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SUMMARY

This paper describes the integration of initially one, and later a second, ICL Distributed Array
Processor (DAP) into a dual ICL: 2972 installation running the Edinburgh Multi-Access System
(EMAS). The alterations made to each level of the operating system are briefly described, along
with the methods for mounting some of the relevant ICL. DAP compiler software. Software
enhancements to enable multi-programming of the DAP and a locally designed method for DAP
data area expansion are also described. A brief résumé of the user facilities available is included,
along with operational policies and some utilization figures.
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THE DISTRIBUTED ARRAY PROCESSOR

The ICL Distributed Array Processor (DAP)! consists of 4096 bit-processor elements
(PEs) in a 64 X 64 array, each able to perform simultaneous calculations. Each
processing element has its own local store of 4096 bits, making a total of 2 megabytes in
the DAP store. In addition there is a master control unit (MCU) which decodes the
instruction stream and initiates simulitaneous PE execution.

The DAP store may be regarded as a three-dimensional array of bits consisting of
4096 planes, each of 64 64-bit rows (or columns).

In order to be loaded with program and data, and for execution to be initiated, the
DAP is connected as a block of main storage to a host computer system, which in the
case of the MSI 64 X 64 DAP must be a P series ICL 2900 installation.

This unique architecture provides, for particular problems, substantial computing
power. In addition, when the machine is not being used as a DAP, the 2 megabyte DAP
store is available to the host computer system as a further 2 megabytes of main store.

THE EDINBURGH MULTI-ACCESS SYSTEM

EMAS 2900 is a general purpose time-sharing operating system for ICL 2900 series
machines. It is a re-implementation of a system designed for the ICL System 4-75
machine. The original system was developed at the University of Edmburgh and has
been adequately described elsewhere.? The re-implementation exercise for 2900 has also
been described,? but some of the aims and basic structure of EMAS will be described
here, along with the configuration of the dual 2972 (later 2976) hardware to which the
DAPs were attached.
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The prime function of EMAS is the support of a large number of interactive users
with the secondary function of providing a reasonable batch throughput. EMAS is a
virtual memory system—files are accessed through virtual addresses as if they were an
extension of real memory. In addition, as much use as possible is made of shared code
and data. EMAS also enforces fairness by attempting always to give quick response to
small interactions, while keeping the CPU occupied with the larger computations. The
system runs with a minimum of operator intervention, has effective error recovery
features and the ability to run on a reduced configuration, at some cost to the total
performance of the system, in the case of the breakdown of parts of the hardware
configuration.

The central part of EMAS is the Supervisor. This consists of a minimal resident
global controller which contains the scheduler, the active memory and paging managers
and the device drivers, and many separate incarnations of a local controller. The
function of the local controller is to manage the virtual processor which is available to
each user and to provide various services to the user process.

The next level in the fundamental structure of EMAS is the paged Supervisor called
Director. Director maintains the file system and virtual memory access, and provides a
procedural interface to the system facilities.

There are several paged system executive processes which exist when EMAS is
running. The volumes manager maintains the back-up and archive tape file stores. The
spooling manager controls the slow devices and RJE queues, and the batch job queues.
The file transfer executive gives full NIFTP-B(80) file transfer protocol (FTP)
facilities, and the mailer executive provides full JNT MALIL facilities.

It is perhaps sngmﬁcant that the EMAS system is almost entirely written in the high
level language IMP* 5 as is all of the locally written DAP support software, and that the
object code format and system interfaces are quite different from the manufacturer’s
VME system. '

Figure 1 shows the current 2976 configuration.

ACQUISITION AND BACKGROUND

The first ERCC DAP was mainly financed by a grant from the U.K. Science and
Engineering Research Council (SERC) to the Physics Department at the University of
Edinburgh, but also by a software contract between ERCC and ICL. The substantial
support given by SERC was in response to proposals for projects in subnuclear physics
and condensed matter physics. The prime movers behind the proposal were Professor
Wallace, Dr. Pawley and Dr. Bowler of the Physics Department who wished to attempt
large-scale computer simulations of the molecular solid state,® but were hampered by
lack of computational resource. The original programs were developed on the DAP
installation at Queen Mary College (QMC), London, but communications difficulties
and poor turn-round prompted the initial proposal that a DAP be sited at the University
of Edinburgh, and be attached to the dual 2972 system running EMAS.

