| \aggg Edinburgh

Regional o | User Note 27

EDI&GH Centre (January 1986)

Some Utility routines available in the EMAS 2900 Subsystem

Software Support
Category:

John Wexler Advisory service See Note 15

Synopsis

The routines and functions described in this Note are all part of the Edinburgh
Subsystem, and are available to IMP and IMP80 programmers without any INSERT or
OPTION SEARCHDIR=... commands. The appropriate %SPECs have only to be included
in the source text of the program or routine which uses them.

This software has no formal support category, and can consequently (in principle) be
changed or withdrawn without notice, and there is no guarantee that bugs would be.
corrected. However, it has in fact been in use unchanged for a considerable time,

it has proved to be stabie and reliable, and some of it is heavily used by production
software. It is extremely unlikely to be altered during the life of the Edinburgh
subsystem on EMAS 2900. Software which uses these routines could not, of course,
be moved to other systems without alteration. .

Routines which provide equivalent services to the ones described in this Note will be
provided on EMAS-3. Their names and specifications will differ from those described
here because they have been written to be callable from several programming
languages. See User Note 80 for details.

Keywords

ANALYSE PARAMETERS, CAST OUT, CHOPLDR, data manipulation, data matching,
data scanning, DFDFIN, DFDFOUT, EMAS 2900, ETOI, FILL, FILPS, HTOS, i/o control,
IMP80, integer-character conversion, ITOE, iITOS, JOURNAL OFF, KWDSCAN,

MATCH ADDR, MOVE, parameter analysis, PARMAP, PHEX, PSTOI, QENV,

QUERY PROMPTS, RCL, REPORTON, SAMEBYTES, SETPAR, SIZE OF, SPAR,
STARTSWITH, STOREMATCH, SUPPRESS RECALL, system environment, TRAIL SPACES,
UCSTRING, UCTRANSLATE

T T
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1986 Edinburgh Regional Computing Centre

Contents

Reading a line of input into a %STRING: RCL

Command parameter analysis and prompting: PARMAP, SPAR, SETPAR,
FILPS, ANALYSE PARAMETERS

Redefining default i/o streams: REPORTON, DFDFOUT, DFDFIN

Temporary SUPPRESS RECALL or JOURNAL OFF

MOVE data from one area of virtual store to another

FILL an area of virtual store with copies of a byte

Translate to upper-case: UCTRANSLATE and UCSTRING

CAST OUT spaces from a string and translate to upper-case

Remove leading characters from a string: CHOPLDR

Count trailing spaces in a string: TRAIL SPACES

Compare areas of virtual store: SAMEBYTES and STOREMATCH

Check whether one string starts with another: STARTSWITH

Scanning an area of store for a given pattern of bytes: MATCH ADDR

Keyword index facilities: KWDSCAN

ISO/EBCDIC translations: ITOE and ETO!

Conversions between integers and strings of digits: ITOS and PSTOI

Convert integer to string of hexadecimal digits: HTOS and PHEX

Command QENV: list system environment

SIZE OF a variable)

N -

—t et e b wd ek b —d b
OCONOOMOEWNOOONOOOAEW

The utilities may be divided into six groups:
parameter analysis: see sections 2, 8;
i/o controi: see sections 3, 4, 1;
simple manipulation of data in store: see sections 5-10, 12, 15, 19;
scanning and matching data in store: see sections 7, 11-14;

integer-character conversion: see sections 16, 17;
system environment: see section 18.

Conventions

The IMP80 on EMAS 2900 form of statement is shown first with keywords in lower
case:

%external %routine %spec MOVE %alias “S#MOVE“(%integer LENGTH, FROM, TO)
If the IMP on EMAS 2900 form is different it is given next with keywords in upper
case'{%SYSTEM %ROUTINE %SPEC MOVE (%INTEGER LENGTH, FROM, TO)}

When both forms are the same, only the IMP80 on EMAS 2900 form is given.

See User Note 80 for details of the equivalent routines on EMAS-3.

27-2

1 Reading a line of input into a %STRING: RCL

%external %routine %spec RCL %alias “S#RCL" %c¢c
(%string %name S, %integer BLANKS, %integer %name R)

{%SYSTEM %ROUTINE %SPEC RCL %C
(%STRING %NAME S, %INTEGER BLANKS, %INTEGER %NAME R)}

This routine reads a line of text from the currently selected input stream and puts it
in S. If you want to ignore blank lines, call it with BLANKS=0. Otherwise use
BLANKS=1.

The permitted values of BLANKS are:

-1 initialise the routine.
0 read text, ignore blank lines.
1 read text, return blank lines if found.

The value of R after the call indicates the resulit:

-1 end-of-file detected, no data available:
S will be a null string, even if BLANKS=0.
0 line successfully read.
1 line successfully read but end-of-file detected:
no more data available after this.
2 routine successfully initialised.

3 invalid parameters supplied by caller {i.e. BLANKS<-1 or BLANKS>1).
The characters in the string -

do not include the final newline which terminated the line;

do not include the end-of-file character (decimal 25) when end-of-file is
reported;

include no ‘trailing spaces’.

Before you make calls on RCL to read input, you must call it at least once with
BLANKS=-1. Once you have started reading text with RCL, you should not use
BLANKS=-1 again except after SELECT INPUT for a different input stream.

If you set BLANKS=1, then every line will be returned, including blank lines.

iIf BLANKS=0 then RCL will return only non-blank lines (except when end-of-file is
detected) and you will get no indication of any blank lines which have been skipped.
Since RCL always removes trailing spaces from each line, a line which contains
nothing but spaces will count as a blank line and will be ‘suppressed’ if BLANKS=0.

Just as the text supplied does not include a terminating NEWLINE symbol, so it does
not include an end-of-file symbol (decimal 25) when end-of-file is detected.
End-of-file normally produces $="" and R=-1, but it may give a non-null value for S
with R=+1. If you use BLANKS=1, then you could get S="" with R=+1. If you use
BLANKS=0, then S="" with R=-1 is the only way that you can get a null string
returned by RCL.

The length of the string will be the only indication of the number of characters in the
line, and it is not possible to detect whether any trailing spaces were deleted. If
there were more than 255 characters on the line, then all the characters beyond the
255th will disappear without warning. The length will be 255 (or less, if any trailing
spaces were removed from the truncated line). The lost characters cannot be read
or recovered by any means.

