SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 10, 993-1008 (1980)

The Evolution of the Operating System
EMAS 2900

P. D. STEPHENS AND J. K. YARWOOD
Edinburgh Regional Computing Centre, The King's Buildings, Mayfield Road, Edinburgh EH9 332,
Scotland .

AND

D. J. REES AND N. H. SHELNESS
Department of Computer Science, University of Edinburgh, Mayfield Road, Edinburgh EHY 3JZ, Scotland

SUMMARY

Asaresult of experiencing problems with manufacturer’s software on the early 2960 machines
Edinburgh University took the bold step of attempting to move the general purpose time-
sharing system EMAS from an ICL 4-75 to an ICL 2970 computer. This paper describes the
move together with the changes made and includes some preliminary performance figures
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INTRODUCTION

By January 1974 the Edinburgh Multi Access System (EMAS)'? had reached a high
level of efficiency. When running on the ICL 4-75 machine whose configuration is
shown in Figure 1 it was capable of supporting up to 32 simultaneous terminals with
satisfactory response. The system was popular and soon overloaded and the Regional
Computing Organisation® drew up an Operational Requirement for a further machine;
this machine was to support 64 terminals (i.e. about twice those supported on the 4-75)
and simultaneously process twice the batch throughput of the University 370/155. A
four-part batch and interactive benchmark (the Glasgow benchmark 1 was drawn up
based partly on performance measurement of EMAS.

The Regional Computing Organisation accepted a tender from ICL for delivery of
an ICL 2980 in September 1975 with an undertaking to pass all four parts of the agreed
benchmark by June 1977, The configuration of the 2980 is shown in Figure 2. In fact
the 2980 destined for the Regional Computing Organisation was diverted to the
European Space Agency and a 2980 did not arrive until May 1976. A smaller machine—
the ICL 2970 (configuration in Figure 3)—arrived in early summer 1975 for evaluation
and software development. At this stage there was no intention of writing an
Operating system and no relevant work was done apart from writing a compiler for the
EMAS implementation language IMP.!? By early summer 1976 most of Edinburgh’s

# The Regiona! Computing Organisation comprises the Universities of Edinburgh, Glasgow and Strathclyde.
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Figure 1. EMAS 4-75 configuration

system programmers were convinced that ICL would not pass the interactive
benchmark and that the likely margin of failure was large; consequently they began to
_ speculate idly on the possibilities of bootstrapping an operating system froma 4-75 toa
© 2970. ICL remained confident, the University authorities appeared to believe ICL and
inaction followed. It was not until October 1976 that a serious attempt was made to
produce an alternative system. A small team of four full-time people and about half a
dozen part-time helpers set out to write the EMAS 2900* operating system. Progress
was rapid. By spring 1978 an internal service for project members was working, and a
few ‘real’ users were invited to'use it. In October 1978 a service was offered on the 2970
although development continued. In January 1980 service was opened on the Regional
Computing Organisation 2980 and also on the University of Kent 2960.

‘We do not propose in this paper to give a detailed introduction to the design or initial
implementation of EMAAS. An overview has been published,!3 together with detailed
descriptions of specific aspects of the system.? 7-8 10 It is useful to note the features -
that give the|system its current appearance:

* In this paper EMAS refers to the original system running on the 4-75 and EMAS 2900 to the re-impfemented
system.
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Figure 2. EMAS 2980 configuration

Interactive working

The system is normally accessed from an interactive terminal, which it uses as its
major source of control information. This may be one of a large number of devices
attached via a geographically distributed network.

Multiple virtual memories
Each user is allocated a 16 megabyte virtual address space.

Mapped files

Files are not accessed via a procedural interface (read record, write record, etc), but
by being associated with a range of virtual addresses and accessed as if they were
memory.

Controlled sharing of information

The system imposes no restrictions on how a user organizes his programs and data.
If, however, at any instant two or more users are running the same program or
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Figure 3. EMAS 2970 configuration
operating on the same data, the system notes this and arranges for a single copy of the
relevant entity to be shared.

Transparent memory hierarchy
The system operates a three-level memory hierarchy consisting of

File store (on disc)
Paging store (on a drum or fixed head disc)
Main store.

These levels are managed by the supervisor in a way that s transparent to the user, who
is only aware of files and virtual addresses.

