UNIVER'SIIYOF Edinburgh

® egional

L Compuing | User Note 79
eoinuRcH Centre
Title:

(August 1985) .

KERMIT on EMAS

Author:

Software Support
Category:

Contact:

Adam Albert-Recht Advisory service n/a

Synopsis

This User Note describes how to use the implementation of KERMIT on EMAS
produced by the Edinburgh Regional Computing Centre. It is intended to provide
enough information for a novice Kermit user to be able to transfer data between
EMAS and another Kermit system on a microcomputer or another mainframe.

The information in this edition applies to version 2.5 and later releases.

Keywords

File transfer, KERMIT

_ R -]

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1985 Edinburgh Regional Computing Centre



CONTENTS

1: INTRODUCTION 3
2: AN OVERVIEW OF KERMIT 3
3 X-TALK vs KERMIT
4: USING EMAS KERMIT 5
4.1 Entering EMAS KERMIT 5
4.2 Leaving EMAS KERMIT 5
43 EMAS KERMIT Command Language 6
43.1 Command format 6
43.2 The TAKE file facility 7
5: TRANSFERRING FILES WITH KERMIT 7
5.1 Principles 7
5.2 Setting File Type 8
5.2.1 Binary files Type 8
5.2.2 Printable text (ASCII) files 8
5.2.3 Choosing the right file type 8
5.24 Sending eight bit data 8
5.3 Getting Started 9
5.3.1 Sending files to EMAS 9
5.3.2 Sending files from EMAS 10
5.4 Handling Problems 10
5.5 Protocol control 10
6: COMMANDS FOR THE CONTROL OF KERMIT 11
6.1 General Commands 1
6.2 Commands for file transfer 13
6.3 Commands for detailed protocol control 15
7 KERMIT AVAILABILITY 20
8: ACKNOWLEDGEMENT 22
9: AUTHORSHIP 22
Appendix I: Comparison of Costs and Timings
for X-Talk and KERMIT 23
INDEX 24

79-2



1: INTRODUCTION

This user guide describes the Kermit implementation on EMAS produced by the
Edinburgh Regional Computing Centre. it is intended to provide enough
information for a novice Kermit user to be able to transfer data to and from EMAS
to another Kermit system. Other Kermit systems are described only in passing:
thus a user would almost certainly need to consult the equivalent user guide for
the Kermit system on the other machine. The examples in this document assume
a transfer between a microcomputer and EMAS. The EMAS end of the transfer is
always referred to as “EMAS Kermit", while the other end is referred to severally as
“local Kermit”, "micro Kermit” or just “other Kermit”.

The guide is divided into several chapters. Chapter 2 is a general overview of
Kermit as a whole, and explains its advantages as a file transfer system over
“dumb capture” programs. The next chapter describes the command language that
EMAS Kermit uses. Following that are chapters that describe how to use EMAS
Kermit to transfer data.

The final chapters comprise the “reference section”. They describe in full detail
the commands available in EMAS Kermit, grouping them by functionality
(i.e. “"Commands for file transfer” etc).

2: AN OVERVIEW OF KERMIT

Kermit is a system, devised at the Center for Computing Activities at the
University of Columbia, New York (CUCCA), to permit the simple and flexible
transfer of data from a microcomputer to a mainframe or another microcomputer.
CUCCA retain the copyright on Kermit, but have published full information on it
and permit anyone to implement it on their own machines, provided this is not
done for commercial purposes. The result is that Kermit is now available on a
very wide range of machines indeed: very few micros and mainframes now do not
have a Kermit of some sort available for them.

The primary design aim of Kermit is to permit the transfer of any data
whatsoever between systems, and to make the data usable on the system that
receives it if this is possible. To illustrate why this is important, and not possible
with simple systems, we can consider an ordinary terminal emulation system that
allows data to be captured into files or sent from them.

Simple terminal emulator systems, such as those commercially available for, say,
the BBC micro, would permit you to transfer files from EMAS in a rudimentary way.
You would tell the emulator to copy any characters that appear on the screen into
a file, then ask EMAS to list the file. The reverse process would let you input data
into an EMAS file from your BBC discs.

The problems arise in the nature of the communications system that connects
the micro to the mainframe, and how the mainframe itself uses this system.
A character of data in a file occupies one byte, which consists of 8 binary digits or
"bits”. If you regard the pattern of bits representing a character as a number,
this allows numbers ranging from 0 to 255 to be used. However, many
communications systems will allow only seven of the eight bits to be transmitted
along them. The most significant bit, termed the “parity bit”, is used by the
communications system as an error-checking device. Thus, even though you send
a byte of 8 bits to the mainframe, it may receive only 7 of them. This immediately
restricts the range of characters that can be sent to those whose codes are in the
range 0 to 127.

A further restriction may be imposed if the communications system uses some
of those characters for its own control purposes: thus systems often will use the

79-3



characters whose codes are 17 and 19 to prevent overloads occurring. In such
systems, you cannot transmit these characters at all. To make matters even
worse, some machines will (apparently arbitrarily) decide that you could not
possibly want to send some characters, so, if you do send them, it will change
them into something else entirely.

