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The Edinburgh Multi-Access OSystem is a large, multi-user,
interactive, puaged, virtual memory operating system deveioped in
Edinburgh over the 1last nine years. An initial design was
formulatad betwaen 1964 and 1966 [w1). Following this an attempt
at implementation was undertaken by a large
University/manutacturar team: The Edinburgh Multi-Access Project.
This efrort commenced in 1967 and came to an end in the summer of

1970, having failed to implement a satisfactory system. The

reasons for this will not be discussed here.



The system that existed at the end of the initial project was
nat robust enough for even such simple system development tasks
as editing and compilation. Thare was, though, & nucleus of code
on which a small team, varying in size from 3 to 7, was atle,
over the next year, to build a system robust enough for general
release, The results of this effart, along with the performance
characteristics of the system in the summar of 1972 are presented
in a paper writtaen at that time [w2]. Since then a new team
including some who were associated with this earlier effort, have
rewritten a large part of the resident. supervisor, with a view to
generality, and nartability. A ﬁumher of scheduling and
allocation procedures have also been changed as a result of
performance monitorinﬁ and new design insights. These have
resulted 4in a considerable perfaormance improvement over that
reported in {w2]. It is the purpose of this paper to discuss the
current scheduling and allocation policies, and the motivation

for them.

The hardware (ICl. 4/75) corresponds to that of many large
European third generation machines. being & copy of an (RCA
SPECTHA 70) which is 1tself a copy of an (IBM §/360), to which an
address translation facility (paging) was added as an
af'terthought, It possesses four types of memory the first three
of which (tape, diskfile and drum) are connectad to the last
(core) by conventional selector channels, On fhe initial 1

mepgabyte configuration in Edinburgh (figure 1), there are 4 nine
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track tape units on two channels, 2 three hundred and fifty
megabyte diskfiles on one channel, 3 six megabyte disk packs on
onas channel, and 3 two megabyte drums, also on a single channel.
The diskfiles have 32 tracks per cylinder, witk 2 /2 pages per
track, and 1023 cylinders each. The meorn seer time 1s 100
milliseconds and the maximum transfer rate is S0 reges a second.
The drums have 4 puges per track, a’ rotational time of 20
milliseconds, and a maximum transfer rate accordingly of 200
pages per second. lone of the rotating memory devices posses a
rotational sensihg mechanism. They are not synchronized, nor may
more than ona device on a channcl he frunsFerring at a time. The
strategies used by the device handlers to surmount these
difficulties [ F1] will be discussed later: haowever, it is true to
say that the system possesses less utilizable transfer capacity
than one has been led to believe necessary in systems of this

type [11].

The system 4implements a four level storage hierarchy
consisting of Archive storsce (tape), Jdmpmediate .Storace
(diskfile), active storage (drum) and main stnrage (core). The
unit of allocation in archive store is the f£ile {(1-4096 pages),
in immediate storage the ssamcot (a2 set of 1-16 contiguous
pages), and in active and main store the pzace (4096 B bit Pytes).

The sole unit of information transfer between levels is the pagse.



The three fastest lavels of the storage hierarchy sre managed
as a whole by a resideat supsrvisor on tha behalf of up to 63
dynamically created xirtuzl arccessars. Each virtusl oprocessor
has a linear yirtusl address sogeace of 16 mepabytes. Segments of
each virtual address space are associated with segments of
immediate memory in one of a number of &sccess modes: arivate
read, orivate write, shored read and Shared xrcite. This is
accomplished by placing an entry in the appropriate slct of the
virtual processor’s gaster gage. Hence, as in MILTICS [c1),
there 3is no file I/0 in the conventional sense, all access to

files being performed through the virtual memory mechanism,

Each virtual processor contains two virtual processes: a
director process and a UsSer process. JTha director process runs a
paged supervisor [r1t], the code and global tables of which are
Shared between all director processes. The segments of virtual
memory in which this shared material resides, as well as segments
private to each paged supervisor are shaded, and hence
inaccessible to the user process. The director process maintains
the mastar pagse of the virtual processor, both for itself and the
user process. Oirector sub-processes perform console interaction
and other external functions through communicating with the
system processes that perform those tasks. In addition a
critical section of the paged supervisor maintains a fileg system,
for the entire system, on i1mmcdiate Storage. The director
proeass.of each virtual processor creates an environment 1P which
the associated user process is aware only of gpamed sequences of
bytes called files which are caonnected into its unéhaded virtual

memory at specified segments, and of virtual addresses.