The initial proposal made at the end of 1981 was for a second national DAP to be
installed at Edinburgh, but the weighty and detailed proposal failed in December as
QMC’s DAP was at that time underused. The proposal was recast to request the DAP
merely as an Edinburgh resource and, in the end, this was accepted.

It says much for the faith that SERC have in the ERCC that they were prepared to
invest a significant amount of money towards the installation of a piece of hardware and
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its associated software that were completely untried and unknown in the EMAS
environment.

The second DAP was acquired by the Physics Department directly from ICL. Its
arrival was coincident with a significant upgrade to the ERCC dual 2972 installation,
with the upgrading of the processors to 2976 standard and the supply of further on-line
disk space.

DAP SOFTWARE IMPORTATION

A DAP program exists in two distinct parts. One part, called the ‘host’ program is
written in standard FORTRAN and, as its name suggests, it runs on the host 2900
mainframe. The other part, called the ‘DAP’ program, is a subprogram written usually
in a special dialect of FORTRAN called DAP FORTRAN, which is called as a
subroutine from the host program and actually performs the DAP processing. DAP
FORTRAN? looks much like standard FORTRAN, but for the inclusion of vector and
array operations and the absence of I/O statements.

ICL implemented compilation and support software for the DAP to run under their
VME (virtual machine environment) operating system. The ICL. DAP FORTRAN
compiler does not compile directly to DAP machine code, but instead to a macro format
of APAL (array processor assembly language)® called AMF (APAL macro format). The
AMF resulting from a DAP FORTRAN compilation then needs to be assembled by the
ICL APAL assembler, resulting in the production of CIF (consolidator input format).
The file of CIF then needs to be input to the ICL consolidator which is used to link
modules of CIF, satisfying external references in a cascade fashion, to produce a file of
OMF (the VME object module format). This is the sequence of operations required
under VME; under EMAS a further stage is required to convert the module of OMF
into an object file conforming to EMAS standards.

OMF copies of the ICL compiler, assembler, consolidator, subroutine library,
run-time diagnostics, AMF macros and message text modules were obtained from
ICL—a total of 273 files— and each was put through an OMF-to-EMAS object file
converter. The converter is an established EMAS utility and has been used in the
importation of all ICL software mounted on EMAS to date. The EMAS object file is
totally different in layout from its ICL OMF counterpart, the code and data, shareable

_and unshareable parts all being laid out in separate areas as required by the EMAS
loader. The results of conversion were object files conforming fully to the EMAS
standards, each with code entry points, data areas and code and data references.

ICL compilers use a common interface to the VME system called Compiler
Environment (CE). CE is a standard VME product and consists of an extensive
procedural interface to utilities which create files, create and extend workspace areas,
handle listing control, interpret compiler options, read source records and output OMF
records, etc. CE is totally VME specific, but to support ICL: compilers on EMAS a
partial CE implementation had to be written. Fortunately, much of the work in
implementing a partial CE on EMAS had been done for the exercise in importing the
ICL COBOL compiler, although extensive alterations and additions were required to
this basic framework to support the DAP compiler and assembler.

The ICL consolidator uses a different standard ICL interface to the system called
Compiler Target Machine (CTM). Once again it was necessary to produce a partial
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CTM interface on EMAS, and once again part of the work had already been done for the
COBOL run-time support.

The importation of the consolidator was more difficult than that of the compiler and
assembler, particularly with regard to handling input and output OMF-type data
records. In addition a mechanism had to be devised to enable the consolidator to search
for and satisfy references from the standard ICL DAP subroutine library and for the
appropriate modules to be located and input. All the possible subroutine entry points are
held in a table which indexes into a second table which holds the name of the subroutine
module. On successful conclusion of the search for a reference, a currency (in VME
terms) or stream (in EMAS terms) is set up, and the module records are input directly
by the consolidator.