One method of file transfer which is extensively used in the Edinburgh
environment is X-Talk. It avoids those of the above problems which occur on the
ERCC network, but it is parochial, and there is a strictly limited range of machines
on which it is implemented. Section 3 of this guide gives a rough comparison of
X-Talk and Kermit, and suggests when you might use one or the other.

Kermit overcomes all these difficulties by encoding the data it sends according
to a standard set of rules or “protocol”. Kermit recognises that many characters
cannot be transmitted down a communications line, so if those characters occur,
they are translated into something that will be transmitted. The receiving end, of
course, translates them back again to what they were. This technique guarantees
that the data you send is the data that arrives, since Kermit uses special methods
for detecting garbling and will repeat any transmissions that did not get through
correctly.

Besides the problems of actually transferring data correctly, there is the problem
of making it usable on the other end of the transmission link. If you are sending,
say, a machine code program from a micro to EMAS, this is not a problem, since
EMAS probably cannot understand the micro’s machine code anyway. Nor does it
matter if you use the EMAS system only as an archive: it is irrelevant how the data
is held on EMAS, as long as when it is brought back to the micro it looks the
same as when it was sent.

The usability problem does appear, though, if you want to move a file from a
micro to EMAS and then actually use it on EMAS. You might, for instance, word
process a file on the micro, then send it to EMAS to be printed. In this case, you
may not want to transfer the data byte—for-byte, since the way the micro and
EMAS ‘denote things like the end of each line of text will aimost certainly be
different. What you require is that the file of printable lines on the micro, which
you can process on that machine, becomes a file of printable text on EMAS, that
can be processed there.

With Kermit the problem can easily be circumvented. The Kermit protocol
defines a standard way of indicating the end of a printable line. When you send a
file from the micro, Kermit will translate whatever ends the lines of text in your file
- into this standard form before sending the data. EMAS Kermit, seeing this
standard end-of-line indicator, will translate it into its end-of-line character.

You thus end up with a usable file of lines, with no extra characters anywhere.

The requirements you must meet before using Kermit are simple. You will need
a version of Kermit in your micro, EMAS Kermit to be set up in your filespace, and
a way of linking the machines, be it a network, an ordinary cable, or a piece of wet
string. (This is a joke. Wet string won't work.)
3: X-TALK versus KERMIT
Transmission Errors
Kermit detects and corrects transmission errors during transmission. X-Talk

detects and reports transmission errors at the end of a file transfer. The file
must be retransmitted by the user.

79-4



Availability

Kermit is available for a wide range of micros and hosts (see Section 7).
X-Talk is available for only a limited range of machines.

Micro-to-micro communications

All micro Kermits can be used for micro-to—-micro file transfers, while X-Talk,
being an asymmetric protocol, requires one micro to pretend to be a host.
The "host” end of the protocol is only implemented on UCSD p-system micros.

Speed and cost

Between a micro and EMAS, Kermit is much slower and more expensive than
X-Talk. However, between a micro and a VAX/VMS system, Kermit is very
much less demanding on VAX CPU time. Moreover, under VMS version 4 and
above, Kermit will work across the ERCC network to a VAX, which X-Talk will
currently not do. See Appendix | for details of comparative costs and speeds.

Ease of Use

Kermit is not at all easy to use (as may be evident from this guide).
X-Talk, however, is much more user-friendly.

Which should | use?
If you only want to transfer data to and from EMAS from a micro for which
X-Talk is available, you should use X-Talk.
If you have a communications line susceptible to noise (for example a dial-up

line), or you wish to transfer data to a VAX, or you wish to use a micro for
which no X-Talk is available, then use Kermit.

4: USING EMAS KERMIT

In this section we shall look at how you start and stop EMAS Kermit, and also
how its command language operates.

4.1 ENTERING EMAS KERMIT
To access the Kermit program on EMAS, type the once-only command:

Command :OPTION SEARCHDIR=MICROS.KERMDIR

Thereafter, to run Kermit, type:

Command : KERMIT

4.2 LEAVING EMAS KERMIT

To leave EMAS Kermit, you would normally use the EXIT command. However,
if you wish to log out immediately, you can use the EMAS QUIT command.

79-5



4.3 EMAS KERMIT COMMAND LANGUAGE

You control what you want EMAS Kermit to do, and how it should do it, by
giving it commands in its “command language”. The format of the command
language closely follows that used on most other Kermit implementations on other
machines.

4.3.1 Command format

When you enter Kermit, you will see a prompt on the screen

Kermit-EMAS>

This indicates that EMAS Kermit is expecting you to type a command. You can
type either a Kermit command, or an EMAS command preceded by “EMAS”
(e.g. "EMAS FILES”). Like EMAS commands, Kermit commands can be typed in
upper case, lower case, or any mixture of the two as you please.

Kermit's own commands all take the form of a command name, such as "SET",
sometimes followed by one or more further pieces of information or “parameters”,
which must be separated from each other by spaces. For example, one command

you might use is:

SET FILE-TYPE ASCII

to select text file transfer. Here the command is “SET", while “FILE_TYPE" and
“ASCII"” are parameters to the command.

The reference section at the end of this guide gives the complete specification
of all the EMAS Kermit commands. The commands are grouped according to their
function (such as “file transfer control”), rather than in one alphabetical list.

Thus you will find variations of the SET command appearing in many places,
grouped with other commands that function in the same area.

