&5 Edinburgh

Regi |
L Compuing | User Note 30
eoineuReH Centre | | | (January 1985)
Title:

Virtual Video Package

Author: J.M. Murison

J.Ke Y d
C.N. Dﬁ;:gﬁ Advisory Service

Synopsis

The Virtual Video Package (VVP) is designed to enable EMAS programs to
handle a variety of video terminals, by providing a terminal-independent
interface through which a program can send output to the user’s video
and receive input from it. The main purpose of providing such a package
is to free the programmer as far as possible from having to deal with
the idiosyncrasies of the different videos through which EMAS is
accessible.

Keywords

Video terminal, Virtual Video Package

—
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3J2. Telephone 031-667 1081

© 1985 Edinburgh Regional Computing Centre

Introduction

The Virtual Video Package (VVP) is designed to enable EMAS programs to
handle a variety of video terminals, by providing a terminal-independent
interface through which a program can send output to the user’s video
and receive input from it. The procedures also enable the program to
determine characteristics of the terminal, and to remove from the screen
the effects of the most recent input; this is found to be a useful
facility.

Availability

The package uses facilities implemented in the Terminal Control
Processors (TCPs) for full-screen operation of the main types of VDU.
The package cannot operate with terminals connected via the new JNT PADs
at the present time; however, it is possible that future versions of the
PAD software will incorporate handling of the JNT-sponsored Simple
Screen Management Protocol (SSMP), and when this is done VVP will be
suitably enhanced. It is also possible that locally-written software
for the BBC Micro and other ‘intelligent terminals’ will support SSMP
even with existing PAD software, thus enabling VVP to be made available
in advance of upgraded PAD software.

The Virtual Video Package is currently suitable for use with the
following terminal types:

Perkin~Elmer 550 ("Bantam")
Newbury 7001
Lear-Siegler ADM-3A

Visual 200

Hazeltine Esprit (Including Esprit II and Esprit III)

IBM 3101

ICL KDS7362

VI52 (Including BBC Micro with VT52 emulation)

The appropriate terminal-type must first have been indicated to the
Subsystem to establish the relevant information for the session by means
of the TERMINALTYPE command, or perhaps preferably by use of the TTYINIT
command in conjunction with OPTION FSTARTFILE=file. Further details can
be obtained by typing:

Command : HELP TERMINALTYPE
Command : HELP TTYINIT
Command : HELP FSTARTFILE

For some terminal-types it may also be necessary to ensure that
switch-settings at the rear of the terminal or option-settings (using
keyboard and screen) are suitably selected. Settings required are those
which are also necessary for the screen-editor SCREED, described in a
booklet from the Advisory Service. Up-to-date information on switch or
option-settings should be found by typing:

Command : HELP SCREED
and looking at the subsection "5. Notes on each terminal”.
To access VVP, it is necessary to include the library CONLIB.GENERAL

in the library search-list, using:

30-2

Command : OPTION SEARCHDIR=CONLIB.GENERAL

Suitable IMP external routine specs are available in
CONLIB.VVP VVPSPECS, and bit values and standard character values in
CONLIB.VVP_VVPFORMATS; each of these files 1s suitable for being
ZINCLUDEd into an IMP program.

Technical Background

The main purpose of providing a package such as VVP is to free the
programmer as far as possible from having to deal with the
idiosyncrasies of the different videos through which EMAS is accessible.
One difference between existing videos 1is that functions like "clear
rest of line", "cursor down", "clear screen", etc. are effected by
different character codes. This type of difference is easily handled by
choosing a standard set of control codes for VVP’s ‘standard video’ and
mapping them onto the codes required by the actual video in use onto the
standard set.

Unfortunately, other differences between video terminals cannot be
handled so easily: scrolling characteristics, .cursor movement at an edge
of the screen, etc. Such things could be standardized for every
terminal if the VV Package were able to control every character sent to
the user’s screen. However, when the user types at his video, what he
types is echoed by the local Terminal Control Processor (TCP) to which
the terminal is connected. At this stage EMAS is not involved, until
the user types a forwarding (‘trigger’) character, when the codes
accumulated by the TCP are sent down the line to EMAS. Normally the
only trigger character is Return, but additional modes now provided in
the TCPs enables one to specify any set of ASCII control characters
(characters with code < 32 decimal) as triggers. 1In principle it would
be possible to arrange for EVERY character typed by the user to be sent
to the EMAS mainframe without being echoed by the TCP, so that the VV
Package could control the echoing, and indeed every character sent to
the user’s screen. However, neither the communications network nor EMAS
2900 was designed for use in single~character mode, and the result would
be unacceptably inefficient. Instead the programmer is able to specify
which control characters typed by the user are to be triggers.

It follows that VVP only receives input retrospectively, and so cannot
control the effect on the screen of user input. While VVP cannot stop
the user changing the screen in some ‘incorrect’ way, it does give
facilities to the program using it for ‘repairing’ the screen, as
explained below.