The search keys for the standard ICL subroutine library, and an extensive subroutine
library supplied by QMC, are built in to the consolidator support software on EMAS.
User-written libraries may also be searched, in which case the user enters the name of
such a library onto a library search list maintained in a special option file held for each
user.

As is described below, the user interface to the DAP software on EMAS is totally
different from ICL’s interface—it was designed to conform to EMAS standards and
policies. The final stage of the consolidation process on EMAS is the conversion of the
OMF file produced by the consolidator into an EMAS-type object file. A modified
version of the OMF converter was incorporated into the consolidator support software,
and is called automatically on successful termination of the consolidator.

The only run-time support software that was imported into EMAS was the ICL DAP
diagnostic package. ICL diagnostics follow a different approach from those of EMAS,
and their interface to the system is via another standard ICL, product called OPEH
(object program error handler). A partial OPEH interface had to be written, this time
from scratch, as OPEH-type diagnostics had never before been implemented on EMAS.
Fortunately the OMF diagnostic records are not discarded during the object file
conversion process, but are stored in a known place at the end of the EMAS object file.
Except for some simple procedures to be written to interface directly to the DAP
diagnostic procedures, all that was required in the incorporation of the ICL DAP
diagnostics into the EMAS environment was the supply of a set of procedures to access
the stored OMF diagnostic records.

The only other standard ICL DAP software imported was the DAP simulator. This is
a software emulation of the DAP and can be useful for testing short sequences of DAP
program without the need for an actual DAP to be available. The simulator operates
very slowly indeed, but has been found useful in testing library subroutines.

DIRECTOR LEVEL

Under EMAS, access to the DAP from the user level is controlled by the paged
supervisor, Director. The user program, through the DAP access commands supplied at
user level, initiates DAP activities via Director. Director sets up necessary virtual
storage mappings, moves the DAP program and data into the DAP, and requests
Supervisor to initiate DAP execution.

A more detailed description of Director’s role in DAP processing may be found
elsewhere.’
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The higher level software can request Director to initiate a number of D AP-related
activities:

(a) claim contiguous DAP area

(b) release claimed DAP area

(c) start the DAP at a supplied program counter

(d) stop the DAP (forced termination)

(e) request DAP status information.

Director allows a series of DAP programs to be active at any time, and each is given a
time-sliced share of the actual DAP. In practice this allows a short interactive program
to overtake a long batch job, whereas in theory the two jobs interleaved take the same
total time as if they were run sequentially. Supervisor maintains a DAP service queue,
and notifies Director when programs are to be swapped. Currently, the time-slice is
about two minutes, although this can be altered.

Director maintains a ‘virtual’ DAP for each process, consisting of a 2 megabyte file in
each user’s virtual memory and, in conjunction with the scheduling controlled by
Supervisor, it moves in and out of the actual DAP store the 2 megabyte virtual DAPs for
each process on the DAP service queue. When the user level software makes a DAP
claim call to Director, the request is put on a queue to be serviced at an appropriate time.
There is an overhead incurred by the swapping of different user programs, and the DAP
is idle in the interval between time-slices, but the throughput degeneration is slight and
is an acceptable penalty for the resulting increased ﬂexibility With only one DAP in
service the allowed concurrency limits were 4 interactive jobs and 1 batch job; with the
introduction of the second machine this was raised to 4 interactive plus 1 batch job per
DAP. The limits can be altered dynamically by operator command.

Director is also responsible for recording DAP usage (for accounting purposes) and
for enforcing DAP processing time limits. Currently the access scheme allows for short
interactive access and longer batch access throughout the daytime prime shift. Both
limits are increased, automatically, throughout the evening, and gradually decreased
throughout the early morning. Higher limits are set at weekends than during the week.
These policies encourage the running of long batch jobs at night and the weekend, it
being desired not to run long jobs at prime time during the day in case the total
mainframe user load requires the release of a DAP for use as main store, or the system is
shut down over lunch-time for maintenance. The interactive and batch limits are altered
automatically throughout the day, but they may be overridden by operator command to
suit requirements as necessary.