27-3

Reading always starts at the beginning of a line. If RCL is called when the last
character read was not a newline, then all characters up to and including the next
newline will be skipped without warning. Exception: this rule does NOT cause the
first line of input to be skipped, so long as RCL starts reading at the beginning of the
line. :

If you call other input routines as well as RCL, you need to know that on return from
RCL the NEWLINE has in fact been read in, so that the next READ or READ SYMBOL
(or any other input routine) will start at the first character of the next line. If you
use BLANKS=0, this should cause no problems; you must simply remember that you
cannot expect to find the NEWLINE with READ SYMBOL or READ CH. READ and READ
STRING skip over newlines anyway, so it should make no difference to them. But if
you use BLANKS#0, it is a bit more complicated than that: RCL reads as far as the
NEWLINE which terminates a non~blank line, so after you have called RCL, even if you
had BLANKS=1 and you got a blank line returned in S, then a READ would start at the
beginning of the next line after a non-blank line. What this means is that you should
not switch from RCL to other input routines unless the last call of RCL produced a
non-blank line; or, if you want to make things even simpler, don’t mix calls of RCL
with other input routines.

2 Command parameter analysis and prompting

The routines which analyse parameter strings, handling keywords, supplying defauit
values and prompting for missing values, are available for use in user-written
commands. Their effect, as observed by the interactive EMAS user, is described in
the 1982 edition of the EMAS 2900 User’'s Guide. A specification for the IMP
programmer is given below, with an outline of the console user’s interface for the
parameter prompting mechanism.

The routines and functions described here are SETPAR, FILPS, SPAR, PARMAP, QUERY
PROMPTS and ANALYSE PARAMETERS. You can choose to use SETPAR or FILPS or
ANALYSE PARAMETERS to do the parameter analysis.

ANALYSE PARAMETERS is the most complicated to use, but also the most versatile.
If you choose it, then none of the other routines and functions will be required.

If you use SETPAR or FILPS, you will also need to use SPAR. You may also want to
use PARMAP and (with FILPS) QUERY PROMPTS. SETPAR does a very simple analysis.
FILPS allows for the use of keywords, and default values, and it prompts the
interactive user if a parameter is missing.

2.1 SETPAR, FILPS, SPAR etc.

If a parameter string has been analysed by SETPAR or FILPS, then PARMAP can be
used to determine which parameters are non-null, and SPAR can be used to find the
values of the individual parameters.

Parameters are numbered from 1 upwards, from left to right, in the parameter string
for SETPAR or in the template string for FILPS.

27-4

2.1.1 %external %integer %fn %spec PARMAP %alias “S#PARMAP"
{%SYSTEM %INTEGER %FN %SPEC PARMAP}

This returns a 32-bit value in.which the right-hand, least significant, bit (vaiue 1)
represents parameter number 1, and the next bit (value 2) represents parameter
number 2, and so on. A bit is zero if the corresponding parameter value is null, or 1
otherwise. Thus, if parameter values 1, 3 and 4 are non-null, then PARMAP will
return B’00000000000000000000000000001101’ (i.e., 13).

2.1.2 Yexternal %string %fn %spec SPAR %alias "S#SPAR"” (%integer N)
{%SYSTEM %STRING %FN %SPEC SPAR (%INTEGER N)}

if N>0, SPAR(N) produces the Nth parameter, which will be null if and only if the
corresponding bit in the PARMAP value is 2ero.

SPAR(0) yvields a non-null parameter value. If SPAR(0) is the first cail of SPAR after
SETPAR or FILPS, then it will yield the first non-null parameter value. Otherwise it
will produce the next non-null parameter value in order after the parameter value
vielded by the previous call of SPAR. SPAR(0) will return a null string if and only if
there are no more non-null parameter values.

The effect of calling SPAR(N) with N<O0 is not defined.

If the original parameter string was analysed by SETPAR, then the value returned by
SPAR will have been translated to upper-case. This does not happen with FILPS.

If you use SETPAR and you get at the parameter values by any other route than
through SPAR, then the translation may not be done either. Since most parameters
supplied to user-written commands will have been transiated to upper case (by CAST
OUT, q.v.) before they are passed to the command, the translation in SPAR is usually
redundant, and for most purposes it does not matter whether it is done or not.

21.3 %external %routine %spec SETPAR %alias "S#SETPAR"” (%string (255) S)
{%SYSTEM %ROUTINE %SPEC SETPAR (%STRING (255) S)}

This simply resolves S into substrings separated by single commas.
Examples:

Successive
calls of
S SPAR(1) SPAR(2) SPAR(3) SPAR(4) SPAR(5) SPAR(0)
MYFILE MYFILE nuli null null null MYFILE,null
V,LW=80 Vv L w=80 null null V,LW=80,null
FISH,,,FOWL FISH null null FOWL null FISH,FOWL,null
e FIFTH nuil null null null FIFTH FIFTH,null

SETPAR does NOT invoke the ‘prompting for missing parameters’ mechanism.

If you use SETPAR, then subsequent calls of SPAR will translate the parameter values
to upper case. (This does not happen if you use FILPS.)

27-5

2.1.4 FILPS and QUERY PROMPTS

2.14.1 For the programrﬁer:

%external %routine %spec FILPS %alias "S#FILPS” (%string %name DPF, S)
{%SYSTEM %ROUTINE %SPEC FILPS (%STRING %NAME DPF, S)}

To use this routine, you must first decide on the order of the parameters,
their keywords, and their default values (if any).
You use these to construct a string like this:

"FILENAME,OPTIONS=,0UT=T#LIST"

The string consists of fields separated by commas. Each field is a keyword
optionally followed by an “=" sign and a default value. You can see from the
example how a default value which is an empty string is indicated, and how you can
distinguish that case from a parameter which has no default at all. This string is
called the ‘template’. Your command will also need declarations for -

%external %routine %spec FILPS %alias "S#FILPS” (%string %name DPF, S)
%external %integer %fn %spec PARMAP %alias “"S#PARMAP“
%external %string %fn %spec SPAR %alias “"S#SPAR” (%integer N)

{%SYSTEM %ROUTINE %SPEC FILPS (%STRING %NAME DPF, S)
%SYSTEM %INTEGER %FN %SPEC PARMAP
%SYSTEM %STRING %FN %SPEC SPAR (%INTEGER N)}

. If S is the parameter string you want analysed, simply call FILPS (TEMPLATE,S) (where
TEMPLATE is your template!), after which SPAR(n) will yield .the nth parameter (nth in
the order which you specified in your template). Some of these parameters may be
empty strings, of course. If you want a quick check on which parameters are
non~empty, use PARMAP, which returns an integer in which each bit corresponds to
one parameter - the least significant bit (value 1) for the first parameter, the next bit
(value 2) for the next, and so on. Thus a value of 13 indicates that the first, third
and fourth parameters are non-null. There is no way (at present) to detect which
parameters were actually supplied by the user and which have taken their default
values.

