University of Edinburgh

Department of Computer Science

The Edinburgh Multi-Access
System Scheduling

and
Allocation Procedures
in the

Resident Supervisor
Dy

N. A. Shelness, P D.Stephens
and
H. Whitfield

EMAS Report 4 Reprinted 1977

James Clerk Maxwell Building
The King's Buildings
Edinburgh EH9 3JZ

031-667 1081

This paper was presented at The International

Symposiun on=0p6rating Systems, Theory and Practice,
April 23rd-25th, I.R.1.A., Paris.

| HE EDTaigfenit tu] T T-A00E0S SYSTER
S CEHE MG AND A) » S CE YR

n-I ~o

N- H' ShBlnESS
Department of Computer Science

Edinhurgh Uﬁiversity

P. D. Stephens

Edinburgh Hegional Computing Centre

He Whittield
Mathematisch Instituut

Hijskuniversiteit te Groninigen

The Edinburgh Multi-Access Oystem is a 1arge._mu1ti—user.
interactive, paged, virtual memory operatingléystem deveinped in
Edinburgh over the last nine vyeaars, An initial design was
formulated between 1964 aﬁd 1966 [wi1}. Following this an #ttempt
at implementation was undertaken- by a large
University/manutacturer team: The Edinburgh Multi—-Access Project.
This efrort commenced in 1967.énd came to an end in the summer of
19970, having failed to implement a satisfactory system. The

reasons for this will not be discussed here.

The system that existed at the end of the initial praject was
not robust enuugh“?nr even such simple system development tasks
as editing and C6mﬁilétioh.' There was.‘though. a nucleus of cudé
on which a small teﬁm. varvying in size Frnﬁ 3 to 7, was atle,
over the next year, to build a system robust enough for general
release, The results of this effort, along with the performance
characteristics of the systéﬁ iﬁ the summer of 1972 are presented.
in a paper written atltﬁat‘time'[wzl; Sinca then a new team
including some who were associated with this earlier effort, have
irewritten a large part of tﬁé'raﬁldént#suparvisnr. with a view to
generality, and portability. A rnumber of scheduling and
allocation procedures ‘have also been changed as a result of
Derfﬁrmance mﬁnitnrind and ﬁéﬁ"désiﬁn* insigﬁts. These have
resulted in a considefﬁbieh hérfﬁfmandé ﬁfhprnvement over that
reported in [w2], It 15 the hﬁrpdsé ﬁf tﬁis paper to discuss. the

current scheduling and allocation policies, and the motivation

for them. |

g ; Aoy — B - -

Thé 'hardﬁafe (ICt. d/?Sf Lcorréshnnds to that of manQ large
Eurdpeaﬁ thifd generatioh.maChihes;' being a copy of :an - (RCA
SHECTHA 70) which is it§elf.a copy of an (IBM §/360), to which an
addréss translatiﬁhlufaciiity.. (paging) was added as " an
af?erthnﬁght. It pusséssés Foﬁr types of memﬁry thé FirsF three
uf.which (fnpa. diskfile and dfum) are ctnnéctﬁd tn’ the last
(bnra) by conventional selabtdr channels. On ehe'initial 1

megabyte configuration in Edinburgh (figure 1), there are 4 nine

- FIRST EMAS

e L Tl el) e s i ey il S R e e T e S ol T S i I
L3 5 .
A rd
- L
CEFFe T T A e — s e el T e e S S

ARCHIVE
| STORAGE

IINEDIATE

STORAGE

CONRIGURATION IN EDIN3URGH

mw mrilr re Hkleriew il T =

KAIN STORAGE

T

1. 1600 BPI. Tape
2, 350 Hegebyte Disk
3, 6 Megabyte Disk

Lhe 2 Megabyte Drum

- 5. 1 Yegebyte Core

figure 1

track tape units on two channels:, 2 three hundred and 'fifty
megagyte diskfiles dn nﬁa channel, 3 Six megabyte_disk packs on
ong channe;. and 3 twé'megabyte drums also on a =ingle channel.
The diskfiles _h&ved32 tracks per cylinder, with 2 §/2 pages per
track, and 1023 cylinders ﬂacﬁ. The mesan seek time 1s 100
milliseconds and the maximuﬁ transfer rate is 50 peges a second.
The drums have 4' bugéﬁ_ per tfapk; a rotational time of 20
millisécnnds. and @ *maximum transfer Irate'accdrdingly of 200
pagesinEr:sacund. ﬁnneabf the rotating memory deﬁiﬁes posses a
rntationﬁl'Sensihdﬁmechaﬁism; Thé?fare not ﬁynch#anized. nor may
ﬁnfa thaﬁ.pna devi;e.an a*nhﬁnnnl be fransférfiﬁg;at a time.*ﬂThe
,Stfategiaéh'.used. by the davice ihandierﬁ to igufmﬁuﬁt these
difficulfiesllfjl will he ﬁiséussed,latar: hnwaver.;it i§ true to
say that the $ystem ppossesses less gtilizaple trahsfer capacity
than nné has been lédnto;baiieve necessary in systems of this

type {11].

The system implements a four lavei storage hierarchy
consisting of aArchive 1ﬁiﬂrﬂ££ (tape), .lmmﬂﬂiﬁiﬂ.‘ﬂiﬂrﬂﬁn
(diskfilel), active staorage (drum) and main starage (core). The

unit of élluCﬂtiUﬂ in archive store is the file (1-4096 pages),
. in immediate storage the segment (a set of 1-16 contiguous
paﬂeﬁ).:and_in active and main store the nage (4096 8 bit Fytes).

