\usry7 Edinburgh
Regional | User Note 81

eonsurcH Centre (February 1986)

EMAS-3: Command macro scheme

John Maddock
Keith Yarwood Advisory service

Synopsis
Command macros provide execution of a series of command lines by typing a macro
name instead of a command name, and allow textual substitution of parts of the
command lines as well as conditional and repetitive execution of command lines.
The scheme currently implemented is provisional. Changes in syntax may be made

during the coming months, but broadly equivalent facilities will continue to be
available. Changes will be notified by ALERT on EMAS-A and by reissue of this User

Note.

Keywords

Command macros

Edinburgh Regional Computing Centre
James Clerk Maxwell Buiiding, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

(© 1986 Edinburgh Regional Computing Centre

Introduction
Command macros provide:

- axecution of a series of command lines by typing a macro name instead of a
command name;

-~ textual substitution of parts of the command lines according to the values of
the macro parameters and macro variables;

- conditional execution of command lines according to the values of the macro
parameters, macro variables and system variables;

- repetitive execution of command lines under control of macro variables and
system variables.

.

The scheme currently implemented is provisional. Changes in syntax may be made
during the coming months, but broadly equivalent facilities will continue to be
available. Changes will be notified by ALERT on EMAS-A and by reissue of this User
Note.

Macro definition and textual substitution

Macros are character files, usually being members of a partitioned file :SS#MACRO.
{":" is an abbreviation for “username:” for the current process owner). The first line
of a macro is the macro header, comprising the name of the macro folilowed by
formal parameters. The formal parameters are simply alpha-numeric names. They
are separated from the macro name by one or more spaces, and from each other by

commas. Each formal parameter may be followed by a phrase =text where text is
the defauit text to be used during macro interpretation when the call of the macro
does not provide an explicit value for the parameter. For example, the macro header

of macro FORT (being partitioned file :SSMACRO_FORT) might be:

fort sourcenumber , outputfile=.lp

The remaining lines of the macro, called the macro body, are EMAS command lines
in which text of the actual parameters given in the call of the macro is substituted in
the command lines where the parameter names appear preceded by %3.

For example:
fortran sourcepd_member$3sourcenumber , object , listing
define 6 , %%outputfile
run object .

During macro execution, the $%-parameter text is replaced by the text of the
corresponding parameter in the call of the macro. Thus the macro given above
might be invoked by typing

Command: fort 25 , .out

which would lead to the execution of the commands

Command: fortran sourcepd_member25 , object , listing
Command: define 6 , .out
Command: run object

Some examples of macro definitions and executions are given in file
SUBSYS:EXAMPLES.MACROS

81-2

Lines of the macro body may in addition be macro variable declarations, labels or
conditionals, as described below.

Macros may be nested within macros to any depth. A macro defined within a
macro is local to the macro containing it, and is not stored as a separate member of
:SS#MACRO.

Creating and altering macros

A macro may be created and optionally placed in :SS#MACRO by using an editor.
It may also be created directly from typed input by using one of the following forms,
in which case the macro header is created automatically, the file is placed in

:SS#MACRO and the macro name is inserted into the current active directory.
The member may subsequently be edited in the ordinary way.

The commands INSERT, REMOVE may be used to enable macro names to be
inserted explicitly into a directory if necessary. The forms of the commands are:

Command: INSERT macrofilename , directory
Command: REMOVE macrofilename , directory

The directory parameter may be omitted, in which case the macro is inserted into-
the current active directory. These commands can take effect even if the specified
directory is currently connected in the virtual memories of other processes.
Direct creation of a macro - short form
The short form of a macro definition is
(MACRO macioname paraml , param2 ,... paramN) macrobody

For example

Command: (MACRO PDEXTRACT PDFILE , MONTH ,
LPNO) LIST $3PDFILE_R%MONTHPAY , LP$SLPNO

Then the command line
Command: pdextract data86 , january , 15
causes execution of the command line
Command: list dataB6_januarypay , .lpl$S
(No;e that on EMAS-3, command-lines may be typed on several input.lines by
breaking the "command-line” after “,".)
Direct creation of a macro - long form
The full form, providing for the creation of multi-line macros is
(BEGIN MACRO macroname paraml , param2 , ... paramN)

macrobody

(END MACRO)

81-3

In this form, the earlier example FORT would be typed

Command: (begin macro fort sourcenumber , outputfile=.lp)
Command: fortran sourcepd_member$%sourcenumber , object
Command: define 6 , %3outputfile

Command: run object

Command: (end macro)

Instead of the line (end macro), Ctrl+Y (end-message) may be typed.