The user processes run one of a number of suh-svstems Lmt).
There are two types of user processes: executive processes and
normal processecs. 1he sub-systems of executive praocesses perform
specific system functions that are not as time dependent as those
narfarmed in the resident supervisor. These functions 4{nclude:
the handling of unit record device 1/0, the demons executive:; the
transfer of files to and from archive storage, 4the .xnlumss
executive; the testing of online peripherals, ithe encineers
executive: and systems maintenance functions, the IBepsger
Lexecutive. The first two executives run in background mode
without an 4interactive console, while the last two run in
foreground mode, &nd are initiated from an interactive console.
Director and executive processes have the same level of softwarsa
orivilege as procasses in the resident supervisor, that is the
ability to communicate with any process, either resident or
virtual. Normal user processes, having a lower luevel of software
privilega, may communicate anly with their own director
processes. The functions provided by a normal process’
sub-system [b3] are those often thought to be part of a system:
loading, command interpretation, compiling, editing etc. In EMAS
the programmes that perform all of these functions have an
identical status with programmes provided by the user, and in
fact, a user may easily add to the standard sub-system or provide

his own, should ha so desira.

The structure of processes in both the virtual processors and
the rasident suparvisor is provided implicitly by the structure
of the IMF high leval programming language [s2] [b4], in which

the entire system is written, In order to allow fuctions to be

wn



serviced by processes in either the resident supervisor or a

virtual processor, all Jinter—pracess capmunicatiop and
sSyachronizatian is pertoermaed through a sinpgle message sSwitching

mechaniss, provided by the most basic software level - the
kernei . The ‘message switching mechanism is described in detail

in lw2].

Therea are three levels of hierarchy 1in the resident
supervisor, in addition to those already describaed in the virtual

processaors., A chart of the system hierarchy is presented in

figure 2.

In all of the large and fully implemented paged systems known
to the authors (b1} [c1] [gt] [13], there are at least three
distinct sungervisory orocesses which control the processing of
user tosks, or as we chose to cull them yirtual compoutations.
These are a nrocess sScheduler, & glchbal paging manager and & CR
schedulcr. We will not concern ourselves in this paper with
access cantrnl functions that are performed by a segment mpoeger

or its equivalent.

The process schaeduler selacts a virtual processor from among
those desiring to perform a virtual computation, and "inserts it
into the multi oraogramming set MPS. The process scheduler is

initiated by the page manager when space is available in the KPS,
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It will usually take into account, in making its choice, the cpu
and main storage requirements of previous computations performed
in sach virtual processor. In so doing it determines the
system's response to various classes of computation. It will
assign to the virtual procassor it selects an amount of CFU time
that the wvirtual computation may use before being removed from
the MPS and rescheduled - @& .cou allocation. The process
scﬁenuler will not assign any limit to the number of pages the
processor may aquire in main store — a gmain Ssiore allocation.
The decision as to which pages will be resident in main store et
eny instant, the resident page set 8PS, will be made by the
plobal paging manager over the entires MPS, In EMAS this is not

the case

The EMAS process s:hnguler assigns to the selected virtual
processor hoth a cpu and a main storage allocation. Having done
this, there is no longer any need for a global paging manager.
It can be replaced by a numher of local paging managers provided
an & one toc one hasis for each virtual processor in the WPS, By
replacing the global paging manager, which reaquires to operate
over the damain [s1) of the entire paging system, by local paging
managers, each operating over the domain of a single virtual
processor, we immediatesly reduce cannlexity and increase sysiems
reliobility. A criticpl fallure that occurs, be it hardware ar

saoftware induced, while in & 1local paging manager, need anly

affect a single virtual processar, not the antire system. A

second benefit of the EMAS énnroach is that we eliminate two of
the ma jor problems, and greatest sources of programming

