\asoy Edinburgh

Regional | User Note 84

Centre

(February 1986)

EDINBURGH

EMAS-3: Multi-language calls to IMP procedures

Author: Software Support

Category:
n/a

Keith Yarwood Advisory service

Synopsis

This Note describes Subsystem procedures which are designed to assist IMP
procedures which may be called from IMP, FORTRAN, PASCAL or C.

Keywords

EMAS-3, IMP, mixed language, multi-language, parameters, SSENTER, SSEXIT

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

(© 1986 Edinburgh Regional Computing Centre



Introduction

In EMAS-3 the languages other than IMP in general pass their parameters by name
(reference). For most variable-types the data passed comprises a single word

(32 bits) containing the address of the variable, or start of the variable’s store area.
For string (character) variables the parameter comprises a double-word of which the
first contains codes describing the representation of the string variable in the calling
language and the second contains the address of the first byte of the variable.

The Subsystem procedures SSENTER, SSEXIT (and SSENTER2, SSEXIT2) are provided
for use by IMP programs to enable them easily to acquire integer, real and string
parameters from any of the languages and to pass data back in those parameters on
return if required.

In detail the types of parameters currently handled are:

Type-code
integer (*4) 32-bit i
real (*4) 32-bit e
longreal (*8) 64-bit d
string(character) s

Specification of SSENTER, SSEXIT, SSENTER2, SSEXIT2

Two sets of procedures are provided: SSENTER, SSEXIT for programs which handle
integer and string parameters only and SSENTER2, SSEXIT2 for programs which in
addition may require to handle real parameters. The specifications for these
procedures are as follows:

%externalroutinespec SSENTER %alias “S#SSENTER” %c
(%stringname STRING1, %integername INT1, %stringname TEMPLATE)

%externalroutinespec SSEXIT %alias "S#SSEXIT” %c
(%stringname STRING1, %integername INT1, %stringname TEMPLATE)

%externalroutinespec SSENTER2 %alias "S#SSENTER2” %c
(%stringname STRING1, %integername INT1, %real REALIT,
%longreal LONGREAL1, %stringname TEMPLATE)

%externalroutinespec SSEXIT2 %alias "S#SSEXIT2” %c
(%stringname STRING1, %integername INT1, %real REALT,
%longreal LONGREAL1, %stringname TEMPLATE)

Declarations in the IMP procedure

An IMP procedure which is to be accessed from IMP, FORTRAN, PASCAL or C
declares local variables which are to receive the initial contents of the parameter
variables. All parameters of the called routine must be of type %name (reference)
because that is the standard form for languages other than IMP. When SSENTER is
called, data are moved from the parameters into the locals. Conversely, when
SSEXIT is called, values are returned as required from the IMP program’s local
variables into the calling program’s variables. These operations are performed under
the control of the characters in the string parameter TEMPLATE of the SSENTER and
SSEXIT routines. :

The positioning of the declarations for the variables to receive the input parameter
data is important. There should be one variable of appropriate size (i.e. type)
"declared in the called program to correspond to each of the called procedure’s
parameters. The variables should be local variables and should be at the outermost

84-2



level of the called procedure. All variables of a given type must be declared
consecutively and in the same order in which they appear in the parameter list of the
called routine (irrespective of intervening parameters of differing types). For example
if the called routine has specification:

%externalroutine IMPRT (%integername A, %realname X, %integername B,
%stringname S, %realname Y, %stringname T)

then the local declarations should be

%integer A1, B1
%real X1, Y1
%string(255) S1, T1

[The order of presentation of the groups of declarations of a given type is not
important.]

Calling the SSENTER, SSEXIT procedures

Calls of SSENTER, SSEXIT are made by the IMP routine respectively at entry to and
exit from the IMP routine. The first parameter of each is the first locally-declared
integer variable which is to receive/offer integer parameter data. The second
parameter of each is the first locally-declared string variable which is to
receive/offer string parameter data. The third parameter of each is the TEMPLATE
string which determines the actions to be performed on entry and exit. In the
template string, pairs of characters indicate the type-code of the parameter as given
in the table above (first character of the pair) and whether the parameter is
read-only(r), write-only(w) or both read and write(b) (second character of the pair) by
the called procedure. By “read” we mean here that the parameter is an input
parameter to the called procedure. Similarly "write” means that the parameter is an
output parameter. :

Calls of SSENTER2, SSEXIT2 are similar: the five parameters are the first local integer,
the first local string, the first local real, the first local longreal and the template
string.

Examples
Here is an example of the use of SSENTER, and SSEXIT:
%externalroutine ACCESSIBLE FROM IMP AND FORTRAN %c
(%integername AXIS, NUMBER, %stringname TEXT,
%integername X, Y, %stringname ANNOTATE)

%integer AXISVALUE, NUMBERVALUE, XVALUE, YVALUE
%string(255) TEXTVALUE, ANNOTATEVALUE

SSENTER(TEXTVALUE, AXISVALUE, “irirsribibsw")
| The above call moves parameter data from AXIS, NUMBER, X, Y
! respectively to AXISVALUE, NUMBERVALUE, XVALUE, YVALUE and
! from TEXT to TEXTVALUE.

SSEXIT(TEXTVALUE, AXISVALUE, “irirsribibsw")
! The above call moves data from XVALUE, YVALUE to parameters
| to parameters X, Y and from ANNOTATEVALUE to ANNOTATE.

%end; ! ACCESSIBLE FROM IMP AND FORTRAN

84-3



In this example, SSENTER causes AXISVALUE, NUMBERVALUE, XVALUE, YVALUE to be
loaded with the initial values of the parameters AXIS, NUMBER, X, Y, and TEXT to be
loaded with the initial value of parameter TEXT. ANNOTATEVALUE is not loaded
because the sixth pair (sw) of the TEMPLATE indicates that ANNOTATE is a write-only
(output) parameter to routine ACCESSIBLE FROM IMP AND FORTRAN.

Similarly, the call of SSEXIT causes the calling program’s variables X, Y to be set
from XVALUE, YVALUE, and ANNOTATE from ANNOTATEVALUE.

Here is an example of the use of SSENTER2, SSEXIT2 in which only integer and
longreal parameters are to be passed to and from the calling program:

%externalroutinespec FMULT(%integername |, J, %longrealname X, Y)

%integer IVALUE, JVALUE
%longreal XVALUE, YVALUE

SSENTER2("“{unused string param}, IVALUE, 0{unused real param},
XVALUE, “IRIRDBDB")

SSEXITZ("",. IVALUE, 0, XVALUE, “IRIRDBDB")
%end; ! of FMULT

Note that in a given called program, the calls of SSENTER, SSEXIT (and SSENTER2,
SSEXIT2) have the same parameters. If the called routines does not require a
particular parameter-type, it is not necessary to make any local declaration of that
type, and the calls of SSENTER, SSEXIT should be given a zero {(or null) value as the
corresponding “first-local-variable” parameter.

It is important that TEMPLATE should correctly describe the cailed routine’s
parameters, which MUST be only of types integername, stringname. Any errors
which can be detected will cause an error message to output stream 0 followed by a
call of %STOP. The characters in TEMPLATE may be in upper or lower case.

84-4