SUPERVISOR

It is the resident Supervisor of EMAS that controls the DAP at its most basic level, and
is ultimately responsible for the allocation of DAP store to users as a DAP, and for the
starting, scheduling and stopping of DAP processing. A more detailed description of the
Supervisor control of DAP processing may be found elsewhere.

When the EMAS system is loaded, if the DAPs are included in the configuration as
recorded on the system reconfiguration unit, then Supervisor will recognize the presence
of the DAPs and include them in the system configuration, using them as 2900 store
initially.

The DAPs may be brought in and out of the configuration, and their status altered
from store to DAP and vice versa, by simple operator commands. In addition,
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Supervisor controls the dynamic reconfiguring of the DAPs between acting as 2900 store
and acting as array processors, according to the host system load and the demands on the
DAP resource.

When Director is called to initiate a DAP start, it passes to Supervisor the required
initial values of various DAP image store registers. Supervisor then activates the
execution of the DAP program by writing to the DAP image store register CTRL.
Supervisor also sets a value in the I'T register, which times out roughly every 8 seconds;
the DAP then interrupts the processor, and Supervisor resets the timer.

Whenever the DAP stops, it should interrupt Supervisor. A series of image store
registers are then read by Supervisor, which passes them back to Director, which in turn
passes them back to the DAP loader at user program level. The user process may then
continue.

Sometimes, for unknown reasons (usually following a hardware failure), the DAP
may be started, but it promptly stops without ever interrupting Supervisor. To combat
the subsequent hang up, Supervisor now includes code to deal with a DAP timing out in
this fashion.

Extra complication was inevitable with the acquisition and installation of a second
DAP in late 1983. Supervisor introduced the concept of ‘logical DAPs’ and now does all
its handling of multiple DAPs on the basis of logical DAPs rather than physical DAPs.
Supervisor Logical DAP 1 is the first DAP configured in as a DAP—it can be either of
the physical DAPs. If both DAPs are in configuration it is immaterial on which DAP a
particular program will run—indeed if there are a number of processes each running
DAP programs simultaneously, a particular program may run on different DAPs in
consecutive time-slices. Despite there being two physical DAPs, and two batch DAP
services (see the section on ‘Spooler’), Supervisor maintains a single DAP service queue.

DAP PROGRAM LOADER

The DAP program loader consists of routines called from the DAPRUN command and it
operates at the user, rather than a privileged, level. Its role is to claim the DAP if
available, to load all the required areas of the DAP program block from the DAP
program object file into the virtual DAP maintained by Director, to call the EMAS
loader to load up and enter the user’s host program object file and to control entry to the
DAP when a DAP subroutine is called from the host program. In addition, the DAP
loader handles host contingencies generated by, or on behalf of, the user process when a
DAP program is running, and processes any DDE (DAP data expansion) transfer
requests (see below) from DAP programs.

The DAP loader is in two distinct parts, the first concerned with the claiming of the
DAP and the loading of the DAP program. This part is in a procedure called LOAD DAP
which is called directly from the DAPRUN command. LOAD DAP initiates a DAP claim
request to Director. If this is successful, Director returns to the loader the virtual base
address of the virtual DAP. All addresses for the loading of sections of the DAP program
block are calculated from offsets from this address.

With the DAP claim successful, the loader then proceeds to zero out the entire area
claimed. The DAP program as produced by the consolidator is in a number of sections,
such as for code, read only data, read/write data, control, workspace and stack. The
internal addresses in the code are fixed up by the consolidator and are relative from the
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values to be set up in the code base and limit registers. The consolidator produces,
within the object file, a table with entries for each area and their offsets in the program
block that will reside in the DAP.

Each of the DAP program areas is then moved into the appropriate area in turn,
according to the relevant displacement and length entries in the load table. Once this
process is complete, all that remains is for the host program to be loaded and executed.

On EMAS, program loading is simply a matter of satisfying external references and
making necessary address-word relocations. The DAP program is explicitly loaded by
the subsystem loader in order that its external entry points (the DAP program ENTRY
SUBROUTINES) can be located and entered by the calling main program.

Finally, the subsystem loader is called to load and enter the host program.

The second part of the DAP loader is concerned with the actual entering and calling of
a DAP subroutine from the host program.

