| &5E% Edinburgh

[, Degiorals | User Note 62

| EoINSORGH Centre f (February 199901

Title:
EMAS-3: Writing Commands

Author: Software Support
Sandy Shaw Advisory service n/a

Synopsis
This Note describes the features of EMAS-3 commands and gives details of how to
write them. These features include automatic prompting for missing parameters,

built-in help, type and access checking, and multiple invocation of commands from
the expansion of wild-card filenames.

Keywords

Commands, Parameter Acquisition Mechanism (PAM)

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1986 Edinburgh Regional Computing Centre

10.
11.
12.
13.

14.

Contents

Calling Commands
Command structure
The Parameter Acquisition Mechanism - PAM
Typical PAM calls
The PAM vector
5.1 Prompt field
5.2 Qualifier field
5.3 Default field
5.4 Help field
5.5 Keyword field
5.6 Missing PAM vector fields

Getting a string parameter
6.1 Tags for string qualifiers

Getting an integer parameter
7.1 Tags for the route qualifier

Getting a long real parameter
Setting a Return Code
Additional PAM routines
Commands written in other languages
User—-provided help routines
User-provided checking routines

Interim conversion of EMAS 2900 commands

62-2

Page

(=]

OWOoNNNNN

1
12

13

13

14

14

15

15

16

This Note describes the features of EMAS-3 commands and gives details of how
to write them. These features include automatic prompting for missing parameters,
built-in help, type and access checking, and multiple invocation of commands from

the expansion of wild-card filenames.

1. Calling Commands

The following examples illustrate the various ways in which a command can be
called at the terminal. The facilities apply to all commands on EMAS-3.

1. Command: analyse myfile

This shows the straightforward case, where the required parameters are
specified on the same line as the command, as on EMAS 2900.

2. Command: analyse
File: myfile

Here, EMAS prompts for the required parameter File: and supplies defauits for
the other parameters.

3. Command: analyse ?
File: myfile
Option():
Output(.out):

By specifying “?”, the user requests that every parameter should be prompted
for. Where the parameter is optional, its prompt indicates a default value in
parentheses. Pressing RETURN causes that value to be used.

a. Outputfiout): ?
<help text about the Oulput parameter>
Output(.out):

Typing “?” in response to a prompt causes help information about the
parameter to be displayed.

b. Option(): <control+y>

A response of <control+Y> to any prompt causes the call to be
abandoned and a return to command level.

4, Command: analyse 2?
<help text about the command>
File:

This call causes help text for the whole command to be displayed, followed by
prompts for each parameter.

5. Command: analyse myfile , output=.lp
As an alternative to entering parameters in their fixed order, when prefixed

keywords=, they can be given in any order. This is useful for commands with
long parameter lists (the standard command OPTION is usually called with

62-3

keyword parameters for this reason, e.g. OPTION RECALL=PERM). After the
first keyword parameter encountered, all the remaining parameters must also
be specified by keyword. The keyword name is the same as the first word of
the prompt, but may be typed in an abbreviated form. For example ou= is
equivalent to output=.

The following examples show ways in which multiple calls of a command can be
specified in a single command line.

6. Command: analyse teach.*

Where a wild-card expression is given, the set of matching files is found and
the command is called in turn for each file in the set. In this example, all the
files and groups in group teach are analysed (the asterisk matches any
sequence of zero or more characters).

7. Command: cename tx* , text*

For commands with two or more filename parameters, a wild-card expression
for the first parameter may require a corresponding expression for the others.
In this example, all files and groups beginning with tx are renamed to begin
text.

8. Command: insert brly & br2y & aby , mydirectory

Another way of generating multiple calls is to use ampersanding. The above
call causes three files to be inserted in mydirectory.

9. Command: insert br*y & aby , mydirectory

Ampersanding and wild-carding may be combined. This call is similar in
effect to the example before it.

10. Command: analyse @flist

In this example, the character file £1ist is read and each line in turn is used
as the parameter list of a separate call of the command.