30-3

DESIGN

/ /1 | | EMAS mainframe
/ / |=->-| I
I eseenesees | | | TCP |==>==| | | | [
- I secesscssse ' I | l ‘oo.- | ->-| I
/\ | cevenenene | |=<=| | |1/0 | | Program|
_// l I |==<=-] | | | | |
\ |/ / q.w.e.retey/| / | | | | using |
| / / |/ / \ | |
| | [/ |scr=| —<-| vvp ||
/ \ Terminal |een | | |
/A \ /
User
(not to Jold \
scale) |scr-|
|een |
\ /
| VV Package

VVP is either in INPUT MODE or in OUTPUT MODE. As a dialogue proceeds
the modes change. When the program attempts to read data from the
interactive terminal it makes use of one of VVP’s input routines,
described in detail below. Whenever an input routine is used after
output has been generated by the program, the mode switches to input.
VVP then reads the user’s input, up to the trigger character which
caused it to be sent from the TCP to the mainframe.

At this point VVP has an up-to-date version of the user’s actual
screen, plus the characters typed by the user since the last trigger
character. VVP also has a record of the screen before this latest input
was typed. The program can read the input characters from VVP if
desired; if it switches to output mode, by using an output routine, then
any unread input is no longer available for reading, but of course its
effect has none the less been incorporated in the screen. If, having
read the trigger character, the program issues another read request,
then VVP stays in input mode.

From the user’s point of view, he will not see any difference at this
stage from the current arrangements: his input will be echoed by the TCP
as at present. However, when he generates a trigger character (usually
Return or CTRL+something), he will find that any further input typed by
him will not be echoed until the program is ready to read it. Ome
consequence of this is that the system can issue a prompt string
whenever input is requested, in the sure knowledge that it will precede
the relevant input on the user’s screen.

Input Mode

When a switch from output mode to input mode is made, the following
actions occur:

1) An implicit call of the routine VV UPDATE SCREEN occurs. This causes
the user’s screen to be modified by VVP as a result of the output
generated by the program since the last call of VV UPDATE SCREEN.

2) VVP stores a copy of the screen thus updated.

30-4

Then, as input 1is received from the user terminal, VVP translates the
input control sequence into standard control characters, passes these
and the printable characters typed to the program (depending on what
input routines are used), and notes how the screen has been changed by
this input. However, VVP’s stored copy of the screen (see (2) above) is
not changed, and the program using VVP can restore the screen, or parts
of it, to its state when input mode was entered. It does this by use of
one of the ’‘repair’ routines, described below; these simply refer to the
appropriate part of the stored copy.

However, when the program causes a switch to output mode, by using an
output routine, the stored copy of the screen is lost. Note that VVP
takes account of ALL the user’s input, whether the calling program
chooses to read it or not.

There are two main situations for which the ability to repair all or
part of the screen is useful:

1) Where the user types something which is not intended to become part
of the screen display (whatever that might be), but merely
information or instructions for the program. After the program has
detected this information (by use of VVP’s input routines) it can
then restore the text which the user had to overprint to convey the
information.

2) Where the program detects that the user has overtyped or otherwise
destroyed text on the screen which was intended to be retained.

For example, the user might have overtyped a prompt; in this case the
program would probably repair the screen and ignore the input.

The routine VV READ CH enables the program to read the user’s input as
a stream of bytes, i1.e. in the order in which it was typed. However,
there are other routines which work in terms of the state of the SCREEN
after (or before) the latest input. When one of the latter routines is
used, effectively all the characters input up to the trigger character
are read first, and so VV READ CH cannot subsequently be used to read
them.

Output Mode

In output mode, the program can modify the screen by use of the various
output routines provided. The screen changes thus caused are not
actually sent to the user’s terminal until the output routine VV UPDATE
SCREEN is called, either explicitly or implicitly when a switch is made
to input mode (through use of one of VVP’s input routines).

VVP Procedures: summary

The VVP interface is procedural. There are three sets of procedures,
described in detail in the following three sections and summarized
below:

a) Initialisation procedures
VvV INIT A routine: must be called before any other VVP procedure.
VV DEFINE TRIGGERS
A routine: used to specify which ASCII control characters

are to be triggers. A shorthand way of selecting
commonly required sets of triggers 1s provided.

30-5

b)

c)

VV TERMINAL DETAILS
A routine: returns dimensions of the user’s screen and
the "Int:" character in use (ESC is often pre-empted, in
the terminal design, by being used for cursor movement,
control sequences, etc.)

VV CLOSE A routine: used to terminate VVP operation, and in
particular to re-establish normal TCP mode operation.

VV RESTORE MODES
A command: used to restore standard TCP modes in the
event that a program using VVP returns (e.g. through
error) to command level without having called VV CLOSE.

