents of the seven areas are described in Subsystem Note 15.

LDATA

The linkage data contains a fifteen element array, LDATA, which provides
links to records, or lists of records, also held in the linkage data area.
These records provide information about entries and references, both for
procedures and data items, common areas and relocation requirements between
areas. All links within the linkage data are byte displacements from the
start of the object file. The significance of the entries in the initial
block of pointers is given below. The allocation of these entries has been
constrained by the requirement to provide a simple transition from 4-75 EMAS
object files and, consequently, some entries are not used.

LDATA content

0 14 (number of significant pointers following)

1 listhead of procedure entries

2 0

3 0

4 listhead of data entries

5 0

6 0

7 listhead of static procedure references

8 listhead of dynamic procedure references
LDATA content

9 listhead of data references

10 0

11 0

12 pointer to a record defining object file listing

(format to be defined)
13 0
14 listhead of blocks of relocation requests

In the following definitions, identifiers may contain up to 31 characters.
However, only sufficient space for the actual identifier (rounded to a word
boundary) is reserved. All displacements are in bytes from the start of the
appropriate areas, which are identified by the area codes defined above.
LINK is the byte displacement of the next record in the list, from the start
of the object file map, or zero to terminate the list.

SUB9-2

Procedure entries = listhead LDATA(1)

The format of each record 1is
(integer LINK, LOC, string(31) IDEN)
where
LOC is A<K24!EP and
EP is the displacement of the entry descriptor from the start of
area A (2 gla, 3 plt)
IDEN is the name of the entry point

The most significant bit of LOC is set if this is a main program.

Data entries — listhead LDATA(4)

The format of each record is
(integer LINK, DISP, L, A, string(31) IDEN)
where
DISP is the displacement of the data area from the start of area A
(2 gla, 5 ust, 6 initcmn)

L is the length of the data area
IDEN is the name of the data area

Procedure references -~ listheads LDATA(7) and LDATA(8)

The format of each record is
(integer LINK, REFLOC, string(31) IDEN)
where
REFLOC is A<<24!REFAD
REFAD is the displacement from the start of area A (2 gla, 3 plt) of

a descriptor which is to be filled in by the loader
IDEN is the name of the referenced procedure

Data references — listhead LDATA(9)

The format of each record is
(integer LINK, REFARRAY, L, string(31) IDEN)
where
REFARRAY 1is the offset from the start of file of a record of the form

(integer N, integerarray REFLOC(1:N))

where each REFLOC(1) contains A<{<24!REFAD and

SUB9-3

REFAD is the displacement, from the start of the specified area, of a
word which is to have the address of data area IDEN added to it
by the loader.

A nominates the area containing the reference (2 gla, 3 plt,
7 initstack).

L is the expected length of the data area

If the reference is to a "common" area, i.e. an area to be created by the
loader if not defined, the most significant bit of REFARRAY is also set.

Initialisation data - listhead LDATA(13)

The format of each record is
(integer LINK, A, DISP, LEN, REP, ADDR)
where

A is the area to be initialised

DISP is the offset within the area at which initialisation is to start

LEN is the length of the initialisation data

REP is the number of copies of the initialisation data to be copied
to consecutive LEN byte areas

ADDR 1is the displacement from the start of the file of the
initialisation data if LEN >1
it is the initialisation value if LEN =1

Relocation request blocks - listhead LDATA(14)

The format of each record is

(integer LINK, N, recordarray R(1:N))

where
N is the number of relocation entries in this block
R has the following format

(integer AREALOC, BASELOC)

where
AREALOC is AREACODE<<24!AREADISP,
BASELOC is BASECODE<<24!BASEDISP

AREACODE identifies the area containing the item to be
relocated.

AREADISP is the byte displacement of aa word within the area
to be relocated by the load address of the. start of
the area identified by

BASECODE which may be any of areas 1 = 7

BASEDISP allows relocation by a sub-component of that area

G.E. Millard

SUB9-4

EMAS 2900 SUBSYSTEM NOTE
No: 15
Date: 23/10/78

Generation of Object Program Files for 2900

systemroutine LPUT (integer TYPE, Pl, P2, P3)

This routine generates an object program file from information passed
through the parameters in a sequence of calls. The object file name must
previously have been assigned by a string addressed by COMREG(52), and a
workfile of at least one segment created and addressed by COMREG(1l4).
(The specification of COMREG is systemintegermap COMREG(integer N).)

The generated object file may have up to seven areas, as defined below, in
addition to the linkage information generated by LPUT. The content of each
of these areas, any of which may be empty, is at the compiler writer’s
discretion, subject to the comments below.

area

1 code should ideally contain only executable code and constants
accessed only from within the code area, thus enabling a
connect mode of execute, shared. As this mode apparently
inhibits the most efficient method of access to comstant
strings and vectors the comnect mode, initially at least, will
be execute, read, shared. It is anticipated that conmection
in execute only mode will be considered essential in some
instances.

2 gla (general linkage area) normally contains descriptors for accessing
external objects, entry descriptors and static (normally
scalar) data. The connect mode is read, write, unshared. The
first eight words have a prescribed use (see below).

3 plt (procedure linkage table) may be used to contain entry and
reference descriptors. If a plt exists then all such
descriptors must be contained in it, rather than in gla, which
may still exist to contain static data. The connect mode is
read, unshared. The first eight words have a prescribed use
(see below).

4 sst (shareable symbol tables) is expected to contain information
relating to run—-time diagnostics and is connected in read,
shared mode.

5 ust (unshared symbol tables) normally contains static arrays and is
connected in read, write, unshared mode.

6 initcmn (initialised common areas) is an accumulation of separately
specified and initialised common areas connected in read,
write, unshared mode.

7 initstack (static initialised area on stack) may be used to contain
local data and data descriptors. This area should not
normally be used for arrays as total stack space is
constrained.

SUB15-1

The first eight words of the gla, or plt if it exists, are currently defined
as follows:

word O code descriptor to the
1 first or only entry point
2 address of ust area
3 address of sst area
4 byte 0 language flag 1 IMP
2 FORTE
3 IMPS
4 NASS
5 ALGOL
6 optimised code (no diag tables)
7 PASCAL
8 SIMULA
byte 1 compiler version
byte 2 compiler options
byte 3 (may be language dependent)
reserved for address of gla if plt is used, otherwise O
reserved
reserved

~N Oy 0

After opening the object file (TYPE=0) fragments for any of the areas may be
passed to LPUT in any order. The location for the fragment within the
object file is specified relative to the relevant base. If a fragment
overlaps a previous fragment then that part of the previous fragment is
replaced. Additional calls on LPUT can provide information to enable
linkage to other external objects to be achieved and also to specify
locations in the non—-shareable areas which are to be relocated by the actual
value of one of the bases when the object file is loaded. When all the
information relating to the current external routine has been passed to LPUT
a type 6 call confirms the sizes of 1 to 5 (the sizes of initialised common
areas having been separately specified).

Subsequent calls on LPUT will generate a new set of areas. A type 7 call
indicates that the file is now complete. The type 6 call may be omitted if
only one set of areas is produced.

The generated object file has, in its simplest form, the layout shown below:

header

code

sst

{pit]

gla

ust

initcmn
initstack
linkage data

A particular compiler may choose to generate only one set of areas even when
compiling a number of external routines. Alternatively each external
routine may generate a separate set of areas. The layout of an object file
with multiple sets of areas is shown in the figure below. (This also
represents the layout of the file generated by linking files generated by
separate compilations).

SUB15-2

header

code 1

code 2

sst 1

sst 2
(pltl]
[p1t2]

gla 1

gla 2

ust 1

ust 2
initcmn 1
initcmn 2
initstack 1
initstack 2
linkage data

No assumptions should be made about the relative position of the areas when
a program is loaded. An auxiliary stack (for use by dynamic data

structures) may be located by a data reference to ‘ICLICEAUXST’. This is a
two word location containing a descriptor to an area with the format below:

word O current ‘free aux stack’ pointer (absolute)
1 reserved
2 physical end of aux stack
3 reserved

Calls on LPUT

The calls on LPUT are as follows. Any parameters not specified for a
particular call should be set to zero to allow for future expansion. All
displacements must be in bytes.

TYPE =0 Initialisation call. The object file is opened.
Pl language flag
P2 = release no.
P3 = version no.

TYPE = code area

gla area

plt area

sst area

ust area

This set of cdlls specify that Pl bytes of information

(a ‘fragment’) currently held at address P3 in the calling
routine are to be placed at the location P2 bytes from the start
of the nominated area, unless P3 < 256. 1In this case Pl bytes
each containing the value P3 are to be set up at the location
specified by P2.

UV Hwe -

TYPE =31 code area
32 gla area
33 plt area
34 sst area
35 ust area
36 initcmn area
37 initstack area

SUB15-3

TYPE =41
42
43
44
45
46
47
TYPE =6
TYPE =7
TYPE =10
TYPE =11
TYPE =12
TYPE =13

This set of calls act as for ! - 5 above, but providing for the
extended set of areas.

code area

gla area

plt area

sst area

ust area

initcmn area

initstack area

This set of calls provides for repeated initialisation with up to

255 bytes of data.

