\&&yg Edinburgh

Regional | User Note 77

eoinsurch Centre

(April 1985)

Title:

File Permissions on EMAS 2900

Author: Contact:

Susan Harrower

Synopsis

Advisory service

Software Support §
Category:
See Note 15

This User Note gives a description of the commands which are available
to users of EMAS 2900 for setting and interrogating file permissions.
It includes material from Chapter 5 of the EMAS 2900 User’s Guide and
from User Note 54 "Accessing Archived Files on EMAS 2900", as well as

new material on the command LISTPERM.

Keywords

ANALYSE, APERMIT, file permissions, FILES, LISTPERM, PERMIT

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

(©) 1985 Edinburgh Regional Computing Centre

Introduction

The commands described in this Note (with the exception of LISTPERM,
which is accessible via CONLIB.GENERAL) are automatically accessible to
all users. On-line information about each command may be found by using
the Help command.

Setting Access Permissions on Files

There are two commands which allow the user to set permissions for his
files.
PERMIT is used to set permissions for on-line files and
APERMIT is used to set permissions for archived files.

These are described individually below.

PERMIT
PERMIT FILE,user,mode

The first parameter is the name of the file to be PERMITted;
the second is the name of the user who is to be allowed to use the file;
the third indicates the modes of use which will be allowed to that user.

The ‘mode’ parameter consists of one or more letters. Each letter
indicates a certain mode of use. Only certain letters are permitted.
The letters may occur in any order, but no letter may occur more than
once. R stands for ‘read’; E stands for ‘execute’; W stands for
‘write’. Other acceptable letters are described below. For example:

PERMIT LUDU,ERCC14,ER

‘All files’ permissions

As well as giving other users access to a named file, it is also
possible for the user to give others E and/or R access (but not W) to
all his files. To do this, the user specifies the filename as .ALL,
or omits it entirely. For example:

PERMIT .ALL,ZTBZ02,ER
PERMIT ,ZTBZ03,R

Note that access permissions given in this way apply to new files
created after the PERMIT command is given, as well as to all files
existing at the time of the command.

‘All users’ permissions

If the user wishes, he can allow all users to have access, either to
an individual named file or to all his files. Instead of a user name,
he must specify .ALL, or 2??????, or omit it altogether. Note that this
does not affect his own access permissions to the file(s). What he is

doing is properly described as setting ‘everyone else’s permission’,
which is abbreviated to EEP in the output from some commands and

77=2

utilities. For example:

PERMIT .ALL,.ALL,ER
PERMIT ,?27??7,R
PERMIT HOLKAS, ,WER

Permissions for user groups

name’. The user can specify a group name to allow several users to
access one (or all) of his files. A group name is a user name in which
some of the characters are replaced by question marks, thus: ER??0?.
This group would include ERCC0O8 and ERDB(06, but not ECSCO7 nor ERCCl4.
A group includes any user whose name matches those characters in the
group name which are not question marks. For example:

PERMIT PUPTON,ER??0?,WR
PERMIT BAWLEY,GRY???,R

Own permission and P(reserve)

The user can also specify his own user name in a call of PERMIT (but
only for a named file, not for ‘all files’). This has special effects
which are NOT achieved by specifying ‘all users’, nor even a user group
which includes his own name. When the user first creates a file, he has
full access permissions to it, so he would normally use PERMIT to
restrict his access to it - typically, to prevent accidentally
DESTROYing or overwriting the file. A typical command to prevent
overwriting might be

PERMIT VITAL,myname,R
or, to protect against DESTROYing as well,
PERMIT AEONS,myname,PER

This demonstrates the use of P (meaning ‘preserve’ or ‘protect’) to
inhibit DESTROY. The user can only specify P when giving himself
permission to a file - it is not valid as a permission to other users
(who cannot DESTROY his file anyway). P on its own is taken to mean
PER.

Note that P will prevent the user from DESTROYing a file, but he will
still be able to EDIT it if he has allowed himself W permission.
COPY also needs W access to overwrite a ‘protected’ file, but NEWGEN can
replace it with another file regardless of its other permissions.
Some other commands, utilities and programs may refuse to handle a
‘protected’ file when they would otherwise destroy it or replace it with
a new version. However, a file can still be lost using SEND file,device
or OFFER file.

