Edinburgh
Regional .| User Note 64

EDlh&F‘tGH Centre (September 1986)

Title:
Pascal on EMAS-3

Contact: Software Support

Ken Chisholm Advisory service Category:
See Note 15

Synopsis

This User Note describes the use of the Pascal compiler as implemented on EMAS-3.
It assumes that the reader is reasonably conversant with the Pascal language for
which there are many good introductory text books (see the Appendix.) It mainly
concentrates on the ways in which this Pascal extends the ISO standard specification,
which is the British Standard and is fully described in the BSI document BS 6192:
1982, Computer Programming Language Pascal.

Keywords

Pascal

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

@ 1986 Edinburgh Regional Computing Centre

1 Introduction

The new Pascal compiler on EMAS-3 is based on one originally developed at
UMIST by Atholl Hay and Jim Welsh and has been further developed and
implemented for EMAS by the ERCC Compiler Group. It supports an extended dialect
of the language called ICL Pascal, but can enforce strict conformance to the I1SO
Standard by means of a compiler PARM option. This Note describes how to use the
compiler on EMAS-3 and provides a brief introduction to the ICL Pascal extensions.
The new compiler also differs from the current Southampton implementation by
providing conformant array parameters, full set of char, and enforcing all
compile-time checks required by the ISO Standard.

2 Calling the Compiier

The compiler is called using the command Pascal. It takes four parameters of
which the first is obligatory:

Command: pascal source, object, listing, errors

The source file should be a character file containing a Pascal program; it can be
more than one file joined to another with '+, e.g.

decls+procs+prog

The object file is used to hold the compiled program. If a file of the name given
does not already exist it will be created. If an object file of the given name does
exist then its contents will be overwritten. - If this parameter is omitted, the file
T#OBJECT is created (or overwritten).

The listing parameter can be the name of a file or a device for the campiler listing.
If it is omitted, a default listing file called T#LIST is used. The user may

subsequently examine this file by using, for example, LOOK or SHOW, or listing the
file on a line printer, e.g.

Command: list t#list, .lpnn

The errors parameter can be the name of a file or device to receive the compile
time error messages: the default is .QUT.

As with other compilers on EMAS-3 the PARM command can be used before

calling the compiler to set various compiler options. The Parm options available with
Pascal are:

Nolist - no source lines placed on listing.

Nowarnings - no warnings, only errors reported.

Nocheck - no unassigned variable checking or de-reference checking (when
implemented).

Noarray - no array bound or range checking.

Opt - nocheck, noarray and no line numbers.

Strict = no extensions allowed to I1SO standard.

Notrace - no diagnostic information in the compiled programs (implies Nodiag
and Noline).

Nodiag - diagnostics restricted to a traceback of procedures.

Noline - no line numbers recalled in traceback or failure messages.

R8 - reals allocated 8 bytes of storage instead of the default of 4 bytes.

64-2

3 Porting Pascal programs to use Pascal on EMAS-3

it is thought that existing Pascal programs on EMAS-2900 should transfer to the
Pascal compiler with relatively few changes. Some of these changes are mentioned
or discussed in the next sections. i

As with Fortran-77 and IMP80 on EMAS-3, the EMAS command calling mechanism
will be standardized to use the external procedure EMAS3 - e.g.

program EMASExample;

procedure EMAS3(readonly Command : packed array{ll..ul: integer] of char;
readonly Parms : packed array [12..u2: integer] of char:
var Flags : integer);
extern; emas;

var
Flags: integer;

begin
EMAS3('Define', 'l,.lpl5', Flags);

end.

A list of the procedures comprising the Subsystem interface on EMAS-3 is given in
User Note 80. Thus for prompting, Pascal, as with other languages, will use the
standard external procedure EMAS3PROMPT:

procedure EMAS3Prompt(readonly p : packed array(l..u: integer] of char);
extern; emas;

Since the parameter is a conformant array, the string can be of arbitrary length.
A call will be of the form:

EMAS3PROMPT('No. of Rows?: ')

3.1 Error Action

A full list of Pascal compile time error messages may be found in the file
SUBSYS:PASCALERRS1.

A run time error reporting and diagnostic system, similar to that used by the other
compilers on EMAS-3, has been implemented for use with the Pascal compiler.

4 Language Extensions

EMAS-3 Pascal is very similar to the ICL Pascal language which is a true superset
of the 1SO Standard for the language, BS 6192 level 1. There are also a number of
local, EMAS-3 specific extensions (such as the EMAS-3 command calling procedure).
Briefly, the essential differences from the ISO standard Pascal are:

- Some lexical extensions

- Separate compilation

- Initialisation of variables at declaration

- Relaxation of order of declarations

- Default (otherwise) clause for case statements
- Default variants in record types

- Various type extensions

- Mixed-language programming.

