- = o -

17/4/80

Version 24C of the dump routine is now in service on the ERCC 2970.
The object file is ENGINR.ENGPRGY_DUNP246CY; it is inserted in ENGINR.SSEDIR.
The entry points are READDUNP and PRINTDUMP.

The changes in 24C with respect to the previous version (26) are as
follows:

¢+ Command: READDUHP(dﬁnptape,file,out)

file default is DUMPFILE
out default is .LP

Connand: PRINTDUMP(file,out)
out default is .LP
*+ The initial option-selection prompts have changed. If the response to
“DUMP ANALYSIS:" is "Y" or “YES" then the following two extra options

are given:

PHOTO: “Y® or “YES" causes a dump of the photograph to be output, if
available.

AMT: “F" or “FULL" causes the AMT to be printed, including zero
entries.
“Y* or “YES" causes the AMT to be printed, excluding zero
entries.
Any other response suppresses the printing of the ANMT.

It the response to “DUNF ANALYSIS:" is "F" or "FULL" then this is taken
to imply responses to "PHOTO:" and "ANT:" of "YES" and "FULL®
respectively.
* The Oper output has changed, to reflect the new Oper software.
*+ Executing processes are printed out before the Kernel queue. They are
still referred to ("EXECUTING") in the Kernel @, Run Q1 and Run Q2
. outputs.

* In the output of the AMT, the letters B, D and S are used to specify
the position of an epage:

B - both in store and on the drun. Store table index given.
D - on the drun. Drum table index given.
§ - in store. Store table index given.

* READDUMP now takes account of segment boundaries when extending the

duap file.

John M. Murison

EMAS 2900 UTILITY NOTE
No: 3
Date: 13/1/78

Tormatting and Labelling Routines in ENGINR

The.Engineer process ENGINR has 2 utilities concerned with initialising

discs. A new disc pack must first be formatted and then labelled before a
file system can be established on it.

1)

2)

3)

4)

1)
2)

3)

4)

5)

The procedure for formatting is as follows:

Log into ENGINR (password is ENGC).

Mount the new disc on a spare drive and wait for Operator Station to
report:

0/EDnn LOADED NO LABEL
[or O/EDnn LOADED xxxxxx FRGH if from WVIHE/B]

Type
FORMAT (EDnn)

taking great care that the drive mnemonic is copied correctly.
The program prompts for lower and upper cylinder and track limits.

A lower cylinder of -1 indicates all cylinders.
A lower track of -1 indicates all tracks.

Formatting proceeds at about 25 cyls/min on a lightly loaded system.

Labelling nust be done after formatting. The procedure is:
Log.into ENGINR
Type DLABEL (EDun)
Reply to prompt
IPL OR NORMAL:

as appropriate. IPL labels are only needed for system (as opposed to
user) discs.

Reply to prompt
6 CHAR VOLID:
with the volume name.
After "Labelled OK" is output on the terminal check with Master Oper
that the new label has been read successfully.

P.D. Stephens

UTT3-1

1.

EMAS 2900 UTILITY NOTE
No: 4
Date: 9/2/78

Transferring files from and to the 4-75

The utilities VTAPE and READVTAPE described below must be run in a
privileged process on System 4 EMAS - usually ‘UTILTY’. This
restriction will be removed eventually and it will be possible to run
them from your own process. The tapes written by VTAPE can be read on
the 2970 using the VOLUMS TRANSFER command. The READVTAPE routine can
be used to READ f{iles from 2970 back-up tapes into the 4-75 file system.

VTAPE(tape[,start chapter])

If ’‘start chapter’ is omitted the file will be written starting at
chapter 1. The ‘start chapter’ parameter can be used if it is necessary
to add files to a tape which already contains some files. The command
prompts for FILE: until the reply “.END’ is given. The format of the

response should be either

full filename e.g. ERCCO6.BASELLS

or full filename(new full filename) e.g. ERCCO6.BASE11S(ERCC27.BASES)

- The second form can be used to give the file a different name on tape,

and hence on the 2970. Note that the filename can be a single member of
a partitioned file, but in this case a “new full filename’ must be
provided becausz an individual member cannot be created on the 2970;

e.g.

FILE:ERCC06.PD8 VTAPE04S (ERCC06.VTAPE)

READVTAPE(tape)

The command prompts for chapters and can be terminated by replying “0°.
Each chapter specified is read into the process being used and is given
the same filename as it has on the tape, truncated to eight characters

© 1f nccessary, and without the user name of course. After using this

command the file should be OFFERed to its owner. This last requirement
will be unnecessary when the utility can be run in the owner’s process.
The 2970 back-up tape must be mounted without a ring and should be
returned promptly to the 2970 machine room. There is a line printer

listing giving chapter numbexs and file names, kept near the back-up
tapes.

Roderick MclLeod

UTI4-1

1)

2)

3)

EMAS 2900 UTILITY NOTE
No: 5
Date: 9/2/78

Input of Batch Archive Tapes to EMAS

In process ‘UTILTY’ on System 4 EMAS give the following command:'
COMMAND: RUN(ERCSO4.BATPIN2Y)

The program responds by giving the prompt
TAPE:

When the tape has been specified, the program outputs the name of the
first file on the tape, then prompts

EMASFILENAME:
You shquld reply either:
filename
or REJECT (the program then goes on to the next file, if any)
or NO (the program exits to command level).

The output file is a sequential file containing EBCDIC OMF records. It
is suitable as input to the OMF loader as it is. :

If the file countains a microprogram, then to get a source file suitable
for edit-insertion (as data in a coastintegerarray) do the following:

INSERTFILE (ERCS0Q4.OMFTOSY)

OMFTOSRC(infile, outfile)

The size of the array, in bytes and in decimal words, will be given. It
is left to the user to put in the appropriate declaration.

If the file contains.source‘ then to convert it into an EMAS source file
do the following:

INSERTFILE (ERCSO4.BAPPY)

BAPP(infile, outfile)
The output file is a normal EMAS source file.

A. Anderson

EMAS 2900 UTILITY NOTE
No: 5 (Re-issue)
Date: 21/11/78

Importation of Software from VME/B and VME/K

We can accept software from VME/B which has been written to a magnetic tape
using procedure "BARCHIVE", and from VME/K via procedure "COPY OUT". There

is no limit on the number of files per tape, but libraries must be written
out as separate subfiles.

To obtain the facilities described below, the following should be specified:

OPTION (SEARCHDIR=ERCS04.OMFDIR)

1) To input files from a VME/B "BATCH ARCHIVE" tape, log into UTILTY and
give the following command:

Command : READBTAPE(tapename, filename, pdfilename)
The parameters which the user specifies indicate which of three methods
of removing files from the tape is to be used:

a) To search the tape for a particular file.
Command : READBTAPE(tapename, filename)
If the filename specified is found on the tape then the prompt
EMASF ILENAME :

will appear. Reply with the name you wish the file to have on EMAS
2900. The file will then be read in and control returned to command
level.

b) To inspect the tape file by file, transferring or skipping files as
required.

Command : READBTAPE(tapename)

The program responds by printing the name of the first file on the
tape, and prompting:

EMASF ILENAME:

You should reply either:

filename
or R (the program goes on to the next file, if any)
or STOP (the program returns to command level)

UTI5-1

2)

3)

4)

c) To input all the files from the tape into one or more partitioned
files. This is to enable large numbers of files to be input simply.

Command : READBTAPE(tapename, ,pdfilename)

The program will ask if the files are to be converted into EMAS 2900
source files as they are read in (answer Y or N). Then the program
will ask for a maximum number of files to be read into the
partitioned file. If this number is reached before the end of tape,
then a new partitioned file can be set as destination. Thus a tape
containing more files than could conveniently be kept in a single
partitioned file can have its contents spread over any number of
partitioned files.

On detection of a double tape mark, the message:
TAPE ENDS

is output and control returned to command level.

To input from "COPY OUT" VME/K tapes, log into process UTILTY and give
the following command:

Command : READKTAPE(tapename)

and respond as to READBTAPE (method (b) above).

If the file contains a microprogram, then to get a source file suitable
for edit-insertion (to be data for a constintegerarray) do the following:

Command: CMP(infile, outfile)

The size of the array, in bytes and in decimal words, will be given. It
is left to the user to put in the appropriate declarationm.

If the file contains source, then to convert it into an EMAS 2900 source
file do the following:

Command: CS(infile, outfile)

If the file contains 1SO use a third paramater, ISO, to avoid
translation.

UTI5-2

5) If the file contains an OMF program which has no unusual structure or
run-time requirements, then it may be possible to convert it into an EMAS
2900 object file. Do the following:

Command: COMF(infile, outfile)

Note: References beginning "ICL9CEZ" or "ICLI9CM" are changed to "S#" and
"M#" respectively.

If you wish to see an analysis of the OMF structure then first do the
following:

Command : OMFPARM(MAP)

6) If the file contains an OMF program which is unsuitable for conversion,
it may still be possible to run it on EMAS 2900 by using the OMF loader.
Note that conversion is preferable since the OMF loader is more limited
and less efficient than the standard loader. See me for details.

7) 1f an OMF file contains unsuitable references, then they can be renamed
by doing the following:

Command : AMENDOMF(input, output)
ACTION:

Reply STOP in order to exit to command level
or
RENAME/ ref .name=new ref.name (with no spaces)

All occurrences of the reference will be traced and amended. -

Please report any difficulties.

A. Anderson

UTI5-3

EMAS 2900 UTILITY NOTE
: No: 6
Dates 17/4/78

LEpAgs POp-FLE- D FHP R 2 2 PR I-2 P PR S APR -T2

The routives described in this note provide a conmon interface with a series
of routines available on 4~735 ENAS. They are designed prisarily for
"non-standard" tape utility prograns, e.g. prograns for uwriting or reading
‘tapes for other operating systens. Several such prograns already exist on
the 4-73 and it should be possible to nove thesn to EMAS 2900 with the
nininus of alteration. The routines smake no assumptions about the structure
of infornation recorded on the tape.

- hm w S e = - P2

Claius the tape with volune label VOL. If an asterisk is appended to the
volune label then the tape is to be be smounted vith a write pernit ving;
otheruyise it is to be be nounted without a ring. Currently the tape nuct
have a standard ENAS 2900 volure label (identical o 4-75 ENAS or IBM 0.5.
volume lahel). In due course VOLUNMS will include a facility to allow the
operator to give a tenporary nane to a tape with some other forwat of label.
Uhen the tape is cluined it is left at BT.

externaolroutine UNLGADKHT

AP RN P 2 L IR

AL SRR L F R - ——ad e PR P4 B9 W0 A

Reads the next bloch fron the tape. On entry:

" AD = address of an area into which to read
LEN= naxinun length of read area
On exit:
FLAG successful

0
{ tape nark read
i failure (details later)

P RAPS-P AP - B NG R Y mmemadEe RS-V RS

Urites to tape a block of lengih LEN from address AD. A non-zero flug on
return indicates failure (details later).

Urites one tape mark. FLAG non-zero on return indicates failure.

UTIé~1

X PR- 0 PP NP3 [P0 P34

Skips N blocks - foruards if H>0, otheruise backuards. For the purpose of
this routine a tape mark is treated as if it were a block.

'Skips N tape marks forwards or backwards according to the sign of M.

externalroutine REUINDMT

These routines have been deliberately written with a sinple functional
interface. There is an obvious liaitation (by the lack of a loaical channel
nunber) to their use for single tape jobs, The lack of failure flags for
the najority of thes is intentional in order to sinplify their use,

Their specification has remained virtually unchanged over 8 years and has
provided a convenient interface for a large nunber of proqrans for
analysing, reading and writing non-standard nagnetic tapes. Oaly the
folloving changes are needed for prograns being noved fron 4-7) EMAS:
¢ it is essential to set LEN before calling READHT
¢ UREOFNT has been renaned WRITETHHMT since ihis is consistent with the
nanes of the other routines

Roderick MNcleod

Ut16-2

EMAS 2900 UTILITY NOTE

No: 8
Iate: 21/7/78

- <pPpeS 94 - PO LS PP PR - T

This connand is used to nake a copy of a complete nagqnetic tape. The
routine makes no assunptions about the contents of the tape except that two
consecutive tape marks are taken as on indication of the end of useful
information. The comnand takes no paraneters.

1t promnpts
INTAPE: reply with VoL latel of input tape
OuT TAPE: reply with VOL label of output tape.

