UNIVERSITY OF Edinburgh

L Soaning | User Note 16
eoineurcH Centre (January 1984)
Title:

Profile Scheme on EMAS 2900

Contact: Software Support
John M. Murison Advisory Service Category: ¢

Synopsis

The profile scheme provides a way for programs or packages to store and
retrieve small amounts of data separately for each user. This
information would typically specify options chosen by the individual
user.

Keywords

delete profile, list profile, merge profiles, options, read profile,
write profile

2
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1984 Edinburgh Regional Computing Centre

The Profile Scheme

The profile scheme provides a way for programs or packages to store and
retrieve small amounts of data separately for each user. This
information would typically specify options chosen by the individual
user., For example, if the program were the text editor ECCE, the
information stored might be whether letter case was to be ignored or not
when searching for text strings, initial macro definitions, and
monitoring level. It is stressed that different users can each select
different settings.

Along with the information there is stored a version number. This
relates to the format of the profile information stored for the program,
and provides a mechanism for handling format changes in the information
which the program stores. The details are given bhelow.

The information is held for all programs using the profile scheme in a
file in the user’s process called SS#PROFILE.

Two external routines are involved:

ZEXTERNAL ZROUTINE read profile(%STRING(11) key, %NAME info,
ZINTEGER %NAME version, flag)

ZEXTERNAL ZROUTINE write profile(%STRING(1l1l) key, ZNAME info,
ZINTEGER 7ZNAME version, flag)

These require to be explicitly specified.

read profile reads the information stored under the specified keyword in
file SS#PROFILE if it exists, and copies it to the %NAME-type parameter.

write profile copies the contents of the %NAME-type parameter to
SS#PROFILE, creating the latter if necessary.

read profile parameters
The meanings of the parameters to read profile are as follows:

key The keyword relating to the particular profile information;
chosen by the program writer.

info A scalar variable (not an array) of any type; usually a
record or a string. read profile copies the information from
SS#PROFILE to info. If the number of bytes held for the
specified keyword in SS#PROFILE is greater than the size of
info, then only as many bytes as info can hold are passed;
truncation of the file information is from the right. 1If the
number of bytes held in SS#PROFILE is less than the size of
info (this includes the case where no information is held for
the specified keyword) then the rightmost bytes of info are
cleared to 0. See also flag, described helow.

version read profile returns the version number appropriate to the
information currently stored in SS#PROFILE. This is 0 if no
information is stored for the given keyword (or if SS#PROFILE
does not exist).

16-2

flag

Set by read profile as follows:

0 Success.

1 Info held in SS#PROFILE is larger than size of info
parameter passed. Some rightmost bytes of file info not
transferred.

2 Info held in SS#PROFILE is smaller than size of info

parameter passed. Some rightmost bytes of info parameter

set to zero.

SS#PROFILE does not exist.

Keyword not found in SS#PROFILE.

Failed to connect SS#PROFILE. The attempts to connect

SS#PROFILE are as follows. If the program is running in

background mode, the program will attempt to connect

SS#PROFILE a total of five times, with a delay of 20

seconds of cpu time between each attempt, before returning

this flag. If the program is running in foreground mode,
up to 3 attempts will be made, with a delay of 1 second of
cpu time between each.

6 File SS#PROFILE corrupt.

7 Keyword is null.

v &~ W

If flag=2 on return then the info parameter has heen
partially padded with zeros, as described above. If flag>2
on return then the info parameter has been cleared to zeros
and version has been set to 0., Note that only flag values of
5 or more indicate a definite fault.

write profile parameters

The meanings of the parameters to write profile are as follows:

key

info

version

flag

The keyword relating to the particular profile information;
chosen by the program writer,

A scalar variable (not an array) of any type; usually a
record or a string. write profile copies the contents of info
into SS#PROFILE, creating the file if necessary. See also
flag, described below.

write profile sets the version number attached to the
information which it is writing into SS#PROFILE to the
specified value of version. If on entry version is negative,
then the given keyword is deleted from SS#PROFILE.

[Note that version is an ZINTEGER ZNAME parameter although
its value is never changed by write profile. This is so that
the formal parameter lists for read profile and write profile
can be identical.]

Set by write profile as follows:

0 Success.

1 SS#PROFILE was created.

2 Failed to create SS#PROFILE.

3 Failed to connect SS#PROFILE. First an attempt to conmnect
it in write mode is made; if this fails another attempt is
made after a delay of 1 cpu second. If this fails an
attempt is made to connect it in read shared mode, and a
flag of 3 is returned if this fails. If it succeeds, a
copy of SS#PROFILE is made, and changed, then a NEWGEN is
attempted; if this fails, a flag of 4 (see below) is
returned.

16-3

4 Failed to create a copy of SS#PROFILE, or failed to NEWGEN
it. A copy is made of SS#PROFILE if it can only be
connected in read shared mode (see above) or needs to have
its size altered. This usually entails increasing the
size, but wasted space can be recovered during the
operation and this may actually enable the file to be
reduced in size.