The sole unit of information transfer between levels 1s the page.

Tha three fastest levels of the storage hierarchy sre managed
as &a whnle by a resident supszrvisar on the behalf of up to 63
dynamically createdxiziuﬁl:n:nnaﬁﬁnzj;' Each virtual processor
has & linear,xiziuﬂl.ﬂﬂnnaaﬁ.ﬁnnng of 16 megabytes., Segments of
each virtual address space are ascociated with segments of
immediate memory in one of a number of accessS modes: arivals
read, orivate write, shared read and shared srite. This 4is
accomplished by placing an entry in the appropriate slct of the
virtual processor’ s gmasier page. Hence, as 1in “ULTICS [01];
thera §is 'nq_ file I/0 in the conventional sense, all access to

files being performed through the virfual mgmory mechanism,

Each virtual processor contains two virtual processes: a
director process and a usel Process. Thg director process runs a
pagead supérvisnr,[r1]. the code and global tahles of which are
shared between all cdirector processes. The segments of virtual
memory in which this shared material resideﬁ. as well as segments
private to each paged supervisor are shaded, end hgnﬁe
inaccessible to the useh process. The directaor p?ncess maintains
the master page of the Qirtual processor, both for itself and the
user process. Director sub—-processes perform éansule interaction

and other external functions through communicating with the

"system processes that perform those tasks.. In addition a
critical seciian of the paged supervisor maintains a file sSysienm,
for the entire system, on 1mmediate storage. The director

process of each virtual processor creates an environment in which
the associated user process is aware only oF.nﬂmﬂﬂ sequences of
bytes called files which are cannected into its unshaded virtual

memory at specified segments, and of virtual addresses.

The usar'pfocesSes run one of & numbar of sSub-svstems [m1];
Théfﬁ are two types of usar'pfobessés:.azﬁnulixﬂ processes and
,nﬂ:mél;nrdCBSSEE; “Yhe sub-syétemﬁ af ﬂxecutive!praceséeﬁ perfol'm
snééi?ic system functions that are not as time dependent as those
peffurméd in the resident supervisor. These functions include:
‘théﬁhéndiinj'df'unit rECDrd'device I/U..Ihewjgmﬂnﬁ1§xggui1¥h:'the
tr&ﬁsfek'of files to aﬁd from archive storage, the yvolumss

S VE ; :the testing of online neripheraIS. Ihﬂ,ﬁﬂﬂiﬂﬁﬁrﬁ
‘ﬁﬁﬂnnligﬂ:i énﬂ sysfems maintEnanCE"FUnctiﬂns. Ihﬂ':.mﬁﬂﬂuﬁr'
exécutive. The first two executives run in background mode
without an interactive console, while the last two run in
fareground mode, and are initiated from an interactive console.
Director and ekecﬂfivé'nracésses'have the same level of ;5n£1ﬂﬂxg
;nxixilgﬁg "ds“'brocésses in the'rESident sUpervisnr;'that_is'tﬁe'
ability fd cummUnicaté' with .any Process, éithef resident or
virtual. Normal user processes, having a lower level of software
Drivilegn; may. dammunicate anly with their 'oﬁﬁ director
DPOCHSSES;' Tﬁq'fﬁfuthions*'Drnvided "hY a fﬁurmal ;DPGCQSS'
sub4$ystem [b3] are those orten-thnught to. bhe part of a system:
Inaliay, oafeehl Lhterpretetiin, conpdiisn: sditidy Bto. Tn ENAD
thé br0gfammes'that_“perférm' all of th&sg 3fuﬁcﬁinnsi have an
1den££ca1 statué 'ﬁith*'prﬁgrammés provided by the user, and in
fact, a user may easily add to the standard sub-system or provide

his uwn;'SHOU1d'ha‘sd desire._r

The struétura'nf'prﬁbesées in both the virtual processors and
the resident supervisor is provided implicitly by the structure
of the IHP' h1gh léval Dfugf&mminﬁ'lhnguagév[s2] [bdj;'in"ﬁhiCh

the entire systam is writtsn. 1In order to allow fuctions to be

N

serviced by processes in either the resident supervisor cor a

virtual processor, all Jdinter—-pracess .cnmmnnizhxizn and
synchrooizatian is performaed through & Single message switchihg

mechanisin, praoviaed by the mnstl basic sSaoftvare Jlevel - the
kernei . The message switching mechanism 1s described in detail

in [w2l.

Therq are ‘three Levels of hierarchy in fhe resident
supervisor, in addition to thnse.aiready'descrihad'iﬁ:the virtbal

ﬁrodﬁssufs; A chﬁrt of the systém'hierarchy 1shbresented in

figure 2..

In all of the large and fully imblemenfed paged systams -khbwn
+to thae authors L(b1) {(e1] {g1) [13]). there are at least three
distinct,suﬂanxianxi,ﬂ;nnﬂﬁﬁﬁs which cunfrbl thé prdCESsing of
user Jtasks, or as we chose to call fhem,xiziunl‘ggmﬂniﬁiignﬁ}
These are & process scheduler, & global paging manager and & ol
Scheduler. We will not concern ourselves in this paper with
nnLgﬁs.nnannl'functions that are performed by alsggmﬂni ,mﬁnﬂnﬁr

or its equivalent.

The n?ncess scheduler selects a virtual nrocessor from among
thoSe desiring to perform a virtual cnmpﬂtatiﬂh. and "1hsert5 it

into the pulti ,nznn:ﬂmminn,sgx'MPS. The process scheduler {is

initiated by the page manager when Space is available in the WMS.