Invocation of a macro

A macro is a character file with internal format as described in this document.
The file is usually but not necessarily a member of partitioned file :SS#MACRO.
A macro is called by typing the macro name followed by its actual parameters, in the
same form as for an EMAS command. The loader search for the macro name is
analogous to that for a command entry point or alias. If the macro name has been
inserted into one of the directories in the process’ SEARCHDIR list, the loader returns
the name of the file containing the macro and macro execution commences. If the
macro name is not found during the directory search, then the partitioned file
:SS#MACRO is searched and if a member exists having the same name as the typed
macro name, again macro execution begins.

There are thus two ways in which the search for a macro may be successfully
completed: either from a macro entry in a directory orbecause it exists as a member
of :SS#MACRO where the member name is the macro name. If the macro was
created directly from typed input by entering

Command: (MACRO macroname etc.
or
Command: (BEGIN MACRO macroname etc.

then both search criteria can be met. Having the macro name in a directory allows a
more efficient search (because the directories will always be searched before
:SS#MACRO is searched) and in addition other users can access the inserted macros
using the standard SEARCHDIR mechanism via your permitted libraries. It is
necessary, of course, to PERMIT the :SS#MACRO or other file containing the macro,
if your macros are to be executed by other users.

Macro variables
Variables of type integer may be declared within macros. The form of declaration
is:
DECLARE name , name ,..., name

The variable names are subject to the normal rules: alphanumeric, first character
alphabetic. Values may be set into these variables using the .SET macro instruction,
thus:)

SET name=number

For example:

DECLARE COUNT
SET COUNT=5

81-4

These variables may form part of binary expressions and may be used in conditional
statements (q.v.). Binary expressions may appear on the right-hand side of .SET
statements; operators available are add(+), subtract(-), multiply(*) and divide(/). Thus:

«SET COUNT=COUNT+1
SET COUNT=INIT*3

Variables may also be concatenated with text, in the same way as parameters:
there is an implicit conversion to string. Thus

TEST$3COUNT
would yield TESTS if COUNT had value 5.

.SET may also be used to set the value of a macro parameter. Note, however, that
parameters are implicitly string-type variables. Whenever an assignment is made to
a variable or a parameter, the appropriate conversion (to integer or string
respectively) is made. It does not make sense to assign a non-numeric string into a
variable, which is implicitly type integer, and such constructions will be faulted.

System variables

One system variable is currently available, being the return code from the
previously executed command. Its name is .RCODE and it may be tested in a
statement such as

.IF .RCODE=0 .GOTO NEXT
Read the section on Conditionals for further details. A value may not be assigned
to .RCODE.
Jumps and labels
A macro label takes the form
name;
where name obeys the usual rlles, thus:
LABEL;
Jumps are of the form .GOTO label, thus:

GOTO LABEL

Conditionals
Conditionals take the form
.IF parvar comparator parvar .GOTO label
where parvar may be a parameter or a variable, comparator is equals(=), not

equals(#), greater than(>) or less than(<). Type conversion takes place where
necessary, and the comparison is either arithmetic or(IMP-) string comparison,

81-5

according to the type of the left-hand parvar.
For example:
.IF PARM1=VAR1l .GOTO LABEL

3% does not appear in front of the parameter name: this would imply pre-substitution
with the parameter vailue. If the characters PARM1 or VAR1 do not correspond to
parameter or variable names, the literal string(s) PARM1, VARL are used in the
comparison.

Character data for commands

Character data may be supplied as part of the macro body. Character data are
preceded by a line .INPUT and terminated by a line .ED (end data). When a command
from the macro body requires input from the current default input stream, lines from
the following macro data are supplied. The lines of macro data are subject to the
same text-substitution as the command-lines of the rest of the macro body, if
required. For example, a macro CLEANOUT might be defined:

cleanout bad,file
edit %$%file
.input
(m/%3%bad/dl)*

e

.ed

Then typing
Command: cleanout warning , listfile

would delete from file LISTFILE all lines containing the word WARNING.

Comments in macros
Comments, introduced by “~-" (double minus sign), may be incorporated into the

macro body. All characters from “--" to the end of the current line are ignored by
the macro interpreter, except within blocks of command data (between .INPUT and

.ED).
Messages in macros
The construction
MSG message

causes printing of the text message at the terminal during macro execution.