Minimal user constraints

The system attempts to restrain the user as little as possible in his use of files,
languages, virtual addresses etc. There is a set of facilities provided by a standard
subsystem, but the user may ignore it and easily provide his own subsystem if he so
wishes.

Minimal information loss through crashes

If the system crashes (whether due to hardware or software) an attempt is made to
minimize the information loss.
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No system degradation under load
The system cannot allocate more resources than it possesses, but it should allocate as
much as possible to the users at all times.

Repeatability and enforced fairness

The resources used by a job should be dependent on its requirements, and not on
other demands on the system; therefore if a job is run again it should use the same
resource. A user should get a fair share of the system determined by his own
requirements and the number of users of the system.

DESIGN PHASE

The design phase was unlike the corresponding stage of any other project known to the
authors. It consisted of 15 months of academic discussion between people who were
sure that they could write a much better operating system than the one supplied. This
stage was followed by a very short period of ruthless decision taking. Of the major
decisions taken at this time only one was seriously wrong and that one proved relatively
easy to reverse. In spite of this fairly high success rate we would hesitate to suggest that
others follow this procedure. The major constraint on the design can be seen at a glance
from the diagram of EMAS structure (Figure 4). The Kernel and Director comprise
about 144Kb of code out of a total of nearly 1 Mb of system code plus all the user written
code and packages. In view of the small number of people available and the limited
timescale the only feasible strategy was to implement the Kernel and Director so that
most of the rest of the code could be transferred by recompilation with minor
amendments. The principal problems of re-implementation are caused by the
substantial hardware differences between the 4-75, which has IBM 360 architecture,
and the 2900 Series.* These differences lie in three areas:

1. Stack support: the 2900 series is fundamentally a one accumulator, one index
register machine with a hardware supported stack, whereas the IBM equivalent
has 16 fast general registers. The 2900 tries to make up for the lack of fast registers
by high performance ‘slave’ stores. These fast stores are invisible to the
programmer but hold recently accessed variables, enabling the main store to be
bypassed. This is a very attractive idea: register optimization—such a problem to
the programmer or compiler writer—is performed by hardware. However the
performance gains from slaving are typically small—10-15 per cent of execution
time. Clever register optimization on a 4-75 can be much more effective.

2. There are substantial differences in paging. On the 4-75, paging was added as an
afterthought and did not affect the privileged program states. On the 2900, the
supervisor could be paged, and the large VM size (8196 Mb) and small page
size (1 Kb) caused further problems: page and segment tables must be in
contiguous real addresses but real store is not, in general, contiguous on the 2900

series.

3. The 4-75 had devices on simple channels which could execute one channel
program at a time, whereas the 2900 had peripheral controllers which could
optimize transfers from several devices at once.

Against this background the original system was reviewed and revised to make the
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minimum changes necessary. The results of this review were as follows:

System structure

The basic structure of EMAS consisted of a small resident Supervisor and a paged
supervisor process (Director) which together provided for each user a large virtual
memory or address space. The low address part of the virtual memory is not accessible
to the user and the various parts of the software are linked together by a message passing
system and dispatcher.!3 These features have been transferred to EMIAS 2900 with
only one minor change: Director has been implemented as a set of privileged
procedures running in the user’s virtual machine, as in MULTICS, rather than a
separate process associated on a one for one basis with each user process. It was
necessary to use a separate process on the 4-75 as the protection mechanism could not
otherwise prevent the user from corrupting Director. The excellent access control and
System Call features of 2900 architecture have enabled the simpler and more efficient
approach to be adopted.

File system

Central to EMAS is its File Store® together with its Backup and Archiving System. !4
This holds named files for all users, each file consisting of an unstructured sequence of
bytes of arbitrary length. The File System is virtual in that files are accessed by
becoming part of the virtual memory (connection) rather than by any record access
mechanism. Director maintains the file store and has ingenious algorithms for
allocation and deallocation of space to avoid fragmentation. EMAS 2900 has adopted
the EMAS file system in its entirety, even maintaining the unit of disc allocation at one
EMAS segment (64Kb) rather than one 2900 segment (256Kb). Having the unit of
allocation at less than a segment involved small changes to the virtual memory
management but this was preferred to a much larger unit of allocation which would
cause fragmentation losses that would be unacceptable on the smaller discs { < 100Mb).
Further, a consistent block size simplified movement of the file system maintenance
utilities and facilitated a common archive (tape) store for both machines.