Input procedures

VV READ CH A routine: returns the next input character, either
printable or a VVP standard control character, or any
other character which was generated at the keyboard but
which had no effect on the screen. Various external
integer variables are also set to enable the program to
determine details of the effect of the character on the
screen.

VV GIVE OLD LINE
A routine: returns the contents of a specified screen
line, as it was at the start of the current input mode.

VV GIVE NEW LINE
A routine: returns the contents of a specified screen
line, as it is after the current input has modified it.

VV REPAIR LINE
A routine: causes the specified line on the screen to be
replaced by the corresponding line in the stored copy of
the screen (the copy was made when input mode was
entered).

VV REPAIR SCREEN
A routine: causes the whole screen to be replaced by the
stored copy of the screen.

VV RSTRG A routine: provides a simple way of reading input
confined to a single line, taking account of backspaces
and deletions, etc. Various conditions attached to its
use are detailed below.

Output procedures
VV PRINT CH A routine: prints a character on the screen.

VV PRINT STRING
A routine: prints a string on the screen, by repeated use
of VV PRINT CH.

VV NEWLINE, VV NEWLINES, VV SPACE, VV SPACES
Routines affecting the screen.

VV CLEAR SCREEN
A routine: clears the screen.

30-6

VvV GO TO A routine: moves the cursor on the screen.

VV UPDATE SCREEN
A routine: causes output accumulated thus far to be sent
to the user’s terminal. It is called implicitly at the
end of each output mode, to ‘flush out’ all generated
output.

VV WRITE A routine: equivalent to the IMP implicit routine WRITE
(but can write %Zlong Zintegers).

VV PRINT A routine: equivalent to the IMP implicit routine PRINT.
VV PRINTFL A routine: equivalent to the IMP implicit routine PRINTF.
d) Other high-~level i/o procedures

The following routines are offered to assist in programming menu and
page-edit applications. The VV EDIT PAGE and VV MENU routines are
designed to work even if full-screen operations are not available
(whether because of unsatisfactory terminal type, or because
communications connection is via a PAD).

VV EDIT PAGE
A routine: allows a screen page of data to be displayed
and edited, or an empty screen area to be presented for
completion.

VV MENU A routine: allows a set of options to be presented, for a
selection to be made by the terminal user.

Initialisation Procedures

Zexternalroutine VV INIT (Zintegername FLAG)

This routine must be called before any other call on VVP is made,
except that the high-level procedures VV MENU and VV EDIT PAGE are able
to perform this initialisation if it has not already been done. It is
assumed that the users terminal type has been correctly specified (by
use of the EMAS command TERMINALTYPE). Flag is set to zero if the
terminal type (as set by the EMAS command TERMINALTYPE) is acceptable
for use with VVP. Hard copy terminals and certain older video terminals
cannot be used with VVP. The following terminals are currently
acceptable:

Perkin-Elmer, Visual 200, Hazeltine Esprit and Esprit II & III
Newbury, Volker-Craig 404, ICL KDS7362, VT52

Zexternalintegerfn VV DEFINE TRIGGERS(Zinteger SET, TRIGGER BITS, ECHO BITS)

When parameter SET is positive, this function defines the control
characters which are to be TCP trigger characters, and which of these

30-7

trigger characters are to be echoed back to the video terminal by the
TCP. ‘Tell’ and Operator messages etc. are inhibited, the screen is

cleared and the cursor is placed at (0,0) - the top left-hand corner.
(Note that screen coordinates are given as (column, line) with column
and line both starting at 0.)

A short explanation follows of the current TCP arrangements enabling
transmission of screen control characters. A mainframe program may send
a 32-bit ‘mask’ to the TCP. The mask determines which of the 32 ASCII
control characters (decimal values 0-31) are to cause input to be
dispatched to the mainframe. When the user generates one of the
specified values, all preceding input up to and including the specified
character (the ‘trigger character’) is dispatched.

The parameters TRIGGER BITS and ECHO BITS are not currently used.
They will specify 32-bit masks which will determine which of the ASCII
control characters are to be triggers and which are to be echoed back to
the terminal by the TCP.

For the time being, only SET is used; the other two parameters should
be set to zero. Further, at present trigger characters, and ONLY
trigger characters, are not echoed.

The following values for SET are used to specify the required set of
trigger characters:

SET Meaning
1 makes every control character a trigger character (and hence
a non-echoing character).
2 makes every control character a trigger except those involved
in cursor movement.
3 makes every control character a trigger character except

those involved in left-right cursor movement (thus allowing
line~editing in the input line, without triggering input to
the mainframe, by using left-arrow, backspace and right-arrow
keys).

Thus 1 should be used if the cursor is not to be moved as a result of
the user typing control characters at the keyboard; 2 should be used if
the user is to be permitted to move the cursor using the keyboard’s
control keys; 3 should be used if the user is to be permitted to move
the cursor on the current screen line only.

