(&5 Edinburgh | - -
| JIC Regional | |Jser Note 31

Centre ~.’ (May 1985)

EMAS 2900 Program Loader

Contact: Software Support §

) . Category:
Colin McCallum Advisory service . | See Note 15

Synopsis

This Note, which is an extract of the complete loader manual, describes
the EMAS 2900 program loader interface to the user. It is intended for
those users who wish to know just a little more of the loading process
than is given in the EMAS 2900 User's Guide.

Keywords

ALIASENTRY, CALL, CURRENTREFS, DATASPACE, EXECUTE, Errors,
LOADEDENTRIES, LOADEDFILES, LOADPARM, PRELOAD, RESETLOADER, RUN, USEFOR,
warnings.

N

Edinburgh Regional Computing Centre
James Clerk Maxwel! Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1985 Edinburgh Regionai Computing Centre

Loader Interface
Note 1. Loader search order.

When the loader is asked to find an entry point, the search is done. in
the following order:

1. System entries i.e. subsystem and Director system call list
2. Privately lcaded entries

3. Current active directory

4, Subsystem base directory

5. Privately nominated directories i.e. SEARCHDIR list

The subsystem base directory contains pointers to heavily used
software such as the standard compilers and mathematical libraries,
MAIL, VIEW, SETMODE etc. Object files found via the subsystem base
directory are always added to the ‘'permanently loaded' loader table and
remain loaded until the end of the current session or a call of
RESETLOADER.

Searching is aiways linear down the search list, never circular.
Note 2. Searching for entries at command level.

If the loader is asked to load a particular command and it could not
be found after a full search then the following action is taken:
The loader assumes that the command name is really a file name and tries
to connect it. If the connect fails or it succeeds but the file is
neither an object file nor a character file then the load has failed and
the message Load fails - ENTRY not found is output. If the file is an
object file then it is examined for a main entry point. If found then
the object file is run otherwise the load fails.

If the file is a character file then a call is made to OBEYJOB to obey
the contents of the file on the assumption that it contains a series of
commands.

Note that for an object file with a main entry then

Command: PROGY
Command: RUN PROGY
Command: EXECUTE PROGY

have identical effects at command level.
Note 3. Return code from non-trappable events in user programs.

Just before the loader passes control to a piece of user software,
it sets a trap to catch catastrophic failures in that software such as
‘unassigned variable', ‘'address error', etc. If indeed some such
contingency does occur in the user program then control passes to the
trap. Almost the first thing the loader does is check the return code.
If this is still zero, i.e. 'success' - which is quite likely since the
failure was presumably unexpected - then the loader itself will set a
standard return code of 103050709 before calling the diagnostics package
and returning to whatever initiated the unsuccessful call.

In many cases the initiating software will be the subsystem itself

i.e. a user command typed at command level, but some other
routines/commands available in the subsystem and callable from within

31-2

user programs themselves set up loader traps. Examples of these are
RUN, CALL, EXECUTE (all described below), EMASFC, FCALL and PCALL. If a
user program calls on one of these utilities then control will return to
the program even after a catastrophic failure. 1If the program always
checks the return code after calling one of these utilities then at
least it can detect that a non-trappable failure has occurred and take
appropriate action.

User Interface

%EXTERNALROUTINE LOADPARM(%STRING(255) S)

This routine allows loader run—-time options to be set. It is.the
loader equivalent of PARM which sets compiler options. The default is
FULL which requests full cascade loading, i.e. all non-dynamic
references must be satisfied for the load to succeed. Failure is
reported if any unsatisfied references remain. LOADPARM MIN suppresses
cascade loading and the loader will only load the file which contains
the entry point being looked for. Any common areas required are created
and all unsatisfied references are made dynamic. LOADPARM LET makes
unsatisfied references ‘unresolved' after a full cascade load so that
execution can begin.

If LOADPARMs MIN and LET are both set then unsatisfied references will
always be made dynamic. Although it might appear that under these
circumstances LET is ignored, it does affect the handling of mismatching
lengths for a data entry and its references (see 'Errors and warnings
associated with loading', below). '

If LOADPARM ZERO is requested then any common areas created by the
loader will be zeroed otherwise they are filled with the unassigned
pattern.

