University of Edinburgh

Department of Computer Science

Performance Measurement on the
Edinburgh Multi-Access System

J.C. Adams & G.E. Millard

EMAS Report 7

James Clerk Maxwell Building February 1975
The King's Buildings

Edinburgh EH9 3JZ

031-667-1081

Performerce Measurement On The Edinburgh Multi Access System

J.C. ADAMS Department of Computer Science, Edinburgh Uaiversity
G.E. MILLARD Edinburgh Regional Computing Centre
Summary

The performance monitoring facilities incorporated in EMAS (Edinburgh
Multi Access System) are described and a brief description of the results

obtained is presented.

~ presented at the International Computing Symposium 1975
June 2 - 5 1975

Antibes, France.

PERFORMANCE MEASUREMENT ON THE EDINBURGH MULTI ACCESS SYSTEM

Introduction

The Edinburgh Multi Access System {W1) is a virtual memory, time sharing
operating system developed at Edinburgh over the last eight years. It has been
implemented on the International Computers Ltd. System 4/75 which is a paged 3rd
generation machine, The entire system is written in the high level, Algol-like
language IMP (S1). Up to fifty five or thirty five simultaneous users are
supported depending upon hardware configuration and the system supports sharing
at all levels. Originally intended as a research and teaching project as well
as a production exercise, the system has had incorporated at ;arious levels in
its hierarchy a variety of monitoring facilities enabling close measurement of
its perforpance. The structure of the system is shown in figure 1., The

monitoring which will be discussed in this paper splits naturally into two main

parts:

A) Measurements taken at the level of the resident supervisor. (A1l
‘monitoring is done by software, we have no hardware monitoring facilities.)

B) Measurements taken at the subsystem level.

The system is implemented at present on two separate System 4/75'3
at Edinburgh. Normel hardware configurations used are given in table 1. Because
of the architecture of the System 4/75 there is no multiprocessing and these
systemns are distinect, but the capability exists to switch filestores, drums,
some tape drives and MCCCU's between machines for experiments or in the event of

processor failure.

PERFORMANCE MONITORING WITHIN THE RESIDENT -SUPERVISOR

The resident supervisor, in common with the rest of the system, is written

entirely in IMP and is thus relatively easy to modify. Special, 'one off' pieces

b Uty !.J.

s334q. *soumexfoxd puw e
opoo Jasn souTInNOs PepTAOId J98Q PUR TT® Zuranoy STUTTEIOU I
+91 05% SOTITITIN ‘saerrdmo) ‘sao3Ted u.H.
. ’ - Jn‘
. : *8updden o/1 TroTdOT : *eTTe0 -0
AHEVONDOY TIOTTIATEL-NON 89349°3 011 *SUTPeOT Pu® FUDMUTL ‘3N0AeT |- SUTINGT pue oJessouw WIISisens | N
/ CITLIIATE SEVEIIOS 9TTJ 300(qQ °UOTITUTIOP OTTL * | - §5800aG~193U] @.ﬁ«nz&m :
s -1
S
/ i JF Il \ M
\. i a
*goumaadoad] \
s934q°Y gL + 1899 Ju. x5rarug *TOI3UOD LI10 *oFescew SESSTO0Nd - q. H
S+ 69. -3 ATUOIY *JISTNPSYIS YO8y ss900ad—~z23uL plscioly] X \
*3urroods 90TASD PIOOdI JTU(. TEATINOEXT | € /
— : - /
’-//~ \ !///'lv \
*0/I 20F I93FsuUBI} OTTI *adessou ¥
£3%34q 3 9% *30UsUT3UTBY WO3SAS aTTI ssaooad-as3ur SESSIN0ES 0
°TOT4BOTUNWWOD SATIORIOIUT -g0s &L
' J
, * WS TUBYOa W . T
.m.w:wﬁm ss9ooxd J9s[°S91TS *soTX}UR. 838d J935%] ONIIIVH ¥
AEVaNnog 893Lq Y 4 LIowow 372 TPIWWT PUB SISSIIDL® puz ‘sdevssow AgorE I
TVRd / TVAIYIA frowem TENGITA JO UOT}BTOOTSY ss900xd-~193uUT TVAIUIA | Q
/v./\\.\ﬁw.t!: T ———% v ‘.\\l
| °gurTpusy LouoJutiuod pue Jurgn *o9essau - IModdns |¥
s93£q - 2¢ -poyos Jossoo0ad TBN3ITA *UOTS ssodoad-xa3ur YOSSES0dd |0
~BOOTT® ©48a03S UFBY PUB SATIOV TVOJHIA | S
I
: *TO0I3U0D ©OTASD , - A .
: SUOT}TOTUNUWLIOO JATIOBISJUT *a9esssm SYTIANVH (¥ &
s93£q "3 26 *£10A0003 J0XId Puw JUTTNPIYOS S8900ICG~I93 UL TOIATQ |T N
' 0/I paded *TOI}u0d ©0TAdD O/I dd
: : nca
*Sutyoseds TP 589001 *UUTISIIA *sassoooad ST
=uoo 8Jesgou dNIIIJUT *SUOTL NIV WoxZ suaniad IS
sa3fq " 0} -0nI3sUT aaeapary poderTaTtad fgTTe0 dULGNO TIEDE a
*Juryogtac sfescsu ssodoxd-rojur fgqdnaasgul bt
) 87009 UDR0NId SNOIIONAE X4 GDIOANI TIATT