It is FILPS which prompts the caller for ‘missing parameters’ if he supplies no value
and there is no default given in the template. The console user can optionally
request prompts for all parameters (see below).

In earlier versions of the subsystem, the

%external %routine SETPAR %alias S#SETPAR (%string (255) S)

{%SYSTEM %ROUTINE SETPAR (%STRING (255) S)} was available. It performed a
much simpler analysis of the parameter string S, and set up tables ready for use by
PARMAP and SPAR. This routine is still available, and still works in the same way.
PARMAP and SPAR work in exactly the same way, no matter whether SETPAR or
FILPS is used to do the parameter analysis. Thus commands which used to call
SETPAR can easily be modified to use FILPS: a suitable template must be set up, and
the call on SETPAR must be replaced by a call on FILPS. Strictly speaking, the call of
FILPS should be preceded by a call on

%external %string %fn UCSTRING (%string (255) S) or on

%external %routine UCTRANSLATE %alias “S#UCTRANSLATE" (%integer ADDRESS, LENGTH)
{%SYSTEM %ROUTINE UCTRANSLATE (%INTEGER ADDRESS, LENGTH)} if you want
complete compatibility with SETPAR, since SETPAR has the effect of translating all
parameters into upper case but FILPS does not.

27-6

Examples -
SETPAR (S)
couid be replaced by

S = UCSTRING (S)
FILPS (TEMPLATE, S)

or by

UCTRANSLATE (ADDR(CHARNO(S,1)),LENGTH(S))
FILPS (TEMPLATE, S).

However, if you are writing a new command, you should consider carefully whether
you want this translation done. If your command is called from a console or from a
batch job, any parameters supplied will be translated to upper case by the command
interpreter before they are passed in to your command - unless the caller explicitly
bypasses the translation by using double quotes around the parameters that he
types. The translation will not be done if your command is called from another
program. For most ordinary purposes it is therefore redundant to do a further
.translation before calling FILPS.

The %external %routine QUERY PROMPTS %alias “S#QUERYPROMPTS"” (%integer 1)
{%SYSTEM %ROUTINE QUERY PROMPTS (%INTEGER I)} controls parameter prompting
in commands called from programs. A command which uses the parameter
prompting mechanism will always prompt for those parameters which are missing
and for which no default values are known. However, if the command is called from
an interactive console, and if it is preceded by a single "?” character, then it will
prompt for ALL its parameters (indicating the default values as part of the prompts).
If the command is called from a program instead of from an interactive console, then
its prompting will normally be controlled by the presence or absence of a "?” at the
start of the command which invoked the calling program. Normally, a user-written
command or program will supply a full set of parameters when it calls a subsystem
command, so that no prompting will be needed. However, if the user-written
command had been invoked by the console user with a request for ‘full prompting’,
then any subsystem commands which it might call would also prompt for all their
parameters to be supplied from the console. This can be avoided by preceding the
calls on the subsystem commands by

QUERY PROMPTS (0).

On the other hand, one might want to write a program so that it reads the
parameters for a call on a subsystem command immediately before calling the
command. A simple way to get the same effect would be to call

QUERY PROMPTS (n) {where n#0}
before calling the command. The command will then prompt for all its parameters.
Any parameter values supplied by the program when it calls the command will be

offered to the console user as default values when the command prompts for
parameters.

27-7

214.2 For the console user:

The ‘old’ form of command should still work: you simply type the parameters
separated by commas. Missing parameters are indicated by consecutive commas.
Example -

Command: FILES TA*, TAFLIST

Alternatively, if you know the keywords for a command, you can give each parameter
preceded by its keyword and an “=" sign -

Commaeand: IMP80 SOURCE=COLS,0BJECT=COLY,ERROR=.0UT
Here there is no need for extra commas to indicate missing parameters.
Furthermore, the order of the parameters is no longer important. The last command
is entirely equivalent to - ‘_

Command: IMP80 ERROR=.0UT,SOURCE=COLS,0BJECT=COLY
You can also save typing by abbreviating long keywords to (at least) three characters
Command: IMP80 ERR=.0UT,0BJ=COLY,SOUR=COLS
You do not need to specify keywords for every parameter you want to supply. If you
are using a command with parameter keywords INPUT, CONTROL, OPTIONS, LINES,
START, FINISH, OUTPUT, PHASE, ORDER in that order, then you could give

Command: TXSET HUS8L2, A3,0UT=TXSETUP,8,ASC

to supply parameter vailues as follows -

INPUT HU8L2
CONTROL default (if any)
OPTIONS A3

LINES default (if any)
START default (if any)
FINISH default (if any)
OUTPUT TXSETUP
PHASE 8

ORDER ASC

The trick is that, if you specify a parameter by keyword, followed by one or more
without keywords, those are taken to be the ones which follow the ‘keyed’ parameter
in the parameter sequence defined by the command. If you leave the command to
take the default value of a parameter, and it does not have a defined default value,
then you will be prompted with the keyword, like this:

Command: ANALYSE OPT=H
FILE:

If you do not know the parameters required by the command, you may get some
help by typing the command name preceded by a “?“, and with no parameters.

Command: ?FORTE
SOURCE: LA608
OBJECT: LAG0SJ
LIST(T#LIST):
ERROR(): .OUT

You can see here how the keywords are used as prompts, and where there is a

27-8

default it is included after the keyword in brackets. In such cases, you can choose to
accept the default by simply responding with a carriage return. There is also an
example of a parameter whose defauit is a null string.