%EXTERNALROUTINE DATASPACE(%STRING(255) S)

This command allows the user to set up a data area in a file and use
it to satisfy data references which occur during loading. The file can
be a data file created by NEWSMFILE or a character file. DATASPACE
permits the caller to add data entries to the 'permanent entries' loader
table. Each entry is associated with a specific area within a file.

Two entries are not allowed to overlap and any entry must be wholly
contained within the file in which it occurs.

The command takes 5 parameters of which 2 are optional:

ENTRY - name of the new data entry.
FILE - name of the file which contains the area of store to be used by
ENTRY.

LENGTH - length of data area in BYTES.

OFFSET(optional) - offset of the start of ENTRY from the start of the
file in BYTES. This parameter defaults to 0 i.e. the first
available byte in the file is the first byte of the data area.

ACCESS(optional) - Type of access required to the data area.
The permitted values are:

R - Read and Read Shared

W - Unshared Write
WS - Write Shared

31-3

The dafault is W for a file, R for a pd file member. Indeed pd
file members can ONLY be used in R access mode. This is to
prevent problems arising when object f£iles and DATASPACE areas
are members of the same pd file. The loader connects object

. files in R mocde to load them so if an object file which was a
pd file member were loaded then the whole pd file would be
connected in this mode regardless of any previous use of the pd
file or any of its members.

Whatever the access type requested, the appropriate permission
must have been given. W and WS permissions are allowed on
another user's file. Write shared access can be tricky, e.g.
what if two of you are trying to write to the same area at the
same time, and should not be used unless you are sure you know
what you are doing.

This command will be particularly useful to users of programming
languages other than IMP since it allows the powerful EMAS facility of
store mapping to be used from any language. The only requirement is
that the language implementation allows external data areas. IMP
defines %extrinsic variables which have this property while in FORTRAN
the equivalent is the common area. If an external data area is used as
a common area it should always be a multiple of 8 bytes. Normally the
loader will create common areas at load time by assigning space from the
user's gla file (see User Note 33 for a definition of gla (general
linkage areas)). DATASPACE allows the user to set up the data area
independently of the loader in a location of his own choosing. When the
loader encounters the data reference it will find that there is a data
entry of the correct name and type already loaded and use it to satisfy
the reference. By using common areas for input and output all
conventional (and expensive) READ and WRITE operations can be avoided.
There is the further advantage that more of the user's gla file is
available for programs and the 'user gla full' error will occur less
often.

Note. This is not a language provided facility but a system supplied
one and users should bear this in mind when making use of it. DATASPACE
definitions remain in force until the end of the current session or an
explicit call of RESETLOADER (q.v.).

Example of the use of DATASPACE.

Consider the following two programs:

$BEGIN COMMON /STAR/ISTAR(L10)

$EXTRINSICINTEGERARRAY STAR(1:10) DO 100 1I=1,10

$INTEGER I ISTAR(I)=ISTAR(I)+I

$FOR I=1,1,10 $CYCLE 100 CONTINUE
STAR(I)=STAR(I)+I WRITE(6,600)ISTAR
WRITE(STAR(I),6) 600 FORMAT(1H ,10I7)

$REPEAT STOP

$ENDOFPROGRAM END

Both refer to an external data area called STAR 40 bytes long which is
to be regarded as 10 integers. 1In the IMP program the extrinsic array
STAR generates the data reference whereas in the FORTRAN program the
array ISTAR is contained in the common block STAR.

Both programs increment each array element by the array subscript before
outputting the value of each element.

31-4

Each program requires access in W mode to a data area 40 bytes long and
we can provide this using the command DATASPACE. First the file to hold
the area is created by, say,

NEWSMFILE(DAREA,80)

This command creates a zeroed file 80 bytes long called DAREA and we
assign the first 40 bytes of it to a data entry called STAR by the
command DATASPACE STAR,DAREA, 10

If either program is run then when the loader tries to satisfy the data
reference to STAR it will find an entry of the correct name, type and
length already loaded.

Running either program would give the result
1234 5 6 7 8 910

STAR remains loaded after the run so a second run would give the result
2 468 10 12 14 16 18 20

and so on.

