UNIVER'SITY OF dinurg

L Gomuing | User Note 43
eoivBuReH Centre

(February 1984)

A Proportional Spacing Version of LAYOUT:
Notes for Inexperienced LAYOUT Users

Author: Contact: Software Support
John M. Murison Advisory Service Category:

Synopsis

This Note explains how to use a new version of the text formatting
program LAYOUT. It does not assume any previous experience of LAYOUT.

The Note is based on the “Layout User's Guide (Revised specification)”,
August 1983, by Hamish Dewar, Department of Computer Science, University
of Edinburgh. It has been prepared using the version of LAYOUT it
describes, in a proportionally spaced Gothic font. In addition, the text
has been right-justified.

Keywords

Document formatting, text formatting, LAYOUT

L]
Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1984 Edinburgh Regional Computing Centre

The need for formatting programs

For run-of-the-mill purposes, there is no need to run a computer
generated document through a text formatter before printing it. This
applies to documents which have no special layout requirements or where
the desired layout can be created by use of a standard context editor.
However, in the case of documents to be printed on printers with
multiple font and proportional spacing facilities, this approach is
inadequate, since it does not permit the full capability of the printer to
be utilised. In addition, it is not the most convenient approach for
documents that are likely to go through several drafts or require regular
updating. Assistance in meeting both of these requirements is provided by
a type of computer program known as a paginator or formatting program.
This document describes one such program, called LAYOUT.

Special printing effects

Context editors can work only with the standard (limited) character set
available on a computer terminal and ordinary line printers. This standard
computer character set (known as ASCII) cannot handle underlining,
or subscripts and superscripts, or delicately variable spacing,
or proportionally-spaced and multiple fonts.

Text formatters such as LAYOUT provide access to such facilities by
defining formatting commands which may be incorporated in the document
at appropriate places. These commands are not printed in the final
document but are interpreted by the formatter to produce the required
effect. In LAYOUT, some formatting commands are represented by single
characters, called markers, and some by multi-character directives. The
characters to be used as markers can be selected within the text file;
it is customary to choose little-used punctuation symbols.

For example, there is a marker which is used to achieve the effect of
underlining. A common choice for this purpose is the “_" character. Text

to be underlined is enclosed between two occurrences of this symbol; that
is, the effect of the symbol is alternately to switch underlining on and

off. For example, including “He _will persist_ in pronouncing it
‘'_Dun_das'" in the source file would cause "He will persist in pronouncing

it ‘Dundas'” to appear in the final document.

As noted, the choice of character to be used for markers is at the
discretion of the wuser, and the choice can be switched at any point in
the text file. There is also an ‘escape’ mechanism, using the escape
marker (by default “$"), which causes a marker to be treated as an
ordinary text character. Thus including "$_" in the text causes "_" to
appear in the final document. Similarly, to cause the escape marker itself
to appear in the text, it is necessary to duplicate it, including "$$" to

obtain "S$".
Main formatting operations
The other aspect of document production which is handled by text
formatters is that of laying the text out on the page. The main
functions which can be automatically carried out are the following:
line-filling, that is making lines up to a standard length,
or as near as can be achieved without splitting a word

between two lines;

43-2

justification, that is inserting extra spacing to produce an
even right margin;

page-filling, that is making pages up to a standard length,
and including headings and footings;

applying selected conventions for the layout of paragraphs and
subsections;

indentation of sections of the text;

formatting of tabular information, so that the columns line up.

Most of these operations are optional; if they are not wanted, there are
ways of switching them off by means of directives included in the text.
Directives take the form of an escape marker (by default, the
dollar-mark), followed by a mnemonic for the operation, optionally followed
by a number. The mnemonic for all of the built-in operations is a single
letter. It is immaterial whether the letters are typed in upper-case or
lower-case, though upper-case is usually employed in this document. “$" is
used as the escape marker in examples in this document. Examples of
complete directives are “$B4" and "S$LO".