In order to terminate VVP operation and re-establish the normal TCP
mode, VV DEFINE TRIGGERS should be called with one of the following
values of SET:

SET Meaning
0 Clear the screen and revert to normal TCP mode.
-1 as 0, but do not clear the screen. Cursor is left in its
current position.
=2 as 0, but do not clear screen. Cursor placed in bottom LH

corner of screen.

30-8

Zexternal Zroutine VV CLOSE

This routine, or VV DEFINE TRIGGERS, q.v., should be called before the
end of any program in which VVP has been used.

Zexternal Zroutine VV RESTORE MODES(Zstring(255) s) {EMAS command}

In the event that the user has left a program using VVP with an "Int:"
or if the program failed, so that VV CLOSE was not called, then
VV RESTORE MODES can be called from command level to clear the screen
and reset the modes to normal interactive-terminal mode.

Zexternalroutine VV TERMINAL DETAILS(Zintegername SCOLS, SLINES, INT CHAR)

This routine returns the number of columns and lines which the user’s
video has into the external integers SCOLS and SLINES. Note that in the
descriptions below SCOLS1 is (SCOLS-1), i.e. the number of the rightmost
column on the screen, and SLINES]l is (SLINES-1), the number of the
bottom line on the screen. SCOLS, SLINES are set to zero if the
terminal type cannot be determined.

The key which invokes the TCP "Int:" sequence - normally ESC - is
commonly changed by VVP, because many terminals use the ESC character
for the screen control functions. The control character which VVP has
selected to replace the normal ESC key function is returned in the
INT CHAR parameter. After an "Int:" escape from the calling program to
Subsystem command level, the SETMODE command should normally be given,
to re-establish the default, or required, mode settings.

Input Procedures

These procedures are used to read characters from the user’s terminal,
to determine the current state of the screen and to reset the screen if
desired. Note that the program does NOT have to read each character
explicitly: if output mode is selected, by use of an output routine, any
input unread by the program is none the less taken into account by VVP,
to bring it into line with the user’s screen. When the program next
selects input mode, however, previously unread input will NOT be
available to it. On the other hand, if the program calls any input
routine other than VV READ CH or VV GIVE OLD LINE, then all input
characters up to the next trigger are first applied to VVP’s copy of the
screen, and cannot subsequently be read by use of VV READ CH.

30-9

Zexternalroutine VV READ CH(%Zintegername CH)

CH is set with the next ASCII printable character, or with one of the
standard contvrol characters listed below.

In addition, the following external integer variables are set:

Vv X

VW y

VV BITS
VV CHARX
VV CHARY

The VV X, VV Y integers always give the cursor position AFTER the
operation determined by the character returned by VV READ CH. The
character may have been a normal printing character, or it may have been
a VVP control character. Such a control character can be a translation
of one or more characters received from the user’s terminal, or it could
have been generated as a result of some event occurring on the user’s
terminal. Exceptionally, (VV X, VV Y) might not lie within the screen
area, reflecting a characteristic of the particular terminal; for
example, one whose cursor moves to column SCOLS when a character is
typed in column SCOLSl. Programs should not make use of any knowledge
of this special situation, but rather should ignore (VV X, VV Y) when
the ‘strange cursor’ bit is set in VV BITS (see below).

VV CHARX, VV CHARY give the position of the character on the screen
when the ‘printable’ bit is set. In these cases, or when the character
was a trigger character, bits are set in the VV BITS word as described
below. The values describing the various situations are subject to
change, and therefore should be taken from the file
CONLIB.VVP VVPFORMATS, using 7%include if IMP80 is being used. This file
declares %constant %integers named as given in the "Name" column below.
The value of each is a power of 2, so that, for example, to test whether
PRINTABLE is set, the program could use the test:

%Zif VV BITS & PRINTABLE # O Zthen ceececeecs

NAME MEANING

trigger The character was a trigger character.

not echoed The character was not echoed.

printable The character was printed (ASCII values 32-126)
canon The character is a standard (’canonical’) control

character from the following set:
9 Horizontal tab operation. The actual cursor

movement is given only by the final (VV X,VV Y)

13 Carriage return

32 Cursor right

33 Cursor left (a backspace operation)

34 Cursor up

35 Cursor down

36 A "Home" cursor operation. Like the horizontal
tab, the effect is defined only by the final
(VV X,VV Y).

37 Clear screen

38 Clear rest of line

%Zconstant %integers for each of these values are
included in the file mentioned.