The final values are always preserved between calls and the definition
of STAR will remain in force until log off or a call of RESETLOADER.
DAREA can support as many other DATASPACE definitions as we wish
provided that the areas defined are wholly within the file, no two areas
overlap and there is no conflict 'in access mode. For example if we have
STAR set up as above then the following attempts to set up another
DATASPACE area would fail:

DATASPACE PLANET, DAREA, 40,60 => Not wholly contained in DAREA

DATASPACE ASTEROID,DAREA, 40,20 => Qverlaps STAR

DATASPACE COMET,DAREA,40,40,R => DAREA already connected in W mode
for STAR

whereas

DATASPACE RIGEL,DAREA,20,40 would set up a new data entry 20 bytes long
from byte 41 to 60 in DAREA

while

DATASPACE CASTOR,DAREA,10,60 and DATASPACE POLLUX,DAREA,10,70 would
assign the remaining 20 bytes in the file to data entries CASTOR and
POLLUX each 10 bytes long.

The important point to remember is that the DATASPACE area length is
always given in BYTES.

WARNING. IMP programmers should not use SMADDR on a file which has
active DATASPACE definitions. This is because SMADDR can change the
access mode to a file without the loader knowing about it. For example
a file with DATASPACE entries connected in READ access mode could have
this switched to WRITE mode by a call of SMADDR with consequences best
left to the imagination! If you must access a file currently in use by
DATASPACE then you should seek advice.

%EXTERNALROUTINE ALIASENTRY(%STRING(255) S)

This command allows a user to add an alias to a system or permanently
loaded entry point directly to the loader tables for the duration of the
session or the next call on RESETLOADER (g.v.). The alias is added to
the 'permanent entries' loader table with a copy of the type and
descriptor of the original name.

The command takes two parameters:

ENTRY ~ Name of a currently loaded encry point
ALIAS - Name to be added to the permanently loaded entry table

This method of aliasing differs in several ways from the command
ALIAS. ALIAS works by adding an entry of the form ALIAS=ENTRY to the
current active directory. For example ALIAS ANALYSE,A would enter
A=ANALYSE in the active directory. The alias is permanent and can only
be removed by another call on ALIAS. A call on A would cause the loader
to search the currently loaded material. An entry called A would not be
found sc the loader would now search the active directory where it would
find A=ANALYSE. The loader would remember that it started off looking
for A in case this branch proves fruitless then start to look for
ANALYSE. ANALYSE would be found among the currently loaded entries and
the loader would return the descriptor to enter the command.

If the alias had been set up using ALIASENTRY then a call on A would
have found A among the currently loaded entries and returned the
descriptor ‘immediately.

ALIASENTRY is more efficient than alias but ALIASENTRY definitions
only remain in force for the current session or until the next call on
RESETLOADER.

%EXTERNALROUTINE RUN(%STRING(255) PROG)

This command is as described in the EMAS 2900 User's Guide. Note that
the first action is to increment the loadlevel before starting any
loading operations. 1In essence this means that the loader stores away
its current state before commencing the load. After the RUN has
terminated then everything loaded at the new loadlevel is unloaded and
the loadlevel decremented before proceeding. In consequence the loader
is left in the state it was in when the load started. By implication,
anything loaded by a call on RUN will be unloaded again after the RUN.

A routine which calls RUN will not have access to any temporarily loaded
code or any temporary data area created by the RUN.

If RUN is called from within a program and the file RUN fails
catastrophically then a standard return code of 103050709 will be set
unless the file itself had already set a non-zero return code.

At command level RUN and EXECUTE have identical effects.

%EXTERNALROUTINE EXECUTE(%STRING(255) PROG)

This command operates in the same way as RUN except that the loadlevel
is unaltered. Any code loaded or data area created by the call of
EXECUTE can be used by the routine or program calling EXECUTE. Unlike
RUN, EXECUTE does not unload.

31-6

If EXECUTE is called from within a program and the file EXECUTEd fails
catastrophically then a standard return code of 103050709 will be set
unless the file itself had already set a non-zero return code.

At command level EXECUTE and RUN have identical effects.

%EXTERNALROUTINE CALL(%STRING(31) COMMAND, %STRING(255) PARAM)

This routine is as described in the EMAS 2900 User's Guide with the
difference that if the load fails then CALL will set a return code and
return to the routine which called it, rather than returning directly to
command level.