The directive "S$A” (Assign) has a different form. The Assign directive is
used to alter the values of the basic parameters which control the
formatting process. For example, there is a parameter ("LINE") which
defines line width and a parameter ("JUST") which controls whether
justification is performed. There are also parameters corresponding to
each of the marker functions which define the characters to be used for
each case. These parameters reflect the particular choices of
user-selectable options which are required for a particular document or
part of a document.

Line-filling

when line-filling is in force, the formatter ignores the line structure
of the original text file, hereafter called the source file. A line-break
separating two words is treated as exactly equivalent to a space between
two words. Lines for the final document are assembled by taking words
in sequence until the next word cannot be fitted onto the current line.
At that point, a line-break is made and justification is applied if selected.

Two advantages stem from this mode of operation. First, the source
file can be prepared -- and, more importantly, changed -- without too
much concern for preserving uniform line lengths. Secondly, a decision to
use a different line-length in the final document can be implemented
simply by altering one statement in the source file. All the consequential
changes in the final document, which may be substantial, come about
automatically.

words and sentences

So far as line-filling is concerned, a word is a sequence of characters
delimited fore and aft by any of the following: a space, a line-break, or
a directive. If more than a single space is included at any point in the
source text, the additional space(s) are ignored, except when at the start
of a line. A sentence is a sequence of words starting with a capital
letter and ending with any of the following punctuation symbols: “.", "?",
or "i“, The only relevance of the sentence as a unit is that LAYOUT
inserts extra space at sentence boundaries, the amount being
user-selectable.

43-3

Justification

If the justification option is selected, LAYOUT inserts additional spacing
as necessary into a line to bring its length up to the prevailing maximum
line length. This creates a flush right margin in running text.

Justification is applied only to lines which have been automatically
filled.

Avoiding line-illing

Obviously it may be inappropriate to have line-filling applied to the
whole of a document; there are points at which line breaks are wanted in
any case (irrespective of whether the next word could be fitted on the
previous line). As line-filling is applied only to what can be regarded as
running text, in many cases it is unnecessary to take any special action to
avoid undesired line-filling. In particular, LAYOUT does not attempt to
apply line-filling across a blank line, nor will it move words to the
previous line from a line starting with a space. Furthermore, space
characters at the start of a line are retained in the final document.

There are cases where it may be most convenient to create the
desired format for a number of lines explicitly in the source file and tell
LAYOUT to leave it alone. This done by means of the "SL" (Lines)
directive.

Underlining

In order to cause part of the text to be underlined, it should be
enclosed between occurrences of the underline marker (typically "_"). Thus
the effect of the marker is alternately to switch underlining on and off.
There is also a word underline marker (typically "71") which switches on

underlining on a word basis, that is, until a non-letter is reached.

The $L directive

The "L" stands for ‘'lines’ (or ‘'leave it alone’') and this directive is used
to indicate that a certain number of lines immediately following the line
containing the directive are to be taken as they stand. The number
involved is specified after the letter "L". For example "SL5" means ‘leave
the next 5 lines alone’ and “S$L1" means '‘'leave the next line alone’'. As a
special convention for this directive, a value of "0" (zero) may be
specified, and this means ‘leave all following lines alone until another
directive causing a line-break is reached’'. The zero convention is useful
when the number of lines is quite large, since it saves counting them.

There are several additional options which may be selected in
conjunction with “"S$L", by appending mnemonic letters to the directive.
The letter "U" requests that the complete line(s) should be underlined, the
letter "B" that they should be printed in bold-face, and the letter “M"
(for middle) that they should be centred. For example, the following
source lines:

SL2UM

First line of pair
Second (and last) line of pair

43-4

would produce the following output:

First line of pair

Second (and last) line of pair

The $B directive

While it is possible to cause blank lines to appear in the final
document simply by including blank lines in the source text, it can be
more convenient in some cases, particularly if the number is large, to
make use of the "$B" directive. The "B" stands for ‘blank lines' and this
directive is used simply to cause a specified number of blank lines to be
included at the point at which the directive occurs. Again, the number is
typed immediately after the directive letter. Thus "$B4" means leave &
blank lines. Note that "0" (zero) has its natural significance for this
directive, and that "“$B0" causes a line break but does not introduce any
blank lines.