The reference section presents each command in a formal way to show you
exactly what you are allowed to type at any point. You might find one command
described as having a format:

SET BINARY_-QUOTE <character>

for example. Here the fixed parts, that you would always include, are shown in
capitals. The third part of the command, "<character>”, is enclosed in "<>"
brackets to show that here you must provide your own parameter value. The fact
that it says "character” indicates that what you should type is a character of some
sort: the description of the command will tell you what sort of character you must
provide and why. Note that you do not type the "<>" brackets yourself here. Thus,
a valid way of using this command might be:

SET BINARY_QUOTE $%

where you have supplied the character “3"” where it was expected. Additionally,
lines shown in underlined writing may be typed verbatim at the console. Unless
otherwise shown, these lines are assumed to be in response to the EMAS Kermit
command prompt.

Somaetimes, not all the parameters of some commands need be typed. In these
cases, Kermit will take a “default” value for the parameter you did not supply.
The reference section will tell you which parameters can be omitted, and what
values Kermit will assume if they are omitted.

79-6



43.2. The TAKE file facility

As an alternative to typing commands in on the keyboard, you can place them in
a file on EMAS (using some sort of text editor) known as a "TAKE file”, and tell
EMAS Kermit to read the commands from there instead of from the keyboard.
This is done with the TAKE command.

EMAS Kermit will read the file in as though the characters were coming from the
keyboard, and will obey its contents as commands. You can include either Kermit
commands or EMAS commands in the file, the only exception being another TAKE
command, which is not allowed. Additionally, you can place comment lines in the
file to describe what it does: any line that starts with an exclamation mark ("t} will
be ignored by Kermit.

When the end of the TAKE file is reached, Kermit will close it and revert to
reading input from the keyboard.

5: TRANSFERRING FILES WITH KERMIT

The primary use of EMAS Kermit is to transfer files between it and a
microcomputer. The methods used will be substantially the same whatever the
other system is, since any Kermit system should be able to communicate with any
other. Though the general techniques will be the same, the exact commands used
to control the other Kermit will vary from one system to another. You will need to
consult the user guide for the other system to discover how it should be
controlled. In this section we shall cover in detail how EMAS Kermit is controlied.

5.1 PRINCIPLES

Transferring files with Kermit involves several discrete steps. We shall consider
here the most common case of transfer to and from a micro.

1. The micro Kermit is entered and set up for the transfer. In particular, you may
wish to tell Kermit what types of file are to be moved. You may also need to
set any parameters for terminal emulation.

2. Terminal emulation mode is entered, and the local system is logged in to EMAS
as though it were an ordinary terminali.

3. EMAS Kermit is started.

4. Commands can then be given to EMAS Kermit (from terminal emulation mode)
and to the local Kermit (from local Kermit command mode). The two Kermit
systems will communicate with each other using the standard Kermit protocol.

5. After the transfers are done, the terminal is logged out from EMAS.

In practice, the steps taken will range up and down this list as required.
For example, EMAS Kermit parameters can be changed at any time, not only at the
start, and if you are moving several types of file you will need to change them
frequently. In the sections below we shall consider the various actions you will
need to take: the order of doing them is up to you.

79-7



5.2 SETTING FILE TYPE
5.2.1. Binary files

These files contain data that is not primarily printable text, such as
machine-code programs or word processor sources for your micro. When you
transfer these files, you wish every byte in the file on the micro to appear
unchanged in the file on EMAS, regardless of what it is.

You teil Kermit that you are handling binary files with the command:

SET FILE_.TYPE BINARY

which tells it not to change any data that it either sends or receives. Note here
that you may need to issue a comparable command to the local Kermit, to prevent
it trying to manipulate the data. Some Kermits may not allow you to send pure
binary data.

5.2.2. Printable text (ASCIl) files

These files contain printable text. When you transfer one of these files, you do
not necessarily want a byte-for-byte transfer, since the two machines may differ
in how they store text files. The Kermit standards define a fixed way in which
things such as end-of-line are transferred: EMAS Kermit will translate your data to
this standard format, and the other end will then translate the standard format into
whatever its own specific requirements are.

You tell EMAS Kermit that ASCII text files are to be transferred with the

SET FILE.TYPE ASCII

command.

5.2.3 Choosing the right file type

it is important to note that “binary” files mentioned here do NOT include
executable objects on EMAS. All files read by and written by EMAS Kermit are of
type CHARACTER (on EMAS), even if they contain an executable image for running
on another machine. A good rule of thumb to use is that if the file is text, and
you wish to be able to look at it on EMAS, then use an ASCIl transfer. Otherwise,
use BINARY mode. The default when Kermit is started is ASCIl mode.

5.2.4 Sending eight bit data

A further point to consider when transferring files concerns whether you can
transfer all the 8 bits in every byte. It is common for communications systems to
mainframes to restrict data to only 7 bits in each byte: thus you can only normally
send characters whose ASCIl codes are in the range 0 to 127. However, some text
files and every binary file will contain bytes from the whole character set, with
codes from 0 to 255.