Configuration independence

In EMAS, which was a prototype system, the configuration was built into the code.
Flexibility was restricted to enabling the operator to mark unserviceable devices as not
available. In EMAS 2900 all configuration information appears in a resident read only
segment which can be considered part of the machine on which the system runs. This
segment could be nominated at load time by the Operator (a procedure used by ICL on
2950 and 2956 machines) but the design aim was to construct this segment by means of
a General Reconnaissance Of Peripheral Equipment (GROPE). This would involve a
two-part system load. Initially a cut down supervisor is loaded. This performs the
GROPE, constructs the read only segment, establishes communication with the
Operator and loads the system. The design aim was to allow the system to run on any
hardware configuration then announced without change.

Local control

An important principle of EMAS was that of local decision-making. Decisions—
particularly those affecting page replacement—are taken on information relating to the
behaviour of the relevant process and not on the basis of all processes currently in the
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multiprogramming set. This ensures reproducibility of program behaviour and
prevents a program that exhibits anti-social paging behaviour from affecting other
well-behaved processes. The many beneficial effects of local control (particularly in
terms of fairness and elimination of thrashing) are discussed at length elsewhere.!®
However this organization is not readily apparent in the original system which
consisted of modules partitioned by function. These modules can make local decisions
by reference to the process master segment'? (a sort of run-time database) of fixed and
complex structure.

The design aim for the new system was to provide a module—the Local Controller—
on a one for one basis with each process, to run in the process’s address space. This
method would reflect more accurately the structure of the system and would mean that
the run-time database could consist of ordinary IMP variables and arrays. Thus the
database layout, which is essentially a matter private to the Loocal Controller, would be
determined by the compiler each time the Local Controller was compiled, and could be
altered by recompilation. A further advantage of this arrangement was that the sizes of
arrays could be dynamic, based on information discovered at GROPE time. The
database would still page with the process and would not be in main store when the
proces was in the wait state. These advantages, particularly that of avoiding a fixed and
unalterable database format, were considered to outweigh a quite serious disadvantage.
2900 architecture* provides only one software stack switching interrrupt, the OUT

" interrupt, which would have to be used for Director-Local Controller communication
and also for Local Controller—Supervisor communication. Such double use is possible,
but expensive, since the Interrupt Steering Table is constantly updated.

Virtual memory control

Great thought was given to the design of virtual memory management software and
tables since system overhead was mostly directly related to the amount of paging traffic.
In those considerations much weight was given to various performance measurements
made on the original EMAS system. -2

‘The first major decision concerned page size. System 4 had 4Kb pages while 2900
had 1Kb pages which could be grouped by software into extended pages (epages). The
performance measurers were certain that a 1Mb 4-75 would perform best with 2Kb
pages but software changes would be minimized by keeping to a 4Kb epage. The
decision was to program with a potentially variable epage size but to start with a 4Kb
page. :

Secondly, the EMAS memory hierarchy was critically scrutinized. In this each
process has a core working set which is a true subset of the larger Active store (Drum¥)
working set which is itself a subset of the process’s virtual memory. If no drums are
serviceable there is no interactive service; this was reasonable on System 4 where the
Discfiles are very slow, but unreasonable on 2900. EMAS 2900 must be able to run
without any fixed head paging device and also to run effectively with much less than the
optimal amount of such storage.

Thirdly, the paging strategy was examined. Should EMAS 2900 use the EMAS
method of preloading a process’s working set of pages when that process enters the
multiprogramming set (often called the Swopped Working Sets or SWS strategy) or
should the simpler demand paging strategy be adopted? SWS was markedly superior

* The paging device is referred to throughout as a Drum, although on 2900 it is in fact a small fixed-head disc.
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on EMAS and has recently acquired powerful theoretical support® so the decision here
was to retain the SWS strategy.