Table 1

BeM.A.S, HARDWARE CONFICURATIONS

MACHINE 'A!
4/75 CPU, operator typewriter and console 1

lfF sec CORE (4 bytes access, 2 way interleaved) 1024 K bytes

2 M byte DRUMS (128 tracks, 4 pages per track)
(transfer rate 860 K bytes/sec 3
revolution 20 m sec)

1-

2 x 350 M byte, non replaceable DISC drives on

1 channel (transfer rate 256 K ‘bytes/sec 1
revolution 40 m sec
Average arm movement 60 m sec)

T.5 M byte replaceable DISC drives 2
1600 b.p.i. TAPE drives 2t
Hardwired communicetions multiplexer (MCCCU) 1t
DATEL 100 lines A 64
DATEL 200 lines 16

DATEL 600 lines
DATEL 2400 lines
DATEL 4800 lines

4
5
0
British Standard Interface 1
line printer 2
card reader T
card punch 1
paper tape reader 1

1

paper tape punch

t - switchable between machines by means of a DXE switching unit.

MACHINE !B

1
768 K bytes

21‘

-~
-+

.
o © O O HH-&OOO)O\F:"_M_'_W

The MCCU's will be replaced shortly by a Front End Processor (PDP 11/45)
wvhich is connected to the BSI's and currently handles 16 DATEL 100 lines,
a synchronous line to another concentrator and a 1200 baud line to a

video,usually going into the 'B' machine.

Page size is 4096 bytes (8 bits). On each machine the drums are on one channel,

of monitoring may easily be added for short periods of time, the compilation
and linking of a new supervisor taking only about 10 minutes (real time) on

average. We shall describe the permanent monitoring features in this section.

The scheduling algorithms employed within the resident supervisor ére
discussed in detail in the paper‘by Shelness et al. (S2) and we give a very
brief resume here, to ease understanding of the results presented. Figure 2 is
a diagrammatic representation of the management of a process by the supervisor
showing all the system queues and major states involved. Bach process known to

the system exists in one of three states.

a) ASLEEP - awvaiting user input
b) AWAKE - awaiting allocation of some system resource

¢) PROCESSING - on CPU

"Each process is also resident at up to a certain level in the storage hierarchy
DRUM, DISC or CORE. E.M.A.S. uses a local scheduing algorithm in which each
process is assigned to a CATEGORY dependent upon the recent past history of that

process. Associated with each category are

i) a CPU, CORE and DRUM allowance
ii) a CORE queue
iii) a time period afiter which an attempt to compact the working set
will be made
iv) a set of transitions to other categories dependent upon the future

behaviour of the process

There are currently 20 categories. Table 4 shows the current category allowances.

Thus for a process which wakes up resident only on DISC. It is first placed
in the Active Storage Queue to await a drum allocation. Then it is placed on a

Core Queue dependent upon its current category. These core queues are serviced

MANAGEMENT OF PROCESS BY THE SUPERVISOR
STARTS
ASLEEP > ACTIVE D
ON STORE I
DISC QUEUE S
c
\ACTIVE
TAKE < M <
P) Y)
ASLEEP CORE QUEUES D
ON > 2 2 4 5 < R
DRUM : 3 U
M
PRE~-
LOADS
B A
SUS- =)i
A PENDED,
Y
RUN QUEUES c
0
0 1 2 \\ R
E
ASLEEP
IN > < CPU
CORE —< —~<
PAGE
WAIT Y
STOPS
AWAITS AWAITS
USER SYSTEM PROCESSING
INPUT RESOURCE

according to a priority scheme and when a process is selected from a core queue
it is held until its current working set (D1) is preloaded. When the process is
core resident it is placed on Run Q0. The run queues are serviced according to
an absolute priority basis. All processes which have just completed a page
transfer being placed on Run Q0, all preempted or time-slicing processes on