Kermit in general has a technique for overcoming this restriction, by encoding
characters in the range 128 to 255 into special sequences that can be sent down
any communications line. EMAS Kermit will use this technique automatically when
appropriate. Almost all modern Kermits will use this technique, which is known as
“eight bit prefixing”, but you may encounter an older implementation on some
machine that does not support it. In this case your data will be garbled in

79-8



transmission. There is, regrettably, no way round this problem from within Kermit.

5.3 GETTING STARTED
Once you have logged in, you can start the EMAS Kermit program.

EMAS Kermit is only able to operate as a normal Kermit {termed non-server
mode). In this mode, you will need to give commands both to it and to the local
Kermit for every file transfer (here a transfer of a group of files in one go counts
as one operation), which will involve you in continual changes between local
Kermit command mode and terminal mode.

WARNING: If you log onto EMAS through a TCP, you will need to issue the
following command in response to the Kermit-EMAS> prompt:

Kermit-EMAS> set receive start_of_packet 2

and the following command in response to the Micro’s Kermit command prompt:

Kermit-Micro> set send start-_-of_packet 2

as the TCP will attempt to intercept Kermit's default start-of-packet character
which is ASCIl 1 (SOH or Control+A). See section 6.3 for details.
5.3.1. Sending files to EMAS

To send a file to EMAS you use the command SEND on the local machine.
You must also tell EMAS Kermit that a file is on its way.

a. In terminal mode, start EMAS Kermit, and issue the RECEIVE command.
This tells it to expect a file from the local system. EMAS Kermit will then
wait for something to happen.

b. Type the control sequence to return to the micro Kermit command mode.
(See micro Kermit User Guide for details.)

c. Issue the micro Kermit SEND command.
Example:
Kermit-Micro> connect
[Connecting to host. Type Ctrl+] C to return to micro]
Command: kermit
EMAS Kermit V2.3
Kermit-EMAS> receive doc
Ctrl+] C
[Back at Micro)

Kermit-Micro> send info.doc

79-9



5.3.2 Sending files from EMAS

Transferring files from a local machine to EMAS is the exact reverse of the
above RECEIVE procedure: all you need to do is reverse the roles of the two
machines.

a. In terminal mode, start the EMAS Kermit program, and issue its SEND
command. This tells it to transfer a file to the local system. There will
normally be a delay before anything happens - the interval may be anything
from a few seconds upwards, and is intended to let you do the next step
before the transfer starts.

b. Type the control sequence to return to the micro.

c. Issue the RECEIVE command to the local Kermit. When EMAS Kermit's delay
time expires, it will start to send the file. The RECEIVE command tells the
local Kermit to sit and wait until this happens.

Example:
Kermit-Micro> connect
(Connecting to host. Type Ctrl+] C to return to microl
Command: kermit
EMAS Kermit V2.3
Kermit-EMAS> send doc
Ctrl+] C

[Back at Micro]

Kermit-Micro> receive info.doc

5.4 HANDLING PROBLEMS

By design, Kermit is a highly reliable file transfer system, and performs
considerably better than any “dumb capture” facility within a terminal emulator.
The error-detection capabilities of Kermit ensure that data is transmitted correctly.

That said, there are some cases where you may need to abort a transfer.

The simplest way out of possible problems is for you to keep an eye on the
progress of the transfer and see when it appears to be in trouble. The local
Kermit will probably have some sort of display facility to show you how the
transfer is going. If things seem to have ground to a halt, and the local Kermit is
not able to do anything, you can abort the transfer at the EMAS end by typing the
sequence of characters necessary to generate the Int: prompt, (for example ‘ESC’
on a TCP, 'CTRL+P B’ on a PAD) then typing ABORT followed by return. This will not
be echoed on the screen, but should return you to the Kermit prompt in a few
seconds.

5.5 Protocol control

The rules by which files are transferred between Kermit systems are termed the
“Kermit protocol”. These rules define in detail how data should be transferred:

79-10



they specify how much can be sent in one chunk or packet, what control
sequences indicate the start and end of a packet, what character encoding is to be
used, and so on. In almost every case you will have no need to change any of
these settings, since they are carefully chosen so that any Kermit can
communicate with any other Kermit in just about every circumstance.

However, it is possible that you may come across cases where you need to
change some of the protocol values, either to improve the performance of the file
transfer mechanism, or because the standard settings are inappropriate and do not
work. .

The protocol values are changed by the SET command, and EMAS Kermit allows
you to change all the possible values. The reference section details aill the SET
commands concerned and their effects. A detailed discussion of the various
possibilities is beyond the scope of this user guide, since some understanding of
the Kermit protocol is needed. You will find this protocol explained in the “Kermit
Protocol Manual” (use issue 5 or later).

6: COMMANDS FOR THE CONTROL OF KERMIT

In this section, we shall look at the commands you can you can use to control
the operation of EMAS Kermit.
6.1 General Commands
EXIT

This command causes EMAS Kermit to return to the Command: prompt at the
end of a session.

The command has no parameters.
Example:

EXIT

HELP
This command causes on-line help information to be displayed using the EMAS
VIEW system. On exit from this, you will be returned to the Kermit command
prompt, where you left off.
The command has no parameters.

Example:

HELP

SHOW
This command displays the values of all the Kermit control values.
The command format is:

SHOW <value>

79-11



The parameter is:
<value> This specifies the name of thé control value to be shown.
Example:

SHOW PROMPT
causes the current prompt string (Kermit-EMAS> by default) to be displayed.
Additionally,

SHOW_ALL

displays all the control values.