2. Command structure

A simple command which reads a file of input and generates a file of output is
given:

%externalroutine make $alias "c#make"
%externalroutinespec emas3 integer(%stringname vector, $integername value)
fexternalroutinespec emas3 set return code(%integername flag)
$integer inchan, outchan, flag
emas3integer("Input;route,in,char;?;The file of directives", inchan)
emas3integer("Output;route,out;.out;?;Where to output the report", outchan]
select input(inchan)
select output(outchan)
{the command does its work}
emas3 set return code(flag)
$end

62-4

The points to note are:

- the entry point name begins C# to distinguish commands from other routines
(although when called at the terminal, the C# prefix is never included). This is
part of the general naming scheme in use for all EMAS-3 entry names,
intended to remove some of the problems of name conflicts experienced on
EMAS 2900. See section 11 for details of how to set this form of name in
commands written in languages other than IMP.

- the parameters are obtained using (in this case) the routine EMAS3 INTEGER
rather than by a $string(255) parameter to MAKE.

- The command does not need to perform any checking on the parameters.
- a return code is set before exit from the routine. This does two things:

* allows job control statements to check the success or failure of command
calls, and act accordingly;

* prints an appropriate error message if the flag is positive.
See section 9.

- although this example is written in IMP, the same framework is appropriate
for commands written in other languages, such as Fortran.

3. The Parameter Acquisition Mechanism - PAM

A command gains the benefits of the features described in the above examples by
making use of PAM. There are three PAM routines, used to acquire parameters of
types string integer and /ongreal In calling a PAM routine, the command describes
the parameter it requires and nominates a variable to receive the given value. A call
is made for each parameter in turn, the order of call determining the order in which
they are expected from the user.

No failure flag is returned to the command by any of the PAM routines. If a
parameter is faulty, i.e. does not satisfy the qualifier in the vector supplied to the
PAM routine, and the parameters are being acquired by prompting, the user will
receive an error message and be prompted for a correct value. If the parameters are
supplied on the command line, or if the command is running in background mode,
then a failure message is printed and an immediate return to command level is
made. This is all controlied by PAM; the command writer does not need to include

any code to handle this.
The three PAM routines share a standard format:

(PAM vector, local variable)

In a simple case, a Fortran command which expects two parameters might make PAM
calls:

call emas3string('Input file', cfile)

call emas3string(‘'Operation', ops)

which simply nominate a prompt string and local variable name for each.
On executing each of these calls, PAM extracts the next parameter from the
command line (or prompts the user if it is not in the command line) and then checks

the validity of the value given.

62-5

In the example shown above, the PAM vector contains only a prompt field.
Normaily, it will contain additional fields to enable PAM to give help information, and
to perform checking on the parameter. A complete PAM vector contains four fields
separated by semicolons, and is encoded as a text string:

prompt; qualifier; default; help

Examples of PAM vectors are given in the following section, and PAM fields are
described in detail in section 5.

4. Typical PAM calls

To anticipate the detailed description of PAM vectors given in the following
section, here are examples of calls for the most commonly required parameters.

1. emas3integer("Input;route,char,in;?;The file to be processed", inchan)

returns a channel number associated with the file specified by the user, which
can be used in an IMP select input statement or a Fortran READ statement.
The PAM vector cails for a file which must exist, and have filetype “character”;
the name of the file is not returned, only the channel number used to read it.

The “?” in the vector indicates that no value default is specified.

2. emas3linteger("Output;route,char,out;.out;". %c
"The output file or device", outchan)

returns a channel number associated with a file or device, valid for output.
The char tag is an extra check that if there is an existing file of the specified
name with a filetype other than character, it will not be overwritten. The tag
data can replace char where appropriate. The default value specified, .out,
causes output to be directed to the terminal if no parameter is specified by
the user.

3. emas3string("File;fileormem,read,char;?;The file of records", fname)

returns the full name of a file, or member of a partitioned file, checked for
read access permission and filetype “character”. This contrasts with the
previous examples where a channel number is returned.

4. emas3string("Outfile;file,write;xreport;The report file", freport)
returns a filename (xreport by default) for which write access is required.
5. emas3string("Operation;word,make,replace,append”, ops)

returns a string containing one of the three words specified. In this example
no default is defined. The user can specify an abbreviated form of the word,
so long as no ambiguity results. Hence the value m would match make.
Matching is insensitive to the case of the letters of the words in the vector
and of the word typed by the user. The matched word is returned to the
command in upper case.

6. emas3integer("Operation;word,make,replace,append;make”, opi)
returns an integer value, 0 for make, 1 for replace and 2 for append

depending on which the user specifies. In this case make is nominated as the
default if the user does not specify a value.