RUN Q! and all penalised processes (which have not interacted with a console for
a set period of time) are placed on RUN Q2. The time slice is currently 100
milliseconds. The process will remain core resident until it either goes to
sleep or overruns one of its category allocations, whereupon it is rescheduled

(perhaps into a new category) and then removed from core,

As it is bhighly unlikely that all of the core rzsident processes will be
using their full core allocation at any given instant, core is over allocated by
a certain amount to obtain more efficient utilisation. -Another modification to
the basic algorithm concerns preloading: when attempting to preload a process,

-if it is found that there is not adequate core free to give the process its full
allowance but, enough free core exists to allow the preloading of the working set
then this 'partial preload' proceeds. When the partial preload is completed, if

enough core is still not available then the process is suspended until core is

released. A drum working set is also maintained.

CPU_TIME MONITORING

The resident supervisor itself consists of a set of routines (or services)
each of which has its own unique service number., Requests for these services are
stacked in.a system table known as the MAIN Q. One of the functions of the
KERNEL is to unstack these requests and call the appropriate service. We keep
a simple count of the number of calls on each service and the time spent in each.
This gives us a very accurate record of all time spent in the supervisor state
and a completé record of the areas within the supervisor in which this time is

being spent. This raw data is printed at the end of each session.

When the system is IDLE (i.e. none of its current multiprogramming set is
able to run), a dummy process, (process # 0) is loaded and the system executes
an idle loop until work arrives. This idle time is further broken down into
time during which there was no work available (no process awake) and blocked

time (a1l of the multiprogramming set awaiting some form of a page transfer).

A full analysis of CPU utilisation is printed at the end of each session
(tabvle 2). 1In a typically heaﬁy user session the breakdown between User state,
Supervisor state and Idle seems to be SQ%, 306, 20%6. Figure 3 is a pie chart
representation of supervisor time and it can easily be seen that the dominant
areas are the organisation of drum transfers (41%) followed by core loading,
(22%) the core loading figure includes time spent compacting working sets — a

costly business on the System 4 as we have to read 4 read/write markers per psge.

A facility which has proved useful in system tuning and the gaining of a
'.rough insight into how system variables are behaving is one we call Q SAMPLING.
In this, a routine is called every 10 seconds to sample interesting system
variables. It accumulates u total and records the maximum and minimum values
found. 'An-example of the output from this is given in table 3. The negative
figure for the minimum CORE UNALLOCATED value is a result of the deliberate over
allocation of core. A 20 x 20 array is also stored in vhich we accumulate all
transitions from any one category to any other. This transition matrix, which
is printed at the end of each session gives us some insight into how well the '
system is tuned and what type of load is currently being placed on it. The matrix
usually turns out to be highly diagonal and shows a great tendency to cluster
around a small subset of the 20 categories. The current category allowances are
shown in table 4. The % transition figure is the % of total category transitions

involving this category.

EVENT TRACING

E.M.A.S. also maintains an event tracing facility. A list of events which

PABLE 2

E.M.A.S. CPU TIME ANALYSIS

Configuration 'A' from 17.27.01 on 21.02.74
to 01.40.30 on 22.,02.74

SECONDS % OF TOTAL TIME
TIME IN USER PROCESSES 15272 50.90
SUPERVISGR TIMNE 9024 30.07
IDIE TIME 5705 19.01
TOTAL TIME 30001 100.00
ANALYSIS OF SUPERVISOR
VIRTUAL MEMORY SUFPORT
DRUM TRANSFERS , ‘ 3675 12.24
DISC TRANSFERS 568 : 1.89
CORE LOADING 2942 9.80
DRUM LOADING | 247 0.82
PROCESS CONTROL 132 0.43
TIME SLICING 661 2.20
FILE SYSTEM 41 0.13
SVC PARAMSTER PASSING 354 1,17
COMMUNICATIONS 177 0.58
DEVICE POLLING 35 0.11
MAGTAPES 8 0.02
MISC. , 184 0.61

Supervisor CPU Time Andlysis

drum transfers

misc. 20°/o
magtapes O°/o
communications 2.0°/o
device poling O-4/o
fle system O5°/o
process control 1-5°/o

drum loading 2-7°/5 .
| Figure 3

QUEUE SAMPLING INFORMATION TABLE 3
CONFIGURATION “A° 12,03/74 10,07.51 - 12,54,50

NO. OF TIMES QSAMPLE KICKED WAS 1000

ITEM TOTAL MAX MIN

RUNQ1 416 7 0\

RUNQ2 438 4 0 AWAITING CPU

RUNQ3 738 4 0/'

ACT TKEQ 1313 20 0 AWAITING REMOVAL FROM DRUM

CORE Q1 1213 19 0

CORE 02 1557 13 0

CORE Q3 815 8 0 AWAITING ALLOCATION OF CORE

CORE Q4 117 3 g/

CORE G5 1870 9 .