2.2 ANALYSE PARAMETERS

ANALYSE PARAMETERS is the routine which is used by FILPS. It is more complicated
to use than FILPS, but at the same time it is more versatile. If you use ANALYSE
PARAMETERS instead of FILPS or SETPAR, then you cannot use SPAR and PARMAP to
get the parameter values. Instead, ANALYSE PARAMETERS itself puts the parameters
in an %array which you supply yourseif. ANALYSE PARAMETERS does NOT invoke
the ‘parameter prompting’ mechanism. For some purposes, there may be advantages
in using ANALYSE PARAMETERS rather than FILPS. For instance, it allows you (as
author of a command) to recognize whether a parameter value was supplied in the
parameter string or whether the default value was taken; it allows you to recognize
the difference between a ‘null parameter’ and a ‘missing parameter’; and you do not
even need to know the keywords!

%record %format DRF (%integer LENGTH, AD)
%external %routine %spec ANALYSE PARAMETERS %alias "S#ANALYSEPARAMETERS” %c
(%string %name TEMPLATE, CALL PARMS, %integer MAX PARMS,
%string %array %name KEYS, %integer MAX KEY SIZE,
%record (DRF) %array %name ACTUAL,
%integer %name TOTAL KEYS, RESPONSE)

{%RECORD %FORMAT DRF (%INTEGER LENGTH, AD)

%SYSTEM %ROUTINE %SPEC ANALYSE PARAMETERS %C
(%STRING %NAME TEMPLATE, CALL PARMS, %INTEGER MAX PARMS, %C
%STRING %ARRAY %NAME KEYS, %INTEGER MAX KEY SIZE, %C
%RECORD (DRF) %ARRAY %NAME ACTUAL, %C
%INTEGER %NAME TOTAL KEYS, RESPONSE)}

This routine takes two %string parameters, TEMPLATE and CALL PARMS.

It produces in the %string %array KEYS all the keywords declared in TEMPLATE,

in the correct order, and in %record %array ACTUAL, pointers to the corresponding
actual parameter texts. The actual parameter texts are found in CALL PARMS if they
are given there; otherwise the defauit values are taken from TEMPLATE (and if no
value is given in TEMPLATE either, that is reported to the calling program).

The pointers will be %records of the format DRF. (n each pointer, the LENGTH field
gives the number of characters in the text, and the AD field gives the address of the
text. In the LENGTH word, the length is an unsigned positive integer held in the least
significant 24 bits of the word, and the most significant 8 bits are set to X'18'. But
where no actual parameter text is found either in TEMPLATE or in CALL PARMS, the
LENGTH word will be -1 (X'FFFFFFFF’). Thus for most purposes you should clear the
top 8 bits of the LENGTH before using it:

e.g.. L = ACTUAL(l) LENGTH & X'O0FFFFFF’,

The text is NOT in the form of an IMP %string. It does NOT start with a length byte.
it is simply a number of consecutive bytes containing characters. The pointers will
be to areas within the %string CALL PARMS or (where a default is used) within
TEMPLATE. ANALYSE PARAMETERS does not overwrite any part of CALL PARMS or
TEMPLATE, so the text will not be translated to upper-case.

It is possible to have a length of zero characters (represented by a LENGTH word of

X'18000000’) if the value was specified as a null string by ...KEY=,... in either CALL
PARMS or TEMPLATE.

27-9

The values of MAX PARMS and MAX KEY SIZE must be set on entry to indicate the
maximum number of parameters and the maximum length of the keyword strings
which can be accepted. The %arrays KEYS and ACTUAL must be declared with upper
bounds not less than MAX PARMS and iower bounds of 1. The %strings in %array
KEYS must have maximum length not less than MAX KEY SIZE.

On exit, RESPONSE will be =0 for success, >0 for warnings and <0 for failure.
As waell as the sign bit, other bits may be set to indicate specific warning or error
conditions.

bit 24 (value 128)- keywords indistinct: two keywords have the same first
characters, so that their abbreviations could not be
distinguished in a call. ‘

‘wrap-around’. first parameter has been specified by position,
but not in first position in the call.

some parameter specified more than once: latest value
accepted.

unrecognized keyword in call: field ignored.

keyword too long in call: extra characters ignored.

bit 29 (value 4) too many fields in declaration.

bit 30 (value 2) keyword too long in declaration: extra characters ignored.
bit 31 (value 1) - field with no keyword in declaration.

.bit 25 (value 64)

bit 26 (value 32)

bit 27 (value 16)
bit 28 (value 8)

If RESPONSE>=0, then TOTAL KEYS will also be set to indicate how many parameters
there are.

There is an interesting possibility with ANALYSE PARAMETERS: if you are writing a
command which accepts a parameter X, you can call ANALYSE PARAMETERS with X
for the TEMPLATE and a null string for CALL PARMS. The effect is best demonstrated
by an example: if the user of the command typed
PRTY=LOW,DEST=BATCH,OPT,NOCHECK then

PRTY

DEST

oPT

NOCHECK
would be recognized as KEYS, and LOW and BATCH would appear in ACTUAL as
parameter values corresponding to PRTY and DEST.

3 Redefining default i/o streams: REPORTON, DFDFOUT, DFDFIN

%external %routine %spec DFDFOUT %alias "S#DFDFOUT"” %c
(%string (31) FILE, %integer CHAN, %integer %name FLAG)

%external %routine %spec DFDFIN %alias “"S#DFDFIN” %c¢c
(Yestring (31) FILE, %integer CHAN, %integer %name FLAG)

{%SYSTEM %ROUTINE %SPEC DFDFOUT %C
(%STRING (31) FILE, %INTEGER CHAN, %INTEGER %NAME FLAG)

%SYSTEM %ROUTINE %SPEC DFDFIN %C
(%STRING (31) FILE, %INTEGER CHAN, %INTEGER %NAME FLAG)}

These allow a program or command to redefine temporarily the destination (or
source) for output (input) on stream 0. The preferred user interface is REPORTON
(for output only), but the specifications of DFDFOUT and DFDFIN are given here for
completeness.

Both DFDFOUT and DFDFIN have the effect of DEFINE(CHAN,FILE), and they also
ensure that when i/o is requested on channel 0, channel CHAN will actually be used.