EMAS

This command passes its parameters to the EMAS command line interpreter to
be executed as a command.

The command format is:
EMAS <EMAS command>
The parameter is:
<EMAS command> This is an EMAS command to be executed.
Example:
EMAS FILES
causes the FILES command on EMAS to be executed, as if typed directly at the
Command: prompt.
SET PROMPT
This command causes the Kermit command prompt to be changed.
The command format is:
SET PROMPT <string>
The parameter is:
<string> This specifies the Kermit command prompt string.
By default, the Kermit command prompt is Kermit-EMAS>.
Example:

SET PROMPT EMAS:

causes the command prompt to subsequently be set to EMAS:.

79-12



SET DELAY
This command changes the time that EMAS Kermit delays before sending its
first packet, i.e. the amount of time required by you to escape back to the
micro and initiate the RECEIVE... end of the transfer.
The command format is:
SET DELAY <number>

The parameter is:

<number> This specifies the time, in seconds, that EMAS Kermit will wait
before sending its first packet.

By default, the delay is 5 seconds.
Example:
SET DELAY 10

causes the delay prior to sending the first packet to be set to 10 seconds.

TAKE

This command causes EMAS Kermit to read all further commands from a file
instead of from the keyboard.

The command format is:
TAKE <filename>
The parameter is:

<filename> This specifies the name of a file containing EMAS Kermit
commands, in the same format as if they were typed at the
keyboard.

Once you issue the TAKE command, EMAS Kermit will read characters from the
specified file instead of the keyboard. Any Kermit or EMAS command can be
issued from within a TAKE file, except a further TAKE command.

6.2 Commands for file transfer
In this section we shall look at the detailed format of the commands that you
use to transfer files using EMAS Kermit, and to control how EMAS Kermit will
perform the transfers.
RECEIVE
This command causes EMAS Kermit to wait for a file transfer to be started by
the local system. You will thus need to issue a SEND command to the other
Kermit in order to make something happen.

The command format is:

RECEIVE <EMAS-file>

79-13



The parameter is:
<EMAS-file> This parameter is optional, and specifies the name of a file on
EMAS into which you wish data to be transferred. It must be a
legal EMAS filename.
When the command is issued, EMAS Kermit will wait passively for a signal

from the other Kermit that a file transfer is beginning. This signal will include
the name of the file that is being sent: if you have included the <EMAS-file>

parameter, this name is for information only, and the data will be written to the
file you have identified.

If you omit the <EMAS-file> parameter, EMAS Kermit will attempt to
generate a suitable EMAS filename from the name supplied by the remote
system.

If the filename is the same as a file that already exists, then by default EMAS
Kermit will try to alter it until there is no clash. However, you can turn off this
protection using the SET FILE_PROTECTION OFF command.

SEND
This command sends a file to the local Kermit.
The command format is:
SEND <EMAS-file> {, <EMAS-file> }

The parameters are as follows:

<EMAS-file> This parameter is mandatory. It specifies the name of the file on
EMAS that you want to send, and can be any legal EMAS text file.

You must then escape back to the local machine, and issue a RECEIVE
command there to prepare it for this SEND.

You may send a group of files simply by specifying a list of filenames,
separated by commas.
SET EILE_PROTECTION

This command tells EMAS whether it should create a unique filename for files
being RECEIVEd, or just let any already existing file be overwritten.

The command format is:
SET FILE_PROTECTION <on/off>
The parameter is:

<on/off> ON or OFF. ON means that a unique filename will be generated if
necessary.

By default, EMAS Kermit will generate a unique filename in the case of a clash.
Example:

SET FILE_PROTECTION OFF

79-14



causes EMAS Kermit not to bother about possibly overwriting a file when
receiving.
SET FILE_TYPE ASCII

This command tells EMAS Kermit that files it transmits and receives are to be
taken as containing printable ASCIl text and to transform them accordingly.

The command format is:

SET FILE_TYPE ASCII

After using this command, EMAS Kermit treats all files as containing printable
ASCI text, with the end of each line indicated by the EMAS default end-of-line
character. When sending a file, it will transform every occurrence of this
character into Kermit's standard end-of-line indicator, and the remote Kermit
should then change this into whatever the standard representation of
end-of-line is on its own system. When receiving files, EMAS Kermit will
change every occurrence of the standard Kermit indicator into the standard
EMAS end-of-line character.

You may need to give an equivalent command to the other Kermit system to
make it treat the data correctly.

By default, EMAS Kermit treats files as ASCIi, with end of line indicated by an
LF byte.
SET FILE_TYPE BINARY

This command tells EMAS Kermit that all files it receives or sends should be
treated as containing binary data.

The command format is:

SET FILE_TYPE BINARY
After using this command, EMAS Kermit will transmit the bytes from a file
exactly as they are, and will not change any of them. Similarly, the data it

receives will be written to a file with no aiteration.

You may need to give an equivalent command to the other Kermit system to
make it treat the data correctly.

By default, EMAS Kermit treats files as ASCII text.
Example:

SET FILE-TYPE BINARY

makes EMAS Kermit treat files as containing binary data.