€

:;t willquqﬂlly take into acnnunt.'in making its choice, the cpu
and main storage requirements of previous computations performed
1n_gach virtual processor. In_ so doing it depepm}pes tha
system's fasnpnse to various classes of computation. It will
assign tc the virtua; processor it selects an amount of CPU._time
that the virtual computation may use before being removed from
the MWFS and ,zﬂsnnaﬁulgﬂ - a cou allpcation. The process
scﬁgduler ~will not assign apy limit to the number of pages the
processor may aquire in main store - a main Siare Allocation.
The decision as to which pages will be resident in main store et
eny instant, the resident page set ARPFS, will be made by the
global naging manager over the gntire MES. In EMAS this is not

the case

The EMAS process scheduler assigns to the selected yirtual
processor hoth a cpu and & main stnragé.allnnation. Having done
this, thera is anlnngar_any ngad for a global paging manager.
It can be replaced by a number of local pagiog managers provided
on & one to one basis for each virtual processor in the NMPS., By
replacing the global paging manager, which réauiras_tq operate
over the nnmﬂin [s1] of the entire Dagingisystem? by local paging
man;gers.. each operating over thei domain of a single virtual
prucessﬁr. we immediately reduce complexity and increase Ssysiens

3 itv. A criticgl failure that occcurs, be it hardware or
software induced, while in & local paging manager, need only
affect a single virtual processor, not the entire system. A
second benafit of the EFAS approach is that we eliminate two of

the major problems, and greatest sources of programming

complexity, ancnuntered.hy_a_glnbal paging manager: preventing

thrssthiing, and preventing Jhrouchpusr degradatiion acros§ the
entire system as a result bf haviﬁg a virtual computaion in the
S which disnlays.unﬁiﬂhlﬂ.nﬂuiau‘kﬂhixinu:. In order ¢to Sees
why fhis is the case, it is neccessary to examine how a gicﬁalu

paging manager manages the HPS.

Control of the HFS, is maintained thfough a mechanism Ofi,ﬂﬁﬂﬂ
raplacement. When a puge fault nccurs. a choice is made, by the
paging manager. of a page currently in the HPS tn L,e replahed by
-the newly requirpd page; In practica there is usually =& huﬁﬁgz
panl of pages not included in the HPS. so that the ne'ﬁly reauired
npage may be fn:;nan immediately, rather than having tu wait for
tha replaced page to be.ﬂziiiﬁn ,hﬁah .to*.sacandary stbrégé '1f

naccessary.

There are basicaly twd algnrithms ﬁsad by.a glﬁbal paging
manager ftor making 1ts reDiaﬁemanf chsico' lﬂﬂﬁi 1I£L£nllx .uﬁﬂﬂ
LRU and ,ﬂnzhiﬂg,ﬁalgws tdi]. In the first algurithm the least
recently used page in the HPS'.is replaced. In the second
algorithm a free page is replahed. A page is freé if it 15 not
in the union of the waorking sets of an? virtuai processor in .the

M-S .

The elimination of thrashing in ah LHU dri?en page r§placemeﬁt
scheme is difficult, but not impnssiblé. The majority oflsfstems
being- considered by the authors use an LRU algarithmﬁany daﬁ't
thrashe.. This 1s échieved.'at the ﬂgbeﬁse of greater complexity
in the (U schedular. through altérind the size.of fhe active HPS

by varying the CFU priority of virtual prucassors‘ih the WS.

.zﬂnnnn.ﬁn:mﬂx CAT LAY (hyte integer CATEGORY, PHIORITY. S1UHE.1£
- ASPERD, ASMAX, ASMIN, C© |

NCY 1, NCY2, NCY3, NCY4, &
intecer CPU TIME, STHOBE TIME)

MNCY1Y is
NCYZ2 1is

naxt category if process runs out of core.

_ next category if process exceeds time limit,.
NCY3 as ncyl2 but core used less than next smallest core limit.

NCY4 is category 1if process goes to sleep.

ASMIN 1s the unconditigonal allocation of active store.

ASMAX 1s the largest amount of active store that can be held.

ASFEHD is the number of MFS residency periods before recomputing WS.

domm e

hexadecimal constants are bracketed by X° and °.

CFPU TIME ‘s cpu allocation in 8 microsecond units. X°'00020000°=1 sec.:

R s Hun M AR S TAn En SER PER

Ltanst hyte integer array CHOICE(U:63) = g

_2'11111“1:1

SI1I2I1I2I1I2I1I1I2l1l112'I1l3l1I‘

l__1J12:11211l1i2:1l1:3:1:
11211 1112l152|'1'h4i1!1 121-1 111‘3':1l
1l2i1l1 l2l1 1211l1r3|1|2:1|2|1l1

__Egﬁr
2 —|y
3 -4
r -2
5 -

figure 3

X'00020000°
X°'00010000°
x°*00020000°
X°‘00040000°
} X’00010000°
X*'ooos0000°
X’'0014a0000°
4.X°00020000°
X‘00140000"°
1 x‘ovococooog’
X’'00020000°
X°00140000"°
xX‘00480000°
X*'00020000°
X‘p0140000"°
X‘00440000°
X'p0040000"°
X'000EQ0CO’
X'C00AD000"°
X°*00040000°