HAX BLK LEMGTH: reply with lengqth of longest block on tape.

COPY LABEL? reply:
Y. if you want the output tape to ke given the sane
nane as the input tape :
N. if you want the output tape to retzin its cerrent
label.

The progran prints the number of blocks (including tape marks) copied.
Failure messaqes should be self explanatory.

Rodgrick HcLeod

uTIg-t

EMAS 2900 UTILITY NOTE
No: 9
Date: 30/8/78
Utilities for Creating Supervisor, Director
and Subsystem Files

Components of the operating system are object files which have been
post-processed to reduce loading them to a trivial operation. This post-
processing is carried out by one of the following:

SUPFIX for Supervisors
DIRFIX for Directors

SPFIX for System Process Basefiles, e.g.
for VOLUMS and SPOOLR

SSFIX for the Edinburgh Subsystem Basefile and any others based on
it, e.g. currently JOBBER

In some cases further processing is required - see the notes on individual
commands, below.

Parameters

All four commands take two obligatory parameters and a2 third optional one.
The first parameter should be the name of the object file containing the
compiled version of the component. This will normally have been produced by
linking a number of separate components using LINK. The second parameter is
the name to be given to the output file. The third parameter can be used to
specify an output file or device for diagnostics and a map of the "fixed"
file.

Action of routines

The action common to all the routines is as follows:
* The input file is copied into the output file.

* The GLAP in the output file is modified according to information in the
load data. Any external references are satisfied from within the file by
filling in the PLT descriptor in the GLAP with the value it would need to
have when in use.

* Relocation of values in the GLAP is carried out, again with respect to
values of the start address of the relevant areas when the file is being
used. ‘

* Any unsatisfied references are filled with the 1ISO characters *NORT’
followed by the first four characters of the unsatisfied entry name. The
effect is that if an attempt is made to call this routine the resulting
dump will show the characters in DR and thus facilitate locating the
fault.

* A map of the entry points is printed.

UTI9-1

Individual Routines

The notes below refer to each of the variants of the FIX routine.

SUPFIX

The input should be a Supervisor object file with an entry point called
"ENTER" at which it is to be entered after being loaded by CHOPSUPE. After
being fixed, the header has the following format:

0 1 2 3
total length start of code| physical size type=10

4 5 6 7
reserved for date and time| start of GLAP | offset of PLT desc~
sum check riptor for "ENTER"

Note that the LOAD DATA is removed from the file and that the GLAP is
aligned on a page boundary.

DIRFIX

The input should be an object file containing the Director. At the
beginning there must be the current version of the primitive local routine
DIRLDR. This must be the first routine in the link list; it is an assembler
routine which is entered by the Supervisor when the Director is started and
which copies the GLAP into the GLA file and then enters Director at routine
"DIRECTOR". After the file has been fixed, as described above, the load
data is removed and a call is made to routine BUILDSCT to add the System
Call Table to the end of the fixed file. This routine is described
elsewhere. The header of the final Director file is:

0 1 2 3
total length start of code| physical size type=11 (fixed
Director)
4 5 6 7
reserved for date and time start of GLAP start of SC
sum check Table

Note that as a temporary arrangement word 3 contains a copy of word 7 (start
of SC Table) and word 4 contains a PC relative jump of 8 halfwords.

UTI9-2

SPFIX

This routine is used for fixing basefiles for System processes such as
SPOOLR and VOLUMS. The input should be a linked object file with routine
SSLDR as its first component. The initial entry to the basefile should be:

systemroutine SSINIT(integer MARK, ADIRINF)

The use of the two parameters will be described in a Director Note. After
fixing, the output file has the following format:

0 1 2 3
total length start of code| physical size | type=12
. 5 6 7
reserved for date and time | start of load | start of object
sum check data file map

As a temporary measure word 4 contains a PC relative jump of 8 halfwords to
cause a jump to byte 32 of the file.

SSFIX

This routine,which is used for linking the Edinburgh Subsystem, is the same
as SPFIX except that references to items in the System Call Table are
satisfied at fix time. Every time a user logs in, a check is made to see
that the version of the System Call Table currently operative is the same as
that at the time the fix was done. If not the references are re-filled.
After calling SSFIX it is necessary to process the Subsystem file further by
calling the routine MAKEBASEFILE, described elsewhere.

R.R. McLeod

UT19-3

EMAS 2900 UTILITY NOTE

No: 10
Date: 3/10/78

Utility for Writing Character Files
to IBM format Tapes

A first version of WRITEIBMTAPE is available in UTILTY.

Command :WRITEIBMTAPE

EMASFILE: must be a character file
TAPE:

DSN: for file on tape

LABEL:

RECFM: FB only at present
BLOCKSIZE:

RECORDSIZE:

Failure or output messages should be self-explanatory.

Modifications coming:

* More than one file at a time; note that more than one file can be written
on a tape using this version repeatedly and incrementing LABEL.

* Possibly VB as another format.

Note that long lines are truncated, and an appropriate warning is printed;
for IMP source this is probably more useful than wrapping round.

R.R. McLeod

UTI10-1

EMAS 2900 UTILITY NOTE

No: 11
Date: 9/10/78

Backup/Archive Tape Maintenance Programs

CHECKTAPE(parms)

where parms null (in which case the tape is prompted for)

or tape (the name of the tape to be checked)

or tape,list (the tape name and an output file or device)

CHECKTAPE checks that the specified tape can be read, and optionally lists
the contents of the chapter header of each file on the tape to the file or

output device specified. It also checks the validity of each chapter
header.

The checking can be abandoned by pressing ESC ("INT:") STOP.

COPYARCH(parms)

where parms read tape, write tape (tape to be read, tape to be written)

or null (in which case the read tape and write tape are prompted

for)
COPYARCH copies the specified Backup or Archive tape to a new Backup or
Archive tape, only changing the tapename in each chapter header. Full error
recovery is tvried when a page fails to copy. If a chapter header fails to
copy,a dummy chapter is created on the write tape to replace it. This keeps
the chapter numbers in correspondence. If a page in a file fails tec copy it

is written with what ever was actually read. If there are any failures in
writing the copy is abandoned.

The copying can be abandoned by pressing ESC ("INT:") STOP.

These procedures can be accessed by inserting the two files

ERCC20.TAPECOP2Y and ERCC20.MAG3Y.

W. Laing

UTIl1l-1

EMAS 2900 UTILITY NOTE
No: 12 (revised)
Date: 9/2/81
File System Maintenance Utilities

This document describes the utilities for the maintenance and repair of EMAS
2900 file systems available in release 7 of MANAGR’s file system maintenance
programs. The source is held in MANAGR.MANPRGS_MAINTO7 and the object in
MANAGR.MANPRGY_MAINTY. A description of each utility is held in the source
file, which has been made VIEWable,

Note that for readability some of the command names have embedded spaces in

the descriptions below. These must not be typed when the command is called
if OPTION NOBRACKETS is selected.

The following is a complete list of the utilities, with brief descriptions

and page number references to full descriptions, which form the bulk of this
document.

Utility Page no Description

ARCHOFF 3 Marks a file to prevent archiving

ARCHON 3 Marks a file for resumption of archiving

BAD PAGES 3 Generates a table of bad pages on specified disc

CCKOUT 3 Lists data recording progress of file system
consistency checks

CHECK DAS 3 For a given disc, generates a list of files
containing sections whose disc addresses are less
than a given disc address

COPY INDEX 4 Creates a duplicate file index, and copies all
files contained in the original

CREATE LOG FILE 4 Creates a circular log file for a given user and
sets LOGFILE field in user’s index

DELUSER 4 Deletes a username from the system

DEREGISTER CLASS 4 Deletes a sequence of usernames

DIRLOG 5 Copies Director’s monitoring file into a temporary
file for further processing

ENV 5 Prints current Supervisor and Director versions
and the discs currently on-line

FSYS START 5 Prints range of pages available for users’ files

2 on a given disc

GET 5 Reports value contained in specified field in
user’s file index

HOLES HIST 6 Generates a histogram of free areas and sections
on a given disc

HOW FULL 6 Reports current fullness of a disc

HOW FRAG 6 Calculates degree of fragmentation on specified
disc

INACTIVE USERS 6 Produces sorted list of processes not used since
specified date

LIST NNT 6 A synonym for command USERNAMES

LOG OUT 7 Copies user’s log file (see CREATE LOG FILE)

UTI12~1

LOST FILES
MOVE INDEX

MOVE INDEXES
NEWUSER
REGISTER CLASS
REFRESH FILE
REFRESH FILES
REFRESH INDEX
REFRESH INDEXES

RENAME INDEX
SET

SET H NOARCH
SET MSG EEP

SET SSBYTE

SSDESTROY
SSFFILES

SSFILES
SSFINFO
SSFSTATUS

SSIPERMIT
SSNKB

SSNOF
SSPERMISSIONS
SSPERMIT
SSREMOVE PRM
SSRENAME
SSTRANSFER
TEST BAD PAGES
USERNAMES
WHATFILE

WHATF SYS

~N o~

O WO WO oo

10

10
10

11
11

11

11
12

12
12
13
13
13
13
14
14
14
14
14
14
15

15

List VOLUMS,.LOSTFILES

Moves an index to another or to the same disc,
possibly changing its size

Moves user indexes except SPOOLR and VOLUMS from
one disc to another

Accredits a new username

Accredits a sequence of usernames

Forces the resiting of a specified file

Resites files which have sections with disc
addresses less than specified disc address

Resites an index on the same disc with the same
attributes

Resites all indexes on a given disc, with the same
attributes

Renames an index to a new username

Allows values in specified file index fields to be
set to new values

Sets NOARCH bit in user’s #ARCH file

Sets EEP to 11 in file descriptors of user’s #ARCH
and #MSG files

Sets byte which is reserved for Subsystem use in
the file descriptor of a file

Destroys a file or sequence of files

Lists names and full attributes of files belonging
to a given user

Lists filenames of a given user

Gives a synopsis of a file’s attributes

Allows modification of given file’s file
descriptor)

Allows the setting of specific permissions to
given file

Gives a synopsis of index size and usage

Gives synopsis of number of files for a given user
Returns OWNP and EEP for given file and reports
any whole index permissions

Allows general access permissions to given file
Reverses the effect of SSIPERMIT

Renames a file

Transfers ownership of given file

Tests pages flagged as bad on given disc; returns
to the System pages successfully written to

Lists the users and major attributes for one or
all discs

Reports the file to which a given disc page
belongs

Reports the disc on which a given user’s index
resides

UTI12-2

kk%k ARCHOFF kkk
Operation: Prompts for <{user>, {fsys>, <filenamed>.

Effect: Marks a file to prevent archiving.

k%% ARCHON **%*
Operation: Prompts for <user>, {fsys>, <filename>.

Effect: Marks a file for resumption of archiving.

*%% BAD PAGES *%**

Operation: Prompts for <Fsys (or =-1)>

Effect: Cenerates a table giving details of the bad pages on <{fsys>.

k%% CCKOUT ***

Operation: Prompts for {fsys>, <output file or deviced.

Effect: Copies the data recording progress of file system consistency
checks, from the circular file maintained by the DIRECT
process into a standard text file. The maximum filesize
generated is 256K.

*%% CHECK DAS ***
Operation: Prompts for {low page no> and <Fsys (or =1)>.
Effect: Calls ‘TO DO ALL FILES’ and for each file of each user on each

fsys calls DGETDA and, if the disc address of a section is
less than <low page no>, prints user.file .

UTIl2-3

*%% COPY INDEX **%*

Operation:

Effect:

Purpose:

Prompts for <user>, <fsys>, <new user>, {new fsys>, <{new index
size (Kbytes)>.

Creates a new index for <{new user> on <new fsys>, unless one
already exists. Index attributes (delivery, basefile, file
limits etc.) are copied from the o0ld to the new index. For
each file in the original index, the corresponding file in the
new index is destroyed (if it exists), a file of the same name
and of the same size is created in the new index, and data are
copied in from the original file. The file is given the same
attributes as the original file.

To run some important file system utilities (e.g. MOVE INDEX)
following corruption on a file system, it is generally
necessary to complete the file system consistency check first.
In the case where corruption has occurred on the disc
containing MANAGR (and hence the utilities also), this can be
difficult. TIf COPY INDEX is used (say once per week, or after
updates) to copy the contents of MANAGR’s index to a second
disc, then the utilities should be available to deal with the
original disc, even if the original MANAGR index is
inaccessible, In addition, the copied index forms an on-line
backup of the original.