Full permissions
The fullest possible access permissions are WER for an individual

file, and ER for ‘all files’. The user may specify these permissions as
A or .ALL if he prefers. For example:

77-3

PERMIT ARTIMON,LRHB21,A
PERMIT ,GR?C??,.ALL

Default permissions

If the last parameter in a PERMIT command is omitted, then ER
permission is assumed, unless the user name is the user’s own name,
when WER (i.e., full permissions) is assumed. Thus, if a file is to be
permitted to someone else, then PERMIT filename,username is nearly
always sufficient. PERMIT filename,myname is a convenient way for the
user to restore full access to one of his own files after he has
restricted his own access - for example, when he actually wants to
DESTROY the file.

PERMIT KRAEK,GRVAQ2
PERMIT ,ECSC??

If the user wishes to give all users ER access permissions to all his
files, then the command is:

PERMIT .ALL

Multiple permissions
If the user calls the commands

PERMIT BONE,PTFE25,W
PERMIT BONE,PTFE25,R

then the file BONE is accessible to user PTFE25 with permission R,

not WR as might be supposed. A PERMIT command supersedes all previous
permissions granted for the same file and user (or group). The same
thing is true for "all files" permissions.

However, that does not prevent a file from accumulating many different
permissions for different users and groups. For example:

PERMIT .ALL,E??7??,R
PERMIT TOKEN,GASP24,W
PERMIT TOKEN,GASP25,W

In this case, EJRM24 could read TOKEN (because the first PERMIT allows
him to read any file), and GASP24 and GASP25 can both write into 1it.

Partitioned files

Access permissions can be set for the whole of a partitioned file,
but not for its members individually. The members have the same
permissions as the whole partitioned file.

Revoking permissions

Sometimes one needs to withdraw a permission that has already been
granted. This is done by specifying the single letter C (for ‘cancel’)
as the third parameter to PERMIT. The first two parameters must, of
course, be the same as in the command which established the permission

77-4

(although the various synonyms of .ALL are not distinguished). Thus

PERMIT TGANSL,RAMC42,R

is not cancelled by

PERMIT .ALL,RAMC42,C
nor by
PERMIT TGANSL,RAMC??,C

although .ALL (all files) includes TGANSL and RAMC?? includes RAMC42,
You would have to give

PERMIT TGANSL,RAMC42,C
but
PERMIT COGG, ,ER

would be cancelled by
PERMIT C0GG,??7?7??,C

Incidentally, if a file is DESTROYed, there is no need to cancel the
permissions for it. They are lost with the file, and will have to be
set up afresh when a new file with the same name is created.

Note that the user cannot cancel his own permissions to his own files.

Restricting access to a file

One point to notice in this procedure is that finding an applicable
permission prevents any further searching for other permissions.
This has the apparently perverse consequence that granting an access
permission can sometimes allow a user less access to a file. For
example, suppose the user owns a file called SLUYS and issues the
command
PERMIT .ALL,E?????,RW

Now EDBAl12 has RW access to SLUYS (as well as to all the user’s other
files).

PERMIT SLUYS,.ALL,R

Now EDBAl12 still has full access to most files, but only R access to
SLUYS.

Conversely, removing a permission with PERMIT ceeseee,C can have the
effect of increasing a user’s access to a file.

This feature can be exploited to ban certain users from using a file
which 1is generally accessible to some group or groups. To do this, the
single letter N (‘no access’) is used as the third parameter to PERMIT.

For example

PERMIT CHERIMOYA, .ALL,R
PERMIT CHERIMOYA,ERCCO4,N

This allows all users except ERCCO4 to read the file. The trick depends
on putting a user’s name or group name into one of the ‘permissions
lists’ with no associated permissions at all. This can be done for an

77-5

individual file or for all files, and for an individual user or for a
group of users = but not for ‘all users’, nor for the user himself.
When used for all users, it has the same effect as C.