Fourthly, program and data sharing was reconsidered in the light of 2900 hardware
assistance, viz a second (public) segment table for all processes and also cascaded
indirection of segment table entries. Although System 4 provided no hardware
assistance, EMAS provided extensive program and data sharing in a manner
transparent to users. The sharing was a most successful feature in that it enabled the
operating system to effect substantial economies in core and drum space as well as a
more modest saving in page transfers. These savings are particularly valuable since
they increase with load; thus sharing helps performance most when the system is
overloaded. Sharing via public segments is obviously possible but such sharing
introduces a problem of selection; using indirect local segment table entries to pointata
shared segment table does not remove the selection problem. Both methods have the
serious side effect of combining the page use markers for shared material, thus
preventing the accurate maintenance of the process’s working set. EMAS 2900 ignores
these hardware aids and uses the public segment table only as a local segment table for
the supervisor.

Lastly, a minor change in the handling of unused page frames was incorporated. A
quirk of implementation had resulted in EMAS losing the contents of a page frame
when it had been successfully written out after use. If the page was wanted again it
could not be extracted from the list of unused page frames on those occasions when the
frame had not yet been re-used. This inconsistency was never removed since the free
page list had typically 20-50 entries as against a total of 1500-2000 ‘active’ pages and it
seemed likely that the gains from ‘recapturing’ the page would be small. However in
view of the large store sizes available on 2900 series, EMAS 2900 would recapture

pages.

Communications

The communications on EMAS had been overtaken by events during the eight-year
life of the system. The design used ICL’s hardware multiplexor (The Multi-Channel
Communications Control Unit) which necessitated fixed resident buffers and a ‘Buffer
Manager’. Later the MCCCU was replaced by a Front End Processor but the essentials
of the software design were unchanged. The design worked well when all terminals
were operatmg at ten characters per second. What had not been foreseen was the great
increase in terminal speed and hence I/O in a terminal session; a further surprise was
the attraction of EMAS’s secure file system. Programmmers using machines in
Newcastle, Cambridge, Harwell and Manchester kept their programs and data on
EMAS and transmitted them daily. The amount of paging traffic on EMAS concerned
with trivial buffer filling and emptying rapidly became insufferable. A radical rethink
was required, complicated by the inability of ICL to provide a communications device
that seemed likely to fulfil the demands EMAS 2900 would make on it.

The elegant solution adopted will be fully described in a subsequent paper. The main
features are as follows:

1. A Digital PDP11 as Front End Processor interfaced to ICL’s 2900 Application
Module interface via locally built hardware.

2. All control functions to reside in the FEP.
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3. Transfers between processes and the FEP to be made using large buffers in virtual
memory. This would involve the software in halting transfers at page boundaries,
arranging page replacement and restarting the transfer.

Two features would enable the virtual buffering to be incorporated. Firstly, the
address translation facility of Peripheral Controllers; secondly, the software structure
of EMAS 2900 necessary for local control. Just as a Local Controller manages the:
paging of the working set of a user process, so a modified Local Controller—the
Communications Controller—can manage the paging of all virtual buffers involved in
transfers. Indeed, since both Local and Communication Controllers could use the full
range of Supervisor services, it seemed likely that very little new code would be
required. The data sharing of EMAS 2900 would operate on such buffer pages without
any amendment.

The designers were aware that basing the communications on virtual buffering with
paging of buffers during transfers was a novel strategy. However, the disadvantages of
the aiternatives made them uninviting.

TOOLS

A brief description of the tools used in developing EMAS 2900 seems necessary. No
new tools were constructed as part of the project—the most important were already
available and the others were transfered at an early stage from the original system to the
new.

The least sung but most valuable tool was the original EMAS system in spite of being
severely overloaded. Its terminal access, editors, compilers and debugging features

- were invaluable. Above all its secure file store preserved and protected the source code.
No source code was lost or destroyed from the start of the project in October 1976 until
January 1978 when development was moved to the new system. In spite of the load on
the system it was usually possible to edit a module, recompile it, link a new test
supervisor and write it to magnetic tape for testing on the 2970 in about half an hour of
elapsed time.

The second tool was the same dialect of the Edinburgh Implementation Language
(IMP)*2 as was used in the original system. We do not claim that IMP is technically
superior to more modern languages such as Concurrent Pascal,® but there were
compelling reasons to use it. Firstly, it existed—the language and three compilers (for
System 4, 2900 and also a System 4 to 2900 cross compiler), together with a large
selection of source code formatters, diagnostic packages etc. Secondly, all the
implementers understood every nuance of the language, and thirdly, we wished to
transport source code from the old system.