When the host program calls on a DAP subroutine, a 32 byte instruction sequence is
entered and executed. All this sequence does is to place a number at a known offset from
the 2900 CTB (common table base) register, the number being different for each
subroutine in a DAP object file. A call is then made to a short procedure called
ICLSPAJDAPSTART. On EMAS this procedure decodes the stored number and uses it to
calculate an offset within the DAP object file which contains the entry point address for
the appropriate subroutine. A call is then made to the DAP loader procedure RUNDAP
with this entry point as parameter.

RUNDAP has two main roles: first it initiates a DAP start request to Director; secondly
on termination of the DAP subroutine it decodes and analyses the stop code returned by
the DAP via Supervisor and Director, and executes the appropriate action. There are
basically three types of DAP stop to be considered, with different actions to be followed
in each case.

1. Successful stop. Return is made to the calling program.

2. TRACE stop. Diagnostics are called to process the monitor TRACE call. The DAP is

then restarted at the point of stopping.

3. Diagnostic stop. Some kind of error has been deteced, so diagnostics are called

followed by a return to command level.
A fourth possible type of stop, that in the case of a DDE transfer call (see below) is
directed to a procedure that deals solely with initiating DDE transfers.

USER VIEW

It was a deliberate policy that the user interface to DAP commands would follow ENMAS
philosophies rather than those of VME to allow for consistency and ease of use by
established EMAS users. On EMAS it is not necessary for the user to assemble
separately the AMF produced by a call of the DAP FORTRAN compiler—the EMAS
DAPFORTRAN command does this automatically if the compilation phase was successful.
There is a DAPASSEMBLE command for the assembling of user-written APAL, although
users are not encouraged to use it.

The compiler and assembler are called with two obligatory parameters, for the source
filename and the output filename. In addition an optional listing file may be specified.
Control of the various ICL-designated options may be effected by special DAP PARM
and DAP OPTION commands. This method was chosen in preference to the ICL type
parameter keywords as the standard EMAS compilers control their options similarly.
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The interface to the consolidator has been altered to look like that of the EMAS program
linker, again for continuity.

A special DAPRUN command was introduced, which takes the names of the host
program object file and the DAP program object file as parameters. A third parameter is
used to specify the maximum DAP time for the program run in minutes.

Various utility commands were supplied, such as the DAP PARM and DAP OPTION
commands mentioned before, and also a DAP STATE command which returns the
complete physical and access status of the DAPs in configuration.

Host programs are written in FORTRAN 77 and compiled using the ERCC-
produced FORTRAN 77 compiler. The complete ICL DAP subroutine library is
available as well as an extensive subroutine library obtained from Queen Mary College
(QMC). In addition, users have access to on-line documentation.

The DAPs are available to both interactive and batch users, with the bulk of the
available DAP time being used by processes running in batch mode. The ability to
access the DAPs interactively is useful for the testing of short programs before running a
full program in batch mode.