CORE L 32591 202 35 UNALLOCATED CORE PAGES

CORE F 57129 185 6 UNUSED CORE PAGES

CORE S 38270 107 0 SHARED CORE PAGES

ASUNUSED 730547 1182 288 UNALLOCATED DRUM PAGES

AS FREE 741322 1165 342 UNUSED DRUM PAGES

BPTUNUSD 153822 235 23 UNALLOCATED BLOCK PAGE TABLES

BPTFREE 158322 261 40 UNUSED BLOCK PAGE TABLES

PT FREE 52920 97 6 UNUSED PAGE TABLES

SAM FREE 42365 71 12 UNUSED SHARED ACTIVE MEMORY TABLES

PARAMTAB 145685 158 101 UNUSED ENTRIES IN PARAM,PASS.TABLE
USERS 37939 S0 27

I
TABLE 4 EM.A,S, Category Allocations

CAT, COREQ CORE MAX DRUM MIN DRUM CPU W,_,S.COMPACT. %TRANS,
(pages) (pages) (pages) (sec) (sec)

1 1 50 80 64 1.0 0,128 0.8
2 1 20 80 64 0.5 0.5 8.1
3 1 30 oY) 64 1.0 1.0 7.4
4 1 50 80 64 2.0 0.5 1.7
5 1 20 80 64 0.5 0.5 23.3
6 4 20 80 64 4.0 1.0 0.1
7 5 20 8 64 10.0 1.0 0.2
8 1 30 80 64 1.0 0.5 15.0
9 4 30 80 64 10.0 1.0 0.2
10 4 30 80 64 6.0 1.0 0.3
11 2 40 80 64 1.0 1.0 16.5
12 4 40 80 64 10.0 1.0 0.3
13 5 40 80 64 12.0 1,0 0.5
ia 2 50 80 64 1.0 1.0 12.8
15 4 50 80 64 10.0 1.0 1.0
16 5 50 80 64 10.0 1.0 0.9
17 3 60 128 80 2.0 0.5 5.1
18 4 €0 128 80 7.0 0.5 0.0
19 5 60 128 80 5.0 1.0 0.8
20 3 62 128 80 2,0 0.25 5.2

may be monitored is given in table 5. The numbers circled in figure 2 show the
points in a process existence at which these events are issued. The monitoring

is switched on from the operator‘'s console by setting a system test flag to a mask
value showing which events are to be traced. The event monitor then claims 4

pages of buffer space and starts up, depositing its data on one of the replaceable
disc units. The monitoring automatically switches itself off, if the test flag

is reset, if the system closes'aown or if it fills its data space (800 pages).

The data is then transferredAby the privileged ENGINEERS process from the RDU

into an EMAS file for analysis.

This type of monitoring produces §ést quantities of data €.g. On the 'B!
machine configuration, with all events being traced and approximately 30 users
on the system, the data area (3.2 M bytes) was filled in only 17% minutes
(230,000 records) representing a CPU degradation during this monitoring period of
approximately 1% over the normal system overhead. However this is a very good
way to get accurate figures on system behaviour at a very deep level. 'Page
traces obtained by this method are used in the fine tuning of system utilities

to current scheduling schema

Several analysis programs have been developed. These give results on a
by proéess, by category, or by number of active users on the system, basis.

Amongst the data produced by these programs are

total paging traffic of each type

mean transfer times

paging rates and mean transfer times for each rate

total traffic between the stations on figure 2

distributions and means for waiting times and queue lengths for each
of the stations shown in this figure

successes of attempts at compaction of working sets.

The following results presented were obtained from a trace monitoring session

on configuration 'B' during a session with 30 users during a typical Friday

TABLE 5
E.M.A,S. LIST OF EVENTS WHICH MAY BE TRACED

The first two words of an event record are always in the
same format:

word 1, splits into 4 byte fields:

event identifier! length (in words)! current process!

CPU process.

word 2, is always the value of the clock register in 4/75

clock ticks.

