§ vwvessy or Edinburgh

1 Regional .| User Note 32

| Eonsoren Centre (April 1983) |

Efficient Loading on EMAS 2900'

Author: Contact:
Colin McCallum Advisory Service

Synopsis

This note, which is an extract of the complete loader manual, offers
guidance on how to improve the efficiency of loading object files.

Keywords

Directory searching, entry names, LOADPARM, object files, PRELOAD

"]
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

() 41090 Elleluinwis Doanimnal MAacamestirne DAanern

Introduction

The advice given in this note is general in nature since it is not
possible to be completely categorical as to what must or must not be
done in any given set of circumstances. Some of the advice is directed
at you the user and other parts at you the implementer of software. You
are invited to consider the various points and recommendations as they
apply to your problem and make judgements accordingly. At the outset it
should be pointed out that you should only be worrying about efficient
loading after you are sure that the software you wish to run has passed
the development phase and is ready for production running.

In the following text CODE means the specific area of an object file
which contains executable code.

Loading Strategies

If the software you wish to run refers to several external files and
you know that not all of them will be called then LOADPARM(MIN), which
will only load files actually called, should be considered. In a very
small number of cases there may be a problem with dynamic data
references, but in general the more external files, the bigger the
saving with LOADPARM(MIN). Note that a similar effect can be achieved
if it’s your own software you are running by compiling with
PARM(DYNAMIC).

However, if all the external files do get called in the run then
LOADPARM(MIN) becomes less efficient than a full load since each dynamic
call will incur separate loader overheads. When in doubt, use a full
load as it is always annoying as well as wasteful when a program fails
after using a considerable amount of cpu because an item called
dynamically could not be found. A full load (the default) would have
revealed this immediately.

Directory Searching

The first point to be made is that searching a directory is much
faster than loading a file so any savings in cpu time achieved in
reordering searchdir lists are liable to be small. However the savings
in unnecessary paging from directory to directory can be significant and
it is recommended that searchdir lists be kept no longer than is
necessary. If one particular directory contains frequently required
entry points then it should be moved to the top of the search list.

Organization of Groups of Object Files

Several different ways of organizing a group of object files can be
envisaged: leaving them as individual files, LINKing them to form one,
larger, object file or holding them as members of a pd file.

In general, holding a group of object files as pd file members is to
be avoided unless

a) You want to change individual members frequently or

b) the number of entry points is very large and you know that only a
few members will be needed in any one load or

c) you need to gather several files together and they are not all
object files.

In most cases apart from those above, the best way to hold a
collection of object files is to LINK them into one file. Although this
file may be large only those pages of the file actually required will
come into main store. Additionally, the techniques for optimising the
loading characteristics of object files described below can be applied
which can lead to substantial improvements in efficiency.

The main objection to pd files is that each member requires a separate
call on the loader to load it. If there is cross referencing between
members then overheads increase. An even worse problem can arise if the
pd file grows to >256K and the CODE area of one of the members crosses
the segment boundary. Before such a file can be run, a temporary file
has to be created and the shareable areas copied into it - both
expensive operations.

Note that bound object files should NEVER be collected into pd files
as this negates the whole point of binding. (See ‘Binding Object Files’
section for further explanation.) Furthermore it is not possible to
LINK object files which have been bound, so binding should always be one
of the last operations in any collection sequence.

PRELOADing Object Files

This is a powerful technique to cut down loading overheads on object
files which will be required a number of times during a session. After
an object file has been PRELOADed then all its entry points are added to
the ’‘permanently’ loaded entries table and it remains loaded until the
end of the current session or an explicit call of RESETLOADER. No
further loading overheads are incurred regardless of how many times the
file is called subsequently while the file remains permanently loaded.
Another use of PRELOADing is to override entry points which would
otherwise be loaded as a result of normal searching. This can be
extremely useful, for instance, to test a new version of a routine
without disturbing the original object file. An entry which is already
loaded will always be used to satisfy references to that name in an
object file which is being loaded even if there is an entry point of the
same name in the file. Two entries of the same name and type are not
allowed in the loader tables at the same time. If this situation should
arise then the second occurrence of the name and type are ignored and a
warning printed. 1If you use this facility a lot then you will generate
a lot of (unsuppressable) warning messages since the loader has no way
of knowing that you are doing it deliberately.