DAP DATA EXPANSION—DDE

The ERCC DAPs each have a DAP store size of 2 megabytes. This size limits the
amount of data that can be processed, as the entire DAP program (input data, output
data and control information) has to fit into the DAP store. It was not financially
possible to extend the size of the ERCC machines to 8 megabytes, the solution adopted
at QMC, but it was desirable to increase the amounts of data which could be processed
without the overhead of multiple subroutine calls. ICL produced a block transfer system
(BTS) for use with the DAP under VME which allows asynchronous background
transfers of data to maximize throughput, but on investigation BTS was found to be too
VME specific to be imported into EMAS because of its many low-level dependencies.
After consultation with the Physics Department users, it was decided that initially a
data replacement strategy could be devised, whereby data would be removed from the
DAP store after it was processed and fresh data brought in to replace it without the DAP
being released and completely unloaded and reloaded each time. The system, called
DAP data extension (DDE), was designed so that whereas initially only synchronous
transfers would be allowed, with the DAP being suspended but not released while the
transfers were taking place, it would be comparatively easy to extend the system later to
allow asynchronous transfers to take place while the DAP was processing other data.
Changes were required at the Director level and in the DAP loader, and APAL
subroutines had to be supplied to intercept the transfer request calls from the DAP
subroutine. Data to the DAP is passed from and to the host via FORTRAN COMMON
blocks. Under conventional operation there is a one-to-one relationship between
COMMON blocks in the host (containing DAP data) and COMMON blocks in the DAP.
DDE breaks this relationship, and allows a large number (currently 62) of host
COMMON blocks to be associated with a single DAP COMMON block. The only
restriction on the COMMON blocks is that they must be multiples of an EMAS page
(4096 bytes) in size. When a FORTRAN program is run on EMAS, COMMON areas are
assigned space in the non-shareable GLA (general linkage area) by the loader. The DDE
host COMMONS could not easily be assigned such space, as the starts of separate GLA
areas are not generally page aligned and the transfer mechanism can deal only with exact
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numbers of pages from virtual memory page boundaries. Instead, the DDE COMMONSs
were separately assigned space on page boundaries in a special unshared area used only
by a DAP program running under DDE. This facility was made possible by recent
developments to the EMAS subsystem loader which permitted flexible use and
assignment of program data areas. Each host DDE COMMON area is assigned a name,
like a conventional COMMON, and a reference number to identify it to the DDE transfer
system. Likewise, the DAP DDE COMMON areas are assigned reference numbers. The
assignment of reference numbers is done in the host program, the transfer requesting in
the DAP program being done on the basis of these reference numbers.

Additional statements are required in programs using DDE to declare the special
DDE COMMONSs and to initiate data transfers.

Instructions have to be given to DDE to allocate the host and DAP COMMONSs; this is
done in the host program. Instructions to initiate the actual transfers are given in the
DAP program.

After an initial trial period with the simple synchronous DDE, an improved
asynchronous version, allowing transfers to be carried out while DAP processing is
continuing, was introduced into service. Return is made to the DAP program so that it
can continue processing until it reaches a DDE AWAIT call. If the transfers are
completed by that time processing will continue without any pause.

Usually a DDE transfer is a bidirectional movement of data, from DAP to host
(processed data) and from host to DAP (new input data). Facilities are available for a
transfer to be unidirectional, either to or from the DAP. If total two way data
replacement is not required, then unidirectional transfers can be achieved in half the
total transfer time.

The DDE transfer initiation procedure DDE TRANSFER is written in APAL, and is
consolidated into the DAP object file. It generates a special stop code according to the
reference numbers passed as parameters, and on receipt of such a code Director makes a
call on a DDE control routine within the DAP loader, rather than making a conventional
return. This control routine decodes from.the stop code the identity of the host and
DAP COMMON areas involved, works out the virtual memory code addresses for the
. source and destination of each area to be transferred and makes a call on Director to
initiate the transfer.

DDE has been in service since October 1983 and has been extensively used by
members of the Physics Department to increase the size of the models they are working
on.

SPOOLER

It was envisaged that the bulk of DAP usage would be processes running as batch jobs,
and so it was necessary to extend the batch job scheduling and selection methods to cope
with jobs that needed access to the DAP.

_ DAP batch jobs are submitted to EMAS in exactly the same way as other batch jobs
but with the addition of one extra scheduling parameter, namely the ‘DAP requirement’
(DAP minutes).

Batch jobs are scheduled and initiated on EMAS by a paged system executive process,
Spooler, which maintains the relevant queues and has a pool of job control streams that
can be dynamically adjusted to initiate jobs of differing requirements (job priority, job
OCP time etc.). One of these streams is adjusted to service only jobs requiring the DAP.
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When a DAP batch job is submitted to EMAS it is added to the relevant queue and
the operators are informed of the job’s DAP requirement. In normal circumstances this
is for information only. A DAP job is then scheduled and when at the head of the queue,
subject to the availability of the DAP and the job's satisfaction of the current DAP
control parameters, is started automatically. Spooler checks first on the availability of
the DAP, and then on the current batch DAP time limits (controlled by Director) before
selecting a job from the queue and requesting Director to start the process. For
abnormal circumstances there is an operator manual override to this automatic
sequence.