In retrospect two aspects of IMP were particularly valuable. In the early stages the
ability to obtain source language diagnostics from any failure saved many hours of
debugging time. Later the ability to find out how often each source statement had been
executed enabled the small amount of effort available for tuning to be deployed
effectively. '

“The third tool available was system monitoring code. Much effort had been spent on
monitoring the early EMAS system but two particular areas had proved of lasting
value. The ability to monitor the message passing mechanism in a highly selective way
has proved invaluable in disentangling curious interactions between components. Also
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of value was the ability to write the system to magnetic tape and later examine the tape
with a utility which could reconstruct, in source terms, complex tables and linked lists.

Fourthly, there was the Edinburgh Remote Terminal Emulator—ERTE.! This
could produce between 8 and 64 interactive terminals for testing, performance
measurement and benchmarking.

IMPLEMENTATION

The EMAS 2900 project was informal in structure, short in duration and small in size.
Itbegan in October 1976 with the aim of providing a service to invited users in January
1978 and a full service in October 1978. The project started with the four authors
augmented by a group of six or seven individuals who made specific contributions in an
area of expertise (e.g. device handlers). The contributions of this second group were
limited in time. The project increased in size when the system was able to support
superstructure and had reached eight full-time and four or five part-time members by
September 1978. The total effort applied up to the start of full service was about 15 man
years—very close to the prediction of Whitfield and Wight.!? During the two-year
project about 1000 hours of dedicated 2970 time was used. This total does not include
terminal access to the initial user service or any time used on System 4.

The implementation was mostly free from unpleasant surprises. GROPEing was
very difficult to implement since it involved using the hardware at a basic level, where
there were great differences between the various machines. Had we foreseen the pain
involved or the changes needed when the hardware was upgraded—a fairly frequent
occurrence in the early years of the 2900 series—we would not have attempted this
extension. Nevertheless now that all is working and understood, it greatly simplifies
software maintenance to have a single self-configuring software product. It is clear in
retrospect that we underestimated the number of occasions on which peripheral
equipment would be unplugged for maintenance purposes and the difficulties of re-
incorporating such peripherals into the system.

The early communication software was shaken by the discovery of a curious and then
undocumented omission in all 2900 Peripheral Controllers. These Controllers perform
address translation with full protection just as does the processor—this is a very
desirable hardware feature. Having done all this the controllers fail to update the read
and write history bits in the page tables so that the Local Controller could miss seeing
that the virtual communications buffer had been used or updated. A software bodge
managed to cure this but at the cost of writing out pages that have not been updated.

In spite of these minor tribulations the implementation timescales were met.
Although the initial user service was not started until May 1978 the full service started
in October as planned with rather more than the promised facilities. The final code size
of the Supervisor was greater by about 30 per cent than for the original system. Almost
all the increase was in driving the more complicated 2900 peripherals. The drum driver
was markedly more complicated since the 2900 Sector File Controller operates with 1K
sectors. Each EMAS 2900 transfer involves initiating four requests and fielding four
terminations. The data areas have also increased in size partly because of the larger VM
and segment sizes on 2900 but mostly because the absence of 16-bit integers has
resulted in 32-bit entries being required. Nevertheless, about 200 4K page frames are
available for user pages out of 1 Mb store on both systems. This is partly because there
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are no communications buffers in EMAS 2900 and also because the localsegment table
is now part of the Local Controller stack and pages with the process.

PERFORMANCE

The user view of EMAS 2900 performance is very satisfactory. With 32 terminals, the
2970 provides a much livelier service than the 4-75. It is necessary to have about 45
terminals active before the service degrades to a level that will not pass the interactive
part of the Glasgow benchmark. However, since the 2970 is about twice as fast as the 4-
75 itshould be expected to support 64 terminals. It isinstructive to compare the EMAS
2970 timing measurements with the figures for 4-75 published by Whitfield and
Wight.!® Exact comparison is difficult but it is clear that a higher proportion of time is
used in the Supervisor on 2900 than on 4-75. It is also clear that device driving is
responsible for much of this. In Whitfield and Wight, 1 million drum transfers have
taken 973 s—i.e. about 970 us of 4-75 CPU time each—whereas in Table I 314,000
drum transfers and corresponding interrupts have used 514 s, i.e. about 1630 ps of
2970 time or 3260 ps of 4-75 time per transfer. ‘

Table 1. 2970 performance measurements (4.1.1980)