#%% CREATE LOG FILE ***

Operation:

Effect:

Prompts for <user>, <fsys> and <logfile>.

Creates <logfile>, permits it to MANAGR, initialises <logfile>
as a circular file and calls DSFI to set the LOGFILE field in

<user>s index. The contents of the file are made available by
LOGOUT (q.v.).

*%% DELUSER ***

Operation:

Effect:

Prompts for <user> and <{fsys>.

Deletes the file index for <user> on <{fsys>, hence removing
{user?> from the System. This routine requires the user to
confirm the username to be deleted before actually doing so.
If {fsys> is given as -1 then all occurrences of the given
username will be deleted automatically. If not then all other
fsys’s will be searched for other occurrences of the username.
Any found will be reported and the user asked if they should
also be deleted.

*%% DEREGISTER CLASS **%

Operation:

Prompts for a "base" username in which the last two characters
are decimal digits (e.g. ERCCOl), <fsys> and a number, N, of
usernames to be deleted.

UTI12-4

Effect: The "base" username and N~1 consecutive usernames (last two
digits being incremented) are deleted from the System,
(Equivalent to repeated calls of DELUSER, q.vV.).

k%% DIRLOG **%
Operation: No parameters

Effect: Copies the information from Director’s monitoring file
VOLUMS.#DIRLOG into a character file T#OUT which can then be
further edited if desired.

#%% DO ALL INDEXES #**%

Skeleton routine, a copy of which can be used to surround code
which is meant to be executed for all indexes on an fsys.

kkk ENV Kk

Operation: No parameters,

Effect: Prints the current Supervisor and Director versions, the
process number of the calling user and the discs currently
on~-line. N.B. The first disc specified is the SLOAD disc.

*%% FSYS START ***
Operation: Prompts for <{fsys>.

Effect: Prints the range of pages available for files on <{fsys>.

kkk QET *%%

Operation: Prompts for <{what>, <user> and <{fsys>

Effect: <what> is one of
ACR ADDRTELE AFILES
+ARCHINDUSE BASEFILE BATCHSS
CODES CONNECTT CONTROLFILE
CUMINSTRS CUMMSECS CUMPTRNS
CURRPROCS DELIVERY DINSTRS
DIRMON DIRVSN FILES
FUNDS GPFSYS GPHOLDR
INDEXUSE ISESSM LASTLOGON
LOGFILE MAXFILE MAXKB
MAXPROCS NKBIN NKBOUT
PRIVILEGES SESSINSTRS SESSMSECS
SESSPTRNS SIGMONLEVEL SPECIALSS
STKKB SURNAME

UTI12-5

Reports the value or values of the index attribute specified
(some have multiple values associated).

For the significance of the index attribute, current Director
documentation on the function DSFI should be consulted for all
except PRIVILEGES. See SET for a full description of
available PRIVILEGES.

*%% HOLES HIST ***

Operation: Prompts for <{fsys>.

Effect: Generates a histogram showing how many free areas there are of
each size (1 to 32 Epages) on <{fsys> and how many sections.

kkk HOW FULL ***

Operation: Prompts for <{fsys>.

Effect: Reports the current fullness (%) of the specified <fsys>. (The
figure reported when the System is open to users is not
strictly comparable with the corresponding figures given by
the FCHECK process at System start-up, in that a considerable
quantity of temporary file-space will be included in the
figure for a running System).

*%% HOW FRAG ***
Operation: Prompts for <fsys> (or -1).

Effect: Calculates the degree of fragmentation on specified <{fsys>.

The degree of fragmentation is defined to be the percentage of
the total disc space available for user files which is

occupied by sections which have sizes less than a full section
(i.e. 1 to 31 Epages).

*%% INACTIVE USERS ***

Operation: Prompts for <{trigger date> in the format DD/MM/YY and
<op file/devd>.

%

Effect: Produces a sorted table (oldest to youngest) of entries of the
form date process last used, user, fsys, surname and delivery
info of those users who have not accessed their process since
the trigger date.

*%% LIST NNT ***

This is a synonym for command USERNAMES (q.v.).

UTI12-6

k%% 1,0G OUT ***

Operation:

Effect:

Prompts for {user>, <fsys> and <{file>.

Connects <{user>s logfile, if it exists, and copies it to
<file> (see ‘CREATE LOG FILE’).

*%% LOST FILES ***

Operation:

Effect:

Prompts for <{fsys>.

Lists the contents of VOLUMS.LOSTFILES on <{fsys>.

*%% MOVE INDEX ***

Operation:

Effect:

Prompts for {userd>, <{fsys>, <new fsys>, <{new index size
(Kbytes)>.

The program first checks <fsys> and <new fsys>. If these are
different then the routine will operate in COPY mode, when
copies are made of the files on {fsys> to <new fsys>. When
{fsys> and <{new fsys> are the same then the program can
potentially operate in one of two modes: COPY or TRANSFER. In
TRANSFER mode the files are not copied, ownership is merely
transferred. This route is faster but less safe in that a
crash occurring during file transfer will leave two partial
indexes and possibly result in the loss of files. 1In practice
the TRANSFER route is only obligatory if there is insufficient
space on the disc to hold a copy of all the <user>’s files.
The routine checks whether this is possible given the current
state of the disc and if so offers <C/T?> to the caller
otherwise the move can only proceed via the TRANSFER route.

After mode has been decided a new index of <new index size>
named NEWZZZ is first created on <new fsys> and <{user>’s index
is renamed to OLDZZZ. The <user>’s index attributes are then
copied to the new index, and all the files are transferred or
copied from the old to the new index. If the mode was COPY
then at this point a final chance is offered to the caller to
abandon the move with no side effects. If the response is to
continue or mode is TRANSFER then finally the OLDZZZ index is
deleted and the NEWZZZ index is renamed to belong to <{user>,
Note that if the original index was corrupted, or if some
files are marked as being in use (either because the owner’s
process had terminated in disorder or because the owner or
other users are actually using the files) , then the program
reports the number of files it is unable to transfer and
prompts "Continue?", before commencing the index move. If the
reply is "N" or "NO" the move is abandoned , with no side-
effects. If the reply is "Y" or "YES" those files which
cannot be transferred are lost when the original index is
deleted. In general it is preferable not to proceed with the
operation if it is likely that one or more files are actually
in use by a currently existing process. The file pages which
are actually in use will not be re-used before the next IPL,
but the process(es) using the file(s) will be unable to
disconnect the files.

UTIl2-7

Purposes: One or more of the following:

1) To transfer as many files as possible from a corrupted
index into a new index.

2) To move an index onto a different disc.

3) To change the size of an index,

Apart from possible software errors, indexes become corrupt
mainly when a hardware error or machine stop occurs during
updating of an index. Corruption is often first noticed
during the file system consistency check at System start-up,
when the message

<user> CORRUPT? FSYS <fsys> or
{user> CELLS? FSYS <fsys>

is given at the main OPER. In the former case the System
remains closed to users until explicitly opened, preferably
following a move (or re-creation) of the affected index(es).

The latter message indicates that some list-cells are not
attached to any list; correction is not normally urgent.

If the System is inadvertantly or otherwise opened and
processes are started following a "CORRUPT?" message, the
affected indexes should be destroyed and the users
re-accreditted. Corruption of other users’ files could
otherwise occur.

*%% MOVE INDEXES ***
Operation: Prompts for <from fsys> and <{to fsys>.

Effect: Moves each user’s index on <{from fsys> to <{to fsys> with the
exception of SPOOLR and VOLUMS.

*%% NEW USER **%*
Operation: The program prompts for the following data:

Username

File system

Index size (Kbytes) (reply 4 or 8, for about 70 or 140
files respectively)

Initials and surname

.Delivery information

"Foreground password (4 chars)

Background password (4 chars)

Maximum total filespace (Kbytes)

Maximum single filesize (Kbytes)

Maximum process concurrencies allowed for the user, for
interactive, batch and total numbers of processes.

Effect: A new user with the specified attributes is created.

UTI12-~8

*%% REGISTER CLASS ***

Operation: Prompts for a "base" username (in which the last two
characters are decimal digits), e.g. ERCCOl, <fsys> and a
number N of usernames to be accreditted. The program further
prompts for:

File system

Index size (Kbytes) (reply 4 or 8, for about 70 or 140
files respectively)

Initials and Surname

Delivery information

Password (sets the 4 characters input as both
foreground and background passwords)

Maximum total filespace (Kbytes)

Maximum single filesize (Kbytes)

Maximum process concurrencies allowed for the user, for
interactive, batch and total numbers of processes.

Effect: The "base" username and N-1 consecutive usernames (last two
digits being incremented) are accreditted to the System, all
with the same process details as input initially. The program
reports each username successfully accreditted. If any
username cannot be accreditted (e.g. because the file system
index area is full, or because the username already exists)
the program terminates at that point,

% REFRESH FILE *%*
Operation: Prompts for <{user>, {fsys> and <{filed>.

Effect: Forces a resiting of <{file> owned by <user> on <{fsys>.

%% REFRESH FILES ***
Operation: Prompts for <low page no> and <fsys>.
Effect: Will resite all files on <fsys> which have sections whose disc

addresses are less than <low page no>. Used, for example, in
reformatting a disc as a System disc.

*%% REFRESH INDEX **%*
3.,
Operation: Prompts for <user> and <{fsys>.
Effect: Equivalent to MOVE INDEX with oldfsys = newfsys, old index
size = new index size and MODE = TRANSFER. Resites an index
on the same <{fsys> with the same attributes. See MOVE INDEX.

N.B. Should not be done on the same <{fsys> as the routine is
running from.

UT112-9

%* REFRESH INDEXES *
Operation: Prompts for <fsys>.

Effect: Does a REFRESH INDEX for each user on the {fsys> specified.

*%% RENAME INDEX **%
Operation: Prompts for <user>, <fsys> and <{newname>.

Effect: Calls ‘DRENAME INDEX’.

k%% QET #*%%

Operation: Prompts for <{whatd>, {user>, <fsys> and <new value> (or <new
values> as appropriate to the fields).

Effect: <what> is one of
ACR ADDRTELE AFTLES
ARCHINDUSE BASEFILE BATCHSS
CODES CONNECTT CONTROLFILE
CUMINSTRS CUMMSECS CUMPTRNS
CURRPROCS DELIVERY DINSTRS
DIRMON DIRVSN FILES
FUNDS GPFSYS GPHOLDR
INDEXUSE ISESSM LASTLOGON
LOGFILE MAXFILE MAXKB
MAXPROCS NKBIN NKBOUT
PRIVILEGES SESSINSTRS SESSMSECS
SESSPTRNS SIGMONLEVEL SPECIALSS
STKKB SURNAME

Sets the new value or values of the index attribute specified.
Some have multiple values associated and will prompt
appropriately. For the significance of the index attribute,
consult the current Director documentation for the function
DSFI for all except PRIVILEGES, which are described below.

Note that in some cases it is not sensible and in other cases
not permitted to SET certain attributes. See current DSFI
documentation.

PRIVILEGES

It,is possible to ‘SET’ PRIVILEGES or ‘GET’ PRIVILEGES (see
‘GET’, above). If the operation is GET then the individual
PRIVILEGES enjoyed by <user> will either be listed in the form
PRIVxx where 0 <= xx <= 31, or if none are enjoyed, given as
NONE,

If the operation is SET then the current PRIVILEGES are first
given as for GET, then the caller is prompted "PRIV:". This
should be responded to by a reply of the form PRIVxx where 0
<= xx <= 31 (spaces are not significant). The caller is then
prompted "G/R:"> and the reply determines whether the
PRIVILEGE is to be given or removed. This sequence continues

UTI12-10

until the reply .END is received to "PRIV:", when the new set
of PRIVILEGES is reported. PRIVILEGES currently available are
as follows:

PRIV 04 DPRINTSTRING, DDUMP

PRIV 07 DSFI 7

PRIV 08 DPERMISSION, DFINFO, DFSTATUS, DFILENAMES on
other users’ files

PRIV 09 DCHECKBPASS

PRIV 10 DSFI for privileged calls and other users

PRIV 12 Ability to reset BASEFILE, CONTROL FILE,
TESTBASEFILE, BATCHBASEFILE

PRIV 15 Interactive use of magnetic tapes (DMAGCLAIM)

PRIV 17 DSFI 38

PRIV 18 DPON, DPON3, DOUT, DOUT11, DOUT18, DTOFF, DLOCK

PRIV 20 BADPAGE, DSYSAD, FBASE, GETAVFSYS

PRIV 22 ACREATE2, DMODARCH, DNEWARCHINDEX

PRIV 24 DCONNECT, DDISCONNECT on # files

PRIV 25 DPRG, DUNPRG, DTRANSFER, DOFFER

PRIV 26 DEMPTYI, DRENAMEINDEX, DNEWUSER, DDELUSER,
VALIND, DDUMP1, DXDUMPI, GETUSNAMES

PRIV 31 Allows ADESTROY, DCHSIZE, DCREATE, DDESTROY,

DNEWGEN, DRENAME to be used on someone else’s
file without full index permission.