Problems in PRELOADing - Serial re-entrancy and f£filling the base gla

There are, however, three pitfalls in PRELOADing which lurk for the
unwary user. The first is whether or not the object file to be
PRELOADed is serially re-entrant i.e. do you get the same result if you
run a PRELOADed file twice with the same data. The problem is not as
trivial as it may appear since global variables and common areas are
only initialised when the file is loaded. 1If a file is PRELOADed then
the second time the object file is run there is no loading to be domne
and hence no initialisation, All the global variables and variables in
common areas will hold the final values from the previous run of the
object file. The effect can easily be overlooked since it is likely
that the program will run without any obvious error even though the
final results may be quite wrong! Of course it is possible to take
advantage of the fact that global variables are preserved from run to

run, but first it is necessary to be aware of the effect. The second
pitfall is most likely to be encountered by FORTRAN users who use
PRELOADing. The problem in this instance is that when a file is
permanently loaded it takes the gla it requires from the base gla.

This file is 256K in length but only about 200000 bytes of this are
actually available for permanently loaded object files to use. It may
be recalled that the space for common areas is created on the gla by
default (see User Note 31)., It is very easy with FORTRAN programs which
have even moderate sized common blocks to request more space than is
actually available and the failure ‘BASE GLA full’ will occur.

There are two possible ways round this. It may be that you have a

number of permanently loaded files which are no longer required, which,
if unloaded, would release enough space for the PRELOAD to succeed.
A call of RESETLOADER will unload all currently loaded files. A better
solution however is not to allow the common areas to be created on the
base gla at all by setting them up with the command DATASPACE in a file
specifically created for the purpose.

The third pitfall is again more likely to be encountered by FORTRAN
users and relates to the use of DATASPACE with PRELOAD as suggested
above. You must ensure that any areas you set up with DATASPACE are
large enough to cope with the largest occurrence of the named area in
different modules. The biggest problem is usually with blank common
(always called F#BLCMN) whose length may vary from routine to routine,
module to module. You may, for instance, decide to PRELOAD an object
file which you see requires 1000 bytes of blank common, so you use
DATASPACE to set up an entry called F#BLCMN of length 1000 bytes and
PRELOAD the file. You then run the file only to find it calls another
module which actually needs 1500 bytes of blank common. The result will
be a catastrophic failure. The moral of the tale is that it is not
sufficient only to consider the lengths of data areas in the file you
want to PRELOAD, you must also take into account the lengths of
identically named areas in other modules which might be called. The
DATASPACE areas must be big enough to cover all possibilities.

Optimising the Loading Characteristics of Object Files

This section is a discussion of some of the facilities of the EMAS
object file editor, MODIFY, which can be used to reduce the cost of
loading object files. Separate documentation is available which gives a
complete description of the facilities (User Note 4) and this section
should be read in conjunction with it.

The MODIFY operations of interest are: SUPPRESS, SUPPRESS DATA,
SATISFY REFS, SATISFY DATA, COMMON ENTRY, FUSE CODE, FUSE GLA and BIND.
Note that SATISFY REFS, SATISFY DATA and COMMON ENTRY are all performed
as side effects of BIND.

FUSE CODE and FUSE GLA - Action before LINKing object files

An EMAS object file, for the purposes of loading, can be considered as
comprising seven sections: two which are generally shareable (CODE and
SST), four unshareable areas which are grouped together in the gla (PLT,
GLA, UST, INITCMN) and the seventh, also unshareable which is copied to
the user stack (INITSTK). In its simplest form these areas are laid out
as

CODE
SST

PLT
GLA
UST
INITCMN
INITSTK

If two object files, 1 and 2, are LINKed then the resultant object file
will look like

CODE1
CODE2
SST1
SST2
PLT1
PLT2
GLAl
GLA2
UST1
UST2
INITCMN1
INITCMN2
INITSTK1
INITSTK2

and similarly if more than two files are LINKed.

It will be observed that as object files are linked together the
individual areas of any given object file become more and more
separated. For example, in the above case CODEl and SST! are now
separated by CODE2., Since CODEl refers to SSTl then if these areas end
up in different parts of the store, every reference by one to the other
will cause a page fault and efficiency will be seriously reduced.