EMAS 2900 SUP26A timing measurements
Time Averagef 9% of Aw.inst.t

Service Calls (s) - (ms) total Jeall Notes

Idle time* 82723 1090-121 13-178 92 1
Nowork time* 64 528  4662-809 72:260  39-5 1
Paging 1535920 856-038 0-557 7-3 215
Disc 3766 2-511 0-667 00 331
Disc transfers 215 211 113-373 0-527 1-0 227 Disc driving
Disc interrupts 138 060 194-097 1-406 1-6 584
Move/1 1 030 2-070 2-009 0-0 1065 File system
Move/2 6 507 3-772 0-580 0-0 262 maintenance
Drum transfers 314 520 289-527 0-921 25 369 Drum
Drum interrupts 172 526 224-787 1-303 19 499 driving
Slow peripherals 251 036 263-465 1-050 2-1 402
Communications 301 077 255-517 0-849 2:2 347

. Local control 212570 473-558 2-228 40 923 Wo_rking set

. maintenance

Foreground users 598 005 2929-841 4899 248 0
Background users 17 034 161-125 9-459 1-4 0
Other 84 301 3003422 3-563 21 402

Drum size = 12 Megabytes.

Recaptures = 37 per cent.

Shared pages = 16 per cent.

* 'Nowork time’ is idle time when all users are voluntarily in the wait state.

‘Idle time’ is all other idle time.

1 These figures refer to an optimized supervisor. When the supervisor is recompiled with checks the times and path
Iengths are increased by 30-40 per cent.

The other revelation from Table I is that more than 50 per cent of page exception
interrupts can be satisfied without a transfer—16 per cent because the page is being
used by another process and 37 per cent by recapturing the page from the free list.
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These figures show the advantages of abandoning paging devices and using very large
main memories.

The virtual buffering technique used in communicating with interactive terminals is
very successful and terminals of all speeds have been attached. A buffer of one epage
(4Kb) is sufficient for slow and medium speed terminals although the software will
accept any size up to 64Kb. The virtual buffering is so trouble-free that the local
printers and card readers have been attached as pseudo-remote devices. Using the
maximum virtual buffer size it is possible for the spooling manager—a paged process—
to read or print 64Kb without any intermediate transactions. This is a great
improvement on the original system, which required the spool manager to page in every
4000 bytes read or printed. The other design aim of the communications software—
that of protocol independence—seems to have been achieved judging by the experience
of the University of Kent, who run EMAS 2900 on their ICL 2960. Kent operate a very
different local network from Edinburgh but they are able to run the EMAS 2900
software unchanged. All necessary alterations are confined to the FEP and these were
accomplished and tested in a few months. The CPU overheads of the communications
software at up to 5 per cent of the CPU on 2970 are higher than on 4-75, where they
were held to 15 per cent of the CPU. The extra paging cost of the 4-75 communications
strategy is not readily apparent from the figures in Whitfield and Wight.!3 Subsequent
studies have suggested that 20 per cent of the page turns on the 4-75 would be
eliminated by the paging strategy used on the 2900 series.

Two desirable attributes have survived the re-implementation intact. The first is
robustness—the mean time between software crashes on EMAS has always been high
and it tended to infinity once development ceased. EMAS 2900, although still at an
early stage, already survives hundreds of hours between software crashes. The second
is the user interface as provided by the Standard Subsystem.” This feature together
with compatible compilers makes transferring work from the old to the new system
relatively painless.

We still regard EMAS 2900 as at an early stage in its life and expect the programme
of tuning, measurement and analysis to yield a steady improvement in performance
over the next two or three years. As part of these experiments it is hoped to try various
page sizes in an experimental system.