The SP directive

At a point in the text where it is required to start a new paragraph,
the user may find it most convenient simply to leave a number of blank
lines (typically two, one or none) and to indent the first line of the
paragraph by including a few spaces. Again, however, for some purposes,
it may be preferable to use a specific LAYOUT directive to mark the
start of a paragraph. This is the "S$SP" directive. The effect is:

(a) a line break is made

(b) a page break is made if fewer than two lines are available on
the current page

(c) a specified number of blank lines are left (unless a page break
is made)

(d) the first line of the paragraph is indented by 3 spaces

The number of blank lines to be inserted is indicated by a number
immediately after the "“P"; "0" (zero) is permissible. Also, there is an
assignment statement which may be used to alter the number of spaces
to be inserted at the start of the paragraph, if some number other than
three is preferred.

The SN directive

As with line-filling, the normal action of LAYOUT is to put as many lines
on a page as will fit within the defined page size (which s
user-selectable). The "SN” (Newpage) directive may be included in the
source at any point where a page break is wanted, whether or not
further lines would fit on the current page.

The $V directive

If pagination is performed in a simple-minded fashion, it can easily lead
to unfortunate page breaks, with, for example, a heading separated from
the start of the text to which it applies. For this reason, it can be
prudent to include in the source file at appropriate points, "$V" (Verify)
directives which cause a page break to be made if fewer than a certain
number of lines remain unused on the current page. The "V" is followed

43-5

by the number of lines to be checked for. Often, Verify directives are
combined with other directives in a stereotyped group to give effect to
the user's preferred way of, for example, starting a new section of the
text. The following source line might be used to introduce a section
heading, to be underlined and preceded by two blank lines: $B2 $Vv4 S$SL1U

Note that in this context the Verify directive should follow the B8lank
directive, whereas a Verify followed by a Blank directive may be used to
guarantee that a certain number of blank lines should be left and these
should not be broken by a page boundary.

Tabular data

Sometimes in designing the layout of a document it is a requirement
to cause text to be aligned to a particular position on a line, perhaps to
give a standard appearance to header lines or when preparing a table in
which columns have to be lined up under each other. One way of doing
this is to put in a "SL" directive to prevent any unwanted line~-filling and
lay the text out with additional spacing in the source file, 'manually’ as it
were. With a screen editor, this approach may be at least as convenient
as using the special LAYOUT facilities provided for the purpose. Initially,
most people prefer to adopt the 'manual’ approach.

However, there are two considerations which may make it desirable (in
due course) to move on to the LAYOUT facitities. The first is that, where
several lines are laid out according to the same format, it is possible to
adjust the format by altering a single assignment statement rather than
having to modify each «case individually. The second is that, when
proportional-spacing fonts are to be used in the final document, columns
lined up by the addition of spaces in the source file will not necessarily
be lined up in the final document.

The way in which fixed positioning effects are achieved in LAYOUT
depends on the familiar concept of ‘'tab’ settings. There are two aspects
to this: setting the tab positions, and using them. Setting tabs s
achieved by including in the source file an assignment like the following:

SA TAB = 10,20,40

which would have the effect of establishing tabs at column positions 10,
20, and 40. Any number of positions may be specified, in ascending order,
Subsequently, a particular tab position may be selected by including a “S$T"
directive at the appropriate point in the text. The “T" is followed by
the tab number, counting from 1. Note, however, that columns are
numbered from zero. Thus, with the assignment cited above, the following
source lines:

SLo

$T1 1. $T2 New equipment S$T3 11.30
ST1 2. $T2 Maintenance $T3 12.15
ST1 3. $T2 LUNCH S$T3 12.45

would produce the following output:

1. New equipment 11.30
2. Maintenance 12.15
3. LUNCH 12.45

43-6

As ST does not cause a line break in the output, the S$T directives in
this example do not terminate the effect of the SLO directive.