complexity, encountered by a global paging manager: preventing



thrsoshing, and preventing Xthrouchput deorndaiion across the
entira system as a result of having a virtual computaion in the
MPE which displays upostoble ceging Lebkavipur. In order to ses
why this 4s the case, it §{s neccessary to examine how a global

paging manager manages the KPS,

Control of the AFS. i{s maintained through a mechanism of .pAagm
replacement. When a ppge fault occurs, a choice is mode, by the
paging manager, of a page currently in the HPS to Le replaced by
the newly reaquired page. In practice there is usually a huffer
Dapl of pages not included in the RPS} so that the newly required
page may be fatched immediately, rather than having to wait for
the replaced page to be written basck to secondary storage if

naccessary.

Thare are basicaly two algorithms used by a global paging
manager for meking its replacement choice: least Jxecently wused
LHU and working .set WS [d1]. In the first algorithm the least
recently used page in the RPS is repleced. In the second
algorithm a free page is replaced. A page is free if it is not
in the union of tha working sets of any virtual processor in the

Ws.

The elimination of thrashing in an LAU driven pege replacement
scheme is difficult, but not impossible. lhe majority of systems
baing. consideraed by the authors use an LRU algorithm any don't
thrash. This is achieved, at the axpense of greater complexity
in the (FU scheduler, through altering the size of fhe active MS

by varying the CFU priority of virtual procassors in tha WPS.



In simple terms, the processing speed of & virtual processor
is 4dncreased as it wuses its CPU allocation. This guarantees
that, as it apprcaches the end of its residency period, it uses
its pages more oftan, raducing the 1likelihood of them teing
pramaturely replaced, than virtual processors that have just

started their rasidency period.

It ;huuld be noted that while this approdach eliminates
thrashing, it increeses the vulnerability of the system to high
priority virtusl processors whose computations vary the size of
their working sets radically, as this will force the pages of low
priaority virtual processors in and out of main store, and hence
degrade the speed at which their computations are processed

- through the system. The same 1is true of a page replacement
scheme driven by the warking set algorithm, Thrashing cannot
occur, but the system 3§s vulnerable to computations that display
wild fluctuations in the size of their working sets, as such
behaviour can result in the elimination of free pages in the RFS
to be replaced. In such a case, a virtual processor must be
removed from the MPS, either temporarily, until the number of
free pages grows larger than 1its working set, or by being
rascheduled. In either case, unless it 4is the mishehaviog
virtual processor that 3s rescheduled, all other virtual
computations 1in .the system will suffer by taking longer to
complete. In EMAS a local paging manager will automatically .
remove from the MPS any virtual processor vhose working set
attempts to grow larger ‘than 4its allocation. The virtual
processor will then he rescheduled to run next tims with a larger

main store allocation. In this way only the throughput of @&



mnisbehaving computation will be retarded, not the throughput of

the entire system

It still remains to be shown that the EMAS approach to main
stora allocation uses the store as effectively as other

approachase.

IHE PROCESS SO

The initial process scheduler is described in detail in [w2]
and there is an excellent short description by Wilkes [w3].
‘There are a number of categories, currently 20. Associated witﬁ
each catagory s & orinrity, a main storage allocation, a CrU
allocation, and a number of possible catepary frensifions. In
addition thers are other category parameters, some of which will
be discussed later (figura 3). All virtual processors, be they
already in the MPS, waiting on a priority queue to enter the MRS,
or sslegn - waiting for an gxternsl event, are in one and only

onae category.

When a virtual processor wxakps .0 — the external event it was
waiting for, such as console 1input occurs, it is placed on &
queue associated with its current priority. It will eventually
be xchasen {rom that gueus, an& when certain global coastruicts
are satisfied, inserted into the MFS. The lncal consiraints on
its behaviour: its main store , active store and CFU ellocations

will be those associated with 4ts category. The wvirtual
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recard farmat CA1 LAY (hyte integer CATEGORY, PHIORITY, STORE, &
ASPEHD , ASMAX, ASMIN, &
NCY1, NCY2, NCY3, NCYA, £
Aintecer CPU TIME, S1HOBE TIME)

NCY1 is next category if process runs out of core.