*%% SET H NOARCH **%*

Operation:

Effect:

Prompts for <fsys> (or -1).

For each user on <{fsys> sets the NOARCH bit in file descriptor
of file #ARCH.

*kk SET MSG EEP ***

Operation:

Effect:

Prompts for <{fsys> (or =1).

For each user on <{fsys> sets EEP to 11 in file descriptors of
files #ARCH and #MSG.

*%% SET SSBYTE ***

Operation:

Effect:

*** SSDESTROY

Operation:

Effect:

The program prompt is for <{user>, {fsys>, <filename> and
<{values>.

For the specified file the "ssbyte" is set to (the rightmost 8

bits of) <value>. The "ssbyte" is a byte in the file
descriptor reserved for exclusive use of subsystems.

kkk

The program prompts for <{user>, <fsys> and then repeatedly for
<{filename> until a response ".END" or “.E" is given.

After each input <{filename> an attempt is made to destroy

{filename> belonging to <{user>. A result code and brief text
describe the success or failure of each "destroy".

UTIl2-11

*kk SSFFILES ***

Operation: The program prompts for <user>, {fsys> and <{output file or
device>.

Effect: The result is exactly as for SSFILES (see below), except that
extra details ~ largely as described under SSFINFO - are
additionally printed for each file. '"SSFFILES" stands for "SS
Full FILES".

*%% SSFILES ***

Operation: The program prompts for {user>, {fsys> and <output file or
device>.

Effect: A list (in alphabetical order) of all the files belonging to
{user> is placed in the <output file or deviced.

*%% SSFINFO ***
Operation: The program prompts for {user>, {fsys> and <filename>.

Effect: Prints out a concise synopsis of the file’s attributes,
namely:

"%" if "cherished"

"+" if marked for archive

{filename>

connect address in caller’s virtual memory, or zero if
not connected in same

physical size in epages

access permission to file owner (OWNP)

general access permission to all other users (EEP,
"everyone else’s permission")

access permission field (APF) from segment table, if
file connected in caller’s virtual memory, otherwise
zero

current number of users of the file

list pool number to which descriptor cells belong in
{user>’s file index

the user to whom the file is "on offer", if any

whether the file is marked:
PRIVacy VIOLated
TEMPorary
VITEMPorary
NOt to be ARCHived
as having more than one generation

The current Director documentation further explains this
terminology.

UTI12-12

*** SSFSTATUS
Operation:

Effect:

%% SSIPERMIT
Operation:

Effect:

%%k SSGNKB *%%
Operation:

Effect:

%% QGGNOF #%%
Operation:

Effect:

Kk
Prompts for <user>, {fsys>, <file>, <act>, and <valued.

Allows attributes of <file> belonging to <user> on <{fsys> to
be modified by calling the Director function DFSTATUS.

N.B. This routine should NOT be used unless you are absolutely
sure that you know what you’re doing!!

kkk

Prompts for <user>, {fsysd>, <file), {to user)> and <prm 1~15>.

Gives <to user> permission to access <file> owned by <user> on
{fsys> as specified by the response to <{prm 1-15>., If <file>
is specified as .ALL then the appropriate whole index
permission is granted. See also SSREMOVEPRM.

The program prompts for {user> and <fsys>.
The following data are printed from <user>’s file index:

Total file space (Kbytes)

Total temporary filespace (Kbytes)

Total "cherished" filespace (Kbytes) (currently
reported equal to total filespace)

Maximum permanent filespace which the user is allowed
to own (on-line)

Maximum single filesize allowed for <user>.

The program prompts for {user> and <{fsys>.

The following data are printed from <user>’s file index:

Number of files
Number of temporary files
Number of cherished files
Number of file descriptors currently extant (this may
exceed number of files, as some descriptors may be
.. ~marked "dead", awaiting a garbage collect) '
""Maximum and currently free numbers of list cells in up to 4
list-cell pools.

*%% SSPERMISSIONS ***

Operation:

Effect:

Prompts for <{user)>, {fsysd>, <file>
Gives OWNP and EEP for <{file> and whole index permissions, If

{file> is specified as .ALL then whole index permissions only
are given.

UTIl2-13

*%% SGPERMIT *%%
Operation: The program prompts for <{user>, {fsys> and <{filename)>.

Effect: The specified file is given general access permission, i.e.
execute, write and read.

**% S5S REMOVE PRM *%*
Operation: Prompts for {user>, {fsys>, <file> and <{to user>,

Effect: Removes individual permissions to a file or index. Reverses
the effects of SSIPERMIT.

| *k% SSRENAME ¥+

Operation: The program prompts for <{user>, <{fsys>, <filename> and
<{newname).

Effect: - The specified file is renamed to <newname).

*%% SSTRANSFER ***

Operation: The program prompts for {userd>, <fsys>, <filename)>, <newuser>,
<newfsys> and <newname),

Effect: <fileﬁame> belonging to <{user> on <{fsys> is transferred to
ownership of <newuser> in <newfsys> and with name <{newname),.

*%% TEST BAD PAGES *%*
Operation: Prompts for <fsys> (or -1)

Effect: Attempts to write to each page flagged as a bad page on
{fsys>, by using the Bulk Mover to write successively a page
of X’'FFFFFFFF’, a page of X'08CEF731° (the most difficult for
the hardware) and finally the empty page pattern. If all of
these are successful then the user is informed, the page
removed from the bad page list and returned to the system.
See BADPAGES.

*%% USERNAMES #**

Operation: Prompts for <FSYS>, <SORT TYPE>, <USERNAMES> (if "all FSYS"
option selected), and <FILE/DEV>.

Effect: A list of usernames accredited on <fsys> (if specified -
otherwise all on-line file systems), together with leading
file index attributes (file limits, process concurrency
limits, file space etc.) is placed in <file or device>. If

UTI12-14

*%% WHATFILE

Operation:

Effect:

%% WHATFSYS

Operation:

Effect:

the single FSYS option is selected then the sorting can be by
index number or by username. If on the other hand all on-line
file systems are selected the sorting may be alphabetic by
username or surname or both. Optionally in this case a file
called USERNAMES may be created or updated in the calling
process. This file contains a directory of usernames sorted
by surname.

Command LISTNNT is a synonym for command USERNAMES.

*k%k

The program prompts for {disc address> and <{fsys>.

File system <fsys> is searched for the file(s), if any, to
which epage number <{disc address> belongs. If {fsys> is
specified as ~1 then all file systems are searched. The
filenames, if any, are reported.

k%%

The program proumpts for {username>.

Each on-line file system is searched for a file index
belonging to {username>. Each <fsys> found to contain
{username> is reported.

C. McCallum

UTI12-15

EMAS 2900 UTILITY NOTE
No: 13
Date: 25/1/79

Selective Printing of a Hardware Dump Tape

The 2900 has a hardware facility to dump the first 256K bytes of store to
magnetic tape as ome block. (This should not be confused with the EMAS 2900
dump to tape facility.)
A program is available to read the block and dump selected parts of it to
the line printer. Since the tape is unlabelled it is necessary to give it a
pseudo-label as follows:
* Mount the tape on deck Mnn without a ring.
* When VOLUMS reports that the tape is mounted with no label, type:
V/Mnn=vol
where vol is any 6-character volume label.

* Log in to ENGINR

Coumand : PRINTHWDUMP

TAPE: vol as given above

CODE I/E? IS0 or EBCDIC interpretation

DUMP FROM BYTE: reply first byte required

DUMP LENGTH: reply number of bytes required

MORE: reply Y to return to request a further area, or N to

terminate the run.

R.R. McLeod

UTIl3-1

EMAS 2900 UTILITY NOTE
No: 14
Date: 28/3/79

ENAS 2900 object files for transfer to UME/B or VHE/K must first be
converted into ICL’s object maodule format (OMF). They can then be written
to tape in magnetic engineering format (MEF)., This can be read at the
target systes by BPRINE or KPRIME.

To obtain the facilities described below, do the following:

a)

b)

Conmand: OPTION (SEARCHBIR=ERCSO4.0HFDIR)

To convert an object file into OMF, ordinary users should do the
following:

Connand: COBJ (ENAS object file, ONF file)

Systen staff preparing ERCC products for releasé should use the siailar
procedures: .

Conmand: OPUT (EMAS object tile, OMF file)
Notes

* In each case the ONF file appears on ENAS 2900 as a sequential Jdata
file,

* A pd file menber can be specified as input or output.

s Code entries beginning "ICLYCE® and system-routines will be keyed.

s The nodule name given is the ENAS 2900 file nanme.
There are three small differences in the ONF nodule 9enerated by calling
OPUT from that generated by calling COBJ:

1) The “library" bit in the diagnostic record is set. This causes the
nodule to be ignored by ICL’s diagnostic trace-back.

2) "ENV " is set as the diagnostic "SUBNAME".

3) The module name is prefixed by “ICL9CE".

A procedure is available to control some aspects of the OMF generation.
It should be called before execution of COBJ or OPUT, as follous:

Conmand: 'ONF PARM (control)

UT114-1

c)

Some of the "control" settings are:

HAP produces a list comprising, the module nane, entries and external
references, together with the “IIN" assigned to each and their key
strength.

BAXKEYS sets all code and data entries to have key strength. Note that
this produces a module having the same “visibility® of namses as on
ENAS. It is not set by default because too many keys can be a
nuisance, particularly on VME/K.

NOCASCADE means that when being loaded, the module will not attempt to
satisfy references from the library list.

LIBPROC sets the “"library” bit.

Writing files to tape.
Log into process UTILTY and do the following:
Comnand: WRITEBTAPE or
Connand: YRITEKTAPE
The progras will proapt for the tape name, and then accept an unlimited
nusber of files, by proapting:
INPUTFILE:
fo close the file, reply with “NO" or “STOP".
Source files are converted to EBCDIC variable blocked records by the

progran. If a pd tile is specified then every menmber is written
separately to tape, each identified by its member nane only.

A. Anderson

uT114-2

EMAS 2900 UTTLITY NOTE
No: 15
Date: 28/3/79
Magnetic Tape Utilities

The utilities described below have been transferred from 4-75 EMAS. They
apply only to magnetic tapes which are 9-track, 1600 bpi, phase encoded,
with odd parity and an inter-block gap of approximately 0.5-0.75 inch.
Block sizes must be less than 12288 bytes.

To access these utilities:

Command : OPTION(SEARCHDIR=CONLIB.TAPEUTILS)

l. Tape analysis

a) Command: QUICKANAL(tapename, outdev) [alias SHORTANAL]
gives a block-by-block structural analysis of the tape.

tapename will be prompted for if omitted

outdev is .OUT by default
On reaching a double tape mark
CONFENUE?

is prompted - reply Y or N.

b) Command: IBMTAPEANAL(tapename, outdev) [alias TAPEANAL]

assumes an IBM standard labelled tape, and gives a one-line analysis
for each file on it.

-ieapeaeme———ui}i—be—prempte&—for-if-umftua?';Z;é
outdev is .OUT by default

2. Tape reading

a) Command: UNLABLDTAPE(tapename)

is used to read files from an unlabelled or non-IBM-standard labelled
tape into an EMAS 2900 process.