6.3 Commands for detailed protocol control

The commands described in this section are used to exert detailed controi over
the Kermit protocol. As explained earlier, it is unlikely that you would ever need to
use these commands, unless you log on to EMAS through a TCP. You should
consult the Kermit Protocol Manual for a detailed description of the facilities they

79-15%



control.

SET BINARY_QUOTE

This command defines the eight-bit prefix character that EMAS Kermit will ask
the other Kermit to agree to use.

The command format is:
SET BINARY_QUOTE <character>
The parameter is:
<character> The printable character to be used.

By default, EMAS Kermit will attempt to use the “&" character as its eight-bit
prefix.

Example:

SET BINARY_QUOTE $%

sets the eight-bit prefix character to be “%".

SET REPEAT_QUOTE

This command defines the repeat count prefixing character that EMAS Kermit
will ask the remote system to agree to use.

The command format is:
SET REPEAT_QUOTE <character>
The parameter is:
<character> The printable character to be used.

By default, EMAS Kermit will attempt to use the “~" character as its repeat
count prefix.

Example:

SET REPEAT.QUOTE "

sets the eight-bit prefix character to be """

SET RECEIVE PACKET_LENGTH

This command defines the maximum packet size that EMAS Kermit will ask the
remote system to send.

The command format is:

SET RECEIVE PACKET_LENGTH <number>

79-16



The parameter is:

<number> The maximum size of packet wanted from the remote system, in
the range 35 to 92.

By default, EMAS Kermit asks the remote system to use a maximum packet size
of 94 bytes.

Example:

SET RECEIVE PACKET.LENGTH 60

causes EMAS Kermit to request the remote system to use a maximum packet
size of 60 bytes.
SET RECEIVE START_OF_PACKET

This command defines to EMAS Kermit the character that the remote system
will use to indicate the start of each packet.

The command format is:
SET RECEIVE START_OF PACKET <number>
The parameter is:

<number> The numeric code of the character the remote system will use, in
the range 0 to 31.

By default, EMAS Kermit will expect the remote system to precede each packet
with the ASCIl 1 (SOH or Control+A) character. However, if your connection is
through a TCP this character cannot be used, so you must use this command
to change the expected value to something else.

Example:

SET RECEIVE START-OF.PACKET 2

tells EMAS Kermit that the remote system will precede each packet with the
ASCIl 2 (STX or Control+B) character. Note that having done this, you will need
to change the SEND START_OF_PACKET character at the local Kermit to the
same thing.

SET RECEIVE RETRIES

This command defines the number of times that EMAS Kermit will attempt to
receive any particular packet before giving up.

The command format is:
SET RECEIVE RETRIES <number>
The parameter is:

<number> The maximum allowable number of retries before failure is
acknowledged.

By default, EMAS Kermit will retry 10 times before admitting defeat.

79-17



Example:

SET RECEIVE RETRIES 20

sets the maximum number of retries to 20.

SET SEND END_OF _LINE

This command defines the value that EMAS Kermit uses to signal the end of a
packet.

The command format is:
SET SEND END_OF_LINE <number>
The parameter is:
<number> The number of the control character in the range 0 to 31.
By default, EMAS Kermit terminates its packets with Carriage Return (ASCIl 13).
Example:

SET SEND END.OF_LINE 10

causes EMAS Kermit to terminate its packets with Line Feed (ASCIl 10).

SET SEND RETRIES

This command defines the number of times that EMAS Kermit will attempt to
send any particular packet before giving up.

The command format is:
SET SEND RETRIES <number>
The parameter is:

<number> The maximum allowable number of retries before failure is
acknowledged.

By default, EMAS Kermit will retry 10 times before admitting defeat.
Example:

SET SEND RETRIES 20

sets the maximum number of retries to 20.

SET SEND PADCHAR

This command defines the padding character with which EMAS Kermit will
precede the first packet to be sent in a transfer. Subsequent packets will be
preceded by the character requested by the remote system in its SEND-INIT
packet.

79-18



The command format is:
SET SEND PADCHAR <number>
The parameter is:
<number> The numeric code of the character to be used, in the range 0 to 255.
By default, EMAS Kermit uses a pad character of NUL (ASCIl 0)
Example:

SET SEND PADCHAR 3

sets the pad character used to be ASCII 3.

SET SEND PADDING
This command defines the number of pad characters EMAS Kermit will send
before the first packet in a transfer. Subsequent packets will be preceded by
the number requested by the remote system in its SEND-INIT packet.
The command format is:
SET SEND PADDING <number>
The parameter is:
<number> The number of pad characters to be sent, in the range 0 to 255.
By default, EMAS Kermit sends no pad characters.

Example:

SET SEND PADDING 21

causes EMAS Kermit to send 21 pad characters before its first packet.

SET SEND QUOTE

This command defines the character that EMAS Kermit will use to prefix control
characters in data packets that it sends.

The command format is:

SET SEND QUOTE <character>

The parameter is:

<character> The printable character to be used.

By default, EMAS Kermit uses the “#" character.

79-18



Example:

SET SEND QUOTE §

causes EMAS Kermit to prefix control characters it sends in data packets with a

us ”

SET SEND START_OF_PACKET

This command defines the character that EMAS Kermit will send to indicate the

start of every packet.