NCY2 is next category if process exceeds time limit.

NCY3 as ncy2 but core used less than next smallest core limit.

NCY4 is category if process goes to sleep.

ASMIN is the unconditional allaocation of active stora.

ASMAX is the largest amount of active store that can be held.

ASFEHD is the number of M*S residency periocds before recomputing wS.

hexadecimal constants are bracketed by X° and °.

CFPU TIME 'is cpu allocation in 8 microsecond units. X°00020000°=1 sec.
STHOBE TIME is the period over which the main storage WS is computed.

e e e e

const recard array CAT TAH8(1:20) (CAT LAY) = ¢

1, 1, 42, 20, 80, 64, 17, 15, 11, 14, X'00020000° .

2. %, 16, 20, 80, 64, 3, 2, 0, 2, X‘'voo010000° .

3, 1, 24, 20, 80, 64, 4, 3, 2., 3, X‘00020000° s

4, 1, 42, 20, 80, 64, 4, 4, 3, 4, X'00040000° .

5, 1, 16, 40, 80, 64, 8, 6, 0, 5,.X°00010000° ’

6, 4, 16, 20, HO, 64, 10, ?., 0, S, X'voosoaon® .

7! 5! 16. 200 80. 64. 10’ 7. 0. 5. X'00140000' ’

8, 1, 24, 40, 80, 64, 11, 9, 5, 8, Xx°‘00020000° ’

9, 4, 24, 10, 40, 64, 13, 10, 6, 8, X°'00140000°, X°00020000°,

10, 4, 24, 10, &0, &4, 13, 10, 7, 8, X‘'coocavon®, X°00020000°,
9

1 ]

*

?

?

’

[ ]

]

?

., X'00004000°
]
i ]
[
]
”
[}
»
11, 2, 32, 4o, 80, 64, 14, 12, 8, 11, X°'00020000°, X°00020000°
’
L]
k]
’
’
’
i ]
[ ]
L[]

X‘00010000°
X ‘00020000 °
x‘00010000"°
X°00010000"
X ‘00020000 "°
X ‘00020000°
X°00010000 °

12, 4, 32, 10, 80, 64, 16, 13, 9, 11, X°00140000°, X°00020000°
13, 5, 32, 10, 80, 66, 16, 13, 10, 11, X°00180000°', X '00020000°
14, 2, 42, 20, HU, 64, 17, 15, 11, 14, X°00020000°, X°00020000°
15, 6, 42, 11U, 80, 64, 19, 16, 12, 14, X°V0140000°, X'00020000°
16, 5, 42, 10, 80, 64, 19, 16, 13, 14, X°00140000°', X'00020000°
17, 3, 52, 20, 128, &0, 20, 18, 14, 17, X'00040000°', X°00010000°
18, 4, 52, S5, 128, 80, 20, 19, 15, 1?7, X°000E0000°, X°00010000°
19, 5, 52, 5, 128, 80, 20, 19, 16, 17, X°CO0AQ000°, X '00020000°
20, 3, 52, 2v, 128, 80, 20, 18, 15, 17, X°00040000°, X‘°00008000°

'

Lanst hyte ioteger array CHOICE(0:63) = o

: 501323510211 4291:4142:101,2:1:341,
2:1518,1,1,2,1,2:,1,1,2,1,1,3,1,
1:201910251:2,114,:1,1,2,1,1,3,1,
'.2.1.1.2.1,2.1.1.3.1.2.1.2]101

figure 3



processor will remain in the LS until one of two events occur:
it attempts to exceed one of its local constrzints, or it goes to
sleep. At this point it is remnved from the S, and 1its next
category determined,, There are four possible gaategory
transitions. The four casas that determine which of the four

transitions is to be made are:

1). The wvirtual oprocessor’s working set attempts to
grow larger than its main store allocation.

2). The virtual computation overruns its CFU
allocation with a working set that would fit in a smaller
category.

3). The wvirtual computation overruns its CPU
allocation with a working set that fits into the current
category.

4). The virtual processor goes to sleep.