For each file to be read the program prompts as follows:

_NEXTFILE NO: absolute file number, or 0 to terminate the
program
RECORD FORMAT: F, FA, V, VA

UTI115-1

b)

RECORD LENGTH: or which of these appears is dependent on the
MAX BLOCKSIZE: choice of RECORD FORMAT (F/FA or V/VA
respectively); reply with the number of bytes

CHARS/ BINARY: C or B; if C is given the program assumes the
tape to be in EBCDIC ‘and comverts to ISO

EMAS FILENAME: name of the file to be created

[EMAS RECFM: F or V - only appears if RECORD FORMAT reply

was ‘F’ or 'FA’]

OFFER FILE TO: recipient process, or ‘.’ or ME if to be
retained by you

START AT BLOCK: usually 1, but may be otherwise if part of the
file is not wanted or has been read previously

The resultant file is a data file, with structure
F(A) and record length given, or V(A) and record length 1024
containing either ISO characters or binary data. If the tape file
would produce more than 1 Megabyte of EMAS 2900 file, then the program
produces one file for each Megabyte or part thereof, named
filename, filenameA, filenameB, etc.
N.B. When V input format is specified, the whole magnetic tape block
is assumed to be a single record - you must perform any
unblocking needed.

Command : READIBMTAPE(tapename) {alias TAPETOEMAS]

is used to read files from an IBM standard labelled tape into an EMAS
2900 process.

For each file to be read the program prompts as follows:

, ’

DSN: file name, or ‘.” if you do not know nor care;
.END terminates the program

CHARS/ BINARY: C or B; C causes EBCDIC to ISO translatiom
EMAS FILENAME: file to be created
OFFER TO? recipient process, or .’ or ME if to be

retained by you

SKIP TO BLOCKY usually 1, but may be otherwise if part of the
file is not wanted or has been read previously

UTI15-2

The resultant file is a character or data file, according to the
CHARS/BINARY reply. If it is a data file, its structure will be as
acquired from the DCB information in the tape file header block. If
the tape file contains more than 1 Megabyte of data the program
produces one file for each Megabyte or part thereof, named

filename, filenameA, filenameB, etc.

3. Tape writing
a) Command: WRITEIBMTAPE(tapename) | [alias STTOTAPE]
is used to write character files to an IBM standard labelled tape.
tapename will be prompted for if omitted
The prégram initially prompts as follows:

START AT LABEL: specify first free IBM label number on the
tape

DSNS=FILENAMES? Y or N, depending on whether, for each file,
‘ the tape data set name is to be constructed
from the EMAS 2900 name

CONSTANT RECLS? Y or N, depending on whether LRECL is the same
for every data set to be written

t CONSTANT BLKSZ? Y or N, depending on whether BLKSIZE is the
same for every data set to be written

Then, for each file to be written to the tape, further prompts are as

follows:
EMASFILE: character file name; .END to terminate the
program
[DSN: only if DSN=FILENAMES? was N]
LRECL: number of bytes — only ONCE if
CONSTANT LRECLS?=Y

BLKSIZE: nunber of bytes - only ONCE if
CONSTANT BLKSZ?=Y .

4, Tape dumping

Command : DUMPMT (tapename, outdev)

gives a character and hexadecimal printout of the contents of part of
a magnetic tape.

outdev ,is .LP by default

UTI15-3

The program prompts:

CODE I/E: to select ISO or EBCDIC interpretation of the
bytes on output.

SKIP: to specify the number of blocks to be skipped
before dumping.
BLOCKS: to specify the number of blocks to be dumped.

Note that for the last two replies each tape mark counts as one block.

M.D. Brown
R.R. Mcleod

UTI15-4

EMAS 2900 UTILITY NOTE
No: 16
Date: 1/10/79

Procedures in Files CONLIB.SERV1Y and CONLIB.SERV2Y

Notes

* Routines intended primarily to be console commands (having string
parameters) are marked "C" in the list below, and are described as
commands in the text. Other routines and functions are given formal IMP
specifications in the text.

* The column headed File indicates whether the procedure is in file SERV1Y
or SERV2Y,.

* Routines marked ‘*’ in the following list should be regarded as
unsupported or subject to change.

* Queries should be directed to the originator, J.K. Yarwood, ERCC Room
2013, ext 2647.

CONTENTS (in alphabetical order)

Procedure File Command Synopsis Item Number
AINFO 1 C Gives access permissions 2
AWAIT 1 c Suspends process without prompt 41
BEL 2 c Issues BEL characters 42
BIN 1 Converts a string to binary 18
COMPARE 1 c Text file comparison program 4
CONC 2 C Concatenates text files 49
COPF 1 c Copies a file 26
DELI 2 C Sets DELIVER information 50
DETA 1 C Creates and detaches a file 13
DUMP 1 Hex dump (virtual addresses) 25
DUMPFILE 1 c Hex dump (from filename) 14
DUMPVM 2 c Hex dump (from virtual address) 9
EBCDICDUMP 1 c Hex dump (from filename), EBCDIC 16
EXFILE 2 c Extracts text from a file 17
EXTRACT 2 c Copies a pdfile member 53
FROMSTR 1 Non—-failing FROMSTRING 10
HTOS 1 Integer to hex string 55
HXSTOBIN 1 Hex string to binary 20
ITOS 1 Integer to string 11
LI 2 c Lists files to .LP 57
METR C METER info since previous call 6
MINIT C Init call for METR 5
NKB 1 C Number of Kbytes on file 12
NOF 1 C Number of files 40
NRCODE 1 C De—assembles 2900 code 59
NWFILEAD 1 Gives address of new file 33
PDCHECK 2 Checks pdfile members 60
PDINSERT 2 o] Creates a PDfile member 52
PIM 2 C Calls the IMP compiler 7

UTI16-1

QINFO 1 Brief "fileinfo" 1
RDFILEAD 1 Gives address of read—-mode file 30
RDINT 1 Interactive integer read routine 21
RDINTS 1 Interactive integer real function- 67
RECODELINES 2 De—assembles into 2900 machine code 24
REPLACE 2 Replaces pdfile member 54
RSTRG 1 Reads a line into a string 19
SEARCHF Searches for text in pdfile 69
SEPARATE 1 Separates command parameters 22
TIM 1 Time-of-day to console 3
TPFILEAD 1 Gives address of temporary file 32
TSEARCH 2 Searches for text in pdfile 70
TSEARCHALL 2 All occurrences of text in pdfile 71
UDERRS 1 Prints a Director error message 23
UPDATE 2 Prepares job to update pdfile 61
VAL 1 Validates specified VM for access 72
WRFILEAD 1 Gives address of write—-mode file 31
YCOMP 1 Binary comparison of two files 38
YSEARCH 1 C Searches a file for integer 37

or string pattern.

1) QINFO(filel, file2, ...)
A quick FILEINFO on one or more files - gives a one-liner describing
each file.

2) AmFO(fiIEI’ fileZ, .oo)

Gives own, general and individual access permissions for each file.

3) TIM

Gives time of day.

4) COMPARE(filel, file2)

Compares the two text files filel and file2 on a line~by-line basis,
stopping and printing out differing lines (if any). When a difference
’ ’

has been found, a prompt ‘:’ is given, and the following commands may
then be typed.

A Advance one line in each file and restart the comparison.
Mfn Move, in file £, n lines (f=1 or 2).

Q uit

E End (same effect as Quit).

Pf Print the current line of file f (f=1 or 2).

PB Print the current lines of both files.

GO Restarts the comparison of successive li.es.

Fftext Find in file f the text "text" (f=1 or 2).
FBtext Find in both files the text "text".

The commands are required to be typed in a strict format and are

carefully checked before being effected. An error leads to rejection,
with the message NO.

UTI16-2

5)
6)

7)

The program terminates with the message EOFl, EOF2 (end of filel or
file2 reached) or COMPARISON COMPLETE (end of both files reached
simultaneously).

MINIT
METR

Gives CPU time, page turns and number of SVCS since the previous call of
METR. MINIT should be called once to start with for initialisation.

PIM(file, parm, parm, «..)

Calls the IMP compiler to compile the source file which is the first (or
only) parameter. If the filename is FILE, the object and listing files
are taken as FILEY, FILEL. (If the filename ends with ‘S’, the ‘S’ is
dropped before the ‘Y’, ‘L’ are appended. The filename must not have 8
characters unless the last is ‘S’. If the filename contains a
6-character username or an 8-character pdfile name, the object and
listing filenames are generated from the 8-character file name or member
name) .

In addition, the following keywords may be appended:

+NY object file to be .NULL

N listing file to be .NULL (also adds PARM (NOLIST))

.OUT error lines to interactive terminal

.LP listing file copied to .LP

+LPD (".LP and Destroy") listing file sent to .LP

X object filename to have X rather than Y (or Z) as last
character

NEWGEN causes object file to have X as a last character and provided
compilation is successful, the object file is NEWGENned onto
the existing ‘Y’ (or ‘Z’) object file.

NOLIST 3
OPT

NOCHECK
NOTRACE
NOARRAY
NODIAG ? cause corresponding PARM to be set.
MAP

STACK

PARMX

PARMY

DEBUG
MAXDICT J

When the compilation is completed, the PARM for the process is reset to
the parms which previously obtained.

UTI16-3

9)

11)

11)

12)

13)

14)

DUMPVM

Produces a hexadecimal dump of an area of virtual memory. Prompts for
start address or segment number; if a segment number is given, prompts
additionally for a relative start address within the segment. Then
prompts for a relative finish address and for output file or device.

externalstringfn FROMSTR(string (255) S, integer I, J)

Operates analogously to the IMP intrinsic string function FROMSTRING,
except that conditions leading to the run—time fault STRING INSIDE OUT
instead simply return a null result.

externalstringfn ITOS(integer I)

Returns a decimal digit string representation of the integer I (string
commences "-" if I negative).

NKB
Prints the following file index data for the process:

maximum file size allowed

total file space limit

total Kbytes of file space

number of files

total Kbytes of temporary file space
number of temporary files.

DETA

No parameters. Prompts ‘:’ and accepts input lines for a detach file
until an input line comprises:

pA when it detaches the file and returns to command level.

integer when it detaches the file for execution with that time limit
(minutes) and returns to command level.

Q when it just returns to command level.

DUMPFILE(file, relstart, relfinish, filedev)

Places a hexadecimal dump from address '"relstart" to address "relfinish"
in file "file" into file "filedev'". "Filedev" may be a filename or .OUT
or .LP. The dump has 32 bytes per line (16 for .OUT) with graphic
representations for alphabetic and numeric characters on the right.
Unless "filedev" is .OUT, the output file contains the name of the input
file as a heading. "relstart" and "relfinish" may be given as decimal or
hexadecimal (preceded be X) addresses relative to the start of the file.
Only the first N of the four parameters need be given (0<= N<=4), as the
program prompts for successive parameters which are not given (or which
are given incorrectly).

UTI16-4

15) DUMPCODE(file, relstart, relfinish, filedev)

16)

17)

18)

19)

20)

21)

Operates analogously to DUMPFILE (q.v.), placing de-compiled assembler
from "file" into "filedev". Identical to NRCODE (q.v.).

EBCDICDUMP(file, relstart, relfinish, filedev)

Operates analogously to DUMPFILE above, except that graphic
representations are for EBCDIC byte values rather than ISO.

EXFILE(file, textl, text2, filedev)

Extracts lines from "file" starting with line containing first
occurrence of "textl" up to and including line containing first
subsequent occurrence of "text2". Extracted file is sent to .LP. Fast
, with minimum page turns. If "textl" is null, extract commences at
start of file. If "text2" is null, extract ends at end of file. (Both
"textl" and "text2" may not be null). Multiple consecutive underline
characters in "textl" or "text2'" are replaced by single space. If fewer
than three parameters are supplied in the command file, the program
prompts for its further requirements.

externalintegerfn BIN(string(255) §)

Result is the value repfesented by the string of up to eight decimal or
hexadecimal (preceded by X) digits. Error result is X’80308030°.

externalroutine RSTRG(stringname S)

Reads characters from the currently selected input stream and sets S to
be the string of characters obtained (excluding the newline). (Will not
deliver a null string, and keeps reading until a non—-null line is
obtained).

externalintegerfn HXSTOBIN(string(255) S)

Result is the value represented by the string of up to eight hexadecimal
digits (preceded by X). Error result is X“80308030°.

externalroutine RDINT(integername i)

Reads the next decimal or hexadecimal (preceded by X) number from the
user’s terminal. This routine is eqivalent to the standard IMP READ
routine except that: (a) it will not read reals; (b) it accepts
hexadecimal numbers; (c) it does not fail "symbol in data" for invalid
input, but gives an error message for faulty input, abandoning remaining
input on the same line and indicating the last valid number read (if
any) which was supplied to the program, and then prompts for further
input.