62-6

5. The PAM vector

As outlined in section 3, the command writer describes the parameters the
command requires by specifying a PAM vector for each. On each call of a PAM
routine, the associated vector governs the behaviour of PAM in acquiring a value for
the parameter. The PAM vector is encoded as a text string with up to four fields:

prompt; qualifier; default; help

The fields are described below.

5.1 Prompt field

The prompt field is displayed to the user when PAM requests input from the terminal
for a parameter. This occurs when:

- the user fails to supply a value on the command line for a mandatory
parameter (i.e. one with no default);

- the user explicitly requests prompting by calling the command with the single
parameter “2?” or “?2?2".

The first word of the last line of the prompt is taken as the parameter’'s keyword,
used where the form of call keyword=value is employed (see section 1.5). If the
prompt field contains a newline, then the first time it is issued the whole text is

displayed, but subsequently only the last line is given.

5.2 Qualifier field

The qualifier field is particularly important. It indicates which values are
acceptable for the parameter. This enables checks to be made on file and device
names; on filetype, access permission and existence; or, for integer values, checks on
specific values or ranges of values. The qualifier can be extended by appending tags
to indicate additional checks. For example, the qualifier £ile may be made to check
that the file exists by adding the appropriate tag: file,exist.

As an alternative to the set of built-in qualifiers, you can nominate your own
checking routine to perform non-standard checks; this is described in section 13.

5.3 Default field

If the command writer provides a value in the default field, then this is returned
when the user does not offer a value. If the parameter is mandatory, then the
default field should contain “?” to indicate that no default is available. When a user
is prompted for a parameter and a default is available, it is shown in brackets:

Continue(yes):

Where the user omits a parameter and a default is available, then normally it is used
directly without further reference to the user. However, it is occasionally desirable to
have a parameter behave like a mandatory parameter while nevertheless possessing
a default value. The effect is that a prompt is issued if no value is specified. The
user can indicate acceptance of the default by pressing RETURN in response to the
prompt. This conditional defaulting is selected by enclosing the default field in
parentheses:

"Input file;file;(t#list);some help"

62-7

If a null value is acceptable for a parameter, the tag ornull should be given.
If, in addition, the default value is itself null, this should be explicitly shown:

"Output;file,ornull;;some help”
In response to a prompt, a null value can be typed as “”. This may occasionally be
useful when a nuil value is acceptable for a parameter, but a non-null default is
defined for it.

5.4 Help field

The help field is displayed when the user replies “?” in response to a prompt.
Newlines may be included in the text of the field. An alternative to supplying the
text of the help information explicitly, is to nominate a helpfile for the command.
Indeed, this is the required method of providing help information about the whole
command, when the user requests this by entering the single parameter “?2” (see
section 1.4). A helpfile is a character file constructed as a View file (see User Note
9). One helpfile may contain entries for several commands, with a “view section” for
each. Within the section describing each command, there should be a subsection for
each of its parameters. The help text for the ACCEPT command is as follows:

! <ACCEPT
Command:ACCEPT file(,newname]

This command is used in conjunction with the OFFER command to
transfer a file from one user to ancther. First the owner must OFFER
the file to you. At any time after it has been OFFERed you can use
this command to ACCEPT it. If the command succeeds the file will be
transferred into your file index.

I<FILE

The full name of a file which has been OFFERed to you by another user.
1>

{ <NEWNAME

Use this parameter if you want to change the name of the ACCEPTed
file. Otherwise the only part of the name that will change will

be the username.

1>

1>

To designate a helpfile, the text of the help field should appear in the following form
within the vector:

call pamhelp(ercc90:myhelpfile)

In general, a helpfile need only be specified in the vector of the first PAM routine call
made by a command. Its value is remembered for all subsequent PAM routine calls
made for the command.

For a command with no parameters, no PAM routine cail is made and therefore no
help field is defined. The procedure EMAS3 HELPINFO provides an alternative method
of conveying a help field to PAM. The help field given is used only if the user
requests help about the command by calling it with the special parameter “?2”.

The specification of the routine is:

$external $routine %spec EMAS3 HELPINFO(%string %name HELP FIELD)

It is also possible to nominate your own help routine to supply the necessary
information. See section 12.