30-10

no effect The character had no effect on the screen, i.e. was
neither printed, nor is it a standard control
character. Situations such as {Cursor right at
column SCOLS1 and the cursor remained at column
SCOLS1} do not cause this bit to be set, but rather
the ‘strange cursor’ bit, described below.

strange cursor The cursor moved in a manner which was not deducible
from the standard control character value, or moved
in a singular manner following a printable character
or backspace. The events associated with this bit
are as follows:
* Cursor movement to another line as side effect of
typing beyond column SCOLS1
* Cursor movement to start of same line as a result
of a cursor-right operation from column SCOLS1
* Cursor movement to end of same line as a result
of a cursor-left operation from column 0
* Cursor movement to bottom of same column as a
result of a cursor-up operation from line 0
* Cursor movement to top of same column as a result
of a cursor-down operation from line SLINES!
* Cursor movement to another line as a result of a
backspace operation from column O
* Cursor movement to another line as a side effect
of a horizontal tab operation
* A "Home" operation which did not leave the cursor
at (0,0)
* No cursor movement for standard control
characters 32-35 or for a character typed in
column SCOLS1,

screen scrolled The screen scrolled as a side effect of the
operation.

screen rev The screen reverse-scrolled as a side effect of

scrolled the operation.

In addition to being able to get a stream of input characters by using
VV READ CH, the calling program has access - by use of other ianput
procedures - to the screen as it was before the current input changed
it, AND to the screen after the current input changed it. Note that if
any of these routines, other than VV GIVE OLD LINE, is used, then
VV READ CH cannot be used subsequently to read the current set of input
characters.

Zexternalroutine VV GIVE OLD LINE(Zinteger LINENO, Zstring(*)Zname TEXT)

This routine returns line LINENO, as it was before the current set of
input characters was typed. Trailing spaces are not removed, but if
LENGTH(TEXT) is less than SCOLS1, that means that the rest of the line
is blank.

30-11

Zexternalroutine VV GIVE NEW LINE(Zinteger LINENO, Zstring(*)Zname TEXT)

This routine returns line LINENO as it is after the curreant set of
input characters was typed. Trailing spaces are not removed, but if
LENGTH(TEXT) is less than SCOLS1, that means that the rest of the line
is blank. Once this routine has been used, VV READ CH cannot be used to
read the current set of input characters.

Zexternalroutine VV REPAIR LINE(%Zinteger LINENO)

This causes the new screen line to be abandoned, so that when the
user’s screen is next updated the displayed line will revert to its
appearance before the user’s latest input was typed.

Zexternalroutine VV REPAIR SCREEN

This causes the screen to revert to its state before it was changed by
the most recent typed input. (It is equivalent to calls of
VV REPAIR LINE for each line affected by input typed since the last
updating of the screen.)

Zexternalroutine VV RSTRG(Zstring(*)Zname S)

The routine prints the initial value of S, then delivers in S the
string which the user has input, between the cursor position at the CALL
of this routine and the cursor position when the RETURN key is pressed.
A null string is returned in certain cases described below.

This routine is intended primarily for use following a
VV DEFINE TRIGGERS(2 or 3,..) initialisation; it first prints the string
S at the current cursor position, then places the cursor back at that
same position and finally left-right cursor movement is enabled at the
keyboard. This routine calls VV READ CH repeatedly, taking account of
cursor movement and presenting a text string to the calling program.
The line may be edited at the keyboard using backspace, left-arrow and
right-arrow keys and overtyping previously typed characters. S should
normally be set null before the routine is called, but if the program
requires to present some text to the user for editing and re-input, then
S should be set to the required initial text.

The input line to this routine is considered ‘cancelled’ in the
following circumstances: (1) The input message is terminated by other
than Return key. Thus, e.g., Control+X (CANcel) effectively cancels the
input; (2) Characters are typed to the left of the position of the
cursor at the start of input (for this message); (3) characters are
typed on a line other than that on which the cursor lay before the
routine was called.

30-12

The DEL (RUBOUT) character is ignored by this routine.

Note that since this routine simply calls VV READ CH repeatedly in
order to reconstruct the input, calls of VV RSTRG and VV READ CH should
not be intermixed.

Output Procedures

The output primitives are given below; the procedures described do not
cause data to be sent to the terminal directly, but cause VVP to store
the character codes implied. The user’s screen will be updated when the
output routine VV UPDATE SCREEN is called, or when any input routine is
called.

Zexternalroutine VV GOTO (Zinteger X, Y)

The cursor is moved to position (X,Y). If the specified (X,Y) do not
give a point within the screen, the cursor moves as far as it can
towards that point.

Zexternalroutine VV PRINT CH(%integer CHAR)

The value of char must be in the range 32 to 126 and the cursor must
lie within the screen (and not in the bottom right-hand corner), or it
may be one of the standard control characters given below. The
restriction in parentheses 1s to prevent scrolling from occurring on
those terminals whose cursor moves to the next line when a character is
typed at (SCOLS1, SLINES1). The restriction may be lifted for those
terminals which do not show this trait. 1If the conditions described are
not satisfied, the procedure call is null,

The following standard control characters have so far been defined.

LF clear rest of line, move output pointer to start of
next line. Scrolling does not take place if current
line is SLINESI.

CLR SCREEN Clear screen.

CLR ROL Clear rest of line.

Zexternalroutine VV PRINT STRING(Zstring(255) S)

Calls VV PRINT CH, passing the characters of S.