UTI16-5

22)

23)

24)

25)

26)

30)

31)

externalstringfn SEPARATE(stringname S)

Separates the string S into substrings comprising things between commas.
At successive calls of the function the result and the string S are set
to the ‘next’ substring. Result is null when there are no substrings
left. (A null substring (i.e. ", ,) in the original also terminates
the set of substrings).

externalstringfn UDERRS(integer I)

If I is an error number returned by a Director procedure, the function
yields a text interpretation of the number.

RECODELINES(file, start line, end line, filedev)

De-assembles (2900 machine code) to file or device "filedev" from an IMP
object program in "file" compiled with line-number updating between
source line-numbers "start line" and "end line" (or line numbers
reasonably close to same if code for stated line numbers is not found).
Prompts if no parameters supplied, or parameters supplied incorrectly.

externalroutine DUMP(start, finish, printstartaddress, columns)

Prints a hexadecimal dump from virtual address "start" to virtual
address "finish" on the currently selected output stream. The dump has
either 16 (if "columns" <=72) or 32 bytes per line with graphic
representations for alphbetic and numeric characters on the right.
Multiple successive zero lines are printed once only followed by
"ZEROES".

COPF(filel, file2)

Operates analogously with the Edinburgh Subsystem command COPY except
that the file header words are not inspected and the physical size of
the output file (file2) is the same as the physical size of the input
file (filel). (Intended for non-standard files.)

externalintegerfn RDFILEAD(string(l5) file)

Connects "file" in the "most suitable/possible" mode for reading. If
the connect request cannot be satisfied, output stream zero is selected,
the Subsystem routine CONNECT error flag is printed with an English
interpretation, and a result of zero is returned. Otherwise the result
is the virtual address of the start of the file (segment—aligned).

externalintegerfn WRFILEAD(string(1l5) file)

Connects "file" in write~mode, creating the file (1 page, but leaving a
4-segment VM gap) if it does not exist. If the connect request cannot
be satisfied, output stream zero is selected, the Subsystem routine
CONNECT error flag is printed with an English interpretation , and a
result of zero is returned. Otherwise the result is the virtual address
of the start of the file (segment-aligned).

UT116-6

32) externalintegerfn TPFILEAD(string(15) file, integer PAGES)

Operates analogously with WRFILEAD (q.v.) except that the file is
created with the attribute TEMPORARY if it does not already exist (that
is, the file will not survive a logout or a System crash).

33) externalintegerfn NWFILEAD(string(1l5) FILE, integer PAGES)

Operates analogously with WRFILEAD (q.v.) except that if file already
exists it is connected in "newcopy" mode (previous file contents are not
to be read).

35) PRHEX(integer I)

Prints "integer" in hexadecimal representation on the currently selected
output stream.

36) PROCT(integer I)

Prints the octal representation of the RH half of "integef" on the
currently selected output stream.

37) YSEARCH

Prompts for the name of a file in which a "binary" search for a byte
pattern is to be made. Prompts RELSTART and RELFINISH (which may be
given in decimal or hexadecimal (preceded by X) representation) for
search limits relative to the start of the file. Then the program
prompts STR/SHORT/INT: to determine from reply (STR, SHORT or INT)
whether (respectively) a multi-character pattern, a halfword pattern
(halfword aligned) or a fullword pattern (halfword aligned) is to be
searched for. Then it prompts respectively for a non-null string of
characters, a 16-bit integer or a 32-bit integer as appropriate (the
integer may be typed in decimal or hexadecimal (preceded by X)
representation). The search then commences. NOT FOUND is printed if
the pattern is not found; otherwise an area around the first occurrence
of the pattern is printed at the teletype.

38) YCOMP

Used to compare two files ("binary" compare). Prompts for the two
filenames and a relative start position (which may be given in decimal
or hexadecimal (preceded by X) representation). Compares the two files
up to the end of the shortest file or up to the first difference in
content. Prints the relative address at which the comparison
terminates, with the contents of the words which are not equal if
termination is as a result of difference between the files.

40) NOF

Prints the number of files in the process owner’s index.

UTIl6-7

41) AWAIT

Suspends process without a prompt string on the terminal, thus allowing
operator messages to be printed while the process is asleep.

42) BEL

Sends about 7 BEL characters to the interactive terminal.

49) CONC(filel, file2, .../outfile[, .NP])
Concatenates the text files filel, file2, ..., placing the resultant
file in outfile (which may be the same name as one of the input files).
If the keyword .NP is appended, a new page in the output file is placed
at the end of each input file.

50) DELI
Prompts for up to 19 characters of delivery information (which may
contain spaces), centralises it in a 19~-character string and calls
DELIVER.

52) PDINSERT(pdfilel memberl, file2 member2, ...)

Calls COPY(memberl, pdfilel_memberl),
COPY (member2, pdfile2 member2).

(The members must not already exist in the pdfiles.)

53) EXTRACT(pdfilel memberl, pdfile2 member2, ...)

Calls COPY(pdfilel_memberl, memberl),
COPY(pdfile2 member2, member2), ...

(Files called memberl, member2, ... must not already exist.)

54) REPLACE(pdfilel memberl, pdfile2 member2, ...)

Calls COPY(memberl, pdfilel memberl),
COPY (member2, pdfile2 member2), ...

(The members must already exist in the pdfiles.)

55) externalstringfn HTOS(integer I, PLACES)

The result is a string length of PLACES giving the (least significant
digits of the) hexadecimal representation of the integer I.

UTI16-8

57)

LI (filel, file2, ooo)

Calls LIST(filel, .LP),
LIST(file2, .LP), ...

59) NRCODE(file, relstart, relfinish, filedev)

Operates analogously to DUMPFILE (q.v.), placing de-compiled 2900
assembler from "file" into "filedev".

60) PDCHECK(pdfilel, pdfile2, ..)

61)

67)

69)

For each pdfile a comparison is performed between members and ordinary
files with the same name, and a summary is printed. At the same time a
file SS#DESRP is created containing data for the command UPDATE (q.v.).

UPDATE

Data in file SS#DESRP is used to create a file SS#DETAC to be OBEYed or
DETACHed to update the pdfiles in the most recent call of command
PDCHECK (q.v.). The program gives groups of filenames: first those
which would be destroyed, then those which would replace members of the
pdfiles. For each group a corresponding number of Y’s and N’s must be
typed (if the number does not match the number in the group the input is
ignored). Where Y’s are given, a DESTROY/REPLACE command is put in the
SS#DETAC file. When all Y’s/N’s have been supplied the SS#DETAC file is
listed, and the prompt "DETACH/OBEY:" is given. The replies are:

Q No further action

NOW SS#DETAC is detached for NOW execution

NOW, integer As NOW, integer specifying '"seconds"

integer SS#DETAC is detached, integer specifying "seconds"

OBEY The prompt .LP/.OUT is issued; .LP or .OUT is typed, to
give OBEY(SS#DETAC, .LP or .OUT).

externalintegerfn RDINTS(string(63) S)

The result is the next integer which would have been delivered by
routine RDINT (q.v.), except that if S contains valid integers separated
by spaces or newlines, the next integer from S will be delivered.

externalintegerfn SEARCHF(params)

Not supported.

UTI16-9

70)

71)

72)

TSEARCH (text, file)

Searches for "text" in "file". Multiple underline characters in text
are replaced by a single space. If a null parameter is given, the
program prompts for text (which may include spaces) and for files.
Lines surrounding the first occurrence of "text" in file are printed.
If "file" is a pdfile, all character-type members are searched, except
that if (for example) member FILEl and FILEIL both exist, the FILEl
member is not searched.

TSEARCHALL(text, file)
Operates analogously with TSEARCH (q.v.), except that all occurrences of

"text" in "file" are printed.

externalintegerfn VAL(integer ADR, LENGTH, RW, PSR)

Validates the virtual memory described by ADR, LENGTH for access
according to RW (O=read, l=write). If PSR is zero, the validatiom is at
the ACR level of the caller; otherwise PSR should be the program status
register value for the validatiom.
Result = 1 access allowed

= 2 access not allowed

J.K. Yarwood

UTI16-10

EMAS 2900 UTILITY NOTE
No: 17 (revised)
Date: 10/6/80

Tape Utilities

The utilities described in this Note are for processing tapes written to
recognisable standards. The tapes that the user can process with these
utilities are user tapes, not tapes used by the System for its own private
purposes (such as archiving). Users should note that although user (owned)
tapes can be processed on EMAS 2900, they should consider the relative
merits of the archive system compared with the use of private tapes for long
term storage of data.

It is intended to provide the following utilities and detailed documentation
for them. Only those marked with an asterisk are described in the current
version of this Note.

TAPEANAL* Summarise contents of a tape.

COPYTAPE Copy one tape to another or copy selected files from several
tapes to one output tape.

COPYTOTAPE* Copy files between user tapes and disc and vice-versa,
COPYFRMTAPE* including the handling of character files.

TAPECONVERT Convert a tape written to an alien but reconisable standard to
the System (IBM) standard.

DUMPTAPE Dump out selected parts of a tape.

The latter two utilities will only be of help to those with a good
knowledge of tape and file structures.

The utilities have been designed as a set, giving a reasonably consistent
appearance, and can be used from a foreground or background (batch) process
with reasonable ease. However, it should be noted that access to user
magnetic tapes from a foreground process is not normally permitted; comsult
your local Advisory Service for details.

The parameters are specified in a parameter list to the call on the
utility required, or in response to prompts, but not a mixture of the two.
Positional and keyword parameter specification can be mixed, the use of a
keyword parameter implying movement to the position of that keyword
parameter for the purpose of identifying subsequent positional parameters.

Default values can be invoked when using a parameter list by omitting the
relevant parameter, and at any point all remaining parameters can be
defaulted by terminating the parameter list. If the user elects to be
prompted for parameters (usually in foreground) he may specify that a
default for a given parameter is to be taken by replying with the stop (".")
character to the prompt for that parameter. If he wishes that all
subsequent parameters (including the current one) should be defaulted, he
should respond with the slash ("/") character; no more prompts will then be
issued. Note, however, that some parameters do not have default values.

UTI17~1

COPYFRMMTAPE

COPYFROMTAPE

This utility can be used for copying files from tape to the EMAS
filestore. The tape must have been writtem to the accepted System standard,
i.e. the “IBM’ standard. The utility takes the following parameters, which
can be specified positionally (in the order below), by keyword or in
response to prompts. Normally only the first four parameters will be
needed.

Note that if the output file already exists, it will be overwritten by
this utility.

Command : COPYFROMTAPE(name, label, type, rename, skip, process,
maxrecl, size)

Parameter Default Description
NAME none The name of the file on the tape.
TAPE none The name of the tape volume.
LABEL 1 The position of the file on the tape.
TYPE DATA This parameter determines the format of the output

file: it has four possible values.
DATA file will be copied as data file.

CHAR file will be copied as a character file.
SEE NOTE (1)

CHARX as CHAR except that newline characters will
not be added at the end of each record
processed.

SEE NOTE (2)

CHARA as CHARX except that if the input file is
labelled as having ASA format control
characters in its records, then those
characters will be interpreted as the file
is copied.

(Not yet implemented.)

RENAME tape The name to be given to the disc file if its name
file is to be different from that of the file on tape.
name This must not be a member of a PD file.

SKIP 0 The number of records in the tape file to be

skipped before processing commences.

PROCESS * The number of records to be processed. If all
records from the starting point (i.e. after any
SKIPped records) are required then specify ‘*’.

MAXRECL 10000 This specifies the maximum length of record im the
input file. If this is greater thanm 10000 then
this parameter must be used to specify the largest
record in the input file.

UTI17=2

COPYFRQGMTAPE

Parameter Default Description

SIZE 255 This specifies (in Kbytes) the upper limit on the
size of the output file when being created by
COPYFROMTAPE. This is a temporary upper limit
(see the Edinburgh Subsystem command DEFINE).

Examgles

To copy the first file called SAMPLE]l from a tape AB4567 to a data file
of the same name:

Command : COPYFROMTAPE (SAMPLE1, AB4567)
To copy the seventeenth file called STRANGE from tape KI5432 to a
character file called FAMILIAR:
Command : COPYFRMTAPE (STRANGE,KT5432,17, CHAR ,FAMILIAR)
The last example could be specified using a mixture of keyword and
positional parameters, thus:

Command : COPYFRMTAPE (TAPE=KT5432,17,NAME=STRANGE , TYPE=CHAR , FAMILIAR)

Notes

1) When copying to a character file, all trailing spaces in each record are
removed. Also, if TYPE=CHAR is specified, a newline character is added to
the end of each record processed.