27-10

Either input or output may be redirected, or both may be redirected provided that the
same value of CHAN is not used for input and for output. FILE may be a file name or
a device name or .NULL, and for DFDFOUT it may also be filename-MOD to append
the output to the existing contents of the file. If FILE is an empty string, then CHAN
is ignored, and channel 0 input or output reverts to using whatever route was active
before redirection - that is, the interactive console, or the command file or journal
for a batch job. The original DEFINE for the redirected channel is not cleared.

%external %routine %spec REPORTON (%integer CHAN) - allows users to reroute
stream 0 output to another channel. Particularly for subsystem error messages
(“FRED is a copy of GEORGE"), and for diagnostics following program failure. Stream
CHAN must aiready be DEFINEd, possibly as .NULL. REPORTON(0) reverts to ‘normal’
channel 0.

4 Temporary SUPPRESS RECALL or JOURNAL OFF

The %external %routine JOURNAL OFF %alias “S#JOURNALOFF” (no parameters)
{%SYSTEM %ROUTINE JOURNAL OFF} allows a program or command to stop its
output from being saved in the journal (RECALL file). This is for software which
generates large quantities of uninteresting output - e.g., transfers of binary data to
microcomputers. Once JOURNAL OFF has been called, RECALLing is temporarily
turned off until the next Command: prompt. The preferred interface is SUPPRESS
RECALL (see below).

%external %routine %spec SUPPRESS RECALL

This routine is used to suppress RECALL until return to command level. It takes no
parameters. It allows a program or command to stop its output from being saved in
the journal (RECALL file). This is for software which generates large quantities of
output - e.g., transfers of binary data to microcomputers. Once SUPPRESS RECALL
has been called, RECALLing is temporarily turned off until the next Command: prompt.
SUPPRESS RECALL has exactly the same effect as JOURNAL OFF.

If either JOURNAL OFF or SUPPRESS RECALL has been used, 'RECALLing’ can be
re-enabled by a call CONSOLE(14,DUMMY,DUMMY) where CONSOLE has been
specified as
%external %routine %spec CONSOLE %alias "S#CONSOLE"” %c

(%integer EP,%integer %name |,J)
{%SYSTEM %ROUTINE %SPEC CONSOLE(%INTEGER EP, %INTEGER %NAME |,J)}

5 MOVE data from one area of virtual store to another
%external %routine %spec MOVE %alias “"S#MOVE"(%integer LENGTH, FROM, TO)
{%SYSTEM %ROUTINE %SPEC MOVE (%INTEGER LENGTH, FROM, TO)}

The routine copies LENGTH bytes from address FROM to address TO. The two areas
may overlap in any way, and even if they do-overlap, the final contents of the TO
area will be the same as the original contents of the FROM area. If they do not
overlap, then the contents of the FROM area will not be changed. MOVE has no
effect if LENGTH is not greater than zero. It does not check FROM and TO, and
invalid addresses will cause ‘address errors’ to be detected by hardware and reported
as program failures. MOVE will not enable the user to violate the hardware
protection mechanisms, but it cannot prevent overwriting of the contents of the
user's own virtual memory, and that includes those files which are connected for
writing.

27-11

6 FILL an area of virtual store with copies of a byte
%external %routine %spec FILL %alias "S#FILL” (%integer LENGTH, AT, FILLER)
{%SYSTEM %ROUTINE %SPEC FILL (%INTEGER LENGTH, AT, FILLER)}

This routine overwrites each of the LENGTH bytes starting at address AT with a copy
of FILLER. Only the least significant eight bits of FILLER are used, and the rest are

ignored. FILL has no effect if LENGTH is not greater than zero. It does not check AT,
and the consequences of using an incorrect address can be the same as with MOVE.

7 Translate to upper-case: UCTRANSLATE and UCSTRING

%external %routine %spec UCTRANSLATE %aliés "S#UCTRANSLATE"” %¢
(%integer ADDRESS, LENGTH)

{%SYSTEM %ROUTINE %SPEC UCTRANSLATE (%INTEGER ADDRESS, LENGTH)}

LENGTH bytes starting at ADDRESS are inspected. Each one whose value is the I1SO
representation of a lower-case letter is overwritten by the value representing the
corresponding upper-case letter. All other bytes in the range are unchanged. In
short, the area is translated to upper- case. If LENGTH is not greater than zero, the
routine has no effect at all. ADDRESS is not checked, and an invalid ADDRESS may
have the same consequences as for MOVE.

%external %string %fn %spec UCSTRING (%string (255) S)

This function returns a string which is the same as S except for having been
translated to upper-case as described for UCTRANSLATE.

8 CAST OUT spaces from a string and translate to upper-case
%external %routine %spec CAST OUT %alias “S#CASTOUT"” (%string %name PSTR)
{%SYSTEM %ROUTINE %SPEC CAST OUT (%STRING %NAME PSTR)}

This routine removes spaces from PSTR and translates any lower-case letters to
upper case. Other symbols (including newline symbois) are not affected.
Double-quotes are an exception: they are treated specially so that suitable strings
(or parts of strings) can survive unchanged. Any parts of PSTR which are enclosed
between double-quotes are not affected - spaces are not removed and lower-case
letters are not changed. The enclosing double-quotes are removed. If there are an
odd number of double-quotes, the last (or only) one is assumed to be matched by a
double-quote immediately after the last character of the string. If two consecutive
double-quotes are themselves enclosed between double-quotes, then one of them is
discarded and one is retained. This is the only way in which a double-quote can
survive the action of CAST OUT,; it is also the only change which is made to text
enclosed between double-quotes.

Examples:

N.B. The enclosing < and > are not part of the strings; they are provided only to
show leading and trailing spaces.