If the virtual processor is still awake, it is immecdiately
pluced on the priority queue associated with its new priority.
In this way a virtual oprocessor follows a path through the
coategory tablg towards an entry that matches its current
behaviour. If that behaviour is for the most part stable, then
wa can expect many of the transitions to be back into the same

category, and this is in fact the case (figure 4).
The means by which a virtual processor is selected from a
priority queus, the choicg algorithm, is exceedingly simple. A

circular table is cycled through one by one. Each entry conteins

11
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the identity of the next priority queue tc he chosen. In the
initial choice algorithm described in [v2), once & priority gqueus
vas selected, and if there was a virtual processor on it, it was
allowad to enter the MFE only when the amount of wpsllocated masin
Store was greater than the selected virtual processor’'s main
store allocation. If the priority queue was empty, or after the
sulected virtual processor had entered the MFS, the choice

vlgorithm was re—enabled to select another priority queuve.

The decision to use the number of unallocated main store pages
as the glohal copstraiat on a virtual processor’s entering the
MFS was our first choice, on which we intended to improve if
monitoring justified it. We have now dons this monitoring and it
has allowed us to ascertain that with the originsl global
constraint, the main store was not used as effectively as it

might have been. There are three identifiable reasons why:

The first is that the measure of unallocuted main store
excludes pages that are free due to sharing. This occurs because
a page that is shared among two or more virtual processors is
included in the allucations of each of the virtual processors

using it, yet there is only one copy in main store.

The sscond is that a virtual processor's working set is by
definition aiways less than or equal to its allocation. There is
thus the 1likelihood that a number of allocated main store pages

remain frea.



Tha third relates directly'to the performonce characteristics
of the drums and diskfiles. It is a result of the difference in
»ait Lire af & pags that is tetched on Lemand against the wait
time of those tnat are prroaged (figure 5). P repaged pages
arrive three tlmes faster than demand pages. The reasons for
this will be discussed later. This difference means that
allocated pages that ara frae while a virtual processor with a
la}oe main store allocation demand nooes up to iis working set,
could have been usefully wutilized Ly a prepaging virtual
procassor that had a small main storage and cpu allocation, as
such a virtual processor could have come and gone while the other

was still demand paging.

To ovarcome these deficiencies in the initial global
constraint, two changes were made. Monitoring indicated that
sharing within a single mix of resident virtual processors was
relatively stable, and tanded to change only when a new virtual
processor enterad, or an old virtual processor left the WS, In
light of this avidance, the choice algorithm was trivially
maodified to take accaunt of sharing. A virtual processor is now
allowad to enter the MFS if its allocation 4is 1less .than the
unallocated store plus the ammount of shared stors. A virtual
processor may also enter the WS and prepage up to the
unallocated plus shared limit, even if this is less than its full
allocation. It is then allowed to run, Ssubject tolthe constraint
that a minimal number of free pages remain, and it is a short
computation, Otharwise the computation is suspended until more

main store can be allocated to it. Ve refer to this process as

aartinl preosging.
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flecently the installation of a second machine with switchable
peripherals, especially drums, has allowed us to experiment
further, with tne sffacts upon main storc utilization of various
sizes of active and main storags. One resuvlt we have arrived at
is that the performance of the system in an interactive
environment seemed to be limited by the amount, rother than tha
transter capacity, of active storage, &as we had previously
baiieved. In fact a 3/4 megabyta machine with four drums, seems
to result in smaller queues, and hence Faster rasoonse than & one
megahyte machine with thraee drums. This is an aextreemly recent

result, and we are not yet complately sure of its validity.

In the discussion so far we have ignored the choice algorithm
itself, concentrating instead on n;ging behaviour. here again
problems arose that had not hcen originally foreseen. Thesa
occurrad if a priurity queue was empty, especially if it was a
high priority quaue on which small interactive computations ere
held. For this mallowed the store to fill up with virtual
processors chosen from lower priority queuas - virtual processors

with large store and cpu allocations.,

The problem that arises is, that once these virtual processors
enter the WMNFS, they hlock the entry into the MPS of virtual
processors thét arrive on higher priority queues in the dinterim.
If three or four large virtual processors, with a cpu allocation

of ten seconds, are resident together, it could be as 1long as

14



thirty to forty seconds, in the worst cese, before another
processor can enter the MFS, This problem has been overcome by
limiting the multi-programming level among virtual processors
chosen from low priority aueues, This gusrantees that a certain
amount of main store will alwoys be freze for allocation to high
priority virtual oprocessors. Do%ng this does not radically
affect the cpu wutilizetion of the system, @as a single low
priority wvirtual processor is capable of saturating the cpu when

its working set is fully resident.