Pl = number of bytes of data <<24! number of copies

P2 = displacement from area start at which initialisation is TO
commence

P3 = address of the initialising data

This call indicates that the information relating to the current

set of areas is complete.

Pl = 32 (current length of information)

P3 = address of eight word information field containing the
lengths of areas 1 to 7 and the sum of these lengths for
the preceding set of areas.

Indicates that the information relating to the current file is

complete.

Pl = 32

P3 = similar to type 6, but with sub-totals for each area type
and the grand total.

Define a ‘common’ area reference
Pl, P2 and P3 are as for type 15, substituting ‘common’ for data.

Define an entry point.
Pl = code of the area containing the entry descriptor
(2 gla, 3 plt). If the most significant bit is set this
signifies that the entry point is to a main program unit.
P2 = location of the entry descriptor relative to the start of
the area defined by Pl.
P3 = address of a string defining the entry point name.
This is truncated to the most significant 31 characters.

Define an external routine reference.

Pl = code of the area containing the reference block
(2 gla, 3 plt).

P2 = 1location of a two-word reference block relative to the
start of the area defined by Pl. This will be filled, at
load time, with a descriptor through which a call may be
made to the referenced routine.

P3 = address of a string defining the name of the referenced
routine. (31 characters significant).

Define an external routine reference which is to be satisfied
dynamically, i.e. when it is actually called. If dynamic loading
is not available this is treated as type 12.

P2 and P3 are as for type 12,

SUB15-4

TYPE =14

TYPE =15

TYPE

TYPE

TYPE

Define a data entry point.

Pl = (AREA <<24) ! length of the data area, where AREA

identifies the area containing the data area

(2 gla, 5 ust, 6 initcmn). If AREA is 6 this is an

initialised common area.

location of the data area relative to the start of area

ARFEA.

P3 = address of a string defining the data area name (31
characters significant).

P2

Define a data area reference.

Pl = (AREA CODE <<24)! minimum length the data area is expected
to have, where AREA CODE identifies the area containing the
reference (2 gla, 3 plt, 7 initstack).

P2 = location of a word relative to the start of the area
defined by AREA CODE which will have the address of the
data area added to it when the object file is loaded.

P3 = address of a string giving the name of the referenced data

area.

Define a data entry point in unshared symbol tables (area 5).

Pl = length of the data area.

P2 = locations of the data area relative to the start of gla
symbol tables.

P3 = address of a string (maximum 31 characters) defining the

data area name.

39
Relocate an 18 l¥6t address in code (area 1).
Pl = 0

P2 = displacement from the start of the code area of a 4 byte

instruction.
P3 = 18 bit address to be added to the last 18 bits of the
instruction located by P2.

Request relocation of a single word.

Pl = code for area containing the reference:
2 gla
3 plt
5 ust

7 initstack
P2 = byte displacement within area Pl of a word to be relocated
at load time by the base of the area specified by P3.
P3 = code for area base:
code
gla
plt
sst
ust
initstack

NN~

G.E. Millard

SUB15-5

EMAS 2900 SUBSYSTEM NOTE

No: 16
Date: 31/8/79

Use of COMREG for Storing PARM Options

The PARM options used by the compilers, by LINK and by the Loader are

held in elements 27 and 28 of COMREG.

required to it:

systemintegermapspec COMREG(integer N)

COMREG must be specified if access is

The table below associates the pairs of PARM optiomns with the bits of

COMREG(27) and COMREG(28).

Unset

The effects of these PARMs are described in

(Default underlined)

Subsystem Note 7.
COMREG(27)
Bit n Set Unset
(2%*n) (Default underlined)
31 n/a
30 JOBBER MODE NORMAL MODE
(set by Jobber)
29 MISMATCH NOMISMATCH
28 PARMX NOPARMX
27 PARMY NOPARMY
26 PARMZ NOPARMZ
25 spare
24 Stack size set
23 NOLINE LINE
22 EBCDIC Iso
21 Diag stream set
20 DYNAMIC STATIC
19 FREE FIXED
18 DEBUG NODEBUG
17 MAP NOMAP
16 OPT NOOPT
15 ATTR NOATTR
14 CODE NOCODE
13 LET NOLET
12 LABELS NOLABELS
11 XREF NOXREF
10 ZERO NOZERO
9 INHIBIOF ALLOWIOF
8 IMPS MP
(compiler command)
7 PROFILE NOPROFILE
6 NOTRACE TRACE
5 NOARRAY ARRAY
4 NOCHECK CHECK
3 STACK NOSTACK
2 NODIAG DIAG
1 NOLIST LIST
0 QUOTES PERCENT

SUB16-1

COMREG(28)

Bit n Set

(2%*n)

31-16 n/a
15 MINSTACK
14

13-9 n/a
3 RS
2 L8
1 18
0 n/a

NORMALSTACK
(May be used for more
"stack’ options)

J.M.

Murison

24/4/81 |

EMAS 2900 SUBSYSTEM NOTE
No: 17

Date: 31/1/80
Modifying Object Files on EMAS 2900

This note describes a program which performs a variety of operations on

object files. It is likely to be useful where large object files with many
entries and references are handled.

The following types of operation are available:

= changing the names of procedure or data entries and references.

- suppressing procedure and data entries.

= changing static procedure references to dynamic and vice versa.

- merging the code and shareable symbol tables areas or the GLA and
unshared symbol tables areas.

= binding the object file.

The BIND operation is intended to alleviate the problem of lengthy loading
times for large packages. Essentially, it processes an object file to
produce a module which can subsequently be loaded at minimal cost. To do
this it assumes fixed sites for the code, GLA and stack, and hence can
satisfy all relocation requests. It also resolves all cross-references in
the object file.

The program is accessed by:
Command : OPTION(SEARCHDIR=CONLIB.GENERAL)

and called by:

Command :MODIFY(object file [,output object file] [,report file])
The input (and output) object file may be a pd file member.

If the second parameter is omitted, the modified object file overwrites the
input object file.

If the third parameter is omitted, the report, which contains details of the
operations performed, is sent to T#MODLIST. Fault messages are sent to the
terminal and do not appear in the report.

The program issues the prompt "Operation:", the replies to which are given
below. Most operations require further input and issue appropriate prompts.

The "Operation:" prompt is reissued until the reply "CLOSE" is given. This
terminates the modification and causes the output file to be generated.

All input may be given in upper or lower case; spaces are not significant.

The parameters for the first five operations consist of one or more lines,

each containing a pair of names separated by a comma, the list being
terminated by .END, e.g.

Operation :RENAME

Proc ent pair :DREAD, READDATA
Proc ent pair :DPRINT, PRINTDATA
Proc ent pair:.END

Operation:

SUB17-1

1. RENAME
Changes the names of procedure entries.

Parameters: procedure entry, newname

2, REDIRECT
Changes the names of procedure references.

Parameters: procedure reference, newname

3. RENAME DATA
Changes the names of data entries.

Parameters: data entry, newname

4. REDIRECT DATA

Changes the names of data references.

Parameters: data reference, newname
5. ALIAS
Allows a copy of a procedure entry to be made and given a different
name.
Parameters: procedure entry, copy name

The parameters for operations 7-13 below consist of a list of items
separated by commas, or the keyword .ALL. The list is terminated by newline
unless the last character is a comma, in which case it continues on the
following line. The remaining operations (14-17) take no parameters.

Examples:
Operation:MAKEDYNAMIC Operation:SUPPRESS DATA
Proc ref list: Al,A2,A3, Proc ent list:.ALL
Proc ref list: A4 Operation:BIND
Operation: Operation:

6. MAKE DYNAMIC
Makes static procedure references dynamic.

Parameters: static procedure reference list or .ALL

SUB17-2

7.

8.

9.

10.

11.

12,

13.

MAKE STATIC

Makes dynamic procedure references static.

Parameters: dynamic procedure reference list or .ALL
SUPPRESS

This operation allows procedure entries to be suppressed. Other
operations such as SATISFY REFS will still be able to find and use a
suppressed entry - the only effect is that the suppressed entry will
not appear in the load data for the output object file. Note that a
main program entry cannot be suppressed.

Parameters: procedure entry list or .ALL

RETAIN

This cancels a SUPPRESS request. Since by default all entries are
retained, this operation is provided so that SUPPRESS with parameter
«ALL can be followed by explicit RETAIN calls for the procedure entries
which are actually required. Note that an object file must have at
least one main entry, procedure entry or data entry.

Parameters: procedure entry list or .ALL

SUPPRESS DATA

This command allows data entries to be suppressed (see SUPPRESS).

Parameters: data entry list or .ALL

RETAIN DATA
This cancels a SUPPRESS DATA request (see RETAIN).

Parameters: data entry list or .ALL

SATISFY REFS

For each procedure reference given, a search is made of the list of
procedure entries. If a matching entry is found, then the reference is
satisfied and removed from the load data. This operation is performed
as a side effect of BIND, and is hence redundant if BIND is also
called.

Parameters: external procedure reference list or .ALL

SATISFY DATA

For each data reference given, a search is made of the list of data
entries. If a matching data entry is found, then the data reference is
satisfied and removed from the load data. This operation is performed
as a side effect of BIND, and is hence redundant if BIND is also
called.

Parameters: data reference list or .ALL

SUB17-3

14,

15.

16.

17.