ID EVENT WORDS PER RECORD
1 Process wakes up. 3
2 Process is put onto a system queue. 3
3 Process begins to preload. 4
4 Process completes preloading. 4
5 Process makes z demand page reguest from disc. 4
6 Process makes a demand vnage requect from drum, 4
T A demanded page arrives in core, 2
8 Process makes a demand page request for a

shared page or a page in core, 3
9 Process overruns a category allncation, 3

10 Attempt made to compact process working set. 3

11 Process goes to sleep (awaits console input). 4

12 All of process' pages removed from core. 4

13 All of process' pages removel from drum, 4

14 Process goes to sleep whilst holding a semaphore. 2

15 Process drum working set is recalculated. 4

16 One of process' pages removed during process'

removal from core, 4

17 One of process' pages removed during compaction

of working set. 4

18 Process is created. 2

19 Process begins to log out. 2

20 Process logged out. 2

21 Process suspended after partial preload. 4

22 Process resumed after suspension, 2

23 Process removed to disc to ensure consistency

of files. 2
24 Attempt made to compact working set when process

moved out, before reaching a normal compaction

point. 2

25 Address of preloaded page just arrived in core. 4

26 Process has just issued a Supervisor Call, 4

27 Process working set is transferred to a

different drum. 4

28 Exit from supervisor state 4

32 Status of system queues (every 10 seconds). 5

33 Start up or gap. 5

Bvents 32 and 33 may not be masked out.

afternoon session.

PAGING TRAFFIC THROUGH CORE

As the data from this session shows, approximstely twice as many of the
paging requests were for prepaged pages rather than demand pages (7Q%:SQ%).
Only 71% of the prepaging requests resulted in transfers (virtually all from
drum), the rest being for shared pages or for pages already in core. The mean
number of pages per preload was 20 (14 requiring transfers). The demand paging
requests show &t for pages on disc 30% for SHARED or already in core pages and
the rest for pages on the drum. The aéerage page transfer times for the various
types are: prepaged 21 milliseconds, demand paged from disc 443 milliseconds,
demand paged from drum 63 milliseconds. Inherent in prepaging is a certain waste
as it is highly unlikely that all of the pages which are prepaged will be used,
on the basis of current figures approximately 25% of prepaged requests are for
.pages which are not subsequently accessed in any way. 'However from the data
produced by this run, if only demand paging (from irum),for all the 'useful!
pages,were to be used it would increase the total page wait time for these pages
by a factor of 2, and the wastage figure would have to rise above 37% before
demand peging would show any advantage. It would be hoped that the prepaging
vastage could be cut if it was possible to make more frequent recalculations of
the working set,but this would be too expensive with the current architecture

(figure 4).

Removal of pages from core takes place when either a process is removed from
core or some pages are found to have been unused for some time during a
compaction of the process working set. DPages removed during compactions form by
far the smallest factor (7%). 85% of attempts to compact the working set
actually succeed in removing pages. Of all pages brought into core approximately
34% are subséquently written to and require writing back out to drum, the

average time per page for such a transfer being 34 milliseconds.

.........

| aLagoy
B .IN . -7-‘
-;:LQOREtt;; .

e = = = e
—-»-" v | e [

S RN DR R
*“'“"”"4""W’I'mwﬁ”“ALﬂ?Tﬁfﬁjfj' ool | WRITTEN | oo o) T
T T T T (opted) [m === o

T T T T T T (e [FRITEEN o
i o e | (coptea) |

e e P T —— PEERENY R ce e e

- Preloaded Demanded booootoIN O OUT |- Preloaded Demanded
~....|{Total pages into core B -+ - --:Trensfers - ! - - Total" pagns out of core

" MEAN PAGE TRANSFIR TINES

B i .
S T .

by . . oeee . s B B - R e
el -2 R R I T RICEETIRP ISP PR e e e e e R I S Cee N

s ———

;7 Over Transf, - |- '.|Over Drum Disc Shrde| .. [0 Removed 'y lllll._|
- {.a]_l R A TR -all o L T T T S T

B T P L T LTI ETIC IR oy PR

”r_,,.mrequests . Tequests... _.,A..;-'.L.«.f..“.-.u R I S U FRR N SO
T PRBLOADING T :::: n“mnnn PXGING SRR DI IR REMOV&L nF PAGPS

e ey f . B e . e e e P U

An analysis of paging rates is made by dividing the monitored period into
intervals of 2 seconds, calculating the paging rate and the mean page transfer
4times during this interval. The contribution made to this paging rate by the
various types of paging is also recorded. The results of this analysis are
shown graphically in figure 5. It is interesting to note that as thc paging rate
increases this is mainly due to an increasing contribution from prepaging, with
the demand paging factor showing a tendency to level off. This demonstrates how
the local scheduling algorithm limits the demand paging rate (and hence eliminates
thrashing). However the mean page transfer times show an opposite picture and as
the rate increases the time for a demand page transfer increases whilst those for:
prepaging show a very small increase.‘ Thus the differential betweep prepaging |
and demand paging increases with prepaging becoming increasingly more efficient

as the rate increases.