]
¥
?
i
B
¥
»
B
’
#
»
?
’
-
»
¥
#
’
»
2

X*'000064000°
X‘°00010000°
X°‘gco020000°
- X*00010000"°
X‘00040000°
-~ Xx'uoo20000°
X*00020000°
X'c00s0000°
x‘uon20000°
Xx'oge20000°
X°'00020000°
- X'00c20000°
X'opoo020000"°
X‘oa020000°
X'po020000°
X'gao20000"°
X*'o0010000°
X*'00010000°
X'*00020000°
X'coo08000°

STHOBE TIME is the period over which the main storage WS is computed.

|
¥
#
»
)
’
¥
»
¥
¥
B
l
’
»
&
»
§
i
&

processor will remain in the WS until one of two events occur:
it attempts to exceed one of its local constraints, or it goes to
SIeEENe. At this point it is remaoved from the #FS. and 1its next
category determined., Thgra hra four possible gfaotecory
transitinns. The four cases that determine which of the four

transiticns 1s to be made are:

i). The virtual processor’'s working set attempts to
grow larger than its main store alloceaetion,

2). The virtual computation overruns its CPU
allocétinn'with a working set that would fit in a smaller
category.

3). The virtual computation overruns its CPU
allocation with;a wurking-sat that fits into the current
cateﬁnry. |

4). The virtual processor goes to sleep,

If tha virtual processor is.still awake, it is immediately
'placed on the priority gueue associated with its new priority.
In this way a virtual processor follows a path thraough the
Lsategary tabile towards an antry that matches 1ts current
behaviour. If that behaviour is for the most part stable, then
wae can expect many of the tfansit;nns tﬁ be ﬁack into the #ama

category, and this is in fact the case (figure 4).

. The means by which a virtual processor §is selected from a

priority queus, the ghoice algorithm, is exceedingly simple. A

circular table is cycled through one by one. Each entry contains

11

EMAS VERSN T81A DATE: 05/03/74 TIME: 14.31.01
' CATEGORY TABLE MOVEMENT '

= O XX

0
9 2 [4 . 5 6 7 s 9 10
g 396 0 U Y U v v > U U
2 U 2323 392 U 0 v U ¥ 0 0
3 U 394 1911 479) v v U ¢ 0
4 U ‘0 472 6UU 0 0 0 v v 0
5 U X v 0 14694 115 Vv 2666 () 0
& v g 0 v 8 v 5 T 0 19
- 0 0 W 0 0 v 171 T U 8V
8 0 4] v U 2683 5 U 9169 55 & U
9 0 v 0 v 0 v ' Y U &
10 U [} U v 122 v 7S 3y O 167
11 ¢ U U v v U U 3874 37 U
12 v Vi U J 0 v 0. 24 U 15
13) 0 0 0 0 v) 37 3 35
14 0 U J 0 0 VU v 13f U 0
15 0 0 G v U v v 0 v i
16 0 0 U 0 0 0 U U U v
17 0 0 0 0 0 v 0 s 0 v
18 e 0 0 v 0 U 9 0 ¢ ¢
19 0 U v 0 0 0 1 0 0 0
"4y, ¢ U Y J U U 0 3 v ()
' “ T0 | |
11 12 15 14 19 16 17 18 19 20
L 2 0 0 0 v 0 388 0 0 0
2 P 0 v 0 0 0 0 0 0 0
3 v 0 0 0 0) 0 0 ¥ 0
p & 0 0 0 v v 0 ¢ 0 0 {
R 2 1 1 v v 0 0 0 0 0 U
o6 v 0 0 0 ¢ 0 0 0 0 0
¥ 7 0 0 0 0 0 0 0 0 - 0 ¢
8 sy4z 0 v 0 0 v 0 0 0 v
9 9 0. 59 0 0 0 0 0 0 0
10 2 0 4y 0 0 0 0 0 0 0
11 ¢12¢ 111 U 4678 v v 0 0 0 v
12 LYA 20 14 0 U 101 0 0 0 0
13 25 0 GU 0 0 139 0 0 0 0
16 47219 17 0 3105 120 . 0 1550 0 0 0
15 X 0 47 21 544 26 0 C S00 0
16 122 0 57 22 U 955 0 0 320 v
17 11 0 U 132% 145 0 951 146 0 766
18 2 0 v 3 0 18 129/ 5% 250
19 1% 0 0 145 0 237 28 0 2417 250
20 16 0 U 725 207 0 130 185 0 2115

Figure 4

Transfer rate in pages/sec.

5 megabytes of core
2 drums, 1 pseudo drum

32 users

16 minute sample

KEY

1. Diskfile demand reads.

2o Drum and pseudo drum
demand reads,

' ._.L__._._.-__ e
10 20 30 4LO 50 60 70 80 90 100

AVERAGE TRANSFER TIME / TRANSFER RATE 3+ Drum and pseudo drum
(milliseconds) _ prepage reads,

200

150

100,

50 |+

. l ;
1 S N B N 4
10 20 30 4O 50 60 70 80 90 1400
OCCURENCES / TRANSFER RATE

R,

i il A - - - B R e s

50 60 70 80 90 100

10 20 30 40
TRANSFERS / TRANSFER RATE

figure 5

the idéhtity_df the next priority queue toc be chosen. In the
initial choice ﬂigorithm_desnribed in [w2], once a priority qQueue
- was selected, and if there waé a-firtuﬂl processor on it, it was
allowad to enter the MFE only when fhe amount nF un£llﬂ£ﬁ1£ﬂ asin
. Stare was greater than the selected virtual processor’'s main
store allocation. If the priﬁrity Queue was emﬁty. or after the
sclected virtual processor had entered the MS, the choice

elgnrithm was re-enabled to select another priority queue.