The command format is:

SET SEND START_OF_PACKET <number>

The parameter is:

<number>

By default, EMAS Kermit sends the ASCIl 1 (SOH or Control+A) character in

The numeric code of the character to be sent, in the range 0 to

31.

front of every packet.

Example:

SET SEND START-OF.PACKET 5

causes EMAS Kermit to precede every packet it sends with the ASCHl 5 (ENQ or

Control+E) character.

7: KERMIT AVAILABILITY

Kermit is available for the following mainframe computers:

Machine

Cyber 170
DEC 20

Data General
Burr. B6800
Burr. B7900
Many
PDP-11...
DEC VAX
DEC VAX
SUN,...

IBM 370
Cray 1 & XMP
Harris 800
H/Well CP6
H/well DPS/8
H/well DPS8, 66
HP3000
HP1000

GEC 4000
IBM 370

DEC 10

System

NOS
TOPS 10
AOS

UNIX Sys 3
UNIX V7
VMS

UNIX 4xBSD
UNIX 4xBSD
VM/CMS
CTSS

VOS

IBEX

GCOSs
GCOS3 or 8
MPE

RTE
0S4000
MUSIC
TOPS 10

Language

Fortran 77
MACRO 20
Ratfor
Algol/NDL
Algol

C

C

C

C

Cc

IBM assembler
Fortran 77

Pascal, assembler

Pascal

B

C

SPL
Fortran
Babbage
Assembler
MACRO 10

79-20

Date

07/09/84
15/11/84
14/09/84
15/02/85
23/04/85
30/05/85
30/05/85
30/05/85
30/05/85
30/05/85
01/02/84
08/02/85
11/02/85
04/04/85
21/03/85
05/10/84
25/10/84
14/09/84

26/12/84
01/06/84

Version

2.2
4.2(253)

4C
4C
4C
4C
4C

1.0
3(124)



Pro 350
PDP-11
PDP-11
PDP-11

PDP 11

IBM 370
Honeywell
PRIME

DG Nova
HP3000
Univac
Tandem

IBM 370
Univac 1100
Univac 1100
VAX

and for the following microcomputers:

Machine

Luxor ABC800
Fujitsu M16
Tektronix 4170
NEC APC
Rainbow

Alpha M 68000
Apple Il

NEC APC binaries
Apollo

Apple [l

ACT Apricot

Atari Home Comp.

BBC Micro
Commodore 64
Commodore 64
TRS80 color
ATT 3Bx,..
Macintosh
DEC Pro-350
IBM PC/AT,..
IBM PC/XT
NCR Tower
Apple |i
Aculab Z808B
Bigbrd Il
CPT-85xx
DEC VT180
DECmate |l
Delphi 1000
Cifer 1886
Gen. 2.2
Gen. 3.0
H/Z-89
H/Z-100
Kaypro i
Lobo Max80
Morrow D.1
Morrow MD.1

POS,RT11
RSX11M,M+
RSTS
RT11,TSX+
MUMPS/11
MTS

MULTICS
PRIMOS

RDOS
Software Tools
Software Tools
Nonstop
MVS/TSO

EXEC

NOSC

VMS

System

ABCDOS
CP/M-86
cP/M-86
cP/M-86
CP/M-86
AMOSL
Apple DOS
CP/M-86
Aegis
Apple DOS
MSDOS
DOS

0S 1.20
DOS

DOS
Ext.color BASIC
UNIX Sys 5

Venix V1
Xenix/286
PC/IX
0S1.02
CP/M-80
cP/M-80
CP/M-80
CP/M-80
CP/M~-80
CP/M-80
CpP/M-80
CcpP/M-80
CP/M-80
cp/M-80
CP/M-80
CP/M-80
CP/M-80
CP/M-80
CP/M-80
cpP/mM-80

MACRO-11
MACRO-11
MACRO-11
MACRO-11
MUMPS
Assembler, Pascal
PL/1

PL/P (PL/1)
Fortran

Ratfor

Ratfor

TAL

Assembler
Assembler
Pascal
Bliss32/Macro32

Language

BASIC-II
ASM86
ASMB86
ASM86
ASM86

Alpha asm68k
Apple assembler
ASM86
Fortran
DEC-10 Cross
MASM
Action!

ADE assembler
DEC 10 Cross
Forth
EDTASM

C

C(SUMACC)

C

C

C

C

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

ASM

79-21

20/03/85
20/03/85
20/03/85
20/03/85
11/04/84
06/01/84
20/09/84
10/02/84
14/09/84
18/02/84
11/06/84
30/11/84
20/03/85
08/10/84
08/10/84
25/04/85

Date

08/05/84
03/12/84
03/12/84
03/12/84
03/12/84
11/02/85
09/10/84
03/12/84
04/04/85
12/09/84
14/11/84
09/01/84
10/06/85
04/03/85
08/02/85
21/03/85
30/05/85
30/05/85

- 30/05/85

30/05/85
30/05/85
30/05/85
19/02/85
26/06/85
19/02/85
19/02/85
19/02/85%
19/02/85
19/02/85
28/05/85
19/02/85
19/02/85
19/02/85
19/02/8%5
19/02/85
19/02/85
19/02/85
19/02/85