QUEUING TIMES

It would be impossible to enter any detailed discussion of queuing times
here but figure 6 is presented to give an indication of queuing activity, showing
total numbers of entries to each queue and mean wait times per entry, during the
monitored period. The mean multiprogramming level during this period was 4
rising on occasions to 8., The mean headway between faults is in the order of
17 milliseconds and the mean CPU time per core residence is 157 milliseconds. A
brief check of mean wait times per core residence reveals that 1435 msecs were
spent on a core queue, 303 msecs preloading, 199 msecs on a run queue, 677 msecs
waiting on a page fault and 157 msecs on the CPU which gives a ratio of 16.6:1
for total wait time v CPU time obtained, during a relatively heavily loaded

period.

Though the majority of the figures presented are cited as overall averages
it would be more meaningful to consider them broken down into individual categories.
Indeed great variation is found in the behaviour of the different categories but

such analysis must be the subject of another paper.

Drllm .--.'\V'/ﬁ
PREPAGED “w--o) . e el
REMOVAL from cord™| / ' T .
. . o~ B . P t . .« e e

1
- MBAN PLGT TR, ﬂ;z' "R PINES |
S
: i
._ﬁ...f
B TN . e . .
. i |- - . i
- ' L - PR f i ,,V
- o } N I L . .
L SR AL 1) ; e eed e e o Frame e
S B i [REDURED NI SN N .
- . - -190 . e .} —-—e t - . -,-_..!~ . . -~
SR '[‘; L i - -\9O P e } e -
:ff‘f . ‘I ime - - YT e b el B R f
L —Pel page \50 B ety S 7 —+— : - —
‘?:ransfere&*" R SR SO IR AN s A A SR
S . i o ; .',_.. B - . N T , . -
S ' - - \to i - -) : : - —.»_. A»; o ; e e —
...... b P re e g
[: 0 - . : s o o
b A A
oo © I‘ pn
T T . e B i
DEMAND PAGED o Fy - DRI N SL N i
-9, L \ X e =R ’ﬂ L. . .- B - e
Disc T e |€ i AR e {
M “-“ ToTT e So e I '?"‘;’ — e -"":' T e :&~ N "\.‘"“ e . - -]
g . .~
wo - ‘ :
0

flﬁﬁ'if;l’jfﬁiil.i'l'ﬁﬁiﬁ.TYP"‘On TRAYS: TER

'i__ _Pages . _*

35
'hransfereu 30

35

oo . . e mme ts ecsiare 20

S

Pages trg.n»fered e second

S SRS L PAGTNG RAT PRTBQUENCY DISTRIBUTION —— oo

' 0(':Qu:c'rehceSa;a
A\
of rate @ '

i

v 100 125

v
{4
i
12}

ses transféted per second

20

Tt
PP |

!

1 N R BT S e
B ,‘,..‘ : b oo v B e B N R -
b ooy TOTAL NUMBER OF ENTRIES TO EACH QUEUB ' oo v o 3
I O D SRR I T
DO ; T s - i
E T T . ——— - - , e e
Sl ‘ | |- .
200, - Y'Y
“’T. .- . e e - s ! -
o e - el [S — b I - _
O B R - Ve e) oo - .
I S JR B B I
. R . - ‘. PUNDUS SV res ..?..., e |- !
N T NS SO [T RN I 1 R TR I
R T e H R .
: g ; -
...... e i . A . [- R .
i R - IR AR ORADRRN IO SRR AR A _
'—- .- - - ?, —:- e g - o e =8 e y-?~': . —'_“.5.. -
- L I : Lo
- 900 , 3
R - . ! . !
.......... . - . + - . JE—

S i S B R AU e B e et
SRR S I T S I T
- Y - - —— 4.
SRR D S

4 - B SR I S Sl g —

R T T R e e R e e
RQO RQ I |RQ 2 CASQ ICQ T [CQ2LQ 3 [CQ 4 |CQ 5 | ATQ JPU— Page
{ait

!
i
o
i
i

B

[. - - . - - P
B FICURE O
I

DR SN

......

SUBSYSTEM MONITORING

The primary reason for monitoring activity at the subsystem level was our
wish to determine which facilities were most extensively used and to obtain
quantitative-measures of command rate, CPU utilisation, response times and
terminal'input/output activity. It was hoped that this information would enable
us to improve the performance of the subsystem by minimising the number of
subsystem pages needed for the most frequently used commands. A secondary
objective was to provide the information which would be needed to define and
construct a 'benchmark' for comparing the performance of different multi-access

operating systems, or indeed the same system on different hardware configurations.