The decision to use the number uf unallncated main store pagés
as the global canstraini on a Qirtual procéssﬂr's entering the
MHFS was our first choice, an yhich wae intended to impravé if
monitoring justified it. We have now done this monitoring and if
has' allowed us to ascertain that with the original global
constraint, the main store was not used as effectively as 1t

might have been, There are three identifiable reasons why:

The first 1is that the measure of unallocated main store
excludes pages that arﬁ-Fraé due to sharing. This occurs because
a page that 1is shared among two or more'virtéal'prnceSSOrs isl
included in the allccations'uf each of the virtual processors

using 1it, vyet there is only one copy in main store.

The sacond is that a virtual processor'’'s working set is by
definition aiways less than or equal to its allocation. . There is

thus the 1like¢lihood that a number af'allncated main store pages

remain frees.

The third relates directly‘tu the performance characteristicsf
of the drums and diskfiles., It is a result of the difFereﬁce in
yaif firme of A& page that is tetched on .I..*:..n'.:..&d against the wait
time of those tnat are Joropnaced (figure 5). F repaged pages
arrive three times faster than demand pages. The reasons for
this will be discussed later., This- difference means that
allocated pages that are free while a virtual prccessuf with =
lafgé main store allncatian.ﬂgﬁﬁnd,nﬂggs up to 1¢s warking sét;.
could have bheen usefully utilized Ly a prepaging virtual
processﬁr that had a small main storage and cnﬁ allocation, #s
such a virtual procaessor could have come and_gcne.while the othér

was still demand paginge.

To overcome these deficiencies in the initial global
cunstraiﬁt. two changes were made. Manitoring 1ﬁdiﬁéted that
sharing within a single mix of resident virtual processors was.
relatively stable, ﬂnd-tended to change only when &8 new virtua%i
processor entered; orr an old virtual nrﬁcessor left the MS, Iﬁ
light of this .avidenﬁe. the c¢hoicsa algarithm was. trivially
modified to take account of sharing. A virtual processur is now
allowed to enter the MPS if 1its .allnnatiﬁn is less .xhﬂn the
unallocated store plus the ammount of shiared stoure. A virtual
processor may also enter the MPS and prepage e to the
unallocated plus shared limit, even if this.ié less than its full
allocation., It is then allowed to run, subject tn.the constraint
fhﬂt a minimal ﬁumher of free pages remain, ﬁnd it is a short
computation. Otherwise the computation is suspended until more

main store can be allocated to it. Vie refer to this process as

.nnn&iﬂl.nnanﬂﬂinn.

13

ttecently tha installation of a second machine with switchable
periﬁherais. especially -druhs, has allowed us- to experiment
further, with tne effects upcn main store utilization of various
sizés 0flactive and main-storaga. One resvit we have arrived.at
is that _tha perfurmaﬁce af- the sfstem iﬁ an interactive
eqvirnnﬁeﬁt seeﬁéd tﬁ ne limited by the amoﬁnt;‘rather fhén tihe
tranﬁfar canaﬁity. of active gturage. as we had previously
baiieved; .In faét a 3/4 megabyte machihe with four drums, seems
td.rasult in shaller qQueues, and hence Fastef fesnonsa thﬁﬁ a nﬁa
meﬁahyta.Iﬁachinéqﬁith“thraé drums., This is an axfréemlf recent

result, and we ara.nut yét completely sure of its validity.

In the discussion su.far we ha#é 1gnaréd the chnice'algorithﬁ
i1tselfl, cnncentfating'instead on naging béhavinur. heré- agéih
problems arcse that had not bcen originally foreseen. T hese
gccurred if a priurity-quéue was amnfy. esnécially if it xwas a
Ihigh priority queue on which small.interactiva‘caﬁbutaticns are
held. For this allowed the store to Fiil up with virtﬁal
processors chnsaﬁ from luwer'priority 6ueuas - virtual processﬁrs

with large store and cpu allocations.

The probium that arises is, that once these virtual processors
enter the ﬁPS. they lhlack ”fhe entry into the MPS of virtual
proﬁessnrs thaf ﬁrri#e on higher pribrity qdeuas in the interiﬁ.
if thraé or Fourllarga virtual processors, with a cpu allocation

of tan seconds, are resident together, it could be as long as

14

thirty to forty seconds, in the worst case, before another
processor can enter the M-S, This problem has been overcome by
limiting the multi~-programming leveil among virtusl processors
chasen from low priority queues. This guarantees that a certain
-amnunt of main store will always be frea fnr.éllncation to high
priority wvirtual rncéssﬁrs. Dbing this does not radicaliy
affect the cpu utilizatinn. of thé system, as a singlé_ low
priority virtual nrnnessﬁr is capahle”af saturating the cpu wheq

its working set is fully resident.

T he second change to the choice aiﬁnrithm WaS motivated Ly a
oolitical decision: EMAS was to be first and foremost an
interactive, rather.than a remote batch, system, ‘Thus another

simple amendment was made .

If & virtual processor remains active for more than a certain
period of elapsed time, currently 6 minutes, or 1if it - was
.initiated' hy the hﬁiﬂh scheduler, it is consiﬁeréd tb be
Denalized with respect to more interactive virfuai. processors -
those that go to sleen from time to time. If a virtual processor
is penalized its paging behhviour remains the same'as if 4t were
nof. Its store and chu ﬁllucatiuns. category and priority are
determined normally. The difference is that three out of every
four times 4t 1is selected, it is returned to the back of the
prinrity'quaue from which it was selected, rather than being
allowed to enter the MMS, Thus penalized virtuai processdrs
enter the M*S less often, unless there are no unpenalized virtual

processors on the same queue, in which case theyiénter the MFS

ﬁbrmal]y.