62-8

5.5 Keyword field

As described in section 5.1, the keyword of a parameter is taken from the first
word (of the last line) of the prompt field. Exceptionally, where this value is
unsuitable, an additional field can be appended to the PAM vector, following the help
field and separated from it by a semicolon, to define the keyword. For example:

"File;fileormem;?;The typed entries;typed"

5.6 Missing PAM vector fields

If a field is omitted from the PAM vector, a value is allocated as follows:

prompt is set to Integer (Or String or Long Real, depending on the
name of the PAM routine called)

qualifier is setto any

default is set to ? (i.e. no default)

help is set to the qualifier field

6. Getting a string parameter

The routine for obtaining the value of a string parameter is EMAS3 STRING.
its specification is:

$external %routine %$spec EMAS3 STRING(%string %name VECTOR, VALUE)

The qualifier field in the vector is used to determine whether the parameter value
supplied by the user is valid. The possible qualifiers are:

qualifier valid values
any any non-empty string
group a syntactically correct group name

fileormem a syntactically correct file or pdfile member name
file a syntactically correct file name

fileordev a file name or a network device name

user the name of a registered user

device a device name

filelist one fileormem, or several joined by '+’ signs
date a date, in the format dd/mm/yy

word, text0,textl,text2,...
the parameter supplied is compared with text0, textl, etc. If an
unambiguous match is found, ignoring case and spaces, the
matching text in the qualifier is returned. For example, given the
qualifier
word,no,yes

a parameter value of ye would yield the result YES. The result is

62-9

returned in upper case. A null value is defined by making one of
the text options null, e.g. word, ,yes, no.

lcword, text0,textl,text2,..
operates like word except that the result is returned in lower case.

6.1 Tags for string qualifiers

Qualifiers may be modified by tags. Tags follow the qualifier and are separated
from it, and from each other, by commas.

String parameters are normaily returned in upper case with spaces removed.
This can be varied by use of the following tags:

verbatim the result has case and spaces preserved
lc the result is returned in lower case

For files, pdfile members and groups, the existence of the object and access
permissions to it are checked by the following tags:

exist the file, member or group must exist

notexist the file, member or group must not exist

read read access must have been permitted (implies exist)
write write access must be allowed (if the file exists)

The following tags apply a filetype check to a file or member, if the file or member
exists. In themselves, they do not imply an exist check.

object an object file

nonst a non-standard file (not object, char, data or pdfile)

char a character file

data a data file

pdfile a partitioned data file

dir a directory file (associating entry names with object file names)

If none of these tags is set, the parameter is merely checked for correct syntax.
The join tag applies to the filelist qualifier only:
join concatenates the component files to a temporary file whose name
is returned. If only a single file is specified, no copy is made of it.

Only character files may be joined.

All parameters are subject to ampersand expansion {see 1.8). To forbid this,
the following tag is used:

noamp the parameter does not perm‘it ampersand expansion

All file, member and group parameters are subject to wild-card expansion (see the
examples in section 1). This can be controlled by the following tags:

62-10

nowild the parameter does not allow wild-card expansion

cowild if a wild-card expression is given for this parameter, then all other
parameters with tag cowild require a corresponding wild-card
expression.

Certain standard parameter values may be acceptable even though the value supplied
does not pass the check implied by the qualifier, for example:

file,orequals
any,ornull

These parameters are catered for by the following tags:

ornull a null value is acceptable
orequals a value of “=" is acceptable
or.all a value of .ALL is acceptable
or.end a value of .END is acceptabie
or.null a value of .NULL is acceptable.

7. Getting an integer parameter

If the user is required to supply an integer value for a parameter, then the
command writer should use the PAM routine EMAS3 INTEGER to retrieve it. However,
if the outcome of a PAM check on a string value is most naturally represented as an
integer, then EMAS3 INTEGER should again be used. For example, a parameter might
have three valid values, YES, NO, DONTKNOW. By using EMAS3 INTEGER and setting up
the qualifier part of the vector appropriately, the command writer can make PAM
check for these values and return 0, 1 or 2 respectively. See the qualifier word,
below, for details.

Another situation where EMAS3 INTEGER is appropriate is in the setting up of a
route (in EMAS 2300 terminology, defining a file or device). When the user supplies
a file name or device name, EMAS3 INTEGER can check the validity of this parameter

and return a channel number, which the command could then select for input or
output. See the qualifier route, below, for details.