Summary of parameters for PERMIT

Set Revoke Debar
Specific file
self file,myname,perms#l1 - -
user file,user,perms#2 file,user,C file,user,N
group file,group,perms#2 file,group,C file,group,N
all users file,,permsi#2 file,,C -
All files
self - - -
user suser,perms#3 suser,C suser,N
group sgroup,perms#3 ,group,C sgroup,N
all users s sperms#3 s3C -
Acceptable: Default: A means:
perms#1 P, W, E, R WER WER (P means PER)
perms#2 W, E, R ER WER
permsi3 E, R ER ER
APERMIT

APERMIT FILE,date,user,mode

When a file is archived, it retains the individual file permissions
that it had when it was on-line. 1Its permissions can be changed by
APERMIT whilst 1t is still on archive. When a file is restored from
archive, it becomes available on-line with those permissions. A user
can use the RESTORE command to get another user’s file restored,
provided that he has access permission to the file.

The APERMIT command may be used to extend or restrict access to one of
the user’s archived files for other users. It may also be used to find
out the access permissions of one of his archived files.

The first parameter is the name of the file;
the second is the date the file was archived;
the third is the name of the user who is to be allowed to use the file;
the fourth indicates the modes of use which will be allowed to that
user.

The date parameter can be found by a call of FILES filename,a.
Alternatively if the date parameter is omitted, then the date the latest
version of filename was archived is assumed.

‘All files’ permissions

Unlike on-line files, it is not possible for the user to give another
user permission to all of his archived files. However, if the user has
set a permission for ‘all on-line files’ (for example
PERMIT .ALL,ERCCO1l,R) then that permission also applies to all his
archived files.

77-6

‘All users’ permissions

The user can allow all users to have access to an individual file.
However, he cannot permit all of his archived files to all users.

user name altogether. For example:

APERMIT FRED,17/01/85,.ALL,R
APERMIT FRED,,?2?27?,RE
APERMIT FRED,,,R

Permssions for user groups

The form 7??7??? meaning “all users’ is a special case of a ‘group
name’. The user can specify a group name to allow several users
permission to a file. Again, the user cannot give permission to all of
his archived files to a ‘group name’. A group name is a user name in
which some of the characters are replaced by question marks.

For example

APERMIT JOB1,06/06/84,ER??0?
APERMIT JOB1,,GRY???,RE

Own permission

The user cannot alter his own permission for his own archived files.
He will always have sufficient permission to restore his own archived
files, and he can change his own permission to a file when it is
restored. There is no permission setting which will prevent the user
from discarding any of his archived files.

Full permissions

The fullest possible access permission for an archived file is WER.
The user may specify this permission as A or .ALL if he prefers.
For example

APERMIT MYJOB,01/01/85,ERCCO1,A
APERMIT FILEAB,,ERC???,.ALL

Default permissions

If the last parameter of an APERMIT command is omitted, then ER
permission is assumed. Thus if the user wishes to permit a file to
someone else, then APERMIT filename,date,user 1s nearly always
sufficient. For example

APERMIT runl,02/09/81,erccOl
APERMIT runl,,er????

77-17

Multiple permissions

If the user calls APERMIT FRED, ,ERCCOl,W followed by
APERMIT FRED, ,ERCCO1,R

then the file FRED is only accessible to erccOl with permission R and
not WR as might be supposed. This is because an APERMIT command
supersedes all previous permissions granted for the same file and user.
However, this does not prevent a file from accumulating many different
permissions for many users and groups. For example

APERMIT FILE,,ERCCO1,R
APERMIT FILE,,ERCCO2,ER

In this case, erccOl has read permission only, and ercc02 has read and
write permission.