30-13

The following are extra procedures to ease programming, but in fact
cause effective VV PRINT STRING and/or VV GOTO procedures calls.

Zexternalroutine VV NEWLINE

Equivalent to calls of VV PRINT CH(CLR ROL) followed by
VV GOTO(0, y+1).

Zexternalroutine VV NEWLINES(Zinteger I)
%externalroutine VV SPACE
Zexternalroutine VV SPACES(Zinteger I)

Zexternalroutine VV CLEAR SCREEN

Zexternalroutine VV UPDATE SCREEN

This routine causes all output generated by calls of any of the
foregoing output procedures to be sent to the user’s screen. It also
has the effect of uninhibiting the echoing of input from the user.

This can have unfortunate effects if the user has been typing ahead, and
thus it is often advisable not to call VV UPDATE SCREEN explicitly,

but to let VVP flush the output automatically, when input mode is next
selected.

Zexternalroutine VV WRITE(%#integer I, PL)

This routine 1is analogous to the IMP WRITE intrinsic output routine,
and WRITEs the value I commencing at the current cursor position.

Zexternalroutine VV PRINT(Zlongreal X, Zinteger N, M)

This routine is analogous to the IMP PRINT intrinsic output routine;
the output is placed at the current cursor position.

Zexternalroutines VV PRINTFL(Zlongreal X, Zinteger N)

This routine is analogous to the IMP PRINTFL intrinsic output routine;
the output is placed at the current cursor position.

30-14

d) Other high-level i/o procedures

The following routines are offered to assist in programming menu and
page—edit applications. The VV EDIT PAGE and VV MENU routines are
designed to work even if full-screen operations are not available
(whether because of unsatisfactory terminal type, or because
communications connection is via a PAD).

Zexternal Zroutine VV EDIT PAGE(Zstring(*)Zarray Zname S, Zintegername FLAG)

This routine is used to edit, information in a string array. When the
array has 20 elements each 80 characters in length it will fill the
screen of most terminals. Cursor control keys (arrows) then allow the
user to move freely over the information displayed, changing it at will.

The routine clears the screen, then displays in the first three lines
the basic edit instructions in the form

Use cursor control keys to move and RETURN to make changes. ESC is now CTRL-\
#A to abort editing, #U to finish editing, #R to restart editing

The string array, S, should be filled with text, one line per array
entry, before the routine is called. (The bounds of the array are not
important, but each array entry must be initialised, if only to a null
string.) The contents of the array entries are placed on successive
screen lines following the heading, and the rest of the screen (after
the line holding the last non-null string in the array) is made blank.

The text on any one line is considered to be informative or
descriptive text to the left, and the text to be edited to the right.
The routine then permits the text to the right to be edited while
protecting the text to the left. The value, N, of FLAG on entry gives
the number of protected columns, i.e. the columns up to but not
including N are assumed to contain informative text which is not to be
edited. *If N=0 the entire screen is available for editing.

The columns beyond the first N may be left blank (length of array
element less than or equal to N), or may contain text which the terminal
user may edit. On return from this routine, the array S will contain
the values of the ‘unprotected’ strings of the respective screen lines,
corresponding to the initial array entries. Note that on entry to the
routine S contained both the informative text and the text to be edited
but on exit S contains only the text which was edited, the informative
text has been removed. Trailing spaces will have been removed from the
strings in S.

On exit, FLAG will be set as follows:
zero 1f any row of the array has been altered

1 if the screen is unchanged or if "#A" (abort) has been typed.

The ’‘protected’ area is implemented by having the screen rewrittem ab
initio if the user types in that area, or if he presses cursor movement
keys which cause the screen to scroll. The terminal user is expected to

30-15

move within the unprotected area, adding or altering text as he
requires.

Note that the key which is to be pressed to get an Int: prompt is no
no longer ESC., It is CTRL- with some other key which varies from
terminal type to terminal type. The appropriate key is always shown
when an array is being edited. However, #A should normally be used to
exit from the routine in emergency.

Zexternal Zroutine VV MENU(Zstring(*)Zarray Zname S, Zinteger NHEADING,
NLINES, Zinteger Zname SELECTION)

This routine presents a menu on the screen and returns the line number
which was selected by the user. It routine prints out NHEADING+NLINES
strings from the array S. The first NHEADING lines of S (which should
be declared with lower bound 1 and upper bound at least NHEADING plus
NLINES) are regarded as non-menu or informative data.

A horizontal line is drawn to separate the NHEADING lines from the
NLINES text.

The next NLINES are items of ‘menu’ data: these items are printed on
successive lines of the screen, each preceded by a letter, A, B, C...,
and the remaining screenlines are cleared.

The terminal user is invited to type one of these letters to select a
menu item.

The value of SELECTION is set on return to be the number of the menu
item selected (between one and NLINES), or minus one if an unsuitable
terminal-type value is currently set.

It is most desirable to include in each menu an item (for example)
"QUIT", which the user may select to exit from the program to command
level.