Note that the remarks pertaining to loadlevel and loading/unloading
made in the description of RUN also apply to CALL (and its equivalents
in other programming languages - FCALL (FORTRAN77), EMASFC (FORTE) and
PCALL (PASCAL)).

If the code CALLed fails catastrophically then a standard return code
of 103050709 will be set by the loader unless a non-zero.return code has
already been set.

%SYSTEMINTEGERFN USEFOR(%ROUTINENAME MYNAME, %STRING(31)
EXTERNALNAME)

This function can be used to call any external routine or function
from within a program where the routine or function need not be
specified until run time. The nearest equivalent is CALL, but USEFOR is
a much more powerful tool than CALL since it is not restricted to
commands with a single 3STRING(255) parameter.

Code loaded via the USEFOR mechanism is not unloaded after it has been
run, unlike the CALL mechanism. This is particularly useful in
situations where constant loading and unloading could cause inefficiency
e.g. CALL inside a loop.

To use USEFOR you must first declare a dummy dynamic routine or
function which has the same specification as the target routine(s) or
function(s). A call to USEFOR at run time will then make a call to the
dummy routine or function equivalent to a call on the desired code.

USEFOR takes two parameters:
MYNAME, which is the name of the dummy dynamic routine or function,
and EXTERNALNAME, which is the name of the external routine or

function which you actually want to call at run-time, and will return
a result of zero if successful.

31-7

For example here is an extract frem a program showing how USEFOR could
be used in place of CALL:

$BEGIN

$DYNAMICROUTINESPEC ANYTHING($STRING(255) S)

Y$SYSTEMINTEGERFNSPEC USEFOR(%ROUTINENAME DUM($STRING(255) S).
$STRING(31) NEX)

SROUTINESPEC QUERY(%STRING(3l) PROMPT, %STRINGNAME ANSWER)

$CYCLE
! Get next command
QUERY("Next command: “,NCOM)
$EXIT IF NCOM="_,(END"
FLAG=USEFOR (ANYTHING,NCOM); ! Make call on ANYTHING into call on
NCOM $RETURN $IF FLAGEO; ! USEFOR failed for some reason.
! What params do we want to give NCOM?
QUERY (“Param? ", PARM)
! Now call NCOM by calling ANYTHING
ANYTHING (PARM) .
t Check return code
$IF RETURN CODE£0 STHEN 3START
$FINISH

SREPEAT

$ENDOFPROGRAM

31-8

By contrast here is another program fragment which shows USEFOR being
used to allow different integer functions to be selected:

$BEGIN

$DYNAMICINTEGERFNSPEC ANYTHING (3INTEGERNAME I,J,K)

$SYSTEMINTEGERFNSPEC USEFOR($%INTEGERFNNAME DUM($INTEGERNAME I,J,K),
$STRING(31) EXTERNALNAME)

3ROUTINESPEC QUERY($%STRING(31) PROMPT, $STRINGNAME ANSWER)

! Solve loop
$CYCLE
! Get name of next solve function
QUERY("Solve function? ", NEXTFN)
$RETURN %IF NEXTFN=" . END"
FLAG=USEFOR (ANYTHING,NEXTFN); ! Make call on ANYTHING
! into call on NEXTFN
SRETURN $IF FLAGE£0; ! Abandon if error
TESTFLAG=0
I=NEXTPRIME
J=I*2
$WHILE TESTFLAG=0 %CYCLE
TESTFLAG=ANYTHING(I,J,K)
$EXIT $IF K<O
I=K//2
J=K*2
SREPEAT . _ ,
3IF TESTFLAGEO $THEN PRINTSTRING(NEXTFN." is diverging")
PRINTSTRING("Final values are: ")
WRITE(I,8)
WRITE(J,8)
WRITE(K,8)
NEWLINE
SREPEAT

$ENDOFPROGRAM

USEFOR will fail if

a) MYNAME is not declared as dynamic .

b) MYNAME had been satisfied before USEFOR was first called e.g.
$DYNAMICROUTINESPEC FILES($STRING(255) S) would be satisfied by
the subsystem command FILES at load time.

c) the load of EXTERNALNAME failed.

