“%’"“ Edinburgh

Regional o | User Note 33

eoinsuRgH Centre (September 1985)

EMAS 2900 Fundamentals

Object file format, Stacks, GLAs, Logging-on, Loading

Software Support
Category:
Neil Hamilton-Smith Advisory service

Synopsis
This Note, which is an extract of the complete loader manual, describes some of

the loading and linking activities that take place when a user logs on to EMAS and
then executes a command or program.

Keywords

General Linkage Area (GLA), Logging-on, Object file format, Stacks

L]
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1985 Edinburgh Regional Computing Centre

Loading fundamentals -Object file format, Stacks, GLAs, Logging-on,
Stack switching

2900 Object File Format

The basic task of the loader is to load executable files i.e. EMAS 2900 object
files. These are normally generated as the primary output of the various language
compilers available on EMAS. The files conform to a standard format so that,
subject to any parameter passing restrictions imposed by the various languages,
cross—calling between modules written in different languages is possible.

The object file created by ERCC 2900 compilers using LPUT may contain up to
seven areas in addition to red tape and linkage information, laid out in a
contiguous area as below:

area code

standard file header
code

gla

pit

sst

ust

initcmn

initstack

linkage data

object file map

NOOEWN =

The standard file header consists of eight words and is described in User Note
35.

The generated object file may have up to seven areas, as defined below, in
addition to the linkage information generated by LPUT. The content of each of
these areas, any of which may be empty, is at the compiler writer’'s discretion,
subject to the comments below.

area

1 code should ideally contain only executable code and constants
accessed only from within the code area, thus enabling a connect
mode of execute, shared. As this mode apparently inhibits the
most efficient method of access to constant strings and vectors
the connect mode, initially at least, will be execute, read, shared.
It is anticipated that connection in execute only mode will be
considered essential in some instances.

2 gla (general linkage area) normally contains descriptors for accessing
external objects, entry descriptors and static (normally scalar)
data. The connect mode is read, write, unshared. The first eight
words have a prescribed use (see below).

3 pit (procedure linkage table) may be used to contain entry and reference
descriptors. If a plt exists then all such descriptors must be
contained in it, rather than in gla, which may still exist to contain
static data. The connect mode is read, unshared. The first eight
words have a prescribed use (see below).

33-3

4 sst (shareable symbol tables) is expected to contain information relating to
run-time diagnostics and is connected in read, shared mode.

5 ust {(unshared symbol tables) normally contains static arrays and is
connected in read, write, unshared mode.

6 initcmn (initialised common areas) is an accumulation of separately
specified and initialised common areas connected in read, write,
unshared mode.

7 initstack (static initialised area on stack) may be used to contain local data
and data descriptors. This area should not normally be used for
arrays as total stack space is constrained.

The first eight words of the gla, or pit if it exists, are currently defined as
follows:

word 0 code descriptor to the

1 first or only entry point

2 address of ust area

3 address of sst area

4 byte 0 language flag 1 IMP
2 FORTE
3 IMPS
4 NASS
5 ALGOL
6 optimised code (no diag tables)
7 PASCAL
8 SIMULA
10 FORTRAN 77
11 C

byte 1 compiler version
byte 2 compiler options
byte 3 (may be language dependent)

5 reserved for address of gla if plt is used, otherwise 0
6 reserved
7 reserved

The linkage data contains a fifteen element array, LDATA, which provides links to
records, or lists of records, also held in the linkage data area. These records
provide information about entries and references, both for procedures and data
items, common areas and relocation requirements between areas. All links within
the linkage data are byte displacements from the start of the object file.

Stacks and GLAs

The essence of EMAS is shareability and object file format is designed to exploit
this. Many users can be executing the same object file at the same time with all
the efficiency and savings in resources that implies, while each has his own unique
values of variables and run-time addresses.

Therefore an object file consists of two parts - one shareable and capable of
being executed directly in place and the other unshareable and representing a
database for initialisation.

To achieve overall shareability of object files, areas described by the database to

contain run-time dependent items are set up by the loader in the user’s private
space.

33-4

The shareable part of the object file comprises two separate areas, the
executable code (CODE) and the shared symbol tables (SST). The latter contains
information relevant to run-time diagnostics.

The unshareable database, sometimes known as the General Linkage And
initialisation Pattern or GLAP, describes five separate areas to be set up by the
loader - the general linkage area (GLA), the procedure linkage table (PLT), the
unshared symbol tables (UST), the initialised common areas (INITCMN) and the
static initialised area on stack (INITSTACK). The first four of these are set up in
the ‘user GLA’, which is a file specially created by the loader for each user, and
contain such user dependent information as global variables, linkage tables to
external objects and common areas. The INITSTACK is set up by the loader in a
reserved area of the ‘user stack’, which is another file created by the loader for the
user when required, and used exclusively for stack operations.

The executable code always refers to run—-time dependent items in terms of
offsets in the user gla or the user stack to achieve the desired generality and
shareability.

Note that the unshareable areas in total are generally very small relative to the
size of the (shared) object file. This is why sharing is so valuable and is one of
the great virtues of EMAS object file format.

An executing object file will require access to a stack file, where local variables
and the intermediate results of calculations are stored, and a ‘GLA’ (General
Linkage Area) file, where linkage information, giobal variables, common areas etc.
unique to that process are kept.

33-5

Diagram ! - Creating a process

You type log-on sequence at console

Log-on request passed from TCP to front end processor

Log-on request from front end processed by

Note: File sizes are not drawn to scale

ive p DIRECT which creates:

#STR #LCSTK #DGLA T FUINFI
Stack for new Stack for mew File for local File for /o Flle for
process process Local Director’s buffers procesa
Director Controller unghareable information
and Subsystem variables

!