Notes on VV EDIT PAGE and VV MENU

The VV EDIT PAGE and VV MENU routines suitably initialise the Virtual
Video Package (VVP) if this has not already been done, by calls on
VV INIT, VV DEFINE TRIGGERS. On exit from the routines, and assuming
that the terminal type was suitable, VVP is left ‘activated’, that is,
with a suitable communications-mode established and with a correct
screen image ‘remembered’. If repeated Page Edits or Menu selections
are to be performed, VV EDIT PAGE and VV MENU can be repeatedly called
with minimum rewriting of the screen contents. If, however, the calling
program requires to issue ordinary terminal i/o requests after calling
one of these ‘VV’ routines, and in any case before return to command
level, the program should call VV CLOSE to terminate (if only
temporarily) the VVP session.

30-16

A program demonstrating the use of VV EDIT PAGE and VV MENU is given
in Appendix 2.

Appendix 1: Demonstration program No. 1

To call this demonstration program, first use the command
OPTION SEARCHDIR=CONLIB.GENERAL. The program is called by command
VVDEMO.

The source of the demonstration program is file CONLIB.VVP_VVDEMO.

The following notes are extracted from the comments in the VVDEMO
program and describe the four modes in more detail than is available on
the demonstration program screen. It should be clear that there are
many possible variations on the way in which the screen interaction may
be programmed, even within the general limits of the four modes
suggested by the demonstration program.

Routine Model Routine

This is the simplest and probably most useful way of using routine
VV RSTRG (one of the procedures provided by VVP). The cursor is placed
at the input position, after the ’prompt’, which is not really a prompt
in the conventional EMAS sense, but merely a printstring. Then when
VV RSTRG is called, the input is typed at the keyboard, with the
facility of backspacing and overtyping. The input is terminated with
Return. Input of any other control character causes the input to be
ignored, and VV RSTRG returns a null string.

The user may be able to move the cursor off the original screen line,
and to change the screen in an arbitrary way. If he does this, VVP is
able to ‘repair’ the screen (i.e. change it back) as soon as it detects
that this has happened.

After the Return key is pressed, the characters typed in are erased
from the screen. The model routine then checks the input line for
"Select mode" or a line commencing "n<", where n is an integer. The
input is printed on the "Data received" line, and the action implied,
if any, is taken. Possible special actions are: select new mode,
send text to line n of Box A.

If alterations are made to the input line to the left of the initial
cursor position (when VV RSTRG is called), the screen is ‘repaired’ to
its former state and a null string is returned to the calling program.

30-17

Routine Mode2 Routine

All the comments for the model routine apply. In addition, if the
input data comprise the characters "#n" where 1<{=n{=8, then n identifies
one of the eight numbered areas in "Box A". Using VV GIVE OLD LINE and
the record array of starts and lengths of the areas, the demonstration
program extracts the text from the Box and copies it to the normal input
area. VV RSTRG is then called again after the cursor has been placed at
the beginning of the text just printed. Now the user at the keyboard
can edit the line using the same conventions described above, and the
resulting message is passed back by VV RSTRG when the Return key is
pressed. Again, VV RSTRG clears the input line.

Routine Mode3 Routine

This routine operates exactly as the mode2 routine, except that when
the "#n" input line is received, data are not moved from the specified
Box area, but instead the cursor is placed at the start of the specified
text in the Box. The same editing functions are now available at the
keyboard. The situation is in this case different from those described
for modes 1 and 2, in that the intended input area does not reach to the
end of the input line and data beyond the end of the input area is not
intended to be altered. The VV RSTRG LIMIT procedure is supplied to
specify the maximum length of string to be delivered by VV RSTRG, and
hence to specify, with the initial cursor position when VV RSTRG is
called, the limits of the intended input area. If any alteration is
made outside this area, the VV RSTRG call returns a null string and the
screen is ‘repaired’ to its former state.

In this case, where the VV RSTRG LIMIT routine has been used, VV RSTRG
does not erase the input data from the screen line, but restores it to
its former contents, before any editing took place.

Routine Mode4 Routine

This routine demonstrates the use of VVP as a menu input system. The
VV DEFINE TRIGGERS routine is called to allow up/down cursor movements
as well as left/right movements. When the routine is entered, the
cursor is placed near the top and right of the Box area. (This allows
backspace and line-feed keys to be used to get the desired positioning
even at those terminals which do not have cursor-up/cursor-right keys.)
Textual input is disallowed by this routine (input containing printable
characters is ignored, and the screen is repaired to its former state).
The required menu item is indicated by placing the cursor on the
required item and pressing the Return key. The text from the indicated
Box area is then taken as program input and written on the "Data
received" line. The cursor goes back to the original position in the
Box unless a mode change has been indicated.

Note that text can be placed (or replaced) in the Box areas by the use
of an input line commencing '"n<", where n specifies the Box area.
(This comment applies equally to the other modes, described above.)