5 SS#PROFILE already holds information for the maximum
number of keywords permitted (ca. 500)., Should not occur.

6 The info parameter is larger than 4060 bytes. This is the
largest amount which may be stored for any one keyword.

7 Keyword is null.

No information has been written to SS#PROFILE if flag>l on
return,

Using the profile scheme

Without being prescriptive, I would envisage the scheme being used by a
program as follows. On entry the program would first establish, by
calling read profile, what information relevant to its operation was
held. It would then respond accordingly, normally by setting up initial
values for relevant variables. In addition, some means would be
provided for the user to change the information held in the profile
file; this could either be done from within the program itself or as a
separate program.

One straightforward way of setting profile information from within the
program itself is to follow the INITPARMS approach in Subsystem command
OPTION: i.e. to provide a means for the user to specify that his
defaults are to be the current settings of the relevant variables.
Thus, in the case of ECCE, the user could set %L (case sensitive text
location), %ZF (full monitoring) and some appropriate values for the
macros %W, %X, %Y, %4Z. Then if he gave the command 7P say (P for
profile), ECCE would call write profile to save %L, %F, and the current
macro definitions. When the user called ECCE thereafter, this stored
information would be read on entry and the program variables set
accordingly. ‘

The version number 1s provided at the suggestion of Sandy Shaw, who has
also suggested an elegant use of it, as described below.

Suppose that a user used a program Z7ZZ three years ago, when version 2
of ZZ7Z’s profile information was in use. Now, three years later, he
starts using Z2Z again. His SS#PROFILE file contains information stored
in the version 2 format, but now version 4 (say) of 2ZZ’s profile
information is in use, which contains different information from that of
version 2 and in a different format. The suggested approach is that
when ZZZ makes its initial call on read profile it first checks that the
flag returned is satisfactory, then uses the version number returned as
a switch value and jumps to a piece of code:

16-4

vsn(0):

vsn(l):

vsn(2): .ee.

.

vsn(3):

..

vsn(4):

The code following switch label ‘vsn(l):’, for example, transforms
profile information held in the version 1 format into the version 2
format. It is assumed that a change in profile format will usually
entail appending to the previous format, e.g. appending subfields to a
record, although existing subhfields could be ignored or reused. The
conversion code is added to the program when version 2 of the profile
format is introduced. It can also include an output message to the
effect that a new version of the program was put into service on such
and such a date, contains the following goodies ..., etc.

In the case of our user of program ZZZ, after the program has read the
user’s profile data a jump would be made to label ‘vsn(2):’ and the code
following ‘vsn(2):” and ‘vsn(3):’ would be executed. By this time the
information returned by read profile would have been transformed into
the version 4 format (the latest version). Thereafter, the program
would call write profile to write out the information in the latest
(version 4) format if what read profile returned earlier was not in the
latest format. Then the run of ZZZ could proceed normally. The next
time the user calls Z2ZZ, it will read a profile version number of 4,
jump to ‘vsn(4):’ and proceed directly. Thus the code following each
switch label is only executed once for each user.

This approach also provides a way of introducing the profile scheme into
existing programs. When no information pertaining to a particular
program is held in SS#PROFILE (or perhaps SS#PROFILE does not even
exist), a version number of 0 is returned by read profile. A jump to
‘vsn(0):’ thus follows and the code there can set up the profile
information, as described above. The version number of the new profile
information will be 1. Just before the ‘vsn(l):’ code there will be a
call of write profile, which will automatically create SS#PROFILE if it
does not already exist. The code might have the following form for a
program XXX:

16-5

.

%ZRECORD #FORMAT prof f(ZINTEGER a, b, %ZSTRING(40) c)
ZRECORD (prof f) prof

%CONSTANT ZINTEGER program vsn = 1

ZINTEGER flag, profile vsn

ZSWITCH vsn(O:prof vsn)

.

read profile("XXXPROF" {keyword unique to this program},
prof {returns information stored for "XXXPROF"},
profile vsn {returns version no of stored profile info},
flag {return values described above})
%IF flagd4 %START
printstring("Unable to access file SS#PROFILE.")
newline
ZRETURN
ZFINISH
-> vsn(profile vsn)

vsn(0):
! profile vsn was O on return - no profile info currently stored.
prof a = 4; prof b = 7; prof ¢ = "Doughnuts"
! Elements of profile record set to defaults in use prior to
! introduction of profile scheme.
printstring("XXX now uses a profile scheme - see documentation")

newline
! This code is executed once for each user,
! so each gets message once only.

! The following two lines always precede the final ‘vsn’ label:

profile vsn = program vsn
write profile("XXXPROF", prof, profile vsn, flag)

vsn(l):
! Code to transform profile info to a version 2 format

! would go in here.

! Now transfer profile info to program variables.
a = prof_ a; b = prof b; ¢ = prof_c

If the programmer decides later to change the profile information
format, he changes the value of program vsn to 2, adds code after the
‘vsn(l):’ label to convert version 1 profile information to the new
format, followed by the ‘profile vsn = program vsn’ and ‘write
profile(...’ statements, followed by label ‘vsn(2):’. The earlier code
is not affected.