2) If TYPE=CHARX is specified, any records consisting entirely of space

characters would be lost, as all the spaces would be removed and no
newline character would be output.

UTI1l7-3

COPYTOTAPE

COPYTOTAPE

This utility can be used to copy character or data files from the EMAS
2900 file system to a magnetic tape, which must already have a volume label.
All the files will be written in accoxrdance with the accepted System
standard, i.e. the "IBM" standard. The utility takes the following
parameters, which can be specified positionally (in the order below), by
keyword or in response to prompts. Normally only the first four parameters
will be needed; only the first two must be specified.

Command : COPYTOTAPE(name, tape, label, format, rename, skip,
process, blocksize, option)

parameter default description

NAME none The name of the file in the EMAS file system. If a
PD file member is specified, the RENAME parameter
must be used to specify a valid IBM filename (see

note 5).

TAPE none The name of the tape volume.

LABEL 1 The position of the file on the tape.

FRMAT VB200 The required tape file format.

RENAME input The name to be given to the tape file if its name is
file required to be different from that of the input file.
name

SKIP 0 The number of records or "lines”" to be skipped before
processing commences.

PROCESS * The number of records or "lines" to be processed} If
all records from the starting point are required then
specify ‘*’.

BLOCKSIZE 4096 The length of blocks written to the tape. If this
parameter is defaulted the System will use a
blocksize as near to 4096 as is counsistent with the
specification of FORMAT (see above).

OPTION STOP For character files: specifies what action is to be

taken in the event of a "line" in the input file
being longer than the maximum record length of the
output file. It has three possible values:

STOP Processing is abandoned

SPLIT The "line" is split across two or more output
records (not yet implemented)

TRUNC The "line" is truncated

UTIl7-4

LCUFYLLULAYL

Examgles

1) To copy a character file called COMPRESS to the fifth file on tape
AB1234:

Command : COPYTOTAPE (COMPRESS, AB1234,5)

2) If the above file were required to be copied in "card image" format with
a blocksize of 2000 the call would be:

Command : COPYTOTAPE (COMPRESS, AB1234,5,FB80,,,,2000)

3) A keyword could be used to specify the blocksize in example (2) above:

Command : COPYTOTAPE (CQMPRESS, AB1234,5,FB80, BLOCKS IZE=2000)

Notes

1) When a file is copied to label "n" on a magnetic tape, any file recorded

at that label position and any files recorded at further label positions
are DESTROYED.

2) Program source files being copied to tape for transfer to other
installations should probably be in "card image" format, i.e. with FGRMAT
set to FB80.

3) When a character file is copied to a file on tape with fixed length
records, all "lines" are padded with spaces.

4) Multiple newlines from a character file copied to a tape file with
variable length records are recorded as single records consisting of a
space.

5) To conform to the IBM file naming convention, names of files on private
tapes must:

(a) be no longer than 17 characters in total.

(b) comprise one or more fields separated by periods, each field
consisting of 1 to 8 alphanumeric (A-D>Z, 0->9) characters starting
with a letter.

e.g. FILEA

SAMPLE].GLASGOW
G35A.STAT.LEVEL2

UTIl7-5

TAPEANAL

This utility is used to scan a tape and print out a summary of its
contents, the thoroughness of the scanning being controlled by the LEVEL
parameter. It should be noted that reading every block om a tape,
especially when it holds a lot of data, is a relatively expensive process.
Using the LEVEL parameter set to 1 avoids this problem. The other values of
LEVEL are normally used for diagnostic purposes.

Command : TAPEANAL(tape, output, level, dumpout)

parameter default = description
TAPE none The name of the tape to be analysed.
OUTPUT .LP Destination for the summary output from the analysis.

This can be an output device or a file.

LEVEL 1 The type of analysis obtained. It takes three
possible valuves, the first two applying only to tapes
conforming to the accepted System standard:

1 A scan and extraction of information from the
labels on the tape. This gives an efficient
summary of the characteristics of all the files on
the tape.

2 As 1 but including a scan of the files as well as
the labels, thus checking for I/0 errors and
reporting the longest block in each file. This is
less efficient than 1.

3 This option assumes nothing about the structure of
the tape but simply gives a block by block summary
of each physical file on the tape.

DUMPOUT null If a dump of the first 96 bytes of the first two
blocks of each file is required then this parameter
must be used to to specify the file for the dump
output.

Examples
1) To obtain a simple summary of the contents of tape AB1234:

Command : TAPEANAL(AB1234)

2) To obtain a complete summary of the same tape, including a dump of the
first 96 bytes of the first two blocks of each (labelled) file on the
tape, and then to print the summary and dump together:

Command : TAPEANAL(AB1234, SUMRYFILE, 2, DUMPFILE)

Command : LIST(SUMRYFILE+DUMPFILE, .LP)

UTI17-6

Notes

1) Although the headings on the output for a level 1 analysis are reasonably

2)

3)

4)

self explanatory, the following notes may help:

Block length: the maximum permitted size for blocks in the file.

Label No.: the file sequence number that appears in the file label (this
need not necessarily start at one for the first file on the tape).

For a level 2 analysis three extra fields are printed:

Max Block: the length of the largest block actually found in the file.

Byte Count: the total count of all bytes in the blocks of the file,
excluding the file labels but including all ‘red tape’ for variable

format files.

Length: an estimate of the actual length of tape occuplied by the file

(including its labels) rounded up to the next foot. This assumes an
inter-block gap of 0.6 inch.

The output from a level 3 analysis relates to the physical files on the
tape. The output for each file consists of the physical file number
followed by a number of fields, as follows:

BLOCKNO(COUNT * SIZE)

where SIZE is the length (in bytes) of COUNT blocks starting at block
BLOCKNO, and taking the first block on the tape as block one. E.g.

13(C 9 * 1600)
would mean that there are 9 blocks of 1600 bytes starting from and
including block 13 on the tape.

Users who wish to restrict the output from this utility to 72 characters
per line should prefix the value for the LEVEL parameter by the letter
’S’. This suppresses the output of some of the less important
information. For example:

Command : TAPEANAL(AB1234, .OUT,S1)

B.R.P. Murdoch

UTI17-7

Source:
Object:
Originator:
Parameters:
Operation:

Effect:

EMAS 2900 UTILITY NOTE
No: 19

Date: 26/05/80
PROBE INDEX

MANAGR.MANPRGS_PROBEINnnS
MANAGR.MANPRGY_PROBEINDEXY
Ce McCallum

None

Prompts for {user>, <fsys> and <output to>.

Reads the file index for <user> from <fsys> specified and
outputs an analysis of it to a file or device as specified.

A. Gibbons

UTI1%-1

EMAS 2900 UTILITY NOTE

No: 20
Date: 30/3/81

SHOWTAPE

This is an interactive tape examination program, driven by commands similar
to ECCE SHOW. The position of each byte of data on the tape is defined by
its byte, block, and file displacement from the start of the tape. Commands
exist to move a notional cursor to any byte, and to output one or more bytes
onwards from the current cursor position in octal, hexadecimal , character

(optionally translated), or in a combined form of hexadecimal and character
side by side.

Primitive commands consist of an operation, generally specifying a
cursor-moving operation or an output operation, followed by a repetition
count. For a cursor-moving operation the repetition count specifies the
number of bytes, blocks or files by which the cursor is to be moved; for an
output operation the repetition count specifies the number of bytes onward
from the current position to be output.

The cursor-moving primitive commands are:

Un - move the cursor to byte 1, block 1 of the nth file Up the tape from
the current file.(Up is towards the end of the tape.)

Dn - move the cursor to byte 1, block 1 of the nth file Down the tape from
the current file. '

Fn - move the cursor to byte 1 of the nth block Forward from the current

block, within the current file. (Forward is towards the end of the
file.)

Bn - move the cursor to byte 1 of the nth block Backwards from the current
block, within the current file.

Rn - move the cursor to the nth byte Right from the current byte, within
the current block. (Right is towards the end of the block.)

Ln - move the cursor to the nth byte Left from the current byte, within
the current block.

The output primitives'cause the output of n bytes of the current block
starting with the current byte:

On - output in Octal.

Hn -~ output in Hexadecimal.

Pn -~ output as Printing characters.

Cn - output in Combined hexadecimal and character side by side.
Clearly such primitives can fail; for example if the specified cursor

destination does not exist, or if there are insufficient bytes remaining in
the current block to output.

UTI20-1

If any output command or the cursor-moving command R fails, the end of block
failure message

EOB AFTER BYTE n

is produced. (In the case of an output command the output up to the failure
is produced.) If the cursor-moving command L fails, the start of block
failure message is simply

*%kGOB**

since it must have failed at byte 1. Similarly, the F and B commands
produce the file failure messages

EQF AFTER BLOCK n
and

*kGOF**
respectively, and the U and D commands produce the tape failure messages

EQT AFTER FILE n
and
kGOTH

respectively,

The repetition count for a primitive command can be of two forms:

a) explicit - a positive integer, meaning do it that many times (an
explicit repetition count of 1 need not be typed)

b) indefinite - 0 or ?, meaning do it until EOT, SOT, EOF, etc., and
produce the appropriate failure message.

Two types of output have already been mentioned - that produced by the 0, H,
P and C commands, and failure messages. A third type of output is produced
when an explicit U, D, F or B command succeeds.

Whenever an explicit U or D command succeeds, the file descriptor for the
newly current file is output in the form

FILE n
¥,

Whenever an explicit F or B command succeeds, the block descriptor for the
newly current block is output in the form

BLOCK n LENGTH=m BYTES

Multiple primitive commands can be input on the same line, forming a
compound command whose elements are executed from left to right.
Additionally, parentheses may be used to define compound commands which,
exactly like primitive commands, are followed by an explicit or indefinite
repetition count. (An unparenthesised compound command of one or more
primitive commands behaves exactly as if it had outer parentheses and a
repetition count of 1, and should be so considered in the description of
termination and failure which follows.)

UTI20-2

An explicit primitive command terminates when its repetition count is
exhausted. It terminates and fails at EOT, SOT, EOF, etc. An indefinite
primitive command terminates omnly at EOT, SOT, EOF, etc. It never fails
(although it produces a failure message).

An explicit compound command terminates when its repetition count is
exhausted (i.e. all its elements have been executed from left to right
without failure n times)., It terminates and fails when any element of it
fails. An indefinite compound command terminates only when an element of it
fails. The compound command itself never fails.

(N.B. in view of which, care should be taken to ensure that an indefinite
compound command contains a subsequence whose repetition will ultimately
give a failure, otherwise the program will loop indefinitely. In this
context note that the output commands do not move the cursor.)

The primitive command \ can be used to cancel any failure in the immediately
preceding primitive or compound command.

Some examples follow to clarify these points. At the start of a session the
cursor is positioned at byte 1, block 1, file 1 and the file descriptor and
first block descriptor are output. From this position the
command.....produces the output

U?ceccscsoese s EOT failure message Only; i.e. the number if files.
(Ul)?¢eeeeesesfile descriptors for files 2 onwards to EOT.

Fleeeseeseess .EOF failure message for file 1; i.e. the number of blocks.

(F?7U)?eeeeeesEOF for file 1, then file descriptors and EOF for all files
to EOT.

((F1)?U)?.....block descriptors for blocks 2 onward to EOF for file 1,
then file and block descriptors for all blocks in all files
from 2 onward to EOT.

(H50\F1)?.....hex of first 50 bytes in block 1 then block descriptors and
hex 50 for all blocks from 2 onward to EOF; note the use of
the \ to cancel failure in the event of a block having fewer
than ?0 bytes, which would otherwise terminate the sequence.

(F1B1)?4eeeesol00ops indefinitely without output.
(P10)?¢eeeseosthe first 10 characters of block 1 indefinitely.

(F?7)?ceeeseesEOF for file 1 indefinitely.