FUSE CODE

This causes the shareable symbol tables (SST) to be permanently
appended to the code area. Hence a subsequent LINK command will not
have its usual effect of separating these areas — LINK normally
collects all code areas together and follows this by a corresponding
series of SSTs. The intention is to prevent a degradation of paging
behaviour. All relocation requests with base SST are amended to use
the code area as base address.

Parameters: None

FUSE GLA

This causes the unshared symbol tables (UST) to be permanently appended
to the GLA. See FUSE CODE.

All relocation requests with base UST are amended to use the GLA area
as base address. In addition, the list of data entries is searched.
If any is defined with respect to the UST, then the definition is
amended to refer to the GLA.

Parameters: None

BIND

This command performs pre-loading operations on the object file so that
it can be loaded subsequently at reduced cost. To do this it assumes
fixed sites for the code, GLA and stack, and hence can satisfy all
relocation requests. It also creates an area for uninitialised COMMON
and satisfies data references to it. An entry is then added to the
object file listing. To achieve the greatest savings in load time, the
BIND command should be preceded by calls on the commands to suppress
procedure and data entries. BIND automatically attempts to satisfy all
procedure and data cross—references, so the explicit commands for these
operations need not be called where BIND is used.

Note that once bound, an object file cannot subsequently be modified or
linked. In addition, a bound file must be the first file loaded if

called at all; this also means that only a single bound file may be
loaded at a time.

Parameters: None

CLOSE

This terminates the user input. A confirmatory message is printed if
the modification is complated successfully.

Sandy Shaw

SUB17-4

Use of COMREG (27) for Compile Time Options

The following table shows the current use of the bits in COMREG (27).
is also allocated for use for additional PARMs.

COMREG (26)

Bit n
(2 #* n) SET UNSET NOTES
31 Not yet allocated
30 JOBBER MODE NORMAIL MODE Not set by user
29 MISMATCH NO MISMATCII Fortran only
28 R8/PARMX RL Fortran — default REAL*8. Imp for test
facility.
27 L8 /PARMY L4 Fortran - default LOGICAL*E, Imp for test
facility.
26 I8/PARMZ I4 Fortran - default INTEGCR*8, Imp for test
facility.
=5 Not yet allocated.
2k Stack Size Set Temporary use — not set by user
23 NOLINE LINE
22 EBCDIC ISO
21 Diag stream sef Temporary use — not set by user
20 DYNAMIC
19 FREE FIXED
18 DEBUG
17 MiP Used 53 CM LiNnk
16 OPT
15 ATTR Fortran - list attributes of variatlzs
1k CODE
3 LET
2 LABELS NO LABFLS
1 XREF NO XREF Fortran - list varieble cross reference
list,
10 ZERO
9 INHIBIOF Fortran - inhibit some I/O checks
8 nPs P '
T PROFILE
6 NOTRACE TRACE
b NOARRAY ARRAY
L NOCHECK CHECK
3 STACK
2 NODIAG DIAG
1 NOLIST
o QUOTES PERCENT

Roderick McLeod, October 1978

The MAIL Command 16/3/81

This command allows EMAS users on machines attached to the RCOnet to
send each other messages. The current pre-release version operates only
on the 2972.

Please send suggestions or comments to S. Shaw.

For the present, INSERT(ERCC27.MAILY) to gain access to the command.

Basic operations

MAIL provideé a number of facilities for manipulating messages; however
to get started, the subset described below should be sufficient.

l. Composing and sending a message

First invoke MAIL:

Command :MATL
Mail:

The prompt ‘Mail:’ is issued whenever MAIL expects the next command
to be specified. To send a message to "Bill Smith", first check on
the correct form of the name to use, (it may be "B.Smith" or
"W.Smith" or "B.A.Smith" etc) :

Mail :DIRECTORY *SMITH
B.Smith, H.T.Smith, S.Smith

Then use COMPOSE to create the draft message:

Mail :COMPOSE

Subj: Test Message

To: B.Smith

Text:

: Here is a test message

Send or send-and-file-a-copy now?
Y or Fec or N:

If you are happy with the message, send it by replying "Y" ("Fecc"
will in addition file a copy of it). If the reply "N'" is given, then
the contents of the draft can be amended or reviewed before sending:

Mail :LIST DRAFT
Once the draft is satisfactory, use SEND to dispatch it:

Mail :SEND
Message sent

The draft message may be filed without being sent:

Mail :FILE DRAFT

The MAIL Command 1

2.

Receiving and displaying messages

You can receive messages into your process either when calling MAIL
or by subsequent use of the ACCEPT command:

Command :MAIL(*)
If there are any outstanding messages, they are taken from MAILER and
a one line summary is printed for each. To accept messages when you
are already within MAIL:

Mail :ACCEPT
Newly received messages can be listed on the console:

Mail :LIST NEW
No action is required to retain received messages; see DISCARD,

described below, about deleting them.

Reviewing and deleting mesages

A one line summary of each message held can be produced using SCAN:
Mail :SCAN ALL

The sequence number printed at the start of each one line entry can
be used as a parameter to LIST or DISCARD, described below.

To review specific messages, find the required sequence number from
the SCAN output, then use it with LIST; e.g., for message 3:

Mail:LIST 3

To get rid of unwanted messages use DISCARD:
Mail :DISCARD 3

To get rid of all currently held messages use the keyword ALL:
Mail :DISCARD ALL

Discarding simply marks messages as eligible for removal. A
subsequent call of TIDY is needed to purge them entirely:

Mail :TIDY

On-line assistance is provided by HELP. Given no parameter it offers

a table of contents; otherwise it lists information about a specified
MAIL command. Return from viewing the help file back to MAIL by
typing QUIT:

Mail:HELP SCAN

View:QUIT

The MAIL Command

Overview

The MAIL command provides facilities for composing, amending, sending,
receiving and storing messages. Messages are held in store map files
called folders. All the correspondence which relates to one topic can
be conveniently held in one folder.

In turn, messages themselves consist of a number of components. The
body of the message consists of a text component, and the header of the
message consists of all the other components, e.g.

Subj: Meeting on Wednesday, 2 p.m.

From: S Shaw
To: J Smith, j jones

Please note the new location for our meeting is Room 2019.
S.

The process of composing a message entails placing text into the various
components of the draft message (which is not held in a folder). For
example, addresses go into the "To:" and "cc:" components and the body
of the message goes into the "Text:" component. A draft message can be
Sent which causes its delivery to all the indicated recipients; each
will receive a one-line TELL message indicating that they have
outstanding mail. After Accepting messages, the user may selectively
List them. Further manipulation of a message can involve Forwarding
‘copies to additional recipients, Replying to its author, Filing for
later reference or Discarding.

The messages in a folder are ordered chronologically and may be
referenced by their index number (i.e. by their position in the folder),
or by using special labels. At any given moment the system has a
current folder and within it a current message which are under scrutiny;
this avoids having to specify a folder and message index for every
command .

A standard folder called M#INBOX is created by the system. When the
MAIL command is invoked , the normal action is to Open the standard
folder and select it as the current folder.

Only the draft message may be modified. However, any message in a
folder can be Copied to the draft; similarly, the draft message can be
Filed in a folder.

You are notified when a message has arrived for you by a TELL message
from the executive process MAILER. At this stage the message has not
been placed in your process ~ you must call the MAIL command and
explicitly Accept it to cause the transfer to be performed.

Calling MAIL

The MAIL command takes two parameters, both optional:

Command :MAIL(<R-name>/<folder name>)

With no parameters, the program issues the prompt ‘Mail:’ to indicate
that it is expecting a MAIL directive to be given. This prompt is

The MAIL Command 3

reissued after each directive has been performed until the directive
STOP or QUIT is given:

Command :MAIL
Mail:

If a folder name is specified (preceded by ‘/’), that folder is OPENed
and hence made the current folder; otherwise M#INBOX is made the current
folder:

Command :MAIL(/RFOLDER)
Folder RFOLDER contains 16 messages

If <{R-name> is specified (or ‘*’, interpreted as the surname string of
the process in use) then an ACCEPT <R-name> command is invoked, i.e.
mail from other users is accepted:

Command :MAIL(*)
2 new messages

Mail:

The parameters for each MAIL command generally take the form
<input>/<outputd>. If no <outputd> parameter is given then the slash (/)
can be omitted.