DATA CAPTURE

Each user of the standard EMAS subsystem (M1) has mapped into his virtual
_memory the same physical copy of the ‘'basefile', This is an object program file
containing the basic command interpreter (BCI) and all the other routines needed
to support the standard facilities. Each command typed by a user is processed
by the BCI. It is assumed to be the name of a routine (system or user provided)
which is located, loaded if necessary, and entered. Following its execution,
which may involve further input/output at the user's terminal, control. is

returned to the BCI,

If subsystem monitoring is active a monitoring record is written each time
control feturns to the BCI. Each record includes the following information,

user identifier (a six character name assigned by the system manager)

time of day at which the command was received

command (eight significant characters)

ready time i.e. time of day at which the command has been completed

cpu time used

page turns used

number of lines input/output at the terminal

-9-

number of characters input/output at the terminal
file size (relevant for editing and compiling commands)

completion code (relevant for compilations)

Much of the information required is readily available in the subsystem data
space at the time the record is written. A call on supervisor is required to
note the time when the command is received, and again on completion at which time
a metering call is also made to determine the current cpu time and page turn
utilisation by the process. All input/output associated with the user's terminal
is routed through one routine in the subsystem, enabling line and character

counts to be maintained.

On EMAS,files contained in the file system are not accessed by 'conventional'
transfers of blocks of information between a storage device and core under the
control of a user program. When a particular file is required it is simply
mapped into the virtual memory and accessed directly. Pages not in store when
.they are referenced generate a page fault which is handled by the supervisor.

The current size of a file is held in a header record at the start of the first
page of a.file, Thus the sizes of files dinput to the editor and compilers are

directly available when the files are first connected.

~ Additional records are generated when a process is started, i.e. after a
user logs on, and when the user logs off., Otherwise redundant fields in these

records contain the date and total resource utilisation during the session.

Thus the only modifications to the subsystem for monitoring user activity
have been the addition of a small routine to the BCI and minor additions to the
terminal I/0, editor and compilation control routines. Care was taken to ensure
that these changes would not result in references to any pages which would not

otherwise be in core store.

- 10 -

DATA COLLECTION

It was obviously necessary to attempt to minimise the overhead in
accumulating the recorded data from up to fifty concurrent processes. As mentioned
above files are mapped directly into processes' virtual memories and records are
accessed by direct reference t9 virtual memory addresses, It was decided to
collect all the data in one file belonging to the system manager's process. When
a process is started it determines whether it is permitted write-shared access to
the file, If so,it connects the file in write-shared mode, and monitoring is
activated. The monitoring file is created with adequate length to éontain the
records for the period required and has a standard EMAS header containing pointers
to the current end of data and physical end of file., Monitoring records are of
fixed length and are mapped consecutively onto the file following the header,

When a monitoring record is to be written from a particular process the area
" .in the data file is first reserved by updating the current data pointer at the
head of the file. If this does not exceed the physical end of the file then
the record is then copied to the file. If an end of file condition apvlies the

monitoring activity automatically switches off,

Monitoring is activated by initialising the collection file and permitting
it to all users in write-shared mode and terminated by withdrawing the access
permission (this does not affect currently active users but no new user will be

monitored).

OBSERVATIONS

Subsystem monitoring has been carried out at intervals over two years and
samples representing in some instances several days continuous monitoring have
been analysed. Comparisons between the distribution of commands measured over
a 24 hour period with that determined from an included, continuously busy, period

(3 - 5 pem.) have shown discrepancies of the order of only one per cent. It was

-1 -

therefore thought adequate to look at analyses of mid—-afternoon sessions to
determine any trends in the user behaviour pattern or changes in system

performance.

As anticipated the monitoring has enabled us to observe the benefits (or
otherwise) of different scheduling strategies within the supervisor. We have
also been assisted in our attemps to improve the internal organisation of the

subsystems such that overall paging activity is reduced.

Over the last two years the only significant change to be observed, apart
from improvements in performance, has been a reduction in the average size of
source files being compiled. This must in part be due to thg increasing number
of students using the system, but may also reflect a greater awareness of users
to the benefits of editing and recompiling only those parts of their programs

which are currently under development.