Revoking permissions

To withdraw the permission on a file, the user must call APERMIT with
the letter ‘C’ (for cancel) as the fourth parameter. When making this
call on APERMIT, the user parameter must match exactly the user
parameter that was given when the file was permitted. Thus

APERMIT FILEl,,ERCCOl,R
can only be cancelled by
APERMIT FILEl,,ERCCOl,C and not by APERMIT FILEl, ,ERCC??,C
If a file is discarded, there is no need to cancel the permissions for
it, as they will have been lost with the file.
Restricting permissions
In order to prevent a user, group of users or all users from accessing
an archived file, the single letter ‘N’ (no access) is given as the
fourth parameter of APERMIT For example:
APERMIT FRED,01/01/85,ERCCO1,N

APERMIT PRIVATE, ,ERC???,N
APERMIT PRIVATE,,.ALL,N

Summary of parameters for APERMIT

Set Revoke Debar
self - - -
user file,date,user,perms file,date,user,C file,date,user,N
group file,date,group,perms file,date,group,C file,date,group,N
all users file,date, ,perms file,date,,C -

Acceptable permissions are W, E, R
Default permission is ER
Permission "A’ means WER

77-8

Some guidelines for permitting files
What permissions are needed?

Most uses of a file will need R access to it. E access is necessary
for files of object code.

For an archived file, the owner may always issue the RESTORE command
regardless of access permissions. Any other user who has any access
permission for the file may also restore it. When the file is restored,
the permissions for the archived file will be copied for the on-line
version. Subsequently the owner may change the permissions for the
on-line version and the permissions for the archived version will NOT be
changed (and vice versa).

W access allows a user to overwrite the contents of another user’s
file, but not to change its size, nor to DESTROY it. This means that
most programs, commands and utilities (including those supplied by the
system) cannot change another user’s file even if W access permission
has been granted. In particular, it is not possible to EDIT the file.
In fact, W access is most often useful for Direct Access and Store Map
files.

It is apparent by now that the matter of permissions is not simple.
There are, as we have seen, several classes of permissions: for specific
files and for all files; for the owner, for other named users, for
groups of users and for all users.

How permissions are stored
You will ohserve that the various permissions are not all muddled up
together. The system keeps the different kinds of permissions in

separate places:

Permissions for individual files:

Owner’s permission OWNP (‘own permission’)

Other named users in a list

Groups of users in the same list

All other users EEP (’everyone else’s permission’)

Permissions for all files:

Owner’s permission (no such thingl)

Other named users in a list (not the same as the list for
individual files)

Groups of users in the same ‘all files permissions’ list

All other users EEAFP (’everyone else’s all files

permission’)

Each individual archived file has a set of permissions just like an
on-line file. The "permissions for all files" apply equally to archived
and on-line files; there are no separate "permissions for all archived
files".

Can a user access a file?

The question arises of how the system decides what access permissions
are allowed to a particular user. The rule goes like this:

77-9

1.

2.

3.

4,

5.

6.

7.

8.

If the user is the owner of the file, then OWNP applies and no
other permissions are relevant (which explains why there are no
‘own permissions’ to ‘all files’).

If the user is not the owner, then the individual file’s permission
list is scanned for the user’s name (groups are ignored at this
stage). If his name is found, then the associated permission
applies and no other permissions are relevant - even if the
permission found is inadequate for what he wants to do. Note that
this stops the search, so that a more generous permission in,

for instance, the ‘all files’ permission list, will not be found.

If the user’s name was not found at stage 2, the individual file’s
permission list is scanned again for a group name which includes
the user’s name. If any such group is found, then the associlated
permission is taken, and, as before, no other permissions are
relevant, and all the same remarks apply. Note also that if there
is more than one group name which includes the user’s name (as, for
instance, EPA??? and ?P?D2? both include EPAD25), then the outcome
is unpredictable, since the permission for either group may be

taken. It is up to you to avoid putting overlapping groups in a
permissions list.

If a permission has still not been found, then EEP is examined.
If it allows any access at all, then EEP applies, and the search
stops as before; but if EEP does not allow any of read, write or
execute, then the search continues with stage 5.

The ’all files’ permissions list is searched for the user name,
(ignoring group names, as at stage 2). If the user’s name is
found, then the associated permissions are taken and the search
stops.

If a permission has still not been found, the ‘all files’
permissions list is searched again for a group which includes the
user’s name. If such a group is found, the associated permission
is taken. All the remarks at stage 3 apply equally to this search.