A command name need not be typed out in full and in most cases may be
abbreviated to a single letter. Where an ambiguous name is given, e.g.
"F" then alphabetical order determines the command selected. Hence "F"
will invoke "File", "FO" will invoke "Forward". Lower case input is
accepted throughout,

Summary of commands

Accept - take outstanding messages; may be implied when calling MAIL
Accredit - add an alias R-name to the name/address directory

Compose - create a draft message and offer to SEND it

Copy -~ create (or append to) components of the draft message
Directory - list an extract of the name/address directory

Discard - mark messages as discarded, or destroy draft components
Discredit - remove an R-name from the name/address directory

Ecce - invoke ECCE to edit a component of the draft message

Edit - invoke the standard editor to edit a compoment of the draft
File - copy messages to another folder, then discard the originals
Forward - package up an existing message for retransmission

Goto - make the message specified the current message

Help - provide on-line information about MAIL commands

List - display messages on the console or list to a file

Next - list the next message in the folder on the console

Open - make the folder named the new current folder

Output ~ list a message component to a file ,device or the console
Previous - list the previous message on the console

Quit - exit from MAIL and return to the Subsystem

Reply - create a draft message in reply to one received

Retrieve - remove "discarded" status from messages

Scan - produce a list of contents for the current folder

Send - package up a message and submit it for transmission

Stop - exit from MAIL and return to the Subsystem

Tidy - purge discarded messages from a folder

4 The MAIL Command

Addressing conventions

Messages are addressed to individuals by using their "recipient names"
(R-names). Each R-name is unique and, for EMAS users, corresponds to
the surname string associated with their EMAS process (the same string
is printed on line printer output banners). Every EMAS user with a
unique R-name is automatically accredited to the MAIL system, i.e. the
name is entered in MAIL’s name/address directory. Information on
R-names known to MAIL can be found by means of the command DIRECTORY
(see below). A user can have his surname string (and hence R-name)
changed by making a request to the System Manager.

Each R-name has an associated address of the form [username @ host].
Either the R-name or the address may be used to direct messages, e.g.

S.Shaw and [ERCC27 @ 2972]
are both valid forms for specifying recipients.

When a specified R-name is being processed by MAIL, the case of the
letters is ignored , as are spaces and dots.

A user can avoid having his surname string made known to other users as
an R-name by setting permission NONE to the executive process MAILER:

Command : PERMIT(.ALL,MAILER,N)
An arbitrary number of R-names may be associated with a given address.
This may be convenient where several people share a process or where one

person has several roles. Requesting additional R-names as aliases is
provided as a user facility (see the command "Accredit", below).

Message lists

Within a folder, messages can be referenced by index number (position in
the folder), and a collection of messages can be referenced at one time,
by using commas and dashes as connectors. Hence the specification "1,
7-9, 90>89" refers to messages one, seven, eight, nine, ninety and
eighty-nine. The angle bracket is like dash except that it indicates
that the sub-list is in descending order.

Also, certain keywords define groups of messages, so that '"mew, 10-15,
last" will reference all new messages, the tenth to fifteenth and the
last message in the folder. The same message may appear more than once
in such a list, but this does not imply any "repetition" of the message.

Keywords may be abbreviated to a shorter form (as short as a single
letter). But note that "D" is a short form of "draft" (not "discarded")
and "N" is a short form of "new" (not "next").

The terms defined below (with the exception of "draft") relate to
messages in the current folder; they are as follows:

n - message n in the folder
nl-n2 - messages nl to n2 (nl less than n2)
n2>nl ~ messages n2 to nl (n2 greater than nl)

The MAIL Command 5

all
current

discarded

draft

last
new
next

old

previous

saved

- all messages in the folder

- the message currently under scrutiny

- messages which have been discarded to a "wastebin" but
which the janitor has not yet taken away (see the

"Discard" command, below)

- the single message which is currently being prepared;
it is not held in any folder

- the last message in the folder
- received messages which have not yet been LISTed
- the first message after the current one

- messages in the folder which are not discarded, new or
saved

-~ the first message preceding the current one

- former draft messages which have been saved by being
FILEd in the folder

Message components

A message is composed of a series of components. The body of the
message consists of a "Text:" component - all the other components
together constitute the header of the message. The following components

are defined
Date:

Subj:

From:

Sender:

To:

cc:

bce:

Msg ID:

Indicates the date and time when the message was sent.

Gives a brief indication of the content of the message and is
displayed when the message is SCANned.

Indicates who sent the message. This field may be set by the
sender to contain any text he wishes (if, for example, he is
sending a message on someone else’s behalf); in this case,
MAILER will add a "Sender:" component to the message to show
who actually sent it.

Shows who actually sent the message and indicates that the
"From:" component is not authentic.

The one or more primary recipients of the message.

One or more secondary recipients (who receive carbon copies).

One or more tertiary recipients (who receive blind carbon
copies, see below).

This holds a unique message identifier and is composed of
three parts:

1) message server name (= host)

2) a numeric identifier allocated by the server
3) date and time when the message was sent

The MAIL Command

In reply to: This component is added to a message by the REPLY
command , and identifies the message being replied to.

References: Not filled in or used by any MAIL function, this
component may contain any text.

Keyword: Again, this component may contain any text and may be used to
classify messages or to direct the operations of programs
which automatically receive and manipulate messages.

Folder: 1Indicates the name of a folder in which the sender recommends
the recipient to file the message.

Mode: If specified, may contain the value BINARY or EHEADER.
BINARY indicates that the body of the message is a binary
file. EHEADER indicates that the body of the message
includes a standard EMAS header.

The LIST command does not attempt to display the body of a
message which has either mode set. The original file may be
reconstituted using the OUTPUT command.

When sending a message to a number of recipients, the sender may
determine how much information each recipient receives about his
co-recipients by selective use of the "To:", "cc:, and "bce:"
components.

To: a recipient in this list has details of all the recipients
included in his copy of the message

ce: a "cc:" recipient does not have the "bcec:'
in his copy of the message.

component included

bee: a "bee:" recipient will receive a copy of the message

containing neither the "cc:" nor "bec:" components; his own
name is added to the "To:" component in his copy of the
message.

Hence, a message addressed
To: Black

ce:s Brown
bee: White

will be received by each as follows:
Black = To: Black
ce: Brown

bce: White

Brown - To: Black
cc: Brown

White - To: Black, White

This feature may be useful where a distribution list containing many
names is given - the sender can avoid burdening each recipient with a
long list of names in which he has no interest.

The MAIL Command 7

Many of the commands of the MAIL program take a message component
parameter. The full specification is:

<{component name):<{message)(<{folder name>)
e.g. cc:4(LETTERS)

The folder name can usually be omitted ~ by default the message referred
to will be in the current folder. The <{message> part of the
specification may also be omitted, in which case the current message
under scrutiny is assumed. Hence the message component specification
"To:" , refers to the "To:" component of the current message in the
current folder.

Message component names can be abbreviated to a shorter form - in all
cases, the first two characters of each component name give a unique
abbreviation (hence "SE:" is equivalent to "SENDER:").

Note that a message keyword which may define more than one message can
be used - the message selected is the first message found which matches
the keyword.

Hence "Subj:NEW" refers to the "Subj:" component of the first NEW
message in the current folder.

Mail commands

Mail :ACCEPT <R-name>, {password> / <{folder name>

This command is used to accept messages sent to you by other users.
By default, the messages are put in the current folder:

Mail :ACCEPT

If the <{folder name)> parameter is specified, then the messages are
stored in that folder (it is made the current folder). The <R-name)>
parameter is required in two cases:

- where you want to accept mail directed to an alias R-name, e.g.

Mail :ACCEPT EMAS Suggestions/SUGGBOX (puts mail addressed to
"EMAS Suggestions" into folder SUGGBOX)

= where you are accepting mail within an EMAS process other than
your own, e.ge.

Mail :ACCEPT S Shaw, PASS
After taking the outstanding messages, a SCAN of new messages (i.e.
messages not yet LISTed) is performed. The first new message in the
folder becomes the current message.
Mail :ACCREDIT
This command allows users to add additional R-names for themselves
(aliases) to the name/address directory. This may be useful where

several people share one EMAS process, or where one person has
several roles. The facility should not be used to define names which

8 The MAIL Command

will be meaningless to most MAIL users, such as nicknames known to
only one or two people,

You may also set a password for the R-name which will make it
possible to accept messages at another address (see ACCEPT).
Passwords may be up to seven characters long.

It is also possible to set a "Department" field (31 characters) to be
associated with the R-name. The information is displayed when a

search is made of the name/address directory (see DIRECTORY) and is
intended as an aid to distinguishing recipients with similar R-names.

Note that if you want to have your default R-name changed, this can
only be done by application to the System Manager.

Mail :ACCREDIT

Rname: Mail Suggestions
Password : ABCDE

Department: EMAS MAIL Suggestion Box

Mail :COMPOSE <component names)

This command offers a convenient way of creating a draft message.
The draft is first cleared, then prompts are issued as indicated:

Mail :COMPOSE

To: J.Jones

Subj: 01ld joke

Text:

: Send 3/4d were going to a dance.
Send or send-and-file-a-copy now?
Y or Fcc or N:Y

Message sent

Once the draft has been composed, the program offers the option of
sending the message or returning to MAIL command level. Input for
each component (except "Text:") is terminated by a newline unless the
character before the newline is a comma; thus, for example, the "To:"
component can be given a list of R-names which extends over several
lines. Null input is accepted.

The "Text:" component is terminated by a colon (:) on a line by
itself. The prompt printed when lines of the "Text:" component are

4

being input is “:’.,

In addition to accepting text, the COMPOSE command will accept the
contents of an EMAS file or of a component of an existing message.
The escape character ‘@’ must be used to indicate this form of input.
You may request that prompts are issued for additional message
components by giving the component names as parameters:

Mail :COMPOSE cc:
To: @ERCC27.NAMES
cc: J.Jones

Subj: @subj:
Text:

t@text:4

Send or send-and-file—~a~copy now?
Y or Fec or N: N

The MAIL Command 9

In this example, a file is copied to the "To:" component of the
draft, the "Subj:" component of the current message is copied to the
"Subj:" component of the draft, and the "Text:" component of message
4 is copied to the "Text:" component of the draft.