DIRECT calls Global Controller to start up new
process Local Controller which runs on #LCSTK

Local Controller loads and calla local copy of Director
vhich runs on #STK with its unshareable variables in #DGLA

Local Director creates:

#SIGSTK #BGLA
Stack used File for
for subsysten’s
contingencics unshared

variables

then losds and calls the subsystem which runs on
#STK with unsharcable variables in #BGLA

During the

!

24

start up

the sub

connects the public loader tables and crestes ;:M

Public Loader Tables

private loader tables

Subsystem

| and Director
] entry points

References

Pernanent
Entries

Teaporary
Entries

¢

I

¥hen you

THUSTK
(The user stack)

Local variables/

¢

run your own cozzands then the subsystea

mxmmux:

T#UGLA
(The user gla)

(actually the loader) will create:

TILOAD (private loader tables)

TIASTK (if required)
(The auxiliary stack)

Own variables/ Off stack
Intermediate Linkage tables variables
results/etc to external
objects/ common
areas
FORTRAN ypern
variables jrear

|

Your commands run on T#USTK and your unshareable
variables are held in TIUGLA. The auxiliary stack TPASTK
18 used by some compilers to hold off stack variables.

33-6

Log-on Sequence

In this section we are primarily concerned with the loading and linking activities
which take place at the subsystem interface. However, it may be of some interest
to place this in context by considering how a process is created and how the
system protects itself against programs which, so to speak, ‘go berserk’.

The log-on sequence is initiated by a request from the front end processor
which is passed through the global part of the Supervisor, the Global Controller,
to a permanent executive process called DIRECT. DIRECT creates several files on
behalf of the embryonic process: #STK, the process or base stack on which the
process Director and Subsystem will run, #LCSTK, the Local Controller stack, on
which the process local Supervisor will run, #DGLA, a file for the Director's GLA,
T#IT, a file used for i/0 buffers and #UINFI, a file to contain information about the
user. DIRECT then calls the Global Controiier to start the process.

The Global Controller starts up the Local Controiler for the process which loads
and calls the local copy of the Director (running on #STK, GLA in #DGLA). The
Director continues the initialisation sequence by creating and connecting another
stack file, #SIGSTK, the signal stack, which is used when contingencies occur.
When Director’s initialisation is complete it connects the subsystem basefile, which
is the file containing the code of the standard or required subsystem. It then
creates the file #BGLA, the base GLA. The local Director loads and calls the
Subsystem (running on #STK, GLA in #BGLA). After Subsystem initialisation we
finally arrive at ‘command level’.

It will have been observed that at each stage a given component loads and calls
the next in the sequence. Each component has its own piece of code which
functions as a loader. The Subsystem’s piece of code is what we are calling ‘the
loader’ in this note. It will load and call the next level up, i.e. user commands.

The other ‘loaders’ are all short and simple since they only have one task to
perform.

The Local Controller runs at a higher level of privilege than the rest of the user
process and the two can be regarded as co-operating processes with the Local
Controller in charge. When cpu becomes available to the process as a whole, the
Local Controller has priority and runs on its own stack. When the local Director is
called a stack switch is executed and the Director (and eventually the Subsystem)
runs on the stack file #STK.

To summarize thus far: after the log-on sequence, Subsystem code is executing,
stack operations are being carried on the base stack (#STK) and linkage
information and own variables for the system are held in the base GLA (#BGLA).
The situation remains thus until the first command which is not in the subsystem
is called. User commands are intrinsically less trustworthy than system
commands, but run at the same level of privilege. To protect the system, which is
running on the base stack, a new stack, the user stack (T#USTK), is created.

A stack switch is then executed which ensures that the user command runs on
this stack. Return from the user command causes a return to the base stack.
A catastrophic program failure which corrupts the user stack will probably not
therefore corrupt the subsystem’s stack.

The 2900 hardware provides particularly efficient access to a subroutine’s local
scalar variables which are stored on the currently used stack. The space occupied
by such local variables is de-allocated at exit from the subroutine, and hence their
values are lost. In FORTRAN programs, the language definition guarantees
preservation of the values of local variables between calls of a given function or
subroutine, and hence a different location must be aliocated for them. The user
stack has a hardware imposed upper size limit of 252 Kbytes; of this 252 Kbytes,

a portion, called the initialised stack area, can be reserved for such variables by

33-7

using the OPTION INITSTACKSIZE= command (in Edinburgh the default reserved
area is currently 100 Kbytes). This area, though part of the stack, is essentially
static; normal stack operations take place between the top of the initialised stack
area and the top of the stack.

The loader distinguishes between routines which are to be ‘permanently’ ioaded
(i.e. those which are to remain loaded to the end of the current session or the first
call of RESETLOADER) and those which are only loaded until the end of the current
command. To avoid fragmentation of the initialised stack area, therefore,
‘permanent’ initialised stack is taken from the top of the area and temporary
initialised stack from the bottom (see diagram 1). The GLA requirements of
permanently loaded files are taken from the basegla for convenience but a call to
load the first temporarily loaded object file triggers off the creation of the user
GLA, T#UGLA. This file is used to satisfy the GLA requirements of all temporarily
loaded object files - except bound object files which are treated somewhat
differently (see User Note 32).

Acknowledgements
This edition of the Note consists of the text originally written by the late Colin

McCallum, and extracts of material written for another purpose by Geoff Millard.
All enquiries should be Mailed to the editor, ‘N.Hamilton-Smith".

33-8