Note that in the spec of USEFOR given above, which is how it appears
in the code of the loader, the $ROUTINENAME MYNAME parameter is simply a
pointer to a code item external to the loader. The loader knows nothing
about the spec of the external object. It could be a routine, a
function, have many or few parameters; it doesn't matter because USEFOR
does not call it.

In the program or routine which calls USEFOR, however, the MYNAME spec
must be identical to the spec of the dummy routine or function as the
above examples illustrate. Once this has been done then any routine or
function with the same spec as the dummy can be called.

31-9

The one restriction on USEFOR is that it can only be used with one
dummy routine or function per program.

Technically, what USEFOR does is to work its way back from its own
stack to the location in the gla which contains the escape descriptor
corresponding to the dummy routine. An attempt is then made to load
EXTERNALNAME and if this is successful the escape descriptor in the gla
is overwritten by the descriptor to EXTERNALNAME. A call on the dummy
routine in the user program is then equivalent to a call on
EXTERNALNAME. If we want to call EXTERNALNAME many times then we only
have to load it once. If desired then we can give the program different
EXTERNALNAMEs in the same run.

IMPORTANT

Care must be taken when using USEFOR over the problem of serial
re-entrancy. This is discussed at greater length in the 'PRELOADing
Object Files' section of User Note 32 but in essence the problem is that
global variables and common areas are only initialised by the loader
when a file is loaded. USEFOR can call a routine or function many times
but it is only loaded once. The nth call of the routine has as its
starting values for global variables the n-lth final wvalues.

Not all routines have global variables or common blocks and in these
there is no ambiguity but even in files which are not serially
re~entrant the fact that global variables and common block values are
preserved between runs can be turned to advantage but initially it is
.vital to be aware of the potential problems.

%EXTERNALROUTINE PRELOAD(%STRING(255) FILE)

This command causes object file FILE to be 'permanently loaded' i.e.
until the end of the current session or an explicit call on RESETLOADER
(gq.v.). Any references which remain unsatisfied after the file is
loaded are made dynamic. Note that this includes ALL data references
except common areas. Common areas are set up by claiming space from the
base gla. Preloading is generally used to 'permanently load' files
which are going to be frequently used during a session. Loading
overheads are only incurred once.

IMPORTANT
PRELOAD should not be used until the 'PRELOADing Object Files' section
of User Note 32 has been read. 1In particular the implications of
loading an object file once but running it several times must be
understood if the command is to be used safely.
%EXTERNALROUTINE RESETLOADER(%STRING(255) S)

This command will unload any user files which are currently loaded.
Any DATASPACE or ALIASENTRY definitions will also be lost.
This command can ONLY be issued at command level, attempts to call it
from a program will fail.

Current load status

LOADEDENTRIES, LOADEDFILES, CURRENTREFS

31-10

%EXTERNALROUTINE LOADEDENTRIES(%STRING(255) S)

Prints a list of entries which have been loaded by the caller i.e. no
subsystem or system call table entries.

%EXTERNALROUTINE LOADEDFILES(%STRING(255) S)

Prints a list of currently loaded files.

Y%EXTERNALROUTINE CURRENTREFS(%STRING(255) S)

Prints a list of currently active references. An active reference is
one which will trigger off a loader search if encountered during a load
(unsatisfied reference) or program execution (dynamic reference).

Loader Monitoring

EMONLOAD is a command used to control the amount of loader diagnostic
information generated during loading operations. The command takes two
parameters — monitor level and output. The first is mandatory and is a
bit significant integer. Currently the lowest 5 bits are meaningful:

2**0 - requests minimal loading information and some important but
non-critical warnings.
2**] - requests information on object files which are being loaded and
" unloaded. "Also information on the location and layout of areas
in loaded files and the module source language.
2**) - requests information on names and locations of code and data
entry
points as they are loaded. Also information on common areas
set up
by the loader.
2**3 - requests information from the loader search module on which
entry
points are being sought, which.directories are being searched,
how aliases are handled, etc.
2**4 - requests information on which unsatisfied references are being
made
dynamic when LOADPARM MIN is set.