15

Aﬁothar area whsre ﬁﬁme fmprovement has been achieﬁed'is that
of cpu scheduling. This.érﬁ; has been of little interest to us,
ﬁnd we believe, that while it may still’ be 9055¥P1% to Bffect
m;jar improvements in system performance, thrgugh improved cpu
scheduling, it is-unlikeiy. The goal uf cpu scheduling in MAS
is one of satisfying a number of simple constraints, Context
changes of.a virtual brncessor afei exnensiva and should be
minimiﬁedf Demand paging viftual prucessnrs should get thé Ct
as soon after satisfying a page fault as pﬂssible. and small
combutafinﬁs shbuld 5; pfucesseﬁ in as short an alabsad time ﬁs
possible, so &as to ftree main store for the next small

computation.

In the system described in [w2] a simple queue of virtual
processors able to take the cpu (the rup cuousg) was maintained,
and we rastrictad_ourselves to axneriments with various qQEAtions
dF;CPU‘;;mg,slinﬂ. Whﬁt we discnveréd is_that fhe-thraughput.af
small interactiye ﬁomnutatians inbfeaséd as we reduced the time
slice, though ﬁf puuréa at-an increaéed_cu;t in context switching
overhead, At fhat time we seitled on a time siice of thirty
milliseconds, and wnrked on improving ntﬁer aféas of the system
yhera wa felt our efforts would yieid greater results. We have
- now though managed to satisfy our deéign cdnstraints more fully.
_TTn do this we introduced a system of threes run queues of

differing absclute priority. On the first we placed virtual

16

processors that had not completed their previcus time slice
before page faulting, on the second we placed those virtual
processors that had completed @ time slice, and were not on the
third and lowest priority fqueue on which we put penalized virtuai
Nrocessorse. By doing this we were able to increase the time
slice to 100 milliseconds and stil!l improve the throughput of

small virtual computations.

Y TVE MEE ﬁ”- NAGERENT

It 4is in the area of drum handling that we have made ogur most
important improvements, which have in turn impacted back into the

scheduling of othar resources.

T he mdst important change Came as the direct result of the
discaoveryvy that ths drums werefonlg perfnrm;n; one fifth :as fast
as we thotught they were. That the system head been_capable,nf the
performance reported in [w2] with drums transferring pages at a
rate slowel® than Ssome disk 5uh§ystams has ‘& message in it
somewhere, The cause_of this nﬁrfurmnn;e .degraQatiun_ ﬂill be
obvious to anyone familiar with fha early history of drums. The
électrnnic switching between tracks was takinp longer than the
inter—-iecord gapn. For once this was not a case of the software
being unabla to kzep up, but of a Failure. of the drum control
unit itself to keep Up. lLuckily there was enough room left over
an & track.to interposg three dumnmy records betwaan each page
frame. | The page frames theﬁ occupying records 0,2,4, and 6

rather than 0,1,2, and 3 as bafore. It is a testimnny to the

flexibility of the system software as it currently exists, that
the change required modification of one table in the rotating
memory héndler and anotner in the drum formatting prograsme. A
changeover was echieved successfully in the first systens

development slot atfter the discovery.

The other changes tao the xniﬁxinn_mamuzx,hﬂndlan came 4as a
" result of experimentation. We have' concluded that systems
efficiency 1is improved by prepaging, &nd by ardering transfer
regounsts in each of the sectar gueuses by fyng. ﬂe placa demand
‘page reads first, then prepage reads, and finally nageéut writes.
This prevents the blocking of demand pages by other forms of
‘transfer, and of reads by writes. It is our understanding; that
others hava reached a similar conclusion [12]. It is a 1little
frightening to think that drum controllers have been built that
do nut imbqse this sort or discipline, sspecially as they have

heen cﬂnstructéd after a great deal of modelling and simulation.

With respect to prepaging. it is obvious that the amount one
does is tied to the characteristics of one's backing store. If
an JdAmnmediste access medium such'as.hulh.ﬁinnﬂ is used, then nf
course it makeS no Ssense ta. da any prenaging. In our
configuration, the following seems to occur. The average number
of virtual processors in the WV’S is six, of which one is on the
cpu, one 1is iﬁ a run queue, and four are waiting for the arriwval
of one or more nﬂges.. IF. we operated a pure demand page

strategy, even with shortest lstency time first SLTF ordering of

transters on each drum, we would not achieve much better

18

throughput than thet produced by a first 4n £irst oaut. FIFO
ordering. For there ﬂould he little more tham a single transfer
quoueling on each drum, By nrenaginj'we increase the number of
trﬁnsfar requests tending on each drum, and hence in each sector
gqueusa. Vie thus gain the benefits of a OLITF nrderlng on
transfers, Approximately 80% of all pages entering the HRFPS are
prepaged. 0Of the prepaged pages 20% are never uscd, While this
Fiﬁura seems high: it should be remembered that a high proportion
of prepaged pages (well over half) ara trensferred in sectar
xindonws that would not otherwisa'be used, and hence-tnla certain

extent are transferecd at no cost.