2.26
2.26
2.26
2.26

2.0h

In
In
0.0
1.0

2.0
3.1.065

Version

2.2
29
29
29
29
1.0
272
29
1.0
2.1A
1.20

1.02
1.3
1.5
1.1
4C
0.8
4C
4C
4C
4C
4.05
4.05
4.05
4.05
4.05
4.05
4.05
4.03
4.05
4.05
4.05
4.05
4.05
4.05
4.05
4.05



Nokia M.Mikko CP/M-80 ASM 18/02/85 4.05

N/S Horizon CP/M-80 ASM 19/02/85 4.05
Ohio Sci. CP/M-80 ASM 19/02/85 4.05
Osborne 1 cP/M-80 ASM 19/02/85 4.05
S/brain CP/M-80 ASM 19/02/85 4.05
T.Zorba CP/M-80 ASM 19/02/85 4.05
TRS80-II CP/M-80 ASM 19/02/85 4.05
Vec.Grap. CP/M-80 ASM 19/02/85 4.05
Xerox 820 CP/M-80 ASM 19/02/85 4.05
Fujitsu 16 CP/M-86 ASM86 15/02/85 2.9
Honeywell L6/10 MS-DOS MASM 05/10/84 1.20A
HP 150 MS-DOS HP 150

HP 98xx UCSD p-system HP Pascal 20/01/84

DEC PRO350 P/0S,PRO/RT Macro 11 20/03/85
TRS80/4 TRSDOS ASM 21/03/85 4.0
Intel Dev.Sys. SIS PL/M 04/04/85

Sanyo MBC MS-DOS/PC-DOSMASM 10/06/85 2.28
H/Z-100 MS-DOS MASM 10/06/85 2.28
NEC APC MS-DOS MASM 10/06/85 2.28
Generic MS-DOS MASM 10/06/85 2.28
IBM PC MS-DOS MASM 10/06/85 2.28
Rainbow100 MS-DOS MASM 10/06/85 2.28
ACT Apricot MS-DOS MASM 2.27
HP-150 MS-DOS MASM 10/06/85 2.28
HP-110 MS-DOS MASM 10/06/85 2.28
Wang PC MS-DOS MASM 10/06/85 2.28
Ti-Pro MS-DOS MASM 10/06/85 2.28
ICL Perq PERQ OS Pascal 04/12/84 2.0
DEC pro 350 p/os Bliss 01/06/84 1.0
Rainbow binaries CP/M-86 ASM86 03/12/84 2.9
Sirius 1 MS-DOS MASM 12/06/84 1.20
Seequa Chameleon MS-DOS MASM 17/11/83 1.18
DEC VT180 CP/M-80 Turbo Pascal 13/02/85 1.1
TRS80 | and Ill MS-DOS 280 assembler 08/08/84 3.5
Tektronix 4170 CP/M-86 ASM86 03/12/84 2.9
I1BM-PC UCSD p-sys IV.x Pascal 23/05/84 0.1
Pascal m/engine UCSD p-sys Pascal 03/12/84 1.0
Terak 8501a UCSD p-sys Il.0 Pascal, Macro 11 17/11/83

Sirius 1 Cl C-86 07/09/84 1.0
Sirius 1 CP/M-86 ASM86 25/11/83 1.1
Sirius 1 MS-DOS MASM 10/11/83 1.18

8: ACKNOWLEDGEMENT

| would like to thank Alan Phillips of Lancaster University for his help in
preparing this document.

9: AUTHORSHIP
Kermit for EMAS was written by Adam D. Aibert-Recht, and is maintained by

Christopher J. Adie, ERCC. Queries regarding this software should go to the ERCC
Advisory service in the first instance.

79-22



Appendix I: Comparison of Costs and Timings for X-Talk and KERMIT

The test file was ASCIl text, 50000 bytes long.

measured in seconds.

EMAS

(Connection through a PAD at 9600 baud)

KERMIT X-TALK

Elapsed Time: 447 87
CPU + PT/650: 89.08 13.51
ERCVAX

{Connection through a PAD at 9600 baud)

KERMIT X-TALK

Elapsed Time: 316 N/A
CPU Time: 28.58 N/A

(Directly connected at 9600 baud)

KERMIT X-TALK

Elapsed Time: 107 186
CPU Time: 26.68 99.23

79-23

All timings are approximate, and



INDEX

Aborting a transfer 10
Abstract 7
Accessing KERMIT 5
Acknowledgement 22
Appendix | 23
Authorship 22
Availability 20
Command language 6
EMAS 12
EXIT 5.11
File type 8
Getting Started 9
HELP 1
Introduction 3
Overview 3
RECEIVE 13
SEND 14
SET BINARY_QUOTE 16
SET DELAY 13
SET FILE_PROTECTION 14
SET FILE_TYPE 15
SET PROMPT 12
SET RECEIVE PACKET_LENGTH 16
SET RECEIVE RETRIES 17
SET RECEIVE START_OF _PACKET 17
SET REPEAT_QUOTE 16
SET SEND END_OF_LINE 18
SET SEND PADCHAR 18
SET SEND PADDING 19
SET SEND QUOTE 19
SET SEND RETRIES 18
SET SEND START_OF PACKET 20
SHOwW 11
TAKE 713
Using Kermit 5
X-TALK 4

79-24