The specification for EMAS3 INTEGER is:

$external $routine %spec EMAS3 INTEGER(%string %name VECTOR,
$integer %$name VALUE)

The qualifier in the vector is used to determine whether the parameter value supplied
by the user is valid. The possible qualifiers are as follows:

qualifier valid value
any any integer value

m:n a range of numbers. m and n are the bounds; a null value means no
lower (or upper) bound; for example

62-11

6:10 means a number between 6 and 10
3: means a number greater than or equal to 3
:3 means a number less than or equal to 3

a sequence of ranges or values in numerical order
for example

8,10:12 means
3’518'10'11 Of 12

word, text0,textl,text2,...
the parameter supplied is compared with text0, textl, etc. If a text
matches the parameter value or starts with the parameter value,
ignoring letter case, then the index of the text is returned.
For example, given the qualifier

word,no, yes

a parameter value of N or NO or n etc. would give 0, while y or ye or
yes would give 1. A null value is defined by making one of the text
options null, e.g. word,no, yes,.

route a file or pdfile member name, or a device name

7.1 Tags for the route qualifier

A number of tags are provided to modify the operation of the route qualifier.
Tags follow the qualifier and are separated by commas. See the examples in
section 4.

As described above, the route qualifier allows the user to specify a file or device
name. PAM associates this with a channel number which it returns to the command
as an integer value. This may be used in a subsequent call of SELECT INPUT or
SELECT QUTPUT or a Fortran READ or WRITE statement.

The normal procedure is to allow PAM to choose a free channel number. It is

possible, however, to preset a fixed channel number in the VALUE parameter of
EMAS3 INTEGER, and indicate this by use of the following tag:

preset the file or device is associated with the channel number given in the
VALUE parameter

Additional checks are performed when a tag is included which indicates whether the
route is to be used for input or output:

in the file or device is to be used for input. Hence a check is made that
either a valid input device, or an existing file with read access
permitted, is specified.

out the file or device is to be used for output. A check is made that either
a valid output device, or a filename which can be written to, is
specified. The file need not exist, in which case it must be possible to
create it; if it does exist however, it must have write access permitted.

If the file does exist, an additional check can be made on its filetype to prevent an

attempt to read from a file of the wrong type, or to overwrite an existing file of a
different type.

62-12

char a character file

data a data file

object an object file

nonst a non-standard file (mapped file)

Additional tags can be used to specify further details of the file definition. They have
the same effect as the similarly named parameters of the DEFINE command.

size= kb where kb is a number in the range 1 to maxfilesize, giving the
maximum allowed size for the (output) file

Vn defines V record format with a maximum of n bytes per record
Fn defines F record format with n bytes per record
c defines a character file (for Fortran only)

- 8. Getting a long real parameter

The routine for obtaining the vaiue of a long real parameter is EMAS3 LONG REAL.
Its specification is:

$external %routine %spec EMAS3 LONG REAL %c
($string %name VECTOR, %long $real %name VALUE)

The only qualifier provided is any.

9. Setting a Return Code

When a command has done its work it should set a return code before exiting.
This is done by use of the routine EMAS3 SET RETURN CODE, which has the
specification:

%external %routine %spec EMAS3 SET RETURN CODE(%integer $name FLAG)
If the command has failed, FLAG should be set to some non-zero value. If the failure
is as a result of a Subsystem procedure failing (e.g. EMAS3 CONNECT or
EMAS3 RENAME), then the return code should be set to the flag value returned by
the Subsystem procedure. The effect of doing this is to cause an appropriate failure
message to be printed on the user’'s terminal, of the form

command fails failure message

An arbitrary text may be placed in failure message by setting FLAG=100 and setting
the text required using the following routine:

$external $routine $spec EMAS3 SET FNAME(%string %name TEXT)

62-13

10. Additional PAM routines

A number of routines are provided to enable a command to perform manipulation
of the command line.

- %external %routine EMAS3 GETRESTOFLINE(%string %name LINE)
returns the list of parameters remaining on the line, or the complete
parameter line if none have been read yet. The routine is not destructive, and
can be followed by calls of EMAS3 STRING or EMAS3 INTEGER as required.

- %external %routine EMAS3 LINE(%string %name LINE)
again returns the remainder of the parameter line, but clears it in addition.

- $external %routine EMAS3 LCLINE(%string $name LINE)

operates like EMAS3 LINE, but returns the parameter line in the same form as
specified by the user. Hence spaces and case are preserved.