Because o0f the perfaormance mis—match between the diskfiles and
drums, a mis—match that grows considerably worse as - the queue of
transfers.nending on each device grows, it is imperative thet the
majority of tran5Fer~réquests be for pages, copies of which are
held on the drum, Hack of envelope calculations indicated that
we should aim for a transfer ratio of 20 drum transfers to 1
diskfile transfer, as this would create a balanced'lnad ori éach
device. Because of the shortage of page frames in active wmemory
it is neccessary to cptimize the set of pages held {in active
memory, with respect to fheir expected future use. .It seemed
reasonable given our success with a page allocation strateqy for
main storage, that we should employ a similar strategy fdr active
store. This is especially true if one takes into Faccount the
Laonsistency rule for information in immediate storage. This rule-
states: that every time & page belonging to a virtual processor
is. unﬁateq - in immediate storage every nage balnngiﬁg.to that

=vir"tual processor in immediate storage should also be updated.

19

This*guaranteas that & virtual processor’'s J4dmuage in dimmediate
stqﬁqqaﬁig always self consistent, and thet the Joanmediale storaoe
Amage aslxays represents ern jostaotanenus jasge of the process,
- though _rnrelf the xrioel Lfime Apage. This rule yields a form of

Autamatic checkootantipg.

The ohservant reader may have noticed a flaw in this argument,
Wnat dﬁés.nna do with write shared pages? When theﬁe are updated
in immediate storage, parts of the images of other virtual
.brocessars, are also updated, There is in EHAS_nu attemnt to
propogata the consistency rule from virtual processor to virtual
processor, through the write shared material, As file indexes
are connected into multiple virtual wmemories in write shared
mode, 4t would require the updating of all immedlats storage
images any-tima & single virtual praaessar's immediate storage
image was updated. Hence automatic checkpointing in the sense it
T WA S initially intended does not exist, though the continued
application of the rﬁle does minimize the chance of inconsistancy
in a.u§§r's files as the result of a systep failure. Dne effect
of adhering to the consistency rule is that it is imnqsﬂible_to

"operate a global allocatiaon policy in active storage.

The method aF.allﬁcatinn employed is briefly as follows. A
virtual Processor is alloved to build up pages in active storage,
until one of four events occcur, It disassociates a file from its
virtual address space (disconnectianl), it overflbws its active
storage allocation, it remains asleep for two minutes, or a

certain number of residency periods have passed without its

Bciive storage ywarking set having been recomputed.

20

The pages that a processor uses‘durin; U periud_in_tnu AFS
ere .notad. and a cyclic record of pcge use during the last four
periods 1is Rant on its master page. It 4s from this recorc that
the .active storage working set of the virtual processor is
calculated, lhere are three procressively stiffer algorithms

that are apnljed depending upen global active starage saturatio-.

WS = Tha union of the four periods.

WS = The union of the intarsectiqn of the three oldest
periods and the most recent period.

WS_: The null set.

All unanted nages belonging to that virtual ﬂronessor are thgn
updated 1in immediate storage, and those pages in aclive storage
no lunger'in the virtual prncessnr's working set are delgted,
Here &s 1in main store, a virtual processor cannot acqguire more

than its feir share of a system resource.

PSELDO 12108

There is one other change tao the system that needs to be

mentioned, and this is the introduction of a Jpseudn drum as a

aemary Jevel exiension. The concept of allocatable memory

extension is exceedingly simple and general,

It is a well known allocation problem, that one needs to keep
a certain amount of allocatable resocurce in hand to avold

deadlaocks, or in our case the need to remove a virtual processor

21

from & memory level prematurely - & form of thrashing.,. i1t 1is
thus impossible to utilize all of a memory level, unless one
éoﬁéhbﬂ axctends thﬁ:allncafnhle memory at that level, so as to
Ehsa' ﬁii'nf the real memorye. This extensicn is effected through

the use of Dseudo Delnlye.

Fseudo memory can be used at any memory level that has an

address continuity with the next. Examples are: main memory -
mass memory, mass memory = drum memory and drum memory - disk
memoary. The main memory — drum memory boundary does not display

this characteristic of address continuity, as dhé is aﬁdfessad in
bytes, and the other in pages. We are thus able to use a pseudn
drum, which is paft of a small disk pack, the rest of which 1s
used ﬁs a colle;tiun pool for event mnnitnring renﬂrdéj but not
'_ £§£uﬂhfmnin.mﬂmnzx. With this extension the active storage
éllacatinn algofithm"céh encdeavour to allocate all'nf the feal
drﬁm pages, secure in the knowlmdge that if it overflows tﬁe real
drum, there are pseudo drum pages in which to put_'the

information. We cre thus ahle to achieve full drum utilization,.

Needless to say pages are moved from the pseudo drum pnto real

drum when space becomes available on the latter.

It should be obvious from this discussion ahout utilizing drum
Storage that we do not fully utilize main storage. Figure 6
shows main store utilization during a 24 hour period. It is for

others to decide how we fare in relation to other te:hniques;

NACHINE A

201 allocatable pages

3 drums and 1 pseudo érunm

from: 23:28 on: 27/02/74
to: 23:18 on: 28/02/7L

Queues sampled every ten seconds.,
Each point represents 1000 samples.