If the second, output, parameter is not specified then diagnostic
information will appear on the output terminal (or job journal if it's a
batch job) otherwise the parameter should specify an own filename which
will be created if it does not exist or overwritten if it does. 1In this
second case loader monitoring will go directly into the file. Should
the file be filled and incapable of further extension then the
monitoring will switch automatically to the terminal.

In using EMONLOAD it is generally better to use integer parameters
such as 1,3,7,15,31 which have successively more bits set, rather than
values such as 2,4,8,16 in which only one bit is set. This is because
some information given by higher bits amplifies or expands that given at
lower bit setting and the information is no longer seen in context.

Note that EMONLOAD -1 will generate all possible monitoring.

Loader diagnostic monitoring settings will remain in force until
another call on £MONLOAD: £MONLOAD 0 or €N will turn off monitoring.

31-11

Failure messages and some critical warnings are always generated
regardless of the EMONLOAD settings.

EMONLOAD ? will give the current MONLOAD setting and, if output is
being sent to a file, say how much has been written.

Suppressing loader warning messages - #LQUIET

The command ELQUIET will switch off all loader warning messages. This
facility is useful if you are PRELOADing files which have a large number
of references which have to be made dynamic. In normal circumstances
each reference will generate a warning message that its status has
changed and this can generate a lot of non-significant warnings.

You should only ever use the £LQUIET facility sparingly and in well
understood loading situations. ELQUIET is cancelled by a call on £N.

Errors and warnings associated with loading

Usually error and warning messages are self-explanatory but sometimes
it is not possible to convey the complexity of a failure or how it arose
in a short error message, let alone what to do about it. In this
section some of the less obvious errors and warnings will be enlarged
upon. Most of the theoretical background is in the Technical Aspects
section of the complete loader manual (Elle SUBSYS.LOADERMAN on the 2976
and on the 2988).

Note 1. Loader action on éncouhtéking mismatching data entry/
data reference lengths.

A data reference in an object file always has a length associated with
it to tell the loader how long the expected data entry should be.

If there is a data entry of the correct name already loaded but whose
length does not match the data references expected value then the loader
may either a) do nothing, b) issue a warning or c¢) terminate the load
with an error. The action followed in any particular case depends both
on the loadparms set for the load and the source language of the object
file which is being loaded when the mismatch occurs. The rules followed
by the loader are tabulated below:

1. All data entries except common entries.

Loading conditions Ref len > Ent len REF len < Ent len
Default(Cascade) FAIL WARN (except FORTE)
LET WARN WARN (except FORTE)

MIN or call on dynamic
ref with default FAIL WARN (except FORTE)
loadparms

MIN+LET or call on dynamic
ref with LOADPARM LET set WARN WARN (except FORTE)

31-12

2. Common entries.

Loading conditions Ref len > Ent len REF len < Ent len
Default (Cascade) * -
LET * -

MIN or call on dynamic

ref with default FAIL WARN (except FORTRAN
loadparms blank common)
MIN+LET or call on dynamic WARN WARN (except FORTRAN
ref with LOADPARM LET set blank common)

* Common is created at the end of a cascade locad if no data entry is
found and is always made as long as the longest reference.

A. Errors.

1. Unable to create USERSTACK -
Create AUXSTACK faals -
Create USER GLA fails -

What happened: When you first run commands which are not in the
subsystem, the loader will create up to 3 temporary files on your
‘behalf as required. These are the user stack (TEUSTK), the
auxiliary stack (TEASTK) and the user gla (TEUGLA). The attempt
to create the file named in the error message failed.

What to do: The second half of the message should indicate what the
problem is - e.g. too many files connected, too little file space,
etc. - and action should be taken accordingly. You cannot run
whatever it is you wanted to run until the file which couldn't be
created is created.

2. Eztend USERGLA fails -

What happened: When the user gla file TEUGLA is set up it is quite small
but has the capacity to extend itself as necessary up to a certain
system imposed limit. You have tried to exceed that limit.

What to do: The most likely cause of this failure is trying to load a
program which demands huge amounts of space from the gla, e.g.
very large arrays or common blocks. You should find out why so
much space is being requested and which object files are causing
the problem. You can set up common blocks in separate data files
using the command DATASPACE if you are using FORTRAN. Similarly,
large internal arrays can be made external (e.g. %extrinsic in
IMP, named common blocks in FORTRAN) and mapped on to data files
with DATASPACE.