$external %routine EMAS3 SETLINE(%string %$name LINE)
sets the value of the current parameter line.
- %external %routine EMAS3 LASTPARAM(%string $name PARAM)

returns the most recently acquired parameter in the form of an uninterpreted
string. If the previous PAM routine acquired an integer parameter with
qualifier route, then EMAS3 LASTPARAM would return a string containing the
file or device name specified by the user. If the previous routine called for a
string with qualifier filelist,join, which returns the name of a temporary
concatenated file, then EMAS3 LASTPARAM would return the original filelist
parameter value.

The routines can be used to preview the parameters before formally acquiring them.
The preview may be required to guide the subsequent parameter acquisition process.
Alternatively, the parameter line may be amended, and additional parameters added,
before EMAS3 SETLINE is used to put it back in place. Finally, the standard PAM
routines are called to acquire each parameter in turn.

11. Commands written in other languages

The routines described in this note may be called by a command written in any
language available on EMAS-3. The only amendment required is to convert the name
of the procedure to the corresponding Céname form, so that it is explicitly recognized
as a command. This is done by using MAKECOMMAND. The parameters to
MAKECOMMAND are the name of the object file followed by zero or more procedure
entry names. A Fortran object file may contain one or more subroutines, but not a
main program entry. If no procedure entry names are specified, then
MAKECOMMAND converts all procedure entry names in the object file; otherwise
MAKECOMMAND converts only the specified entry names.

Command: makecommand fortobj
Command: makecommand object2 , mylist , mycount , ftest

An example of a command written in FORTRAN which uses PAM foilows:

62-14

subroutine perman
character*128 c
character*130 d
call emas3string('Filename;fileormem’',c)
4= C//'rp'
call emas3('analyse',d,iflag)
c {other analysis of the file}
call emas3setreturncode(iflag)
end

12, User-provided help routines

A command writer can nominate his own routine to provide help information for a
command and its parameters. The routine should be written with a specification:

$external %routine %spec MYHELP(3%string %name COMMAND, KEY)

The name of the routine is placed in the help field of the PAM vector (section 5.4)
as follows:

"File;fileormem;?;call myhelp"

If this routine is called by PAM (because the user asks for help), the first parameter
gives the name of the command about which help is requested. The C# prefix is not
included in the command name. If information on the whole command is required
(i.e. the user typed “?2"), then the second parameter is null; otherwise it contains the
keyword of the relevant parameter.

13. User-provided checking routines

A command writer can choose not to use the standard qualifiers and tags in the
qualifier field of the PAM vector, but supply his own routine to perform parameter
validation. This routine should have one of the following specifications, depending
on the type of the parameter:

fexternal 3%routine %spec MYSCHECK(%string %$name COMMAND, KEY, INPUT
¥string %name OUTPUT VALUE, %integer %name FLAG)

fexternal %routine %spec MYICHECK(S$string %name COMMAND, KEY, INPUT
$integer %name OUTPUT VALUE, %integer %name FLAG)

texternal %routine $spec MYLRCHECK(3%string %name COMMAND, KEY, INPUT
$longreal $name OUTPUT VALUE, $integer %name FLAG)

command gives the name of the command in which the parameter to be checked

occurs
key gives the name of the parameter to be checked
input gives the text of the parameter typed by the user

output value
receives the result of evaluating input. The type of this parameter
must agree with the type of the PAM routine called - EMAS3 STRING,
EMAS3 INTEGER or EMAS3 LONGREAL.

62-15

flag conveys an indication of the success or failure of the check.
Zero indicates success. Any other value causes a failure message to
be printed.

The name of the user-supplied checking routine is placed in the qualifier field of
the PAM vector (see section 5.2) as foliows:

“File;call mycheck;?;The file of names"

14. Interim conversion of EMAS 2900 commands
Existing EMAS 2900 commands obtain their parameters directly:
%external %routine make(%string(255) param)

As an interim measure, the complete parameter line can be obtained on EMAS-3 as
shown in the following example:

texternal %routine make t$alias "c#make”
sexternal $routine %spec emas3 line(%stringname line)
¥string(255) line, in, out
emas3 line(line)
(analysis of parameters in EMAS 2900 style:}
$unless line-> in.(",").out %start
printstring("Output parameter missing"); newline
$stop
%finish
{etc.}
$end
$endoffile

A command of this type is non-standard. It lacks the PAM features of prompting for

missing parameters, built-in help, type and access checking, and multiple invocation
from the expansion of wild-card filenames. Users are advised to convert to PAM.

62-16