30-18

Using the facilities demonstrated by VVDEMO, it is possible to construct
a menu-driven input system, or a system where any existing line on the
screen can be selected, modified and made the next input line. Thus,
for example, a long editor command line would not have to be retyped in
its entirety because one character was mistyped.

The program also demonstrates how the screen can be split into areas
(or ‘windows’). This facility is useful in many applications where it
is desirable to be able to see two files (or two separate parts of the
same file) at once.

The VFILES program (also in CONLIB.GENERAL, and described in User Note
56) provides an example of a use of VVP, being a video-oriented version
of the Subsystem FILES command.

30-19

Appendix 2: Demonstration program No. 2

The source for this program is in file CONLIB.VVP_VVDEMO2. The
program demonstrates the use of VV MENU and VV EDIT PAGE, and will work
both on hardcopy and video terminals.

Zbegin

! This demonstration program presents a menu and allows the user
! to create and edit records using a page editor

%Zexternal Zroutine Zspec vv editpage(%string Zarray Zname s,
Zinteger Zname flag)

Zexternal Zroutine Zspec vv close

%external Zroutine Zspec vv menu(%Zstring (*) Zarray Zname s,
Zinteger nheading, nlines, Zinteger Zname selection)

%own %string (80) Zarray empty(1:10)=""(*)

%own 7Zstring (80) %array menu(l:4)= Zc
"This is the menu heading which contains information and is not selectable",
"Edit records",
"Edit an empty page",
"Qui tll

%own %Zstring (80) Zarray s(1:20)=%c
"Name..‘.............O..O........'..0...........’.."’
"Address, Streeteeecsccosscsvsscssssssesssasonssssens'y
"Address, TOWNecsesseecrssooscssssssasssssnssesssss EDINBURGH",
"Address, County...................................",
"Address, Post Cod@esescscercssesssccccscccsssccscse

"Sex......O.."....‘.........‘..Q.'OO.....O........"

"NicknameoooooooQo.o.ouo.o.ot.0.00.0.0..0.‘.0.00000"
"Job.‘oQo.o.oc....0!0.0000000.00.0000...0000000.00.'

"Ageooo.ooo...oooooo!...o.'ooooo.o.ooo.oool.o..!ii."

H]

»

1]

]

]

]
"Favourite ColoUrecescesessscenssoessssccssccnssccsae',""(*)
%Zconst 7Zinteger no=0, yes=1

Zinteger 1, array changed

#Zswitch menuswitch(1:3)

array changed=no

%eycle
vv menu(menu, 1, 3, 1)
~>menuswitch(i)

menuswitch(1l):
i=50 {"protected" columns"}
vv editpage(s, 1)
Zif 1=0 Zthen array changed=yes
%continue

menuswitch(2):
i=0 {allow typing in all columns}
vv editpage(empty, i)
Zcontinue
Zrepeat

30-20

menuswitch(3):
vv close
%if array changed=yes Zstart
printstring("Current contents of array S")
newline '
Zfor i=1, 1, 20 Zcycle
printstring(s(i))
newline
Zrepeat
Zfinish
%Zend %of %program

30-21

Command : run testvv
This igs the menu heading which contains information and is not selectable

A Edit records

B Edit an empty page

C Quit

Which:A

End, Abort or Restart the edit by typing #U, #A or #R followed by RETURN.

”a}"eoocol0.o'o..t.oo..Qo.o.o'o...00.0.0.0'.".0.0.

New data, #A/U/R or RETURN

:Walter Scott

Address, Street.ceceececssscessosctsossssecssnsssasce

New data, #A/U/R or RETURN

:College Wynd

Addpess, Town............‘...’0..................'EDINBURG”
Replacement data, #A/U/R or RETURN

hddpess’ county.'.......0'...0.0..‘...........l...
New data, #A/U/R or RETURN

:Midlothian

Address, Post CodeO......O.'.............."......
New data, #A/U/R or RETURN

Sex-ooooooo-oooo.oo-oooo-oooooooooooo..oooucoooooo

New data, #4/U/R or RETURN
,-Male

Nicknwneooo.oot.o.oOcoouoaouoo.0.00000.00...0.0.0.

New data, #A/U/R or RETURN
:Not known

JODeeoeeossesessassscerssssorssenssssccsscssasssssses
New data, #A/U/R or RETURN

:Writer to the Signet
Age.‘.000..l......0....'...00.'000.'..'..‘........
New data, #A4/U/R or RETURN

:Full

Favourite COLlOUP..seesescsssesssvesscssssssscsscnce
New data, #A/U/R or RETURN

:Not known

New data, #A/U/R or RETURN
:#U
This is the menu heading which contains information and is not selectable

4 Edit records

B Edit an empty page

C Quit

Whiech:C

Current contents of array S
Walter Scott

College Wynd

EDINBURGH

Midlothian

Male

Not knowm

Writer to the Signet
Full

Not known

30-22