3. Base gla full

What happened: You have tried to 'permanently load' an object file and
there is not enough space in the base gla file to satisfy the gla
requirement of the file. This failure can occur if you use
PRELOAD a lot.

31-13

What to do: If there are several files already permanently loaded then
if you no longer require them call RESETLOADER to unload them.
This may release sufficient space on the base gla. Failing that,
proceed as in A.3. above.

4. Loader tables full

What happened: You have loaded so much software that the loader tables
have completely filled up. This is an extremely unlikely failure.

What to do: Inform your local Advisory Service. If you are loading
FORTRAN it may be possible to suppress many of the entry points
with the object file editor MODIFY (see User Note 32).

5. Too little space for initialised stack

What happened: The user stack has a hardware imposed upper limit of
252K. OPTION INITSTACKSIZE=nn reserves whatever you request of
this 252K to be used as initialised stack. The area is used by
some languages, especially FORTRAN, to store variables between
calls of routines. Your program has requested more initialised
stack than you have set up.

What to do: Increase the INITSTACKSIZE. If you turn on loader
monitoring or ANALYSE or OBJANAL the object files you can find ocut
how much initialised stack is being requested if you are not sure.
If the problem is being caused by cumulative requests from a
number of object files then LOADPARM MIN may be worth trying if
you are currently on default loadparms and you think that all the
files loaded may not be called.

If you are still having problems and you are a FORTRAN user then
it may be worth recompiling with PARM MINSTACK

6. Date ref ENTRY in FILE longer than entry and LOADPARM LET not set

What happened: You have a data entry called ENTRY already loaded. A
reference to ENTRY has been found in FILE which expects the length
of ENTRY to be bigger than it actually is. Since you have not
specifically permitted this situation (by the command
LOADPARM LET), it is treated as a fatal error. See table in Note
1.

What to do: You could set LOADPARM LET but this is potentially very
dangerous since you may start overwriting other areas of store.
This is one of the classic ways of getting address errors which
are very difficult to trace. If you are using FORTRAN and the
problem is mismatching common areas then you are probably using
LOADPARM MIN or using PRELOAD. In both, the first file with a
data reference to ENTRY will cause it to be created with the
length specified in the file. If this is not the maximum length
for ENTRY then at some point this error will occur. You should
always ensure that the longest reference gets loaded first. 1If
you are not a FORTRAN user then the best plan is to modify the
software so that data entries and their references have the same
length.

31-14

7. Load initiated by dynamic call to ENTRY failed

What happened: Your program made a dynamic call to ENTRY but the load
failed.

What to do: There will be an error message immediately following this
message which will give the reason for the failure. The most
commen is that the loader could not find a particular entry point.

8. Attempt to call unsatisfied ref ENTRY

What happened: A previous search for ENTRY failed but as LOADPARM LET
was set the reference was made unresolved. You have tried to call
it.

What to do: Depends whether you expected the failure. You could provide
a dummy entry point or use one of the alias facilities if you must
persist. It would be better however to provide the expected
software.

9. [nconsistent directory entry for ENTRY

What happened: When the loader searched for ENTRY it was not loaded but
a reference to it was found in one of the directories in the
search list. When the loader loaded the file which the directory
said contained ENTRY it found that it wasn't there at all. This
can happen when an object file is recompiled with different
entries but the directory in which it is inserted is not updated.
(Note that if you recompile an object file which is inserted in to
your active directory then the active directory is automatically
updated.)

What to do: Find out which directory is inconsistent by repeating the
load with monitoring turned on. If it's one of your own
directories then update it, if it's a system directory e.g.
ERCLIB, CONLIB, SUBSYS etc. then tell the Advisory Service who
will notify the relevant person otherwise send a TELL message or
MAIL to the directory owner suggesting politely that the directory
requires updating!

B. Warnings.
1. Warning - connect directory fails DIRECTORY NAME

What happened: At log on or when the active directory or searchdir list
is changed the loader builds a new list of directories it must
search when looking for entries. One of the files in the list
could not be connected so it is not in the‘current search list.