If the draft message is not sent (as in the example above), it may be
modified further then dispatched using the SEND command.

Mail :COPY <input>/{component of the draft or DRAFT>

This command allows text to be copied to a component of the draft.
Alternatively a complete message may be copied to the draft. If
{input> is not specified then a prompt is issued and the text to be
copied is read from the terminal. If the component of the draft is
not specified, the "Text:" component is assumed. Alternative sources
of input are an EMAS file or a component of an existing message.

Mail :COPY (No parameters, so input is prompted
Text: for and is taken to be for the "Text:"
¢:This is input component of the draft message)

Mail :COPY MSGTEXT (EMAS file MSGTEXT is copied to the "Text:"
component of the draft message)

Mail :COPY CC:/TO: (copies the "cc:" component of the current
message to the "To:" component of the draft
message)

If the input is to be éppended to the existing contents of a
component of the draft message rather than overwrite it then the
symbol ‘+’ should be inserted before the component name:

Mail:COPY MYLIST/+TO: (appends the contents of the file MYLIST to
the "To:" component of the draft)

Mail:COPY CC:4/4CC: (appends the contents of the "cc:" component
of message 4 in the current folder to the
"ce:" component of the draft)
Alternatively, a complete message (i.e. all its components) may be
copied to the draft message. In this case the default for the first
parameter is the current message.

Mail :COPY /DRAFT (copies the current message to the draft)

Mail :COPY NEW/DRAFT (copies the first new message in the
current folder to the draft)

Mail :DIRECTORY <R~name mask>, FULL/<{output>

10

This command allows a search to be made of the name/address
directory. The search may be for a specific R-name, or for all
R-names that fit a mask. As in the Subsystem command FILES, the mask
consists of up to three fields where a field is either a string of
explicit characters or the symbol "*", representing any characters.
Upper and lower case characters are not distinguished , and space and
dot characters are ignored.

The MAIL Command

If the second parameter ("FULL") is specified, then additiomal
information is given on each R-name selected , under the following
headings:

User the user number to which messages are delivered
Server - the host on which the recipient is accredited
Options - currently takes one of two values:

S’name = the R-name is the standard process surname
string , set by the System Manager

Alias - the R-name was accredited by the user
himself
Dept - a user—defined field set by ACCREDIT

The <{output> parameter may be null (implying output to the terminal),
or a filename or device name.

Mail :DIRECTORY *shaw
A.Shaw, B.C. Shaw

Mail :DIRECTORY *MAC*/.LP

Mail :DIRECTORY *JONES ,FULL/TEMP1

Mail :DISCARD <messages or draft components>

This command marks one or more messages in the current folder as
being discarded, but does not physically remove them or re-number the
remaining messages in the folder. The action is like placing a
message in the wastebin - it is still available though less
convenient to access, and is subject to permanent removal later by
the TIDY command (see below). If no TIDY has been performed after a
DISCARD then the RETRIEVE command can be used to recover the
messages.

As with other commands, DISCARD can be applied to the draft. 1In
addition, for the draft only, individual components may be discarded.
(However , discarded components of the draft are destroyed immediately
and cannot be recovered by RETRIEVE.)

Mail :DISCARD 1-4,SAVED,CC: (discards messages 1-4 and all SAVED
messages in the current folder, plus the
"ec:" component of the draft)

Mail :DISCARD DRAFT (discards all components of the draft
message)

The last message specified in the list becomes the current message if
it is not the draft.

The MAIL Command 11

Mail :DISCREDIT

This command removes an R-name from the name/address directory. A
password must be supplied if the command is called from any process
other than that associated with the R-name. In order to have your
default R-name removed permanently from the name/address directory it
is necessary to set a file index permission of "none" to MAILER:

Command : PERMIT(.ALL ,MAILER,N)
Discredit is called as follows:
Mail : DISCREDIT

Rname: MAIL Suggestions
Password: ABCDE

Mail :ECCE <component or EMAS file>/<{component of the draftd>
Mail :EDIT <component or EMAS filed>/<component of the draft>

This command allows an EMAS file or an existing component of any
message file to be edited, and the result placed in a component of
the draft.

If no parameters are given, then the "Text:" component of the draft
message is edited. If an output draft component (i.e. one following
"/") is given, then the existing contents of that component are
overwritten.,

Mail:ECCE - edits the "Text:" component of the draft,
creating it if none already exists

Mail :EDIT CC: - edits the "cc:" component of the draft,
creating it if none exists.

Mail sECCE Text:current/text: - edits the "Text:" component of the
current message to the "Text:" component
of the draft.

Mail :EDIT /TO: - edits an empty file to the "To:" component
of the draft.

Mail :EDIT MYLIST N1/TO: =- edits an EMAS file to the "To:"
component of the draft.

Mail :ECCE CC:2 - this will fail; a component of the draft
must be given following "/" in this case.

Mail:FILE <list of messages in the current folder>/<folder>

12

This command copies messages from the current folder to another
folder , then discards the messages from the current folder. The
input list of messages defaults to the current message. The draft
message may also be filed (this is the only message which can be
filed in the current folder); a filed draft message is given SAVED
status (see SCAN).

The last message in the list of messages to be filed becomes the
current message.

The MAIL Command

Mail :FILE /folder2 - files the current message to folder2
Mail :FILE DRAFT - files the draft to the current folder

Mail :FILE NEW,1,LAST/folderb - files all new messages plus the
first and last in the folder to folderb

Mail :FORWARD <message>

This command sends a copy of a message to another user or users.
MAIL issues a prompt for the name of the user or users to whom you
wish to forward the message. You reply to this with the name(s) or
alternatively specify an EMAS file or a message component which
contains the names.

It is often useful to add comments to the end of a forwarded message.
This can be done after FORWARDing but before SENDing the message by
using COPY or EDIT.

As with COMPOSE and REPLY, you are offered the option of sending the
message once the recipients have been specified. If <{message> lies
within the current folder, it becomes the current message.

Mail :FORWARD 1 - forward the first message in the
To: Rowland Hill current folder

Mail :FORWARD LAST(FOLDER2) - forward the last message in folder2
To: @MYGROUP to the list of recipients specified
in file MYGROUP

Mail :FORWARD NEW - forward the first new message in the

To: @cec: current folder to the list of recipients
held in the "cc:" component of the current
message.

Mail :GOTO <Message>

The message specified becomes the current message. If a message
keyword is used which may select more than one message, the first
message found is selected.

Mail :GOTO 1 - go to the first message in the current folder
Mail :GOTO NEXT - the next message after the current one

Mail :GOTO NEW,LAST - go to the first new message; if there are
none, go to the last message in the current
folder

Mail:HELP <cocmmand>

This command provides information about the MAIL system and includes
descriptions of all the MAIL commands. It operates by VIEWing a file
containing the help text; hence the whole of this file can be
explored at one time. If no parameter is given a table of contents
is printed and further input requested. Alternatively, the name of a
MAIL command may be given as a parameter.

The MAIL Command 13

Return from viewing the help text to MAIL using Q or QUIT.

Mail :HELP

View: QUIT

Mail :HELP COMPOSE

View: QUIT

Mail:LIST <messages>/<file or device>

This command displays messages in the current folder on the console,
or alternatively lists to a file or device. In the latter case, a
SCAN (see below) is prepended to the listing. If <messages> is
omitted, the current message is listed.

Mail:LIST = displays the current message on the console

Mail:LIST NEW ,DRAFT/.LP - lists all new messages plus the draft
to the line printer

If a message listed contains a "Mode:" component, this indicates that
the body of the message contains a binary file or an EMAS file
complete with header - hence the "Text:" component of the message is

not listed. The "Text:" component may be reassembled as a file using
the OUTPUT command.

Note that as a side effect of LIST, the status of a NEW message 1s
changed to OLD.

Mail :NEXT

This command LISTs on the console the first undiscarded message after
the current message. (Note the difference in meaning between this and

the "next" message-reference keyword). The message listed becomes
the current message.

Mail :OPEN <folder name>, NEW

14

This command switches primary attention to another folder, i.e. makes
the folder named the current folder. It is also used to create a
folder; in this case the second parameter NEW must be given. If no

parameter is given, the standard folder M#fINBOX is made the current
folder.

Mail :OPEN BUGS ,NEW - creates a new folder BUGS and makes it the
current folder

Mail :OPEN F2 ~ makes an existing folder F2 the current
folder
Mail :OPEN - makes M#INBOX the current folder.

The MAIL Command

If the parameter ‘?’ is given, then the name of the current folder
and the number of messages in it is printed:

Mail:QPEN ?
Folder M#INBOX contains 16 messages

Mail :OUTPUT <component>/<file or device>

This command is used to transfer a single component of a message to a
file or device or to the console. The default component is the
"Text:" component and the default message the current message. If
the "Text:" component of a message is to be output, then a check is
made on whether a "Mode:" component is also present: for a "Mode:"
value of BINARY, a store map file is output; for a '"Mode:" value of
EHEADER, an EMAS file complete with header is output.

Mail : QUTPUT - displays the "Text:" component of the
current message on the console.