The form S$T+1, S$T+2, etc. is permitted: it causes the text following
to be placed at the next tab position, or next-but-one tab position, etc.

As the most common requirement for tabbing is simply to move to the
next setting along the line, a special ‘one tab’ character, normally '|', can
be defined. Thus another way of preparing the above source lines would
be:

SA ONETAB='|’

1. | New equipment | 11.30
2. | Maintenance | 12.15
3. | LUNCH | 12.45

The ‘one tab’' symbol is read by LAYOUT as ‘$T+'. Thus, for example,
‘2 would be interpreted as °'S$ST+2'. If no digit follows the ‘one tab'
symbol then 1 is assumed (as in the example above).

Indentation

The method used to cause a section of text to be indented also makes
use of tab settings. That is, the amount of indentation required is
expressed as ‘'to a specified tab setting’. This is done by including in the
source file at the start of the section of text in question an assignment
to INDENT of the number of the tab required. At the point where
indentation is to stop, an assignment of ‘0’ (zero) to INDENT has to be
included. All the lines in between will be indented.

For example, the following source lines:

SA TAB=4; INDENT=1

All the material typed in following the assignment of a non-zero value
to INDENT is indented to the corresponding tab setting, and this
continues until a different assignment to INDENT is made.

Here the first tab position is defined to be at column number 4

(the fifth column); INDENT is then defined to refer to this first

tab position.

Note that it is not necessary to have an assignment to TAB

immediately before an assignment to INDENT, as is done in the example;
once appropriate

tab settings have been defined they are available for use until changed.
$A INDENT=0

would cause the fallowing lines to appear in the final document:

Ali the material typed in following the assignment of a non-zero value
to INDENT is indented to the corresponding tab setting, and this
continues until a different assignment to INDENT is made. Here the
first tab position is defined to be at column number 4 (the fifth
column); INDENT is then defined to refer to this first tab position.
Note that it is not necessary to have an assignment to TAB
immediately before an assignment to INDENT, as is done in the
example; once appropriate tab settings have been defined they are
available for use until changed.

43-1

Indentation is often used in order to present a sequence of
enumerated points. It may be a requirement that the numerals or letters
or whatever used to label the sections of text should not be indented,
or should be indented less than the body of the text. For example:

1. This is main point number one. Like other main points it is
indented to tab setting 2, but the identifying number ‘1.’
is 'unindented' to tab setting 1.

2. This is main point number two. It starts off just like the
previous one, but now, to make life interesting, we decide
to include a couple of sub-points or subsections here.

(a) Sub-point one. The text part is indented to tab
setting 3, but again the label '(a)’ is unindented.

(b) Sub-point two. Same again.
3. This is main point number three, so we have returned to

the same pattern as for main points one and two.
To achieve this effect, the source file could be prepared as follows:

$A TAB=5,11,19

SA INDENT=2

S$T1 1. | This is main point number one. Like other main points

it is indented to tab setting 2, but the identifying number ‘1.

is ‘unindented’ to tab setting 1.

$B $T1 2. | This is main point number two. It starts off just like
the previous one, but now, to make life interesting, we decide to
include a couple of sub-points or subsections here.

$A INDENT=3

$BO $T2 (a) | Sub-point one. The text part is indented to tab setting
3, but again the label ‘(a)’ is unindented.

$80 S$T2 (b) | Sub-point two. Same again.

SA INDENT=2

$B $T1 3. | This is main point number three, so we have returned to
the same pattern as for main points one and two.

SA INDENT=0

Apart from the use of multiple indentation levels, the main point to note
is the use of the explicit tab selections to position the labels.

LAYOUT parameters

A number of examples have been given in the preceding sections of
parameters to the formatting process whose values may be defined by
assignment directives. This section provides further information about
these and other parameters. There are default values to which the
parameters are initially set, which are intended to be convenient for the
most common requirements.