Since the observations have been so consistent it is relevant to reproduce

here some figures relating to a typical two hour period (=5 p.m. on 22nd April

1974).
Number of concurrent users 25-30
Number of user sessions 136
Total number of user commands 1652
Cpu time spent in user processes 51 mins (42.5% of elapsed time)
Average cpu/commnand 1.85 secs

User_terminal activity
input average 3.5 lines (43 chars)/command

output average 8.5 lines (327 chars)/command

Table 6 gives the command distributions and the proportion of cpu and
elapsed time occupied by the principal commands for editing, compiling and
executing programs. The other commands are mainly used for interrogation (e.g.

number of users on the system, resources used) and basic file operations (e.z.

- 12 -

listing files, destroying files, defining associations between logical and

physical files).

Command type Count % total % cpu time % elapsed time
Editing source and data files 329 20 8 51
Compiling (IMP and FORTRAY) 153 9 24 8
Executing compiled programs 280 17 61 24

Others 890 54 T T

Table 6 Command distribution for a typical two hour session

Figure 7 shows, in percentage terms, the elapsed time distribution for the
editing, compiling and program execution commands observed during the above
- session, together with an indication of the sizes of programs compiled and.cpu
demands made by programs in execution. The average elapsed time for editing
was about 3.5 mins and on average each editing session involved 11 lines (140
chars) input and 12 lines (288 chars) output. The average cpu time requirement
for a compilation was 5 secs (250-300 statements), and the average elapsed time
67 secs. As can be seen in figure 7(b) these figures are biased by a small
number of large compilations. The elapsed times for programs being executed
(figure 7(c)) would have been significantly affected by the amount of terminal
1/0 activity - on average 3 lines (31 chars) in and 27 lines (1233 chars) out

at a maximum rate of 10 chars/sec. The average elapsed time of 158 secs and

average cpu time of 6.6 secs are also biased by a number of longer running programs.

CONSTRUCTION OF A BENCHMARK

Having demonstrated that at a given point in time the profile of user activity

is very stable a benchmark has been defined based on the observations over a

specific two hour period. Additional information was required about the

Characteristics observed during a typical 2 hour session

IPO % total editing sessior

1 2 5 10 mins

elapsed time

(a) Editing

elapsed time

3
0.5 1 2 5 mins
1 N | |
r T T T =1
(l) 25 5? 75 1!oo %total compilations
i |
. } [I |
50 100 200 500 2500 statements
1000
sizes of files being compiled
(b) Compiling
elapsed time
10
0.5 1 2 5 |16 mins
' L1 | | |
? 215 50 75 100 % total executions
| I I l I I
1 2 5 10 120 secs
20

cpu time requirements

(c) Executing compiled programs

- 13 -

behaviour of a typical user at his terminal, in particular his typing rate and
the *think time'®' between receipt of an output message or prompt and the input of
-the next command or data. This has been obtained by external monitoring of the

activity over the lines connecfing individual terminals to the ICL 4/75s.

A number of !'jobscripts', each containing the command and data input for a
complete terminal session, have been consiructed. The individual command totals
were identical with those in the observed period and the program files, contributed
By users, were selected to exhibit the spread of compilation and execution
characteristics which had been observed. A PDP 11/45 has been used to simulate
the user activity defined by the jobscripts. Each job script includes control
data specifying think times and typing rates and appropriate delays are imposed
' by the PDP 11/45 control program. Delays appropriate to the maximum output rates
of the terminals being simulated are also imposed. The PDP 11/45 has the

appearance, as far as the system is concerned, of a standard EMAS concentrator.

This benchmark will be used by this and other Universities for assessing the
capabilities of new systems. It also provides a standard wprkload for a series of
experiments to be conducted on EMAS using different hardware and software

configurations.

ACKNOWLEDGEMENT S

We would like to acknowledge the contribution made by everyone connected
with the EMAS project, especially Peter Stephens for invaluable help in the
resident supervisor area, and by Ken Dietz and Brian Gilmore in measuring external

characteristics and providing the PDP 11/45 software respectively.

REFERENCES

D1

M1

51

S2

Wi

Denning, P.J. 'The working set model for program behaviour®

Communications of the ACM Vol 11 No. 5

Millard, G.E., Rees, D.J. and Whitfield, H. 'The Standard EMAS

Subsystem' Computer Journal - to be published.

Stephens, P.D. 'The IMP language and compiler'

Computer Journal Vol 17 No. 3

Shelness, N.A., Stephens, P.D. and Vhitfield, H.

'"Phe Edinburgh Multi-Access System Scheduling and Allocation
Procedures in the Resident Supervisor!

Proc. Internatioral Symposium on Operating Systems, Theory and
Practice. April 23rd-25th 1974 I.R.I.A. Paris

Whitfield, H. and Wight, A.S. EMAS - 'The Edinburgh Multi Access

System' Computer Journal Vol 16 No. 4