27-12

BEFORE AFTER

<ABCD1234> <ABCD1234>
< Ab cDEfG > <ABCDEFG>
<ab 12 “ cd 34" > - <AB12 cd 34>
<ab 12 “cd 34 > <AB12 cd 34 >

<ab 12 “ cd ""34""" e fG> <AB12 cd “34"EFG>

9 Remove leading characters from a string: CHOPLDR

%external %routine %spec CHOPLDR %alias “S#CHOPLDR” (%string %name A,
%integer |)

{%SYSTEM %ROUTINE %SPEC CHOPLDR (%STRING %NAME A, %INTEGER)}

This routine discards | bytes from the start of the string A, so that the length of A is
reduced by I. | must be <= LENGTH(A) on entry: this is not checked. CHOPLDR has
the same effect but is more efficient than the IMP80 statement
A=SUBSTRING(A,I+1,LENGTH(A))

10 Count trailing spaces in a string: TRAIL SPACES

%external %integer %fn %spec TRAIL SPACES %alias "S#TRAILSPACES” %¢
(%integer LINE END, LINE START, TRANS)

{%SYSTEM %INTEGER %FN %SPEC TRAIL SPACES %C
(%INTEGER LINE END, LINE START, TRANS)}

This function yields a count of the ‘trailing spaces’ in the text whose first byte is at
address LINE START and whose last byte is at LINE END. That is, if the N
consecutive bytes at addresses LINE END-N+1 to LINE END inclusive are all spaces,
and the byte at LINE END-N is not a space, then the function will return N. If ail the
bytes from LINE START to LINE END are spaces, it will return LINE END-LINE
START+1. If the byte at LINE END is not a space, it will return zero. Bytes at
addresses below LINE START are never inspected and cannot affect the result.

If TRANS is 2ero, it counts ISO space characters (the EMAS standard); if TRANS is
non-zero, it counts EBCDIC spaces. It returns zero if LINE START is greater than or
equal to LINE END. The addresses are not checked otherwise, and invalid addresses
may lead to address errors (but not to the overwriting of store or of files).

11 Compare areas of virtual store: SAMEBYTES and STOREMATCH

%external %integer %fn %spec SAMEBYTES %alias "S#SAMEBYTES"” %c¢
(%integer L, A1, A2)

{%SYSTEM %INTEGER %FN %SPEC SAMEBYTES (%INTEGER L, A1, A2)}

This function compares L bytes at A1 with L bytes at A2. It returns a count of bytes
which match at the start of the two areas: zero if the first bytes are not the same,
and L if the two areas are exactly the same. It returns zero if L is zero. Only the
least significant 24 bits of L are significant, and they are taken as an unsigned (i.e.
positive) integer. Consequently, if a negative value is supplied for L, the effect will
not be sensible, and an address error may well occur. A1 and A2 are not checked,
and invalid addresses may also produce address errors. However, SAMEBYTES will
not overwrite anything even if it is called with invalid parameters.

27-13

%external %integer %fn %spec STOREMATCH %alias "S#STOREMATCH"” %¢
(%integer L, A1, A2)

{%SYSTEM %INTEGER %FN %SPEC STOREMATCH (%INTEGER L, A1, A2)}

This function compares L bytes at A1 with L bytes at A2. It returns non-zero if the
two areas are the same, or zero if they differ. If L is zero, STOREMATCH will return a
non-zero value: i.e. any two areas of zero length are taken to be equal. In other
respects its behaviour is exactly like that of SAMEBYTES, and all the same remarks

apply.

12 Check whether one string starts with another: STARTSWITH

%external %integer %fn %spec STARTSWITH %alias “S#STARTSWITH"” %c¢
(%string %name A, %string (255) B, %integer CHOP)

{%SYSTEM %INTEGER %FN %SPEC STARTSWITH %C
(%STRING %NAME A, %STRING (255) B, %INTEGER CHOP)}

This function returns zero if string A does not start with a copy of string B, and
returns a non-zero value if string B is the same as the first characters of string A.
if CHOP is zero, then that is the only effect of STARTSWITH. If CHOP is non-zero,
then STARTSWITH also has the side effect of discarding the copy of B from the
beginning of A, so that A is ‘shortened’ by LENGTH (B) bytes.

This function is provided to replace the IMP resolutions

A -> (B)A -
and A -> (B)

which could be used to test whether A ‘started with’ B, and in the former case to
remove B from the beginning of A. The revised definition of string resolution in
IMP80 means that those two resolutions now test whether A includes a copy of B,
aeven if that copy is not at the start of A. To achieve the intended resuit in IMP80
one may write

A -> DUMMY.(B).C; %if DUMMY="" %then A = C
or %if A -> DUMMY.(B) %and DUMMY="" %then ...

but STARTSWITH provides an aiternative method.

13 Scanning an area of store for a given pattern of bytes: MATCH ADDR

%external %integer %fn %spec MATCH ADDR %c¢
(%integer PATTERN ADDRESS, PATTERN LENGTH, RANGE ADDRESS,
RANGE LENGTH)

{%EXTERNAL %INTEGER %FN %SPEC MATCH ADDR %C
(%INTEGER PATTERN ADDRESS, PATTERN LENGTH, RANGE ADDRESS, %C
RANGE LENGTH)}

This function scans a row of RANGE LENGTH bytes at RANGE ADDRESS to find the
first slice which matches the pattern of PATTERN LENGTH bytes at PATTERN
ADDRESS. It returns the address of the first byte of the slice, if found: otherwise it
returns zero. The pattern may overlap the range at either end.

A zero length pattern will produce a match and return a copy of RANGE ADDRESS as
the resuit. Otherwise 2ero or negative lengths, or lengths not less than 2%*24, will

27-14

produce a result of zero. If the pattern is longer than the range then a zero result
will also be returned.

MATCH ADDR can be used for some of the purposes which IMP string resolutions
can fulfil. It is not restricted to areas of less than 256 bytes long. If it is being used
for tests on IMP strings, the length bytes of the strings should not be included in the
areas being compared.

14 Keyword index facilities: KWDSCAN

For some purposes, it is useful to have an ‘index’ of names of things with a
collection of ‘keywords’ for each name, so that if you are interested in a particular
keyword, you can find all the ‘things’ which have that keyword. For instance, the
‘things’ might be files of geographical data, and the keywords for each file might be
the names of the regions described in the file; and you would want to be able to find
all the files which contain data about whichever region you choose. Or the ‘things’
might be the names of books, and the keywords might be the names of authors, and
you would like to be able to locate the books written by any particular author.

This section describes a simple format for a ‘keyword index’, and a routine which will
search any index in that format. The routine is extremely efficient as impiemented
on EMAS 2900. It allows you to nominate one or more keywords for a search, and if
you provide several it will locate those ‘things’ which have ALL the keywords. (If you
want to find those things which have ANY of the keywords, you can simply do a
separate search for each keyword.) You can specify complete keywords, or you can
ask for keywords which start with, or include, or end with, some pattern.