Some of the parameters define the physical format of the final
document. Typically any required assignment of these would be made at
the start of the source file and not subsequently altered. Other
parameters, like the level of indentation, are more volatile, and are likely
to be re-defined at regular intervals.

The parameters which define the physical format of the output
document are indicated in the following diagram:

43-8

LEFT LINE

....................................

....................................
....................................

....................................

BOTTOM

o
>
(1]
m

LEFT defines the left margin, while LINE defines the number of actual
printing positions. Note that the intention is that LEFT should be used
solely to control the placing of the text on the physical page; it should
not be used for indentation. TOP and BOTTOM define the number of lines
to be left at the top and bottom of the physical page respectively, and
again PAGE defines the number of actual printing lines. NLS defines the
vertical line spacing - i.e. the number of physical lines to be taken to
print each line of text. When NLS is 1 (the default), TOP plus PAGE plus
BOTTOM should add up to the intended physical page size (66 lines for
standard line-printers).

The parameters described in the preceding paragraph can be assigned
fractional values. The most useful application of this is to set

SA NLS=1.5

to achieve 1.5 line spacing rather than single spacing. The next paragraph
is spaced in this way to illustrate the effect.

There is a parameter PAGENO (page number) which controls whether (and
how) pages are numbered. Its default value is zero, which means no page
numbering. If it is assignhed a non-zero value, pages are numbered starting
with the given value, and as successive page breaks are made, the number
is increased by one. There is an additional parameter SECTNO (section
number) which can be used to number sections (here understood to be a
major unit of the document) and pages within sections. when
page-numbering is requested, the number appears midway along the middle

line of the bottom margin.

The parameter JUST controls whether lines are to be justified or not.
Assigning the value 1 to it enables justification, while the value zero (the
default) disables justification.

As mentioned earlier, there are also parameters corresponding to each
of the special characters used in LAYOUT. With the exception of ESCAPE
('S’), none of these parameters is assigned a character by default.
Assignment values take the form of a character enclosed within single

43-9

quotes, rather than a numeric value, except that a value of zero may be
specified to disable the facility altogether. For example, the assignment:

$A SuUP='"'; SuUB=0

would mean that the character '’ is to be used for marking superscripts
and that no subscripting is required.

Multiple and proportional-spacing fonts

where the output device provides more than one character font, it is
necessary to have a means of indicating in the source text which font is
to be used. This is done by including, wherever a change of font s
required, a directive consisting of the escape marker followed by a font
number. For example, the sequence "$3" selects font number 3. The
exact significance of the font number will depend on the particular
output device, and perhaps aiso which fonts are currently installed.
Conventionally font zero is the standard or default font for the device,
understood to be selected at the outset.

The availability of fonts of different sizes or proportional-spacing
fonts, in which not.all the characters are of the same size, creates a
difficulty relating to the way in which line lengths and page sizes are
specified. Measures along the line -- horizontal measures (like LINE and
TAB) -- are presented in terms of character or column positions, and
vertical measures (like TOP and PAGE) in terms of lines. How are these
measures interpreted when not all characters are the same width and not
all fonts are the same height?

This problem is compounded by the fact that different kinds of
printer have differing capabilities in terms of the resolution of carriage
or print-head movement. The typical daisy-wheel printer has a horizontal
resolution of 1/120th of an inch and a vertical resolution of 1/48th of an
inch, while many photo-typesetters operate with a resolution of 1/1000th
of an inch.

The approach taken in LAYOUT is to permit the user to continue to
express measurements in terms of columns and lines, but to translate
these to device-specific units of horizontal and vertical movement, the
translation being determined by the currently prevailing font selection.
Specifically, the horizontal measures LEFT, LINE, SGAP, PGAP and TAB are
scaled by the width of the space character in the currently selected
font, as are values specified in $C directives. Values assigned to the
vertical measures TOP, PAGE, BOTTOM and NLS are scaled by the overall
font height. For simple ASCII devices, the scaling factors are unity.