figure 6

T ——— e | — e i i— W

- o — - B

4
el T e AT T P R e R e

150
1,0 3
'4.30 f
' i
120 | ! 3
l ?
110 . |
400 f ’
90 | é
5 |
80 N i
2 I A
5 i :
60 | | : | E
50 ¢ ' '
it : { i
1,0 | ' ?
| i |
30| |
20 AN
o L/
A B |
'10 : : I]
| z 1
-20[: | :
o ;
~40 ;] |

average
free pain store

average

unallocated main store

average -
users

E.:E:] E-H ;.:h[I rp“ !n LMCE

The system currently supporcts a maximum of 55 simultaneuus
users, with the eglhaw (the point at which the first critical
resource becomes overlcaded) in the response curve appearing .t
somewhere batween 4% and 5 users, depending upon the oixe. Under
this tvpe of loading, tre drum channel transfers auwout 65 pages a
second, and the diskfile channel abpout 6, of whiCh less thah 1 -
2 &are demand reads. Approximately 90% of the cpu is utilized
with this number of usefﬁj ﬁhe remaining 10% béing free, due ¢to
an instantaneous lack of compute bound virtual processors. In
general 58%'0? the pfﬁcéSSOr is given to the.yirtual processors,
whilg the remaining 40% :is' spent in the résident supervisor.
Over 75% of this time is spent in only two resident processes:
The drum handler: and the working set calculator, This time would
be radically reduced, with the addition of approgriate :ﬁﬂxﬂﬂﬁﬂﬁ
nechanisms in each case: hardware drum scheduling, and access and
usage 1hfurmatinn on the the segment and page tables..rather than
the store, IThere are in fact 8 kéys which have to be reﬁd out
and resatlnn éadh psge, at every sSirphg .period. Civen tha
current hardwara configuration we See no way_nf improving these

figures while running interactively with many wusers, and fast

response,

While running hatich ywnrk overnight with 6 batch streams, the
system achieves effectively 100% cpu wutiliazation, B85% of ¢the

time being spent in virtual processors.

T ha meantiﬁﬂ Letween crﬂshué due to harcware malfunction 15._
currently 25 hours, and we encounter approximately two failures &
month, diue tﬁ satf tware malfunction. This while the supervisor is
stil)l under developmernt, &and being changed &bout twice a week.
VWhen running proven super515ﬂrs. we- have fournd that it is
ﬂnssihle to achieve an éésentialiy zero software errcr rate.
Baoth the hardware and software error rates are lower than they .
might be, due to extensive checking. graceful degradation
Féaturas. and the yetiting -of &ll inqnming messages by sSystem

ProcessnsS.

1,

o =
r

There have heen too many people involved in the development aof
EMAS to mention them all individually. Specific thanks though
are due to MProfessor S. Michaelson fpr‘creatihg the envirunment'
in which this work cnﬁidlbe Undartaken. and to Or J. G. Bﬁrns.
who provicded moral support, when: Féw extérnalltn the project
believed it would be successful. Special thanks are due also tn'
P}afassar B. Galler of the University'af.ﬂichigan. without whose

encouragement this paper would nat have been written.

24

BIBLIOGRAPHY |

b1). Bobfnw. G. D., et. al., *TENEX.fA Faged Time Sharing System
. for the POP 10" , CACW, March 1972, pp. 135-143

b2:. Bobrow, 6. D., personel communication

b3).. Burns, J. 6. et al, lhe EWMAS lUser HManual,
Edinburgh Heginnal Computing Centre, 1972

b4). Barritt, M. M., et. al., ¥he 1MF laacuasge manual
Edinburgh Hegicnal Conmputing Centre, 1970

c1). Corbatp, F. Jd. and Vyssptsky, V. A.,. -
*ITntroduction and Ove-view of the WULTICS System® ,
Hroc. AFIFS 1965 FJCC Val., 27, Fart-1, bpe 18%-196

d1). bDenning, P. J., ‘The Working Set Model for Program Behaviour®' ,
CACl, May 1968, pp. 323-333

d2)} Denning, P. J., 'Virtual Memory'’ ,
Computing Surveys, Vol 2 No. 3, September 1970

£1). Fuller, S., 'Performance Characteristics of an I/0 Channel
| With Multiple Paging Drums' , technical report # 27,
Stanford Electronics l.aboratory, August, 1972

91). Gallar. B., personal communication

11). Lauer, H. C., °Bulk Core in a 360/67 Time~Sharing System' ,
Proc. AFIFS 1967 FJCC, Vol 31, pn. 6061-609

12). Lynch, W. C., personcl communication

13); Lett.'A. S.» and Knnigsfard. We L.,
- 'TSS 366G: A Time Shared Operating System' -
Proc. AFIFS 1668 FJCC, Vol 33, Prt 1, pp. 15-28

mt). Millard, GB., "The Stendard EMAS Sub-System’ ,_
- Accepted for publication in lhe Computer Journal

01). OrUaniﬁk'-E- I., MQMWI
An Examination of its Structure,
~ MIT Press, Cambridge Mass., 1972

r1). Rees, D, J., ‘The EMAS Director'’ ,
Accepted for publication in The Computer Journal

s1). Spier, M. J., "A Model Implementation for Protective Domains’
International Journal of Computer and Information Science,
Vol 2 No 3, September 1973, pp. 201-228

s2). Stephens, P. 0., 'The INP Programming Language’ .,
Accepted for publication in The Computer Jdournal

wl), Whitfield H., ‘The Organization of the University of Edinburgh
Time Sharing System’', Internaticnal Seminar on Advanced
Frogramming Systems, Vol. ii, Nao. v, Jerusalem, 1968

w2), Whitfield, H. and VWight, A. S., "EMAS,
The Edinburgh Multi-Access System' , |
The Computer Journal, Vol. 16 Ng. 4, November 1973

w3)., Wilkes, M. V., ‘Thae Dynamics of Paging’ .
The Computer Journal, Vol 16 No. 1, February 1973, pp. 4-9