64-3

These differences are described in more detail in the following sections.

4.1 Lexical Extensions

(i) A character string may be continued over more than one line, using the
ampersand character ‘&’ as illustrated below:

'This string ' &

'occupies 4 lines ' &

' and may include ' & { as shown here }
' embedded comments'

(ii) The symbol | may be used as an alternative to ‘&'

(iii) Identifiers may contain break characters '_’. These are useful to separate
words and so make the names easier to read, e.g.

. three_word_identifier

(iv) The symbol '->' may be used as an alternative to ' ~".

(v) The symbol Y may be used in a character string or character constant to
include a control character, thus:

\b for backspace

\t for horizontai tab

\n for newline

\f for form feed

\r for carriage return

\ddd for the character whose value is given by the octal digit sequence
ddd

\\! for backslash itself.

4.2 Separate Compilation

Pascal software can be written in a modular fashion using the keywords visible
and extern which allow data and procedures to be linked between modules by
name. For example, the variable £ and the procedure newpage in the program below:

program m(f);

var
£ : text; wvisible;

procedure newpage; extern;

begin { program }
rewrite(£f);
newpage;

end.

64-4

program n;

var
f : text; extern;

preset
pageno: integer:=0;

procedure newpage; visible;
begin

pageno:=succ(pageno);

page(£f);

writeln(f, 'page ', pageno:S)
end;

begin
end.

4.3 Initialised variables (preset, readonly)

Pascal provides two forms of initialised variables:
preset variables are initialised when the software is prepared for execution, that is,
before any block has been activated. Apart from this initialisation, preset variables
behave exactly as variables declared in the normal variable declaration part of the
program.
readonly variables have fixed values (equivalent to %const variables in IMP80). The
semantics of the language does not permit these variables to be used in contexts
where their values could be changed.

For example:

type
r = record
a : packed array [l1..4] of char;
b : integer;
¢ : Boolean

preset
v :r :=(a=>FRED', b => 2, ¢ => false);

readonly
q : array [1..2, 3..4]) of integer := ((0, 1), (1, 0));

The structure and values of the initialisation are determined by the type of the
variable being initialised, as illustrated in the following sections.

4.4 Simple Variable Initialisation

const
smallint = 255;
space = ' ‘';
type

weekend = (Saturday, Sunday):
byterange = 0..smallint;

64-5

readonly
pubnight : weekend := Saturday:
halfbyte : byterange := 127;
compilertrace : Boolean := false; visible;
filler : char := space:;
trigger : char := ' ';
options :integer; extern;
error_bound : real := 0.01;

Note that visible and extern may be used with initialised variables as in the
example above.

4.5 Set Initialisation

type
day = (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday):
colour = (red, orange, yellow, green, blue,
indigo, violet);
days = set of day:;
hue = set of cdlour;

readonly
weekdays : days := [Monday..Friday];
sickly : hue := [green, red..yellow, violet]:

initdays : days := []:

4.6 Positional Array Initialisation

type
days = (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday);
months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec);
friends = (Andy, Keith, Pat, Ben, Mark):
height = array (1..2] of integer;

readonly

daynames : array [(days] of packed array [l..3] of char

:=('Mon', 'Tue','Wed','Thu','Fri’','Sat','Sun');
daysinmonth : array [months] of integer

+= (31,28,31,30,31,30,31,31,30,31,30,31);

heights : array [friends) of height

:= ((5,11),(5,8),(5,0),(3,4),(3,1)):
onezeros : array [(l1..5] of integer := (1, otherwise=>0);
allzeros : array [l1..4]) of integer := (otherwise=>0):

In the above example, daysinmonth[Feb] will have the value 28 and heights([Ben,2]
will have the value 4.
4.7 Indexed Array Initialisation

Example 1

preset
a : array {(1..10]) of integer

(1]
n

(1..3 85 & 6 & 8..10 => 0,
4 & 7 =>1);

b : array [1..10] of integer := (4|7 =>1, otherwise => 0);

..