If a permission has still not been found, then EEAFP is examined.
If it allows any access at all, then EEAFP applies; otherwise the
user is allowed no access. '

For an archived file, if any permission (other than no access) has
been found, the user may RESTORE the file.

Interrogating Access Permissions for Files

There are several commands for determining what permissions have been

set for the user’s files. Which command is used is determined by
whether the user is interested in only one file, a group of files,
all files, archived files, or even all on-line and archived files.

The commands to meet all these possibilities are described below.

77-10

Interrogating an individual on-line file

In order to discover the access permissions of a single on-line file,
a call of ANALYSE can be made with the letter ‘P’ as the second
parameter. For example:

Command : ANALYSE NEWFSUITES,P

File: *NEWFSUITES Type: CHARACTER Length: 15796 Bytes

Last altered: 16/04/85 at 11.47.28

Access Permisgions: Self:All Others:None

Permissions for all files:

EKLD91 RE EKLF37 RE 222U?? None ERCQ19 RE ERCQ16 RE

Current users: 1

Note that in this example, whole index permissions are also returned.

Interrogating an individual archived file

If the single character "?" is given as the second, third or fourth
parameter to APERMIT, then the command will produce a report of the
existing general and individual permissions (if any) for the file and
whole index permissions (if any), and it will NOT change any permissions
(regardless of the values of any of the other parameters).

Command : APERMIT MYFILE,?
Access permissions: Nome

Command : APERMIT MYFILE,16/11/83,?
Access permigsions:
EKLD91 R

Interrogation of process for whole index permissions

In order to ascertain which user(s) have whole index permission to his
process the user can call routine FILES with the single letter ‘P’ as
the second parameter. For example:

Command : FILES ,P

Disc files : 74 Temp files : 6 Archived files : 94
Total size : 1776K Temp total : 524K

Total limit : 4096K Maxfilesize : 10000K

Index size : 9K

Index space unused:

File Desecs : 113 Sect Descs : 177 Perm Descs : 38
Archived File Descs : 87 Archived Perm Descs : 61

ALL Access Permissions

EXKLD91 RE EKLF37 RE ?222U?? None ERCQ19 RE ERCQ16 RE

Multiple interrogation of on-line and/or archived files

LISTPERM is a routine which enables the user to check the permissions
set on some or all of his files.

77-11

LISTPERM takes three parameters
LISTPERM type,group,file/device

where

Type is the parameter for setting the name(s) of the files. This can be
in the form of a single filename, a mask (for example *S would examine
all files ending with S), or null (or *) meaning all files.

Group is the parameter for setting the ‘type’ of file to be examined.
Type ‘A’ refers to archived files only, type ‘I’ to online files only,
and ‘IA’ refers to both. If group is ‘*’ or null, then ‘IA’ is assumed.

file/device is the parameter for specifying the destination of the
output. The default for this is .OUT (i.e. output is sent to the
console). If the user nominates a file which already exist, he will be
asked whether he wishes to overwrite the contents of that file.

For example:

Command : LISTPERM *S* 1

ONLINE FILES

File All Users Specific Users Self
SNoop RWE none RWE
FILEUSERS no access ERCQ?? RE RWE
NEWSETMODES no access ERCQ0O8 RE RWE
USERNOTE no access ERC??? RE RWE
NFSUMMARYO no access ERCX19 RE RWE

5 on-line files are explicitly permitted to other users

- — - - - -~ - - - - - - - - - - - -

These 2 permissions apply to all your on-line and archived files

?2220?2? no access
ERCQ?? RE

Command : LISTPERM , A

ARCHIVED FILES

File Date All Users Specific Users
KERN27S 17/06/84 RE none

MYFILE 01/02/84 no access EKLD91 R
CALIBAN 16/11/83 no access EKLD91 R
CALIBAN 19/06/83 no access EKLD91 no access
PROSPERO 23/03/83 no access EKLD?? RE
KERN27S 23/12/82 R none

6 archived files are explicitly permitted to other users

o — —— — T — - . - = D D G D D D = = D = D D T - - — - - - - - D = > D - D > W D D - T T D Y D D D - - —— -

There are no "all files" permissions

77-12