The seccnd change to the choice alborithm was motivated bLy a
political decision; EWAS was to be first and foremost an
Jntersctive, rather.than a remote batch, system. Thus another

simple amendmant was made.

If a virtual processor remains active for more than a certain
pariod of rlapsod time, currently 6 wminutes, or {if 1t was
initiated by the Latch scheduler, it is considered to be
Denalized with raspect to more 1ntefact1ve virtua{ processors -
those that go to sleen from time to time, If a virtual processor
is penalized its paging behaviour remains the seme as if it were
not, Its store and cpu allocations, category and priority are
determined normally. The ditfference is that three out of every
four times 4t 1is selected, it is returned to the back of the
priority queue from whiéh it was selected, rather than being
allowved to enter the MPS, Thus penalized virtual profassors
anter the M¢S less often, unless there are no unpenalized virtual

processors on the same queue, in which case they ‘enter the WMS

normally.
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JHE _CHu SCHEPUL FRH

Anuvther area where some improvement has been achieved'is that
of cpu scheduling. This area has been of little interest to us,
and we believe, that while it may still" be possible to etfaoct
major improvements 1in system performance, thraough improved cpu
scheduling, it is unlikelyv. The goal of cpu scheduling in EMNAS
is oane of satisfying a number of simple constraints. Context
changes of a& virtual prscessor are‘ expensive and should bhe
minimised. Demand paging virtual processors should get the cpu
as soon after satisfying a page fault as possible, and small
computations shauld h; processed in a&s short an elapsed time as
passible, So &as to ftree main store for the next small

computation.

In the system described in [w2] a simple queue of virtual
processors able to take the cpu {(the rus gcucue) Jas maintained,
and we restricted ourselves to experiments with various durations
of CFU time slice. What we discovered is that the throughput of
snall interactive camputations increased as we reduced the time
slice, though of course at an increased cost in context switching
overhead, At that time we settled on a time slice of thirty
milliseconds, and warke; on improving othcr areas of the system
where we felt our efforts would yield greater results. We have
nov though manapged to satisfy our daesign constraints maore fully.

To do this we dintroduced a system of three run queues of

differing absolute priority. On the first we placed wvirtual
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processors that hud not completed their previous time slice
before page Ffaulting, on the second we placed those virtual
processors that had completed a time clice, and were not on the
third and lowest priority queue on which we put penalized virtual
processors. ‘By doing this we were able - to increuse the time
slice to 100 milliseconds and still improve the throughput of

small virtual computations.

It is in the area of drum handling that we have made our most

important improvements, which have in turn impected back into the

- scheduling of othar resources.

The wnst 4mportant change came as the direct result of the
discovery that the drums were only performing one fifth @a&s fast
as wa thought they were., That the system hed been capable of the
performance reported in [w2] with drums transferring pages at a
rate slower than some disk subsystems has & message in it
somewhere. The cause of this performance degradation will be
obvious to anyone familiar with the early history of drums. The
electronic switching between tracks was taking longer than the
inter-record gap. For once this was not a case of the software
being unable to kzep up, but of a tailure of the drum control
unit itsalt to keep up. Luckily there was enough room left over
on a track to interpose three dummy records between each page
frame. The page frames then occupying records 0,2,4, and 6

rather than 0,1,2, and 3 as bhaefore. It is a testimony to the
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flexihility of the system software as it currently exists, that
the change required modification of one table in the rotating
mamory handler and anotner in the drum formatting programme. A
changeover was echieved successfully in the first systenms

development s)lot after the discoverye.