64-6

Example 2

type
months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec):
preset

fouryears : array [(l..4] of array (months] of 0..31 :=
(1{2]3 => (Feb => 28, Apr|Jun|Sep|Nov => 30, otherwise => 31),
4 => (Feb => 29, Apr|Jun|Sep|Nov => 30, otherwise => 31));

4.8 Relaxed Ordering of Declarations

The strict ordering of declarations enforced in ISO Standard Pascal has two
connected disadvantages. First, it can prevent logically related groups of
declarations from being textually related. Second, it makes the inclusion of external
declarations difficult. Like many other Pascal compilers, EMAS~3 Pascal supports
relaxed ordering of declarations. For example

program OrderExample;

var
seed : integer; extern;

function random(max : integer): integer; extern;

const
nullparam = -1;

type
access = (read, write);

4.9 Mixed-Language Programming

It is possible to call IMP80 and Fortran-77 routines and functions by specifying
them to be external procedures as specified above in Section 4.2. The following
table indicates the correspondence between the Pascal formal parameters and the
IMP80 and Fortran-77 formal parameters which are valid between the languages.

Pascal IMP80 Fortran-77

INTEGER value %INTEGER no equivalence

INTEGER variable %INTEGERNAME INTEGER

REAL value %REAL no equivalence

REAL variable %REALNAME REAL

REAL variable %LONGREALNAME DOUBLE PRECISION (R8 option in force.)
BOOLEAN value %INTEGER no equivalence

BOOLEAN variable %INTEGERNAME LOGICAL

anything eise no equivalence no equivalence

In the case of functions, it is also necessary to ensure that the function result
corresponds to a suitable type. The following table shows the correspondence
between valid function types.

Pascal IMP80 Fortran-77

INTEGER %INTEGER INTEGER

REAL %REAL REAL

REAL %LONGREAL DOUBLE PRECISION (R8 option in force.)
BOOLEAN %INTEGER LOGICAL

64-7

Notes

1. PASCAL booleans appear to IMP as integers taking the value 0 for FALSE and
1 for TRUE.

2. Procedures can only be passed to another language if all the parameters of
the procedure can be represented in the other language.

3. Expressions must be assigned to a local variable before being passed to
Fortran-77 - there is no call by value.

4.10 OTHERWISE Clause for CASE Statements

As in many other Pascal compilers, the default “catch-all” OTHERWISE clause is
permitted when using the CASE statement. For example:

var ch : char;
n : integer;

case ch of

'I' ¢+ n = 1;
'V' :n := 3;
'X' : n := 8;
otherwise n := 0
end

4.11 Default Variant in Record Types

In an analogous manner to the otherwise clause in case statements, the
otherwise keyword may be used in record types to associate a variant with
remaining values of the tag-type. This is shown in the example below. It can aiso
be used in initialisation statements to set all other unspecified parts of arrays to
some value. Examples of this are shown in Section 4.3 on “Initialised Variables”.

type
Form = record
case Kind: integer of
l:. (r: real);
2: (b: Boolean);
3: (c: char);
otherwise
(i: integer)
end;

4.12 Type Extension (word)

A predefined type called word is available to declare variables using various
number bases. For example

var i,j,k : word;

begin
i = 2#101; { This sets i to equal 5}
j := 8#77;
k := 16#1FF

end.

64-8

5 Acknowiedgements

This User Note is based on earlier documentation written by Rosemary Soutar,

John Blair-Fish and Roderick McLeod and also several discussions with Atholl Hay
and Rob Pooley of the ERCC.

Appendix A: Pascal Bibliography

A concise Pascal bibliography with suitable annotations

With the growing interest in the programming language Pascal in and out of the

University, a subset (by no means exhaustive) of recommended publications is
outlined below, both for the novice and the sophisticated user.

1.

Wilson, I.R.,, and Addyman, A.M., A Practical Introduction to Pascai - with
BS6192. Macmillan, 1982.

Well written, with carefuily chosen examples. Comes easily in the category of
a “best buy”. Includes the text of the ISO Standard definition of Pascal.

Weish, J., and Elder, J., Introduction to PASCAL, Second Edition, Prentice Hall,
1983.

Written with superb clarity and includes several case studies where the style
of programming goes hand in hand with current methods of structured
programming and stepwise refinement. This second edition conforms to the
ISO standard Pascal definition.

Grogono, P., Programming in PASCAL, Addison-Waesley, (Second edition).
Comprehensive coverage of the language, suitable for those who can already
program.

Findlay, W., and Watt, D.A., An Introduction to Methodical Programming,
Pitman, 1978. ‘

Good examples, and comes recommended as “a comprehensive and thoughtful
treatment which combines teaching of PASCAL with the principles of program
construction”.

Rohl, J.S. and Barrett, H.J., Programming via Pascal, Cambridge University
Press, 1980

A good textbook around which a lecture course might be constructed
Excellent syntax diagrams.

Jensen, K. and Wirth, N., PASCAL User Manual and Report, Third edition, 1985,
Springer-Verlag.

A revised edition of the original user manual and report, now updated to align
with the ISO Standard.

64-9