Further complication was introduced with the arrival of the second DAP. Spooler
now maintains two job streams solely for DAP use, but these are activated only when
both DAPs are in service. The two job streams, or ‘services’, do not in any way reflect
the physical allocation of DAP to user job. It is Supervisor which allocates logical DAPs
(which are mapped directly to physical DAPs) to an active process. Different DAP time
limits are imposed on the two services, so that currently when both DAPs are operating
one stream will handle short jobs, and the other longer jobs.

DAP IN SERVICE

The first ERCC DAP was delivered in March 1982, and physically installed in the 2972
machine room on 5 April. By 12 April, all the physical connections were made, although
there were some problems in interfacing the DAP to the dual 2972 processors. It is
believed that a DAP had not been previously connected to a dual 2900 configuration,
and further complication arose as EMAS treats a dual processor as a symmetric
configuration so that the DAP had to be capable of interrupting either processor. It was
some time after that before the DAP was first available to the configuration, initially as
store only. During May it was made possible to reconfigure from store to DAP, but the
initial test versions of the EMAS DAP software were not available until June. Testing
and development continued throughout the summer, aided by the flexibility of the dual
2972 installation whereby the system can be partitioned into a reduced service
configuration with one processor and half the main store, and a parallel development
configuration with the other processor, the other half of the main store and the DAP.

The DAP entered full user service only one day later than the target set in the spring,
on 12 October 1982. Initially, there was no multi-programming or time-slicing of the
DAP, no dynamic reconfiguration between DAP and store and diagnostics were not
available for the DAP FORTRAN compiler until late October. The Supervisor and
Director modifications to support time-slicing and dynamic reconfiguration were tested
during December 1982, and entered service in January 1983.

The DAP loader and Director modifications required for the DDE implementation
were designed and implemented over the summer of 1983, and Supervisor, Director and
Spooler modifications for the incorporation of the second DAP were completed during
the same period.

The second DAP was delivered and installed during September 1983, and testing
started at the end of November. There were the inevitable problems in the interconnec-
tion of a second DAP into the configuration, and the DAP had to be given special on-site
modifications to enable it to interrupt the processors on Port 5 rather than Port 4.
Although in trial service for some of December 1983, it was not until January 1984 that
the second DAP was commissioned and fully accepted into the configuration.
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When there was only one DAP, the policy was to have the machine configured as store
for much of the day shift on most weekdays during term time. At all other times, the
machine was available for a DAP, though running as store if there was no demand for
use as a DAP. With the introduction of the second DAP it is hoped to have one in service
as before, with theé other in use as a DAP whenever the system is available.

DAP RUNNING FIGURES

Table I gives the total DAP running times for the year 1983. It must be noted that the
figures for December include a proportion of running with dual DAPs. Separate figures
are not maintained for each machine, as programs may time-slice between DAPs under
certain conditions.

Table 1

Total DAP time Program Sub-
routine

Year Month Hours.Mins. Users runs calls

Secs
1983 January 317.51.11 12 1254 23,204
February 254.31.53 13 1087 3769
March 391.41.48 14 1097 3539
April 460.26.25 21 1209 2309
May 476.25.52 18 1547 3363
June 516.15.04 21 1537 5132
July 510.46.45 22 1502 4901
August 361.30.42 19 1263 946+
September 421.21.25 18 1251 663+
October 467.40.10 20 1317 11,118
November 257.37.07 23 2024 7935
December 334.56.02 22 1443 16,003
Total 4771.04.24 16,331 97,393
CONCLUSIONS

This paper described the successful integration of two DAPs into the ERCC EMAS
configuration. The incorporation of the hardware, and the writing of the new support
and driver software was completed in a comparatively short period with surprisingly few
problems. Even the importation of alien software which existed only as VME object files
was completed with comparative ease.

The usage figures given for 1983 show that very large amounts of DAP time have been
used, a trend which is continuing with extensive use of the machines overnight and at
weekends as well as during the day. On many days in 1983 the first DAP was in use for
almost 100 per cent of the theoretical maximum time. The future of DAP use at
Edinburgh looks encouraging, with current and projected work giving maximum use in
the months ahead.
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