The FUSE CODE operation on an object file causes the SST area to be
permanently appended to the CODE area so that subsequent LINKing will
not force them apart. Similar considerations apply to the unshareable
areas copied into the gla and the FUSE GLA operation is used to achieve
a similar result.

BINDing Object Files

BINDing an object file can offer substantial savings in loading
overheads and should always be considered if you want to maximize
performance or you administer production versions of large packages or
both. In this context, an object file can be the end result of LINKing
as well as the primary output from a compiler. Bound files are not very
useful in development situations.

In the binding operations the object file is processed to produce a
module which can be loaded at minimal cost. Fixed sites are assumed for
the shareable areas, the unshared gla areas and for the initialised
stack then all the relocation requests are processed. In essence, the
generality of not assuming anything about where files might be connected
is traded off for considerably less processing in loading the file. The
fixed sites can be nominated by the user and any number of bound files
may be loaded in the course of a single load. It is important to note,
however, that a bound file can still be run even if it cannot be
connected at its preferred site(s). In these circumstances the site

dependent characteristics are recalculated with respect to the actual
sites that had to be used at run time. You should never be put off
using bound files because some of them might not be connected at their
particular preferred sites.

In addition the BIND operation also performs the SATISFY REFS, SATISFY
DATA and COMMON ENTRY (but see below) operations as side effects.
The first two will satisfy any code or data references which can be
satisfied by entry points in the same file, while COMMON ENTRY will
create a data entry for a data reference marked as a COMMON reference
and satisfy all references to it. In BIND, however, the entry name is
NOT added to the list of data entries. Note that there is a potential
problem if several files to be bound and likely to be loaded at the same
time contain data common references to the same item. Each file would
have its common references fixed up with the address of its own entry,
At load time the loader would load all the files but any attempt to rum
would cause catastrophe since none of the files would have access to the
same common area. At the time of writing it is not known whether these
circumstances are likely to arise in practice. 1If this proves to be a
problem then the situation will be reviewed and MODIFY changed.

The following points should be noted when using bound files:

= Never collect bound files into pd files as this negates the whole
purpose of binding since the shareable areas can never be connected at
their preferred sites without the loader making a private copy.

- Bound files cannot subsequently be LINKed or MODIFYed so the binding
operation should always be one of the last, if not the last.

- Ensure that a series of bound files which are liable to be loaded at
the same time do not try to claim the same preferred sites. (Beware of
PRELOADing in this respect. Use ANALYSE or #MONLOAD to check.)

- Beware of using so many bound files that you or an unsuspecting user
of your software suffers ‘VM full’ errors; each bound file loaded will
cause one, occasionally two, extra files to be created.

- High segment number preferred sites are more likely to be free than
low segment number sites. Bear this in mind when nominating fixed
sites.

- Before running software which will involve loading substantial numbers
of bound files, DISCONNECT(.ALL) to maximize the number of free sites.

SUPPRESSing Entry Names

The MODIFY operations SUPPRESS and SUPPRESS DATA remove from the list
of code entries and data entries respectively nominated entry point
names. This can be useful after LINKing or BINDing when it is known
that all references to the entry point have been satisfied internally
and it is not intended that any other software should have access to it.
After the entry point has been SUPPRESSed then the loader will have no
knowledge of it at load time so no time will be wasted adding it to the
loader tables and there will be fewer entry names to search.

Note that when a MODIFY run has been completed, a new object file has
been created which reflects the changes requested. If you were to
perform SATISFY type operations - whether explicitly in SATISFY REF or
SATISFY DATA, or implicitly as in calls of BIND - and SUPPRESS
operations in the same MODIFY run, then the order in which these were
done would be immaterial since MODIFY still has access to the original
file. However, if in one run you SUPPRESSed a particular entry then in
a subsequent run you would not be able to use it to SATISFY any internal
references. This situation might arise if, for instance, you were

linking in new modules to an existing object file which contained
references to an entry previously SUPPRESSed.

Of course, you might wish to do the opposite and ensure that a given
reference is satisfied externally and not internmally. In such cases the
entry should be SUPPRESSed as soon as possible, taking care not to call
an explicit or implicit SATISFY operation in the same run.

This offers another route to the testing of a new version of a routine
without recompiling everything, (see PRELOADING Object Files above),
although in this case the MODIFY should be done on a copy of the master
object file as an entry once SUPPRESSed cannot be un—-SUPPRESSed by

another call of MODIFY,