It should be understood that the horizontal and vertical measures are
not changed automatically by a change of font; it is only when one of
the measures is explicitly assigned a value (by means of $A ..) that the
currently selected font is relevant.

Author

LAYOUT was designed and impiemented by Hamish Dewar, Department of
Computer Science, University of Edinburgh.

43-10

Summary of main LAYOUT directives (by examples)

$LS leave the next 5 source lines alone

stiu leave the next source line alone, but underline it

SLIM leave the next source line alone, but centre it

SL1UM (OR $SLIMU) 1leave the next line alone, but underline and centre it

SLo leave all following source lines alone until the next
directive {(or the end of the source file)

$83 insert 3 blank lines

$80 start a new line

SP2 start a new paragraph, inserting 2 blank lines

$TE insert spacing up to tab setting 6

$C40 insert spacing up to column position 40

SN start a new page

37 start a new page if within 6 lines of end of page

Summary of main LAYOUT parameters (with default values)

The 'DPLAY' defaults refer to a version of LAYOUT available on EMAS
(see 'Access to LAYOUT on EMAS', below).

standard DPLAY
defaults . defaults

TOP (2) margin at top of page) scaled (0)
PAGE {60) usable page length) by (60)
8OTTOM (¢) margin at bottom of page } font height (&)
NLS (1) line spacing) (1)
LEFT (0) left margin) (5)
LINE (72) line length) scaled (12)
SGAP (2) spaces between sentences) by (2)
PGAP (3) spaces at start of paragraph) space width (3)
TAB (8,16,24,..,128) current tab settings) (6,12,18,..,90)
PAGENO (o) current page number (0)
SECTNO (0) current section number (0)
JUST (0) justification selector (1)
MARK (0) page separator selector (2)
INDENT {0) indentation tab setting {0)
ESCAPE {('$") escape character {('$")
UNDER (0) underline start or stop character {0)
WUNDER (0) word underline character {0)
sup (0) superscript marker (next character only) (0)
sus (0) subscript marker (next character only) (0)
BOLD {0) bold-face start or stop character (0)
ONETAB {(0) tab character, equivalent to '$T+° (0)

Check-1list of special characters
Following the assignments
SA WUNDER='71'; UNDER='_'; SUP="\'; SUB='/'; BOLD='"'; ONETAB='|"
the characters listed below will have the effects described. Note that 'S$’
(Escape) is predefined; all the others must be assigned, as above, before

they can be used.

43-11

-1 underline following word (or remainder of word); effect
terminated by non-alphabetic not preceded
by escape marker
start/stop underlining text

\ superscript marker (affects next character only)

/ subscript marker (affects next character only)

- start/stop bold-face printing

| insert spacing to next tab setting

$ escape -- when followed by a letter, introduces a directive

-- otherwise prevents following character from having
any special meaning
{useful special case: $. -- period not ending sentence)

Changes from previous version of LAYOUT

Modifications:-

1. Columns numbered from zero, not 1.

2 No characters have special significance initially, except 'S$’.
3. Blank lines treated as significant.

4 Line starting with space treated as implying line break.

Spaces at start of line treated as significant.

5. Underline treated as toggles, not single character markers.
6. Word underline facility changed.

7. No ‘updated source' facility.

Additions:-

1. Support for proportionally spaced fonts and font selection.
2. Bold-face facility.

3. Single ONETAB character, equivalent to '$T+'.

Access to LAYOUT on EMAS

These notes are mainly intended for users of Philips GP300 printers,
accessible from EMAS at ERCC by use of device names of the form '.DPnn’,
e.g. .DP15,

Command:OPTION(SEARCHDIR=CONLIB.GENERAL) (once only)
Command:DPLAY{input1, input2 / draft, document) (for .DP printer)

There can be two input files: ‘input2’ (optional) is read by LAYOUT first,
then ‘inputi’. Thus, one can put standard parameter settings into
‘input2’, and document text into ‘input1’. 'input1’ is mandatory.