2. Warning - Satisfying non-dynamic ref to ENTRY by entry at higher
loadlevel. Ref made dynamac

What happened: The loader satisfied a static reference to ENTRY with an
entry point from an object file which was certain to be unloaded
before the file containing the reference. To ensure that the
reference did not point to a file which was no longer loaded, the
loader changed the characteristics of the reference to be dynamic.

31-15

3. Warning - Code-ref to ENTRY made dynamic while unloading
Warning - Data ref to ENTRY made dynamic while unloading

What happened: The file which contained entry point ENTRY has been
unloaded but a reference to ENTRY has been found in an object file
which is to remain loaded. The reference has been unfixed and
turned into a dynamic reference. If the dynamic reference is
called later then the loader will once again carry out a full
search for ENTRY. A reference which generated warning B.2. above
while loading will produce this warning at unload time. Beware of
dynamic data references.

4, Code ref ENTRY made dynamic
'Data ref ENTRY made dynamic'

What happened: You have set LOADPARM MIN. A static reference to ENTRY
has been made dynamic. Beware of dynamic data references.

5. Code réef ENTRY made unresolved
'‘Data ref ENTRY made unresolved'

What happened: You have set LOADPARM LET. A static reference to ENTRY
could not be satisfied after a full search so the reference has
been changed to type unresolved to allow the run to proceed.

If you attempt to call it you will get error A.8.

If this warning comes as an unpleasant surprise then check you
have the object file containing ENTRY inserted in one of the
directories in the search list. Also check for spelling
inconsistencies.

6. n data ref(s) to ENTRY in FILE LONGER than current entry
n data ref(s) to ENTRY in FILE shorter than current entry

What happened: You have a data entry ENTRY already loaded. There are n
references to this entry in the file you are currently trying to
load (FILE). These references expect ENTRY to be longer or
shorter - depending on which message you got - than it actually
is.

What to do: This depends on the loading conditions at the time.
Data references longer than the entry is by far the more serious
condition (which is why °‘LONGER' is output in capitals), since you
may try to read from, or write to, an area of store outwith the
defined scope of the data entry. It is very dangerous to proceed
with a computation under these circumstances unless you are quite
confident that there will be no problems. You will only get the
'LONGER' warning if you have LOADPARM LET set otherwise such a
condition will cause termination of the load with error A.6.
The 'shorter' condition is usually less serious. At least you
won't be trampling over other areas of store but nevertheless it
is always worth looking into the reason for the mismatch. While
not as immediately dangerous as the 'LONGER' condition it might
still mean that the run will provide erroneous results. When in
doubt, try to ensure that the lengths of all data references have
the same length as the entry.

31-16

C. Warnings generated in loader monitoring
1. Warning - CODE relocated - crosses segment boundary

What happened: You are running an object file which is a member of a pd
file. 1Its CODE area straddles a segment (256K) boundary. The
loader is creating a file called TECODE and copying the CODE and
SST areas of the object file into it so that the file can be run.
This is highly inefficient and you should recrganize your pd file.

2. Warning - CODE flagged as unshareable and relocated

What happened: The object file has told the loader that the CODE area is
unshareable so the loader is taking the action described in C.l.
There is nothing you can do about this.

3. Warning - CODE not connected at preferred site

Warning - GLA not connected at preferred site

What happened: You are loading a bound object file but the shared (CODE)
or unshared (GLA) areas respectively could not be connected at
their preferred site. The site is either occupied by another file
or you are trying to run a bound file which is a member of a pd
file. The loader has to recalculate all the run time addresses
for the named areas and plant them in the appropriate locations so
there is a loss in efficiency. If you are going to run the file
again, try DISCONNECT .ALL before you do to maximize the number .of
dvailable sites.. ’ o o ‘ o -

4. Warning - ISTK not connected at preferred site

What happened: You are loading a bound object file but the initialised
stack cannot occupy its preferred location. There is only one,
fixed, location for the initialised stack since the user stack is
connected at a fixed address. The warning was generated because
you are either permanently loading a bound file or temporarily
loading it and the preferred location is already in use. (See
User Note 33 for further explanation of allocation of initialised
stack for permanently and temporarily loaded object files). Run
time addresses which refer to initialised stack are recalculated
with some loss in loading efficiency. It is not always possible
to do anything about this, e.g. if you are loading >l bound file,
and even when it is it may not be worth doing.

31-17