Mail :QOUTPUT CC:4(F3) - displays the "cc:" component of message &
in folder F3 on the console

Mail :OUTPUT /OBJECT1 - outputs the "Text:" component of the
current message to a file

Mail : PREVIOUS

This command LISTs on the console the first undiscarded message prior

to the current message. (Note the difference in meaning between this
and the "previous'" message-reference keyword). The message listed
becomes the current message.

Mail:QUIT

Exits from MAIL and returns to Subsystem command level.

Mail :REPLY <message>

This command provides a convenient way of replying to a received
message.

If no parameter is given then a reply to the current message is
produced. A prompt is issued for the "Text:" of the reply. The
escape character ‘@ can be used at this point to indicate input from
an EMAS file or from an existing message component:

Mail:REPLY 2

Text:

:Your message received

Send or send-and-file—a-copy now?
Y or Fce or N: N

The MAIL Command 15

Mail :REPLY LAST(FOLDER3)

Text:

:@ACK_VPOLITE

Send or send-and-file-a-copy now?
Y or Fcc or N: Y

If a <message> in the current folder is specified, it is made the
current message.

Mail :RETRIEVE <messages>

The complement of DISCARD, this command changes the status of the
specified messages in the current folder from "discarded" to "old".
Note that once discarded the draft message cannot be retrieved. If
<{messages> is null, the current message is retrieved.

The first message in {messages> becomes the current message
Mail :RETRIEVE DISCARDED

Mail :RETRIEVE 4,10-12

Mail:SCAN <messages>/<{device or file>

16

This command scans the specified messages in the current folder and
produces a "list of contents" - a series of one line summaries for
the messages. By default, NEW messages are scanned and the output is
directed to the comsole,

The format of the one line summaries is as follows:

status - null = old message
s = saved draft message (created when a
draft message is FILEd)
X = discarded message
* = the draft message
n = new messages, i.e. messages not yet
LISTED
index - the index number of the message within the folder
<= - for the current message, the indicator ‘<=’ is
printed
(length) - the length of the "Text:" component of the
message in bytes
date - the day and month that the message was sent
from - the "From:" component of the message; if this

component is empty, the "To:" component is

displayed (prefixed with "To:")
subject - the "Subj:" component of the message; if this

component is empty the first few bytes of the
"Text:" are displayed.

The MAIL Command

Mail :SEND <message>, FCC/<{folder name

This command packages up a message and submits it for transmission.
If <{message> is omitted, the draft message is sent.

The FCC parameter indicates "File carbon copy", and causes a copy of
the message to be filed in the current folder or the specified folder
(this action is conditional on the message having been sent
successfully). If the message sent lies within the current folder
then it becomes the current message.

Mail:SEND , FCC - sends the draft and files a copy in the
current folder

Mail :SEND 1(STANDARD) - sends the first message in folder STANDARD

Mail :STOP

Exits from the MAIL program and returns to Subsystem command level.
STOP is identical to Mail:QUIT.

Mail:TIDY <folder name>

This command causes discarded messages to be purged from the

indicated folder (by default, the current folder). TIDY is
irreversible.

The remaining messages in the folder are ordered by transmission date
(in the case of SAVED draft messages, by date of filing), and hence
the message index numbers change.

If the current folder is tidied, the current message becomes the
first in the folder.

Mail :TIDY F2
Mail :TIDY

The MAIL Command 17

EMAS 2900

New HELP facility

After lengthy discussion with advisors and others in the Centre
I have decided that there is a continuing role for the HELP command.
I see it as a very simple to use source of first level information on
a wide variety of topics. I propose to change the user interface slightly
in the following ways :

* reduction to a single parameter - a keyword - hence removal
of mechanism to send output elsewhere.
* removal of facility to list all entries HELP (.ALL).

* generalisation of keyword structure - no longer restricted
to valid membername. This allows e.g.

HELP COMMAND PARAMETERS
HELP .LP (information about .LP)

* a facility may be included to attempt to provide possible
matches for unknown keywords.

Apart from these changes in appearance the system will monitor
all calls - particularly un-successful calls to determine what subjects
users are asking about, for which we currently provide no information.

Improvement to Information

The changes listed above are minor compared to the changes to
the information on which the system relies. It is proposed to expand
this vastly to include references to many more topics. For many entries
the information returned will be the source of further information -
e.g. PACKHELP, MICROAID etc. Enough information must be given for the
novice user to get to the further information.

The aim will be to provide brief, concise information and it is
suggested that a maximum of 10 lines of 72 characters be provided per
entry. This will be appropriate for use on slow terminals as well as
faster terminals.

Development

Brian Murdoch will be responsible for providing the software for
the routine HELP itself and for any tools required to maintain the data base.
Information for entries will be collected from the existing HELP system,
and a wide variety of other sources by Roderick McLeod and Nick Stroud.
Advisors will be asked via ADLIB to suggest areas and to provide information
on the specialities.

Conclusion

This development is thought to be a necessary step in the provision
of a simple, single entry, source of information on a wide variety of EMAS
related topics. It is comsistent with packages such as MAIL, VIEW, SCREED
which all provide their own internal HELP information, in that it will
provide just enough information for the user to get to the facility
concerned. In the case of the basic EMAS commands it will continue to
provide a main source of information - backed up in the case of the more
complex commands with references to the Users Guide.

Roderick McLeod

SCREED: A Screen Editor

11/2/81

Introduction

SCREED is a screen editor available on EMAS at ERCC. Details of access
and a list of suitable video terminals are given in Appendix A.

The purpose of SCREED is to provide a simple means of editing character
files. 1It does this by exploiting the fact that a video screen has 24 lines
(usually) and that it is possible to move the "cursor" (current position
marker) to any position on any of the lines. When characters are typed
thereafter they appear on the screen at the cursor position.

Now, if a video screen were filled with lines of a character file, the
effect of moving the cursor to some position on the screen and then typing
would be to overwrite the text at that position. If a text editor running
on EMAS had caused the file lines to appear on the screen in the first
place, then this editor could note the user’s subsequent movement of the
cursor and when the user overwrote some of the text on the screen, it could
make an exactly similar change to the original file.

The main advantage of this approach to editing over that used by, say,
EDIT or ECCE is that instead of typing a "command string" to cause the
editor to change the file, the user is "changing it himself", or so it

appears, and the effect on the file is immediately obvious.

This summary of the principle of screen editing leaves a number of
questions unanswered. For example:

* How do I tell the editor which part of my file is to be displayed on
the screen?

* What happens if the text to be added at some point in the file is
smaller (or larger) than the text to be removed?

* The cursor control keys on my terminal (the "arrow keys") do not work
with EMAS.

To take the last point first: the communications network rejects most of
the "control" characters if you type them on your keyboard. However, the
network has been modified to allow a new mode of operation in which all
characters are acceptable. (This is necessary because different types of

video do the same thing, such as moving the cursor around, in quite
different ways, and so it is not possible to identify a set of "cursor

moving" control characters.) This new mode of operation is automatically
selected within SCREED.

To delete text without replacing it by new text, a delete character is
provided. This is ‘"’ by default, but it can be changed. To add text to
the file you need to use 'control commands", described below.

Before reading further, you are advised to log on to EMAS and invoke

SCREED (refer to Appendix A for details of access):

Command : SCREED(input file, output file)

SCREED - a screen editor 1

The file specification is as for ECCE. Choose as input an unwanted file,
or a copy of a file. SCREED will ask you to indicate which type of video
terminal you are using. Once this has been replied to, the screen will go
blank and then the first two lines of the input file will appear at the top
of the screen. Holding the ‘control’ button down, type ‘R’ followed by ‘S’.
The first screenful of the input file will appear on the screen. You will
find that the cursor moving buttons will operate - line feed, return, up
arrow, down arrow, backspace, home, etc.

TO TERMINATE AN EDIT SESSION, TYPE

STOP followed immediately by ctrl X (ctrl Z on some terminals)
or ABORT followed immediately by ctrl X (ctrl Z on some terminals)

(Details of this type of edit command are given below.)

[Note that “(A)’ in the description below stands for control A, i.e. the
code generated by holding down the control button and typing “A’. Similarly
(B), (C), etc.]

When SCREED is being used, there are no "command line" or "menu" areas on
the screen, and - apart from delete characters - no characters stand for

other than themselves: all that you see is file. However, some blank lines
on the screen may not correspond to blank lines in the file., Such screen

lines are called "null".

To move the cursor to a specific part of the screen the user can make use
of whatever keys are available on his keyboard: Tab, Backspace, Return, Line
Feed, |, |, <~, =>, Home - but not the space bar since it inserts a space
character at the current position. In addition to those keys there are
cursor positioning commands provided by SCREED, as described below,

The user commands SCREED by means of pairs of control characters. The
first indicates an action and the second the text unit to which the action
applies. If the "action" control is omitted the last action control given
is assumed,

Action , Text Unit

(A)dd

(B)eginning of

(C)onjoin (Word
(D)isjoin followed

(E)nd of (L)ine
(0)mit by

(N)ext (S)creen
(P)revious

(R)ewrite

(T)runcate

Any combination of an action followed by a text unit may be given, but

may not be valid in some circumstances, For example, (0)(W) (Omit Word)
will fail if the cursor is not on a "word" (a piece of text delimited by

spaces or the beginning of a line or the end of a line). The editor signals
failure by wiggling the cursor back and forth on the current line.