There are two output files (or devices).

‘draft’ is intended to be listed on a line printer or at interactive
terminal. It gives an indication of how LAYOUT has formatted the text,
but since proportional spacing character fonts, subscripts, etc. might have
been used, the result on a line printer may look strange (since such
effects cannot be accurately represented); however the draft output does
enable one to see where line and page breaks have occurred. The default
value for draft is .0UT. If it is not required, the form of the call must
be

Command:DPLAY(..../.NULL ,document)
‘document’ is intended to be listed to a GP300 printer.

43-12

This version of LAYOUT has several entry points; DPLAY is the one to use
to generate text for a .DP printer. The other entry points are:

For fixed pitch ASCII printers - underlining achieved

by use of Carriage Return and overprinting.

represented

LAYOUT, except that underlining is
by setting the 8th bit of each

underiined character.

NLAYOUT

TTLAY Same

SANLAY For
fonts.

DIALAY

printer

Sanders
underlining,

Printer -
superscripts,

provides bold
subscripts,

printing,
variety of

For Computer Science Department Diablo daisy-wheel

provides bold printing, underlining,

superscripts, subscripts.

GP300 Fonts

The fonts currently defined for the GP300 printer are detailed in User

Note 50 and

10

11

Gothic 12cpi

Gothic 10cpi

Gothic ps

Gothic Bold 12cpi

Gothic Bold 10cpi

Gothic Bold ps

Courier 12cpi

Courier 10cpi

Courier ps

Micro 12cpi

Micro 10cpi

Micro 1Scpi

ilustrated below.

The default font.

Slightly more spread out than
font O.

The text of this note is mostly in this
font, which actually gets more on a line
than font O.

There are two ways of getting Gothic
bold text: either use fonts 0- 2 with
the BOLD symbol, or use fonts 3- 5.

Slightly more spread out than
font 3.

Proportionally spaced text is easier to
read!

I think this font looks rather cramped.
That's much better.

Better still. Note that Courier ps
takes up more space than Gothic

ps (font 2).

Rather small - but the symbols are
still well-formed.

Too spread out - looks a bit
strange.

Much better! Note that there is no Micro ps font

available. Micro fonts are useful for
superscripts and subscripts.

43-13

12

13

14

15

16

17

18

19

20

21

22

23

ORATOR 12CPI

ORATOR 10CPI

ORATOR PS

Data 12cpi

Data 168cpi

Data 15cpi

Scientific 12cpi

Scientific 10cpi

Scientific ps

Greek 12cpi

Greek 10cpi

Greek ps

GOOD FOR HEADINGS. 12CPI IS RATHER
CRAMPED. ORATOR FONT HAS CAPITALS
ONLY.

THAT'S BETTER! BUT STILL. A
LITTLE GOES A LONG WAY.

THAT'S BETTER! BUT STILL. A LITTLE
GOES A LONG WAY.

This is a draft font ~ the printer goes
at twice its normal speed, but the
resolution is poorer.

Rather spread out, but it will
give you the right Line structure
if you eventually want to use
another 18cpi font.

Quite an attractive font, but could cause
eye-strain if used too much.

Il Y H0Laxzxn obeou™ PYELY[atbn
ATAZH

Y HTl—olL~axzxw pPeou™ PYELY(
atdldn ATAZH

| A Y H—olvst==» pheou™ PYELY(
atdZn ATAZH

afxdepyinkAuyvon ABXAESTIHKAMNOT 1234

*}::

aBxbdepyinkApvor ABXAESMIHKAMNOT
1234 *+:;

aBxdepyinkAuvonr ABXAESIIHKAMNOT 1234

*0.:;

Justification was switched off when producing the above table. The rest

of the document
right justification switched on.

illustrates the use of a proportional spacing font with

Note that other fonts may become available shortly, and that the ‘data’

fonts (15-17) may be withdrawn.

43-14