BENCHMARKING

The presence in Edinburgh of the Remote Terminal Emulator (ERTE), used to
establish the interactive part of the Glasgow benchmark, proved very useful. The 32
terminal scripts were subdivided into groups of 8 and duplicated, thus enabling 8, 16,
24, 32, 40, 48, 56 or 64 terminals to be emulated. (Strictly it is not possible to subdivide
the benchmark as all scripts are different.) These emulated users could be used for
testing the infant EMAS 2900 system to find bugs and measure performance. Having
eliminated a number of bugs ERTE was then used to time the system and immediately
produced a very surprising result. EMAS 2900 performed as well or better with a
simple demand paging algorithm as it did with the SWS algorithm which had been so
successful on System 4 EMAS. This conclusion seemed true across a range of
configurations, including those with no drums. The designers found this result
extremely surprising and further performance tests will be required before it can be
fully explained. It is clear however that the high recapture rate has increased the cost of
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preloading an unnecessary page: to the cost of the transfer must be added the
overwriting of some page frame that might otherwise have been recaptured.
Fortunately it proved easy to correct the faulty design decision and simplify the
software by deleting the preloading of working sets. Tables II and III give figures

Table II. EMAS 2970 benchmarking (31.1.79 and 3.3.79)

2970 1Mb core 4 EDS100s on 1DFC

Experiment A B C D
Mbytes of drum 12 12 12 0
Batch streams 0 0 0 0
Interactive users 16 32 47 32
All commands

Average reaction 2-2 7-2 13-9 15-8
Average response 10-5 15-4 229 23-6
Commands/min 40 64 7 53
Editing ’

Average reaction 05 1-4 25 49
Average response 37 49 6-5 8-2
% reactions <2s 84 65 47 23
CPU usage

% in supervisor 225 42-0 43-2 36-2
% in user 377 56-5 51-7 46-4
% idle+no work 39-8 1-5 51 17-4
Paging

% recaptured 43 27 23 16
% shared 19 20 20 34

measured by ERTE for benchmark runs. The technique used was to start the
benchmark, wait ten minutes so that all terminals were active and then take
measurements for a 30-minute window. This was much less time-consuming than
running the entire benchmark. From such complete runs as were made it seemed
necessary to achieve 50-55 commands/minute on the 32-terminal version and 100-110
commands/minute on the 64-terminal version if the benchmark was to be completed in
the 2-hour period specified, the average amount of work done per simulated user being
kept constant. When examing these tables one should realize:

(a) Thatthe reaction time is measured from the last character of the command being
typed until the first character of the reply.

(b) That the response time is measured from the last character of the command
being typed to the first character of the next prompt reaching the terminal. Thus
listing 1000 characters to a 10 character/s terminal (the normal speed in this
benchmark) must have a response time of at least 100 s.

(c¢) That some commands in this benchmark compile and run very large programs of
many thousand statements, and that a small number of such commands have a
large effect on average response times.
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Table II1. EMAS 2980 benchmarking (6.4.79)

2980 2-5Mb core
18Mb of drum on 2 SFCs
8 EDS100s on 2 DFCs

Experiment X Y
Batch streams 8 8
Interactive users 48 63
All commands

Average reaction 30 4-3
Average response 10-2 11:6
Commands/min 118 145
Editing

Average reaction 0-7 09
Average response 42 4-5
% reactions <28 97 92
CPU usage

%, in supervisor 220 254
%, interactive users 48-7 521
% batch work 293 22-5
9, idle +no work 0-0 0-0
Paging (batch and interactive work)

%, recaptured 29 26
% shared 43 45

Experiment Y shows that EMAS 2900 can support 64 terminals on a 2980 along with
a lot of simultaneous batch work while maintaining a very good response—more than
90 per cent of editing reactions were less than 2 s. This is sufficient to pass the 64-
terminal benchmark by a large margin.

Experiment B shows that a 2970 can pass the 32-terminal version of the benchmark
(as specified at Southampton University) with good response when using 12Mb of
drum. Experiment D shows that it is just possible to pass the Southampton benchmark
with no drums at all but that response is sluggish with only 23 per cent of editing
reactions in 2 s.

CONCLUSION

The relatively uncommon practice of re-implementing a system has produced a major
operating system using a fraction of the effort that was required to produce the original
software or other comparable systems. The self-restraint of the designers in restricting
changes to the minimum has resulted in the new system retaining the user interface,
reliability and high performance of the original. With the use of relatively machine-
independent high-level languages, re-implementation may become more widely
considered as a technique for moving to new hardware with minimum disruption.
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AVAILABILITY

EMAS 2900 is currently running on 2960, 2970 and 2980 machines. It has run on a
2976 and will soon be mounted on a dual processor 2972. It will not run on a 2950 or
2956. The University will make the software available in source code form on request.
There will be no charge for this in the case of educational or research institutions. The
University is also able to supply the special hardware developed for the communi-
cations interface.
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