UTI20-3

Now to the question of the cursor position after failure. With three
exceptions there is always a defined current file, block and byte. As
mentioned above, at the start of a session the cursor is positioned at file
1, block 1, byte 1 unless

a) the first file contains no data blocks (i.e. a tape mark at the start
of tape) when the empty file condition is raised. The file
descriptor and the empty file failure message is output. Thereafter,
the commands described so far except U and D produce an appropriate
failure message and terminate. This condition can only be raised at
file 1. Elsewhere it would correspond to two adjacent tape marks
which signals EOT. The EOT condition is raised when a U command is
executed and the current file is the last on the tape. Thereafter,
the block and byte positions are undefined , commands F,B,L,R and the
output commands give an appropriate failure message and terminate and
U gives the EOT failure message and terminates. Only D of the
commands described so far is effective,

or b) the first block of the first file is a bad block (i.e. one which
cannot be successfully read from the tape because of parity errors),
when the bad block condition is raised; this condition is also raised

when a U,D,F or B command is executed and the newly current block is
bad. A warning message is output in the form

% BAD BLOCK **
The block descriptor takes the form
BLOCK n *% BAD BLOCK **

and the current byte becomes undefined. Thereafter the output and L
and R commands give an appropriate failure message and terminate.

Apart from these three cases, the cursor position after failure is as
follows:

command file block byte

D 1 1 1

F current last 1

B current 1 1

R current current last

L current current 1
output unchanged

Output from the execution of each 0, H, P or C command begins on a mew line.
Within one such command, newlines are inserted if required on the basis of
the page width which by default is 132. This width can be reset at any time
using the W command:

Wn -~ set the page width to n; n{l2 or n=? produces a failure message and
fails.

The output produced by the 0 and H commands is always an exact
representation of the bit pattern on the tape. The character output
produced by P and as part of C is a translated form of the bit pattern.

UTI20-4

The translation is controlled by the current translation mode. If the
mode=0 (the default) the tape bytes are assumed to be ISO characters and the
bottom 7 bits of each byte are used, non-printing characters being
translated to space and newline to ", If the mode=1 the tape bytes are
assumed to be EBCDIC characters and are translated to their ISO equivalents,

non-printing to space and newline to . The translation mode can be changed
at any time using the M command:

Mn - set the translation mode=n; n>1 or n=? produces a failure message and
fails.

After some interactive movements within the files on a tape, it may be
convenient to have the current cursor position output explicitly. This is
done using the T(Tell) command:

Tn - output the current cursor position (current file descriptor, block
descriptor and byte number); the repetition count is discarded.

The analysis is stopped and the tape released using the S command:

Sn - end the analysis, rewind and release the tape and stop.

Any multi-character console interrupt will cause the current command line to
be abandonned, after which it would be advisable to use the T command to
locate the cursor.

oo 00 00O OGOS

The program currently resides in ERCC15.SHOWTAPEY on the 2980 and is run by

Command : SHOWTAPE(<{tape id>, <in>, <out))

The tape identifier is required. <{out> is where the output is sent and
defaults to .OUT. <in> is the source of the command input and defaults to

.IN. However, since it can be a file, an arbitrary number of tailor-made
analyses can be obtained simply by inserting the appropriate command string
in a file (suitably pretested for indefinite looping, especially if the
output is not to the console). As a final example, one likely candidate for
inclusion in such a set of analyses is the command string

M1((C?F1)?U1)?S
which produces - the file descriptor, the block descriptor, a side by side
hex/character dump of all the bytes in the block, for all the blocks, for

all the files in an EBCDIC coded tape, the output being suitable for a page
width of 132.

®9 60800000

UTI20-5

Aggendix_é = Primitive

Un

Dn

Bn

Rn

Ln

On

Hn

Pn

Cn

Tn

Sn

move the
move the
move the
move the
move the
move the

output n

cursor

cursor

cursor

cursor

cursor

cursor

commands

up n files.

down n files.
forward n blocks.
backward n blocks.
right n bytes.

left n bytes.

bytes in octal.

ouput n bytes in hexadecimal.

output n bytes as printing characters.

ouput n bytes in combined hex/character side by side.

set the page width to n.

set the translation mode to n.

tell the current cursor position.

rewind, release the tape and stop,

cancel failure in immediately preceding command.

UTIZO-G

C.D. McArthur

EMAS 2900 UTILITY NOTE

No: 21
Date: 30/3/81

BECCE: Binary ECCE (Version 2)

BECCE is an editor available on EMAS at ERCC. It provides facilities for
examining and modifying an Edinburgh Subsystem file of any type, presenting
it to the user as a series of bytes without regard to any internal structure
which it might have (e.g. object file, fixed format data file, partitioned
file).

It is based on the text editor ECCE -~ in fact it is a version of ECCE, with
some facilities removed and others added. The use of ECCE is described in
detail in the EMAS 2900 User’s Guide (2nd Edition), and the reader of this
description of BECCE is assumed to be conversant with the facilities
provided by ECCE and the way in which they are presented.

Summary of approach

ECCE operates in terms of a ‘current line’ of the file being edited, and of
a ‘current position’ within the current line. Text specified (for various
purposes) by the user is given as a string of characters. ECCE’s output
consists of the current line as a string of characters, with the current
position indicated.

A "line" in the file is delimited by newline characters. This brings us to
the first problem in applying the ECCE approach to "binary" files - files
which are to be regarded simply as a series of bytes: there is no certainty
that the newline character will appear with sufficient regularity (if at
all) to enable the file to be split up into convenient ‘lines’. The second
problem is that the bytes in the file being edited need not correspond to
printing characters, and some alternative means of representing them, for
input and output, must therefore be provided.

The approach adopted in BECCE to solve the ‘line’ problem is as follows: on
entering BECCE the user is asked to give a record length in bytes (default
20); he is then asked to give a ‘separator’ byte, expressed as a decimal
value., If he does not give a value, BECCE repeatedly scans the file to be
edited until a byte pattern, starting with 255 decimal and working
downwards, is found which does not occur in the file. If one cannot be
found , BECCE selects an infrequently occurring byte pattern and uses that.
It also gives a warning that this has been done.

BECCE then copies the input file, inserting the separator byte at intervals
corresponding to the specified record length. Any occurrence in the input
file of the separator byte is represented in the copy by two such bytes.

The editor proper is then entered with the separator byte doing duty as the
‘newline’ character. The file being edited is thus made up of a series of
“lines’ of identical length (the specified record length), apart from
occurrences of two separator bytes together (as explained above); these
would appear as blank lines in the file being edited. As stated above, no
account is taken of any internal structure which the file might have, and it
is up to the user to ensure that any such structure is preserved.

At the end of the edit session, BECCE removes all single occurrences of the

separator byte on copying the workfile to the output file, and (if no unique
byte was found at the start of the editing) each occurrence of two separator

UTI21-1

bytes together is replaced by a single separator byte. Thus if the user
wishes to insert the separator byte at some point in the file he can do this
by inserting a blank line (e.g. by use of R*B or L*B or BB) during the
editing. Note that if the edited file is not required, it is quicker to
exit from BECCE by means of ‘INT:A’ rather than ‘7C’.

The file header is not made available for editing. For data files, the "no
of records" figure in the header is adjusted to the appropriate value at the
end of the edit session, if the file format is F; if the format is V (or
Unstructured) no such adjustment is made.

Byte formats

As noted above, the contents of a binary file cannot in general be
represented by character strings. BECCE allows the user to indicate how his
input strings are to be specified, and how the output ‘lines’ are to be
printed. It does this by means of two new ‘%’ commands:

1) >%I=<letter>

The %I command specifies the input format of strings in commands to
BECCE. <letter> can be one of

Hor h for hexadecimal
D or d for decimal
O0or o for octal
Corc for character

With each letter there corresponds a ‘minimum number of symbols’ to
represent any byte. These are as follows:

H 2 (e.g. A4)
D 3 (e.g. 194)
0 3 (e.g. 176)
C 1 (e.g. 2z)

Examples of input strings, with format H:
f/A31£24/ s/7B C 34/

There are no spaces in the ‘f’ string and so the ‘minimum number of
symbols’ value, in this case 2, is used to split up the hexadecimal
digits. Thus f/A31f24/ corresponds to f£/A3 1F 24/. 1If space characters
are present they delimit the specification of each byte. Note in the ‘s
string above that it is not necessary to specify two digits if one is
sufficient, so long. as spaces are used. Note also that f/A31F2/ would be
interpreted as f/A3 IF 02/.

4

Further examples of input strings, this time with input format D:

£/140034128/ s/45 2 254/
i/P37/ v/64qe/

The first line above follows on from the hexadecimal examples. The
second line includes characters which are not digits in the range 0-9.
This is allowed: if a character is encountered which is not a digit of
the specified input format then it is treated as a ‘C’ format byte
specification in itself. Effectively one can use the ‘C’ input format
whenever convenient. Note that f/lq/ is acceptable: it is treated as
£/001 q/. These remarks apply to all the numerical input formats.

UTI21-2

2)

In the case of the ‘0’ and ‘D’ formats, the ‘minimum number of symbols’

is 3. However, if the value resulting from taking three adjacent digits
is greater than 255 decimal, then the first two digits alone are assumed
to define a byte. For example, /15151/ specifies bytes 151 and 51, but

/51515/ specifies bytes 51, 51 and 5. To avoid confusion, it is better

to use spaces or leading zeroes rather than exploit this rule.

In the case of the “H’ input format, the letters ‘A’ to ‘F’ (and "a’ to
‘f’) are treated as hexadecimal digits A’ to ‘F’.

It follows from the above that every possible input string has a meaning.

The default input format is H.

Finally, note that %L is the default, not %ZU. It is recommended that %U
be not used, as the effect of case conversion can be confusing when a
numerical input format is in use.

>%0=<letter>[<1-9>](C]

(The parts in square brackets are optional; the square brackets
themselves are not typed)

This specifies the format of the output lines produced by BECCE. The
letters permitted are the same as for ZI. The optional digit following
the letter specifies how many character positions are to be allotted. If
this is not specified, the ‘minimum no. of symbols’ plus 1 is used; this
results in each byte being output preceded by a single space. If a value
less than the ‘minimum number of symbols’ is given then it is ignored and
the default is taken.

The letter ‘C’ (or ‘c’) can be appended to the %0 command. It causes
each line output by BECCE to be repeated in ‘C’ format.

If the output format is C then bytes which do not correspond to printable

characters are represented by ’_‘.

The default output format is H3.

Changing the size of the file

The use of some ECCE commands change the size of the file, e.g. e, k,
i/text/. However, since there are applications where it is intended not to

change the file size but merely to replace bytes by the same number of new
bytes, a warning can Be generated when the current position is moved off a
line whose length is not a factor of the specified record length; the text
"Line?" is printed.

To switch this warning on: >%7?=l
To suppress it: >%7=0

ECCE facilities not in BECCE

The following ECCE facilities are not available in BECCE:
* Secondary input (but see the next section)

* Secondary output
* SHOW command

UTI21-3

Marking and using text already in the file

BECCE enables the user to mark a string of bytes in the file for subsequent
use with any of the text location and manipulation commands, viz. D, F, I,
s, T, U, V.,
The symbol ‘“‘ can be used in a command line. It causes the current
position to be noted. Subject to certain conditions detailed below, a
second use of ‘“’ on the SAME file line causes a string of bytes to be
defined, i.e. the bytes between the two positions noted.

If any of the commands D, F, I, S, T, U, V is subsequently used in a command
line followed by ‘@‘ rather than the usual string specification, e.g. I@
instead of I/Fred/, then the string most recently defined via ‘"’ is
implied,

Example: 2A 73 2B" 64 01 FF (current line)
>@L *“ R* ~ B I@ M- P2 (input to ECCE - spaced out for clarity)
2A 73 2B 64 01 FF
2B 64 01 FF (this line was created by B and I@)

Notes

* The file being edited must not be altered between the two uses of “*’,
If it is, the earlier ‘"’ is ignored.

* A pair of ‘“’s can define a null string - a subsequent use of @ would
then always succeed. Initially the @ string is null,

* A string can be defined ‘the wrong way round’; i.e. the first ‘"’ can
point to a position beyond the second '*’ position.

* The only failure with '*’ occurs when the defined string is longer than
100 bytes.

* The @ string can be redefined as often as desired.

Access
Access to BECCE is via directory CONLIB.GENERAL:
Command : OPTION(SEARCHDIR=CONLIB.GENERAL)
Thereafter BECCE is invoked with file specification identical to that of
BOCE: Command : BEGCE(input ,output)

or Command :BECCE(input)
or Command :BECCE(,output)

(Lack of) Support

BECCE is not supported by the ERCC Advisory Service. While I shall try to
fix errors, I cannot undertake to do so as a matter of urgency. I am not
willing to change BECCE, but am prepared to give a copy of the source to
anyone who would like to.

John M. Murison

UTI21-4