The other charges to the rotatipg mespry bhandlexr ceme as a
result of experimentation. Ve have' concluded that systems
efficiency 1s improved by prepaging, and by orderipg transfer
reouests in each of the sectar-gueues by tvna. We place demand
page reads first, then prepage reads, and finally nagnéut writes.
This prevents the blocking of demand pages by other forms of

- transfer, and of reads by writes. It is our understanding, that
others have reached a similar conclusion [12}. It is a 1little
frightening to think that drum centrollers have been built that
do not impose this sort of discipline, especially as they bhave

been constructed after a great deal of mcdelling and simulation.

With respect fto prepaging, it is obvious that the amount one
does is tied to the characteristics of one's backing store. If
an JAmmedinte A8ccess medium such as bulk store is used, then of
course it makes no sense to do any prepaging. In our
configuration, the follouwing seems to occur. The averapge number
of virtual processors in the M’S is six, of which one is on the
cnu, one is in a run queue, and four are waiting for the arrival
of one or more pagesS. If we operated a pure demand page
strategy, even with sShartest letency time first SLIF ordering of

transters on each drum, we would not achieve much better
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throughput than that proguced by a first 4n Sfirst out. FIFO
ordering. For there would be little more than a single transfer
queueing on each drum, 2y prepuging we increase the numbter of
transfer requests pending on each drum, and hence in each sector
queuda. We thus gain the bhLenefits of a SLTF ordering on
transfers. Approximately H0% of all pages entering the AFS are
prepaged. Of the prepaged pages 20% are never uscd. While this
Fiéura seems high: it should be raemembered that a high proportion
of prapagad pages (well over half) ara trensferred in sector
windoxs that would not otherwise be used, and hence to a certain

extent are transtered at no coste.

Hecause of the perfarmance mis—match between the diskfiles and
drums, a mis-—match that grows considerably worse as the queue of
transfars pending on each device grows, it is imperative that the
mnajority of transfer réquests be for pages, copies of which are
held on the drum. Hack of envelope calculations indicated that
we should aim for & transfer ratio of 20 drum transfers to 1
diskfile transfer, as this would create a balanced load on each
device. Because of the shortage of nage frames in active memory
it is neccessary to cptimize the set of pages held 41in active
memory, with respect to their expected future use. It seemed
reasonable given our success with a page allocation strategy for
main storage, that we should employ a similar strategy for active
store. This is especially trua if one takes into account the

—gonpnsistency rule fer information in immediate storage. This rule
states: that avery time a page helonging to a virtual processor
is updated in immediate storage every page belonging to that

virtual processor in immediate storage should alsoc be updated.

19



e

This guarentees that a virtual processor’'s Jimage in immediate
storege is always self consistent, and thet the immsudiate storaoe
dmace slways represents rn jostaotasgenus dmz2ge of the process,
though rarely the rcel tims imaps. This rule yields a form of
Automatic checkaniating.

Tha ohservant reader may haves noticed a flaw in this argument.
Wh;t does one do with write shared pages? When these ars updated
in immediate storage, parts of thke 1images of other virtual
processors are also updated. There is in EMAS no attempt to
praopopata the consistanc§ rule from virtual processor to virtual
processor, through the write shared material. As file indexes
are connected into multiple virtual memoriaes 4&n write shared
moda, 4t would require the updating of all immediats storage
images any time a single virtual processor's immediate storage

image vwas updated. Hence automatic checkpainting in thse sense it

- was initially intended does not exist, though thes continued

application of the rule does minimize the chunce of inconsistency
in a u§pr’s files as the result of a syster failura. Ona effect
of ndhering to the consistency rule is that it is impossible to

operate a global allocation policy in active storege. B

The method of allocation employed is briefly as follows. A
virtual processor is alloved to build up pages in active storage.
until one of four events occcur. It disassociates a file from its
virtual addrass space (disconpectiaonl), it overflows its active
storage allocation, it reamsins asleep for two minutes, or &
certain number of residency periods have passed without its

Active storage xarking set having been recomputed.



The pages that a procassor usas during each perio: in the ‘'S
ere noted, and a cyclic record of poge use during the last four
periods s kent on its master page. It 4s from this recorc that
the .active storage working set of the virtual processor is
calculatea. lhara are three progressively stiffer algorithms

that are apnlied depending upon global active storage saturatio=.

W8 = Tha union of the four periocds.
WS = The union of the intersection of the threa oldest
pariods and the most recent period.