16-6

Changing the profile information format

Suppose that a programmer has made use of the scheme in some program.
The relevant code might have the following form:

%ZCONSTANT 7INTEGER program vsn=2

ZSWITCH prof(0O:program vsn)

%ZINTEGER profile vsn

ZRECORD ZFORMAT pform(%INTEGER a, b, c, d,
ZINTEGER ZARRAY val(1:20))

ZRECORD(pform) p

.

read profile(keyword, p, profile vsn, flag)

->prof(profile vsn)
prof(0): ! Set up a, b, ¢, val defaults.
Pac=..co..
Pb=.ceuen
PC= ceeons
p val(i) = ZFOR i = 1,1,20

prof(l): ! New profile item d
p—d='.....

profile vsn = program vsn
write profile(keyword, p, profile vsn, flag)

prof(2): ! Start of program proper.

Consider the above code. The program originally had items p_a, pPb, pc
and p val in its profile record, and initialises these after label
‘prof(0):’. Later, it was decided to add another item, d, to the
profile record, and the record format pform was modified accordingly.
The %ZCONSTANT 7ZINTEGER program vsn was changed to 2 at this point.

Will this work? For someone using the program for the first time, the

answer is yes: the code following label prof(0) will be executed, then

the code following prof(l), and then the profile record will be written
to the user’s profile file.

But what about someone who used the program when version 1 was in
service? The first time he uses version 2 of the program (i.e. in its
above form) he will read into record p his version 1 profile
information, which is 4 bytes shorter than p now is. And since p_d was
introduced into the middle of the format, some of his profile
information when read into the changed record will be misaligned.

In general it is unsatisfactory for the programmer to modify the profile
record format (apart from appending new items to it), since this will
cause trouble for users of earlier versions of the program, as
exenplified above. However it is sometimes necessary to make radical
changes to the profile information.

16-7

The following approach is suggested:

1) 7ZRECORD ZFORMAT p(%INTEGER a, b, c, d, ZINTEGER ZARRAY val(1:20) %C
ZOR ZINTEGER ZARRAY x(1:24))

The record format has an alternative added to it consisting of a

single integer array. (In some cases a byte integer array might be
more convenient.)

2) Whenever the profile information is being initialised or
manipulated into a new format, this should be done by reference to

the p_x(..) array, not by reference to the variables p a, p b, p_c,
p_d, p val.

The above example would thus be changed as follows:

p_x(1)
p_x(2)
p_x(3)
p_x(1)

.
eecvesy

.
®eeesssoy

prof(0): ! Set up a, b, ¢, val
!
!
1

0o

.
LIR I I Y .

monunun

eeseses AFOR i = 4,1,23; ! val

prof(l): ! New profile item d.
p_x(1) = p_x(i-1) ZFOR i= 24,-1,5; ! Move array val up.
p_x(4) eeseseel 1 d

non

profile vsn = program vsn
write profile(keyword, p, profile vsn, flag)

prof(2): ! Start of program proper.
This method of handling profile information may seem more obscure, but
it avoids problems later on.

Note the need to shift the array val within the profile information. It
is better in general to put arrays within profile information at the
start of the record, and also to leave some spare space after-them in
case they need to be expanded.

Direct amendment of profile files

This section describes three utility commands which are useful for
manipulating the contents of files used by the profile scheme.
Such files are usually named SS#PROFILE. The utilities were written by

R.D. Eager of the Computing Laboratory, University of Kent at
Canterbury.

Before the commands are used for the first time, access to them must be
established by giving the following command:

Command : OPTION(SEARCHDIR=KNTLIB.GENERAL)

This need only be done once.

16-8

The LISTPROFILE command

This command lists the contents of a profile file. Its parameters are
as follows:

filename The name of the profile file whose contents are to be listed.
This parameter defaults to SS#PROFILE.

output The destination of the listing from the command. This may be
a file or a device; the default setting is .OUT.

The output from LISTPROFILE consists of the key associated with the
profile entry, the version number of the entry, and the actual profile
information (in hexadecimal). Note that if the version number is
negative, then the entry is ignored by the profile routines (see the
description of ’‘version’ under ‘write profile’).

The MERGEPROFILES command

This command merges the contents of two profile files. It takes three
parameters, all of which are mandatory:

first input file One of the two profile files to be merged.
second input file The other profile file to be merged.

output file The name of a file which is to contain the merged
information from the two input files. It can be the
same as one of the input files.

The command checks for the occurrence of a key in both input files;
if this happens, the user is asked which one should be used.

The DELETEPROFILE command

‘This command deletes the information associated with a particular key
from a profile file, Its parameters are as follows:

keyword The keyword associated with the profile item to be .deleted.
If this parameter is omitted, the user is prompted for the
keyword. This is useful if the keyword contains lower case
letters, since these are usually converted to upper case when
they occur in a command parameter.

filename The name of the profile file from which the information is to
be deleted. This parameter defaults to SS#PROFILE.

16-9