2 SCREED - a screen editor

It is probably simpler to try out the effects of these commands on a file
than to read a detailed description of their effects. Explanatory notes on
some of the combinations may be useful, however:

1)

2)

3)

4)

5)

6)

7)

8)

9)

Some commands move the cursor only, some delete text and some rewrite
the screen completely.

(0)(L) turns the current line into a null line.

(0)(W) causes the current word and appropriate space characters
beside it to be replaced by delete characters.

(R)(L) removes all delete characters from the current screen line in
the process of rewriting it.

(D)(L) causes the current line to be broken ("disjoined") at the
cursor. In general the remainder of the screen has to be rewritten
to accommodate the new line produced.

(A)(W) shifts the remainder of the current line about 15 places to
the right and fills the gap with delete characters. These can then
be overtyped as required. If the end of the line was moved off
screen in the process, it reappears on (R)(L), although you do not
have to follow (A)(W) with (R)(L). (Indeed, there is no command
which must be followed by some other specific command - they are all
entirely independent.)

(AY(L) causes the current line and all the lines below it to be
replaced on the screen by null lines, the current line then to be
rewritten at the bottom of the screen and finally the cursor to be
moved back to the first of the null lines. These null lines can then
be used as necessary. Null lines below the last line added will be
discarded on typing (R)(S), but note that null lines traversed prior
to text being added lower down will be turned into blank lines (i.e.
they become part of the file).

If your terminal is operated by SCREED in page mode (e.g. the Lynwood
DAD-1), then (A)(L) causes the screen to be blanked, the line .
previously containing the cursor to be written at the bottom of the

screen and the line before that to be written at the top of the
screen, The screen lines between are all null,

(A)(S) is similar to (A)(L) except that the current line is not
rewritten at the bottom of the screen. Thus an arbitrarily large
number of lines can be added simply by scrolling the screen when you
get to the bottom. Use of a "clear screen" key (if your terminal has
one) is equivalent to (A)(S) - the resulting screenful of null lines
is understood to come before the line which previously contained the
cursor.

If your terminal is operated by SCREED in page mode, (A)(S) causes
the screen to go blank, as though you had used a "clear screen" key
(as described above).

(R)(S) Rewrites the screen, removing all delete characters and null
lines. 1If there are null lines above the cursor when (R)(S) is typed
then file lines prior to those currently displayed are brought down
onto the screen; if there are null lines below the cursor when (R)(S)
is typed then file lines following those currently displayed are
brought up onto the screen. The only exception to this rule is when
there are insufficient previous file lines to bring down: in this
case the first line of the file appears at the top of the screen. On

SCREED - a screen editor 3

the other hand, if there are insufficient file lines following those

displayed to bring up onto the screen, then null lines appear at the
bottom of the screen.

10) (D)(S) means that the screen is to be '"disjoined" at the current
line. The current line becomes the first of the new screen; i.e. the
screen scrolls until the current line is at the top. In the case of
page mode terminals, the screen is rewritten with the current line at
the top.

11) (C)(S) implies that this screenful and the next are to be
"conjoined". The resulting screenful shows the join. exactly in the
middle of the screen; i.e. the effect is to scroll up by half a

screen., Again, to achieve the required effect on page mode
terminals, the screen is rewritten to display the appropriate text.

12) (0)(S) causes all the lines displayed on the screen to be removed

("omitted") from the file. (T)(S) is similar: it removes the current
line and all lines below it on the screen from the file.

13) (N)(S) causes the file tine following the bottom one currently
displayed on the screen to become the top line on the screen.

Having read this, you should now experiment with the various combinations of
action controls and text units. A summary of commands appropriate to your
video type is given in Appendix B.

These facilities are useful, but they are not sufficient. The following
questions make this clear:

* How do I terminate (or abandon) the edit session?

* How do I get to the middle of a large file (typing (N)(S) fifty
times is rather tedious)?

* Can I save the editing done to date?

~* How can I correct twenty occurrences of the same mis-spelled
word?

* Can I change the delete character?

All these facilities are provided by means of another control character,

(X) [(Z) on some terminals - see Appendix B]. 1If you type in some text and
follow it with (X), SCREED rewrites the line as-it was before you typed the

text, and then examines the text typed. If it is one of the following, in
upper or lower case, then a special action is implied:

CLOSE (or STOP or END or EXIT)

ABORT
SAVE

EDIT
ECCE
DEL=<{char>

If the text was none of these then SCREED takes no action,

4 SCREED - a screen editor

CLOSE

STOP Any of these causes the edit session to be terminated.

END

EXIT

ABORT The edit session is terminated without the output file being

written to.

SAVE The file is copied in its present state to the output file,
the screen is blanked and then the current line and the line
before and line after are written in the middle of the screen
(the other screen lines are null).

EDIT A branch is made to the Subsystem editor EDIT. The current
position is preserved. You can terminate the edit session
from within EDIT in the usual way, or return to SCREED if you
wish., This is done by hitting the ESC key and replying
“SCREED" (or "screed") to the "INT:" prompt. On hitting the
"Return" key the "Edit:" prompt will appear as usual, but if
you hit "Return" again SCREED will be reverted to. Three
lines will be displayed, as for SAVE.

ECCE A branch to the editor ECCE is made. The return to SCREED,
if desired, is precisely as for the return from EDIT.

Note that you can start your editing in ECCE or EDIT and then branch to

SCREED by the use of the "INT:". At present you must invoke EDIT from
command level by the command TEDIT, and ECCE by TECCE.

DEL=<char> The specified character becomes the delete character in
future. :

Thumbing

To move around the file you could invoke EDIT or ECCE by use of (X), then
move the current position, then return to SCREED. However you can also do
this without leaving SCREED, as follows: suppose that the top line of the
screen corresponds to the first line of the file and that the bottom line of
the screen corresponds to the last line of the file; then halfway down the
screen = halfway down the file, three quarters down the screen = three
quarters down the file, etc., If you position the cursor on the left hand
margin of a screen line and then type (X), the effect is to move to the
corresponding position of the file. The screen is blanked and three lines
from the implied file position are written, at the specified screen
position. If this is not in fact the right place then you can adjust your

position, up or down, and type (X) again. This is known as '"thumbing", as
you are effectively thumbing through the file.

The reason for SCREED writing only two or three file lines, on entry or
following a (X) command, is to save time - you might want to "thumb" to some
other part of the file, and writing a complete screenful of.text would thus

waste time. You can always use (R)(S) if you want to see a screenful; in
this case, note the significance of the cursor position, as explained in

note (9) above.

SCREED - a screen editor 5

Other notes

The Recall file is not written to during the operation of SCREED.

If the terminal seems to go dead and not even (X) has any effect, there
is an "INT:" character which you can resort to: (]) with most terminals -

see Appendix B. Note, however, that using it causes you to lose all your
editing.

All constructive comments and suspected faults should be directed to me.

John Murison

ERCC
(667 1081 ext. 2639)

SCREED - a screen editor

APPENDIX A: DETAILS OF ACCESS, ETC.

On 2972 or 2980:
Command : INSERT(KNTLIB.SCREEDY)

Command : INSERT(RNTLIB.ECCE24)
Command ; INSERT(KNTLIB.EDIT27)

The command to invoke SCREED is:
Command : SCREED(input file, output file)
Either parameter (but not both) may be omitted.
The use of the parameters is as for ECCE. The only difference between the
SCREED and EDIT parameters is when specifying that a new file is to be
edited: _
Command :EDIT(FRED)
Command : SCREED(,FRED)

are equivalent in this case.

Terminals supported

SCREED indicates which terminals it can support when you call it. At the
time of writing these are:

Perkin Elmer 550
Newbury 7000 Series
Lear Siegler ADM-3A
Lynwood DAD-1
Visual 200

Pericom 6801

Relevant details of each of these terminals are given in Appendix B.

Note that some older video terminals are not suitable for use with SCREED,
for example the ITT 3210.

Please contact me if you have a terminal which is not in the above list and
which you think might be suitable for use with SCREED.

WARNING

This is a preliminary version of SCREED. It may be changed without
warning., It may contain errors which corrupt files.

SCREED - a screen editor

APPENDIX B-1: Perkin-Elmer 550

Command summary

r aAr

Delete character is . It can be changed (see "DEL=" below).

(A) below stands for Ctrl A (i.e. hold down the control button and type
‘A’). Similarly (B), (C), etc.

(A)dd

(B)eginning of

(C)onjoin (Word
(D)isjoin followed

(E)nd of (L)ine
(Next by

(0)mit (S)creen
(P)revious

(R)ewrite

(T)runcate

STOP

CLOSE

EXIT

END followed

ABORT (x)

SAVE by
ECCE (INT:SCREED or INT:screed to

EDIT return from ECCE or EDIT)
DEL=<char>

You can "thumb" through the file by use of (X) on the left hand margin.

(]) in SCREED is the "INT:" character. All editing is lost if you use it.

Notes relating to the Perkin-Elmer 550

* There are no "arrow" keys. Thus the cursor has to be moved by the use of
Tab, Backspace, Return, Line feed, and the appropriate SCREED commands
(the (W) commands in particular).