WS « The null set.

All updated pages belonging to that virtual processor are then
updated in immediate storage, and those papes in active storage
no longer in the virtual.processor's working set ars deleted.
Hare &s in main store, a virtual processor cannot acquire more

than its fair share of a system resource.

ESELDC EEMORY

Thara 4is one other change tao the system that needs to bae
mentioned, and this is the introduction of a Wpseudo drum as a
memory level extensing. The concept of allocatable memury

w—.@xtansion is exceaedingly simple and general.
It is a well known allocation problem, that one needs to keep
a certain amount of allocatable resource in hand to avoid

Sendlacks, or in our case the need to remove a virtual processor
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from a memary level prematurely - 8 form of thrashing. It is
thus impossible to wutilize all of a memory level, unless one
somehov extends the allocatalile mamory at that level, so as to
use all of the real memory. This extensicn is effected through

the use aof pseudn meuntv.

P seudo memary cen be used at any memory 1level thet has an
audress continuity with the next., Examples are: main memory -
masSs memory, mass memory = drum memory and drum memory. - disk
memory. The main mumory -~ drum memory boundary does not display
this characteristic of address continuity, as one is addresssad in
bytes, and the other in pages. W e are thus able to use a gpseudn
drum, which is part of a small disk pack, the rest of which 1is
used &S & collection paool for event monitoring records, but not
Lseudn maln memory. With this axtension the active storayge
allocation a&algorithm c;n endeavour to allocate all of the real
drum pages, secure in the knowledge that if it overflows the real
drum, there are pseudo drum pages in which to put the

information. We cre thus able to achieve full drum utilizetion.

Needless to say pages are moved from the pseudo drum anto real

drum when space becomes available on the latter.

It should be obvious from this discussio? about utilizing drum
storage that we do not fully utilize main storage. Figure G
shows main store utilization during a 24 hour period. It is for

othars tao decide how we fare in relation to other techniques.



MACHINE A
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SYSTEM UEHEOHMANCE

The system currently supports e maximum of 55 simultaneous
users, with the glhaw (the point at which the first critical
resource becomes overlcaded) in the response curve appearing ¢t
somewhera batween 45 and 50 usaers, depending upon the @mix. Under
this tvpe of loading, tihe drum channel transfers auout 65 pages a
second, and the diskfile channel about 6, of which less than 1 -
2 are demand resads. Approximately 90% of the cpu is utilized
with this number of users, the remaining 10% being free, due to
an instantaneous lack of compute bound virtual processors. In
general 58% of the processor is given to the virtual processors,
while thae remaining 40% is spent in the resident supervisor.
Over 75% of this time is spent in only two resident processes:
The drum handler: and thé working set calculator, This time would
be radically rsduced, with the addition of apnpropriate hardeare
aechanisms in cach case: hardware drum schecduling, and access and
usage information on the the segment and 5age tables, rather than
the store. There are in tact 8 keys which have to be read out
and resset on each psage, at every sirahe operiaod. GCiven the
current hardware configuration we see no way of improving these
figures while running interactively with wmany users, and fast

responsea.

While running baich work overnight with 6 batch streams, the
system achiaves effectively 100% cpu utiliazation, 85% of the

time being spent in virtual processors.



The weantima Letween crashes due to harcweare malfunction s
currently 25 hours, and we encounter approximately two failures a
month, due to saof'tware malfunction. Thnis while the supervisor is
stil)l under development, &nd being changed zbout twice a week.
Vhen running proven supervisors, we have found that it s
possible to achieve an essentially zero software errcr rate,
floth the hardware and software error rates are low?r than they
might be, due to extensive checking. graceful degradation
featuras, and the xgtitiag -of &all incoming messages by system

processnas.

There have hbeen too many people jinvolved in the development of
EMAS to mention them all individually. Specific thanks though
are due to Profaessor S. Michaelson for creating the environment
in which this work could be undertaken, and to Dr J. G. Burns,
who provided moral suppert, when few external to the project
believed it would be successful. Special thanks are due also to
Profassor B. Galler of the University of Michigan, without whose

encouragement this paper would not have besn written.
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