%external %integer %fn %spec KWDSCAN %c¢c
(%integer %name XLENGTH,XADDR, %integer KWDCT,
%string %array %name KEYS)

{%EXTERNAL %INTEGER %FN %SPEC KWDSCAN %C
(%INTEGER %NAME XLENGTH,XADDR, %INTEGER KWDCT, %C
%STRING %ARRAY %NAME KEYS)}

This function searches a 'keyword index’ for a section which includes all of a set of
keywords nominated by the caller. Successive calls will discover all such sections in
the index.

The index must be laid out as follows:

Each section consists of a section name (any sequence of bytes not including NL,
space or colon - they need not all be printable characters - there are no rules about
the first character being alphabetic - the name may, but need not, be an IMP string
starting with a 'length byte’), and the section name is immediately followed by a
colon and a space. That is followed by one or more keywords, separated by single
spaces. Keywords should consist of printable characters, i.e., format effectors and
length bytes should NOT be included, and the three characters NL, space and colon
are not permitted in keywords. There are no other restrictions on keywords. The
last keyword of a section must be followed by a space and NL. The next section,
if any, follows immediately, with no intervening characters. The first section in an
index may, but need not, be preceded by a NL character. The index should contain
no characters after the NL terminating the last section.

The caller supplies the number of bytes in the index as the parameter XLENGTH, and
the address of the first byte of the index as the parameter XADDR. The number of
keywords to be sought is given as KWDCT, and the keywords themselves are
supplied in IMP strings as KEYS(1:KWDCT).

27-15

If a section is found whose keywords include all those nominated by the caller, then
KWDSCAN will return the address of the first byte of the title of that section. If no
such section is found, the result will be -zero. In either case, XLENGTH and XADDR
will be updated to specify that part of the index which should be scanned at the next
call of KWDSCAN. That is, if KWDSCAN returns the address of a section title, then
XADDR will point to the next section (if any) and XLENGTH will be correspondingly
reduced. Thus a further call of KWDSCAN, using the new values of XLENGTH and
XADDR, will find another section which satisfies the caller's keyword specification

(if there is another such section). If there are no more sections, or if KWDSCAN
returned zero after an unsuccessful search, then XLENGTH will be zero and XADDR
will point to the first byte after the end of the index.

The KEYS may use the same characters as are permitted for the keywords in the
index. It is also permissible for the first and/or last character of any of the KEYS to
be a space. If one of the KEYS starts with a space, then it can only be matched by a
keyword in the index which starts with the non-space characters of the KEY. If a
KEY ends with a space, then it is matched only by keywords which end with the
non-space characters of the KEY. If it begins and ends with a space, then only
keywords which exactly match all the non-space characters of the KEY will be
acceptable. A KEY which contains no spaces can be matched by any keyword which
includes the KEY.

None of KEYS(1:KWDCT) may be a null string. KWDCT must be >0.

27-16

15 |ISO/EBCDIC translations: ITOE and ETOI
%external %routine %spec ITOE %alias "S#ITOE"” (%integer AD, L)
{%SYSTEM %ROUTINE %SPEC ITOE (%INTEGER AD, L)}

This routine transiates L bytes starting at address AD from ISO to EBCDIC. In all
other respects, its behaviour is like that of UCTRANSLATE, and ail the same remarks

apply.

0 32 64 64124 96 121 128 32 160 65 192 118 224 184
1 33 79 65193 97 129 129 33 161 66 193 119 225 185
2 34127 66 194 98 130 130 34 162 67 194 120 226 186
3 35123 67 195 99 131 131 35 163 68 195 128 227 187
55 36 91 68 196 100 132 132 36 164 69 196 138 228 188
37 108 69 197 101 133 133 21 165 70 197 139 229 189
46 38 80 70 198 102 134 134 6 166 71 198 140 230 190
47 39 125 71199 103 135 135 23 167 72 189 141 231 1N
22 40 77 72 200 104 136 136 40 168 73 200 142 232 202
5 41 93 73 201 105 137 137 41 169 - 81 201 143 233 203
10 37 42 92 74 209 106 145 138 42 170 82 202 144 234 204
11 11 43 78 75 210 107 146 139 - 43 171 83 203 154 235 205
12 12 44 107 76 211 108 147 140 44 172 84 204 155 236 206
13 13 45 96 77 212 109 148 141 8 173 85 205 156 237 207
14 14 46 75 78 213 110 149 142 10 174 86 206 157 238 218
15 15 47 97 79 214 111 150 143 27 175 87 207 158 239 219
16 16 48 240 80 215 112 151 144 48 176 88 208 159 240 220
17 17 49 241 81 216 113 152 145 49 177 89 208 160 241 221
18 18 50 242 82 217 114 153 146 26 178 98 210 170 242 222
19 19 51 243 83 226 115 162 147 51 179 99 211 171 243 223
20 60 52 244 84 227 116 163 148 52 180 100 212 172 244 234
21 61 53 245 85 228 117 164 149 53 181 101 213 173 245 235
22 50 54 246 86 229 118 165 150 54 182 102 214 174 246 236
23 38 55247 87 230 119 166 151 8 183 103 215 175 247 237
24 24 56 248 88 231 120 167 152 56 184 104 216 176 248 238
25 25 57 249 89 232 121 168 153 57 185 105 217 177 249 239
26 63 58 122 90 233 122 169 154 58 186 112 218 178 250 250
27 39 59 94 91 74 123 192 155 59 187 113 219 179 251 251
28 28 60 76 92 224 124 106 156 4 188 114 220 180 252 252
29 29 61126 93 90 125 208 157 20 189 115 221 181 253 253
30 30 62 110 94 95 126 161 158 62 190 116 222 182 254 254
31 31 63 111 95 109 127 7 159 225 191 117 223 183 255 255

CONODOAALWN=O
'S
o

27-17

%external %routine %spec ETOIl %alias “S#ETOI” (%integer AD, L)
{%SYSTEM %ROUTINE %SPEC ETOI (%INTEGER AD, L)}

This routine translates L bytes starting at address AD from EBCDIC to ISO. In all
other respects, its behaviour is like that of UCTRANSLATE, and all the same remarks

apply.