* The Clear key (which only operates when Ctrl is depressed also) does not
transmit any code - the effect is entirely local to the terminal. Thus

if you clear the screen by using it, SCREED is not aware of this.
Therefore it should not be used.

8 SCREED - a screen editor

APPENDIX B-2: Newbury 7000 Series

Command . summary

s Az

Delete character is . It can be changed (see "DEL=" below).

(A) below stands for Ctrl A (i.e. hold down the control button and type
‘A’). Similarly (B), (C), etc.

(A)dd

(B)eginning of

(C)onjoin (Word
(D)isjoin followed

(E)nd of (L)ine
(N)ext by

(O)mit (S)creen
(P)revious

(R)ewrite

(T)runcate

STOP
CLOSE

EXIT
END followed

ABORT (2)

SAVE by
ECCE (INT:SCREED or INT:screed to
EDIT return from ECCE or EDIT)

DEL=<char>,

You can "thumb" through the file by use of (Z) on the left hand margin.

ESC in SCREED is the "INT:" character., All editing is lost if you use it.

Notes relating to the use of Newbury 7000 Series terminals

* As stated above, (Z) is used rather than (X), and ESC is the "INT:"
character rather than (]}).

* (With respect to the 7001:) The keyboard has a separate row of keys

along the top. Most of these are either disabled or do not generate any
codes. However the keys from Home rightwards are usable.

* If the terminal does not seem to be operating correCtly when used with
SCREED, it might not be set up appropriately. This can checked, and
corrected if necessary, as described below. Note that during the
procedure the terminal is effectively off-line, and so does not interfere
with any on—-line work in progress.

Press the Edit key (which is not normally used), and then Ctrl and Home
together., A screenful of text appears; it details various settings

(which on most other terminals are determined by switches on the
terminal). When you press Tab the cursor moves from one setting to the

SCREED - a screen editor 9

10

next. If you press Return repeatedly the various possible values of the
current option appear in turn.

The settings relevant to the operation of SCREED are as detailed below;
the other settings should not be changed:

First line:
.O...'."..'.'BELL=80;DELETE=N;NL=NOO0.' (BELL=80 turns off bell)

TELETYPE = NO

.
.

Under the heading ATTRIBUTES:

PROTECT = NO
BLINK = NO
UNDERLINE = NO

.

0f the codes given under the heading FROM LINE, the following must be
underlined:

oc 1a
and the following must not be underlined:

08 09 OA OB OD 16 18 19 1D IF

The settings of the other FROM LINE codes is immaterial to the operation
of SCREED.

You should then finish by pressing ESC followed by Edit. This puts you
back on-line to EMAS.

SCREED - a screen editor

APPENDIX B-3: Lear Siegler ADM-3A

Command summary

P A2

Delete character is . It can be changed (see "DEL=" below).

(A) below stands for Ctl A (i.e. hold down the control button and type "A’).
Similarly (B), (C), etc.

(A)dd

(B)eginning of

(C)onjoin (W ord
(D)isjoin followed

(E)nd of () (Line) N.B.
(N)ext by

(0O)mit (S)creen
(P)revious

(R)ewrite

(T)runcate

STOP
CLOSE
EXIT
END followed

ABORT (x)

SAVE by
ECCE (INT:SCREED or INT:screed to

EDIT return from ECCE or EDIT)
DEL=<char>

You can "thumb" through the file by use of (X) on the left hand margin.

(]) in SCREED is the "INT:" character. All editing is lost if you use it.

Notes relating to the Lear Siegler ADM-3A

* As indicated above, (_) is used instead of (L).

* Although the terminal has a line width of 80 characters, SCREED (for good
reasons) does not use the 80th column of any line, and will ignore any
character typed in the 80th column.

* There is a (standard) option on the ADM-3A whereby typing the space bar
does not always generate a space character - it merely moves the cursor
right. This is not appropriate to the operation of SCREED and should
therefore be changed. The person responsible for the terminal should be

consulted, as thé option switch in question is under the terminal casing.
The instructions for making the change are described on page 2-3 of the

terminal handbook. The switch in question is located at the top of the

left-hand set of toggle switches; it is labelled "SPACE 6 / ADV"; it
should be set to SPACE (by default it is set to ADV).

SCREED - a screen editor 11

APPENDIX B-4: Lynwood DAD-1

Command summary

L X4

Delete character is . It can be changed (see "DEL=" below).

(A) below stands for Ctl A (i.e. hold down the control button and type ‘A’).
Similarly (B), (C), etc.

(A)dd

(B)eginning of

(C)onjoin (W)ord
(D)isjoin followed

(E)nd of (Q) (Line) N.B.
N.B. (F)ollowing by

(0)mit (S)creen

(P)revious

(R)ewrite

(T)runcate

STOP

CLOSE

EXIT

END followed

ABORT (X)

SAVE by

ECCE (INT:SCREED or INT:screed to

EDIT return from ECCE or EDIT)
DEL=<char>

You can "thumb" through the file by use of (X) on the left hand margin.
(1) in SCREED is the "INT:" character., All editing is lost if you use it.

Notes relating to the Lynwood DAD-1 terminal

* Note that, as stated above, (F) (Following) is used instead of (N)
(Next), and that (Q) is used instead of (L) (Line).

* SCREED operates the Lynwood in page mode, which it selects automatically,
This affects the operation of (C)(S), (D)(S) and (A)(L), as explained in
the description of SCREED.

* The Line Feed key has been disabled, as it has the effect of clearing any
line that it causes the cursor to move onto.

* The two switches at the back of the terminal marked St.CR and St,LF
should both be down (i.e. off).

* Sometimes on entry to SCREED, the first two lines of the file appear at
the bottom of the screen rather than the top. This has to do with the

terminal warming up (I think). SCREED will operate as though the two
lines - and the cursor -~ were at the top of the screen. It is therefore

best in this situation either to "thumb" or to use (R)(S) or (F)(8).
* Although the terminal has a line width of 80 characters, SCREED (for good

reasons) does not use the 80th column of any line, and will ignore any
character typed in the 80th column.

12 SCREED - a screen editor

APPENDIX B-5: Visual 200

Command summary

LX4

Delete character is ‘“’. It can be changed (see "DEL=" below).

(A) below stands for Ctl A (i.e. hold down the control button and type ‘A’).
Similarly (B), (C), etc.

(A)ad

(B)eginning of

(C)onjoin (W)ord
(D)isjoin followed

(E)nd of (L)ine
(N)ext by

(O)mit (S)creen
(P)revious

(R)ewrite

(T)runcate

STOP
CLOSE

EXIT
END followed

ABORT (x)

SAVE by
ECCE (INT:SCREED or INT:screed to
EDIT return from ECCE or EDIT)

DEL=<char>

You can "thumb" through the file by use of (X) on the left hand margin.

(1) in SCREED is the "INT:" character. All editing is lost if you use it.

Notes relatiqg to the Visual 200 terminal

* The Visual 200 terminal has a large number of features and settings; each
is activated by the user generating - either explicitly or by use of a
function key - a string of characters starting with ESC. SCREED can
detect when this has been done but unless the feature happens to be one
that SCREED uses (such as '"Clear screen" or "Clear rest of line"), it
will generate an error message and rewrite the screen. This however
might not be enough, and to ensure the proper working of SCREED
thereafter the user might have to reset the terminal; e.g. if he had
issued the command to '"clear all tab settings' SCREED would not be aware
of this and would operate as though the default tab settings still
applied.

* The "typo—matic" keys of this terminal make it particularly suitable for
use with a screen editor.

SCREED - a scfeen editor 13

APPENDIX B-6: Pericom 6801

Command summary

X4

Delete character is ‘~’. It can be changed (see "DEL=" below).

(A) below stands for Ctl A (i.e. hold down the control button and type ‘A’).

Similarly (B), (C), etc.

(A)dd

(B)eginning of

(C)onjoin (W)ord
(D)isjoin followed

(E)nd of (L)ine
(N)ext by

(0)mit (S)creen
(P)revious

(R)ewrite

(T)runcate

STOP

CLOSE

EXIT

END followed

ABORT (xX)

SAVE by

ECCE (INT:SCREED or INT:screed to
EDIT return from ECCE or EDIT)
DEL=<char>,

You can "thumb" through the file by use of (X) on the left hand margin.

(1) in SCREED is the "INT:" character. All editing is lost if you use it,

Notes relating to the Pericom 6801 terminal

* SCREED requires the terminal to be in page mode. The user must set the

page switch, beside the screen, at some stage before replying to SCREED’s

initial question about the terminal type.

* The Auto CR/LF and Auto LF wheels at the back of the terminal should both

be rotated upwards to the limit, i.e. switched off.

* The terminal has arrow keys, on a separate pad. Unfortunately, although
they move the cursor around the screen, they do not generate any codes
and so SCREED is unaware that the cursor has been used. 1In other words,

DO NOT USE THE ARROW KEYS.
(The cursor has to be moved by the use of Tab, Backspace, Return, Line
Feed and the appropriate SCREED commands, the (W) commands in

- particular.)

* Although the terminal has a line width of 80 characters, SCREED (for good

reasons) does not use the 80th column of any line, and will ignore any
character typed in the 80th column,

14 SCREED - a screen editor