E | E l E | E | E | E l E l E l
0 0 32128 64 32 96 45 128 195 160 209 192 123 224 92
1 1 33129 65 160 97 47 129 97 161 126 193 65 225 159
2 .2 34130 66 161 98 178 130 98 162 115 194 66 226 83
3 3 35131 67 162 99 179 131 99 163 116 195 67 227 84
4 156 36 132 68 163 100 180 132 100 164 117 196 68 228 85
5 9 37 10 69 164 101 181 133 101 165 118 197 69 229 86
6 134 38 23 70 165 102 182 134 102 166 119 198 70 230 87
7127 39 27 71 166 103 183 135 103 167 120 199 71 231 88
8 151 40 136 72 167 104 184 136 104 168 121 200 72 232 89
9 141 41 137 73 168 105 185 137 105 169 122 201 73 233 90

10 142 42 138 74 91 106 124 138 196 170 210 202 232 234 244
11 11 43 139 75 46 107 44 139 197 171 211 203 233 235 245
12 12 44 140 76 60 108 37 140 198 172 212 204 234 236 246
13 13 45 &5 77 40 109 95 141 199 173 213 205 235 237 247
14 14 46 6 78 43 110 62 142 200 174 214 206 236 238 248
15 15 47 7 79- 33 111 63 143 201 175 215 207 237 239 249
16 16 48 144 80 38 112 186 144 202 176 216 208 125 240 48
17 17 49 145 81 169 113 187 145 106 177 217 209 74 241 49
18 18 50 22 82 170 114 188 146 107 178 218 210 75 242 50
19 19 51 147 83 171 115 189 147 108 179 219 211 76 243 651
20 157 52 148 84 172 116 190 148 109 180 220 212 77 244 52
21 133 53 149 85 173 117 191 149 110 181 221 213 78 245 53
22 8 54 150 86 174 118 192 150 111 182 222 214 79 246 54
23 135 55 4 87 175 119 193 151 112 183 223 215 80 247 50
24 24 56 152 88 176 120 194 152 113 184 224 216 81 248 56
25 25 57 153 89 177 121 96 153 114 185 225 217 82 249 57
26 146 58 154 90 93 122 58 154 203 186 226 218 238 250 250
27 143 59 155 91 36 123 35 155 204 187 227 219 239 251 251
28 28 60 20 92 42 124 64 156 205 188 228 220 240 252 252
29 29 61 21 93 41 125 39 157 206 189 229 221 2471 253 253
30 30 62 158 94 59 126 61 158 207 190 230 222 242 254 254
31 31 63 26 95 94 127 34 159 208 191 231 223 243 255 255

N.B. Translations between different character codes are not straightforward.

There are variants of EBCDIC and of ISO; the EBCDIC code has 256 values and ISO
has only 128; and there are many criteria, not all mutually compatible, for ‘sensible’
translations. The EMAS standard translations are adequate for most purposes, but a
more comprehensive translation scheme will be available among the magnetic tape
handling utilities (since magnetic tape is the origin of most of the EBCDIC text
handled on EMAS).

27-18

16 Conversions between integers and strings of digits: ITOS and PSTOI
%external %string %fn %spec ITOS %alias “S#ITOS” (%integer N)
{%SYSTEM %STRING %FN %SPEC ITOS (%INTEGER N)}

This function produces a string which gives the decimal representation of the value
of N. The length of the string is the minimum possible. It will contain no spaces,

nor indeed any characters except decimal digits and (if N is negative) a “-" sign as
the first character. If N is zero, ITOS returns a single character “0”.

%external %integer %fn %spec PSTOI %alias “S#PSTOI” (%string (63) S)
{%SYSTEM %INTEGER %FN %SPEC PSTOI (%STRING (63) S)}

If S is a non-null string containing no characters other than decimal digits, PSTOI will
return a value which is the binary representation of the positive integer represented
by S. Overflow may occur if S represents too large a value. If S is a null string, or
if it contains any characters other than digits, PSTOI will return the value -1, and that
is the only negative value which it can return. In particular, spaces ANYWHERE in S,
+ or - signs, and any sort of punctuation will cause PSTOI to return -1.

17 Convert integer to string of hexadecimal digits: HTOS and PHEX

Y%external %string (8) %fn %spec HTOS %alias “"S#HTOS"” %c¢c
(%integer VALUE, PLACES)

{%SYSTEM %STRING (8) %FN %SPEC HTOS (%INTEGER VALUE, PLACES)}

This function supplies a string of PLACES characters, which is the hexadecimal
representation of the least significant PLACES quartets (half-bytes) of VALUE.

The string contains no spaces or punctuation, nor indeed any characters other than
hexadecimal digits. PLACES must be in the range 1 to 8 inclusive; other values are
not checked but may cause unpredictable resuits (but if PLACES is zero, HTOS will
return an empty string).

%external %routine %spec PHEX %alias “S#PHEX” (%integer |)
{%SYSTEM %ROUTINE %SPEC PHEX (%INTEGER 1)}

This routine simply outputs the string generated by HTOS(1,8) on the currently
selected output stream. It outputs no other characters.

18 Command QENV: list system environment
QENV or QENV ,output

This command prints some text identifying the environment in which it was called -
the processor, the versions of the supervisor, director and subsystem, the user, batch
job or interactive session, and so on. The second parameter to QENV, output, might
be .LPnn or the name of a file. User Note 35 contains a fairly comprehensive
description of the information provided by QENV.

One use of QENV is to get a report on the status of the system if things are not
behaving as you expect. For instance, if you get some incomprehensible diagnostics
or an inexplicable failure, it may be helpful to have a QENV listing when you bring
your problem to Advisory. For this purpose, use the command QENV *file or QENV
*.LPnn. If you use * as the first parameter to QENV you may get a lot of output, so

27-19

it is best to direct the output to a file or device. QENV * is a possible command but
it sends the output to your terminal where it is not very useful.

If you want to get this sort of information in a program, you can use UINFI and
UINFS which are described in the EMAS 2900 User’s Guide.

19 SIZE OF a variable

%external %integer %fn %spec SIZE OF %alias "S#SIZEOF” (%name X)

{%SYSTEM %INTEGER %FN %SPEC SIZE OF (%NAME X)}

This function returns the number of bytes occupied by the variable whose name is
passed as the parameter X. It works for simple variables such as %byte %integers
and %long %reals, and also for %records and %strings (for which it returns the
declared maximum length PLUS ONE to allow for the ‘length byte’ - the length of the

current contents of the string is ignored, and if it is required it can be obtained by
using LENGTH).

27-20

