Nugr7 Edinburgh

L Comeuing | User Note 86
eoinsurcH Centre March 1986

Title:

EDD - A Screen Editor for MS-DOS

Software Support
Category:
gory n/a

Author:

Advisory service

SYNOPSIS

EDD is a screen editor for MS-DOS (version 2.0 or higher) systems. There are
versions available for the IBM PC, the Sirius, and the Apricot (PC series)
microcomputers.

KEYWORDS

Apricot, EDD, IBM PC, Screen editor, Sirius

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1985 Edinburgh Regional Computing Centre

TABLE OF CONTENTS

1 Introduction

1.1 IBM PC Version
1.2 Sirius Version
1.3 Apricot Version

2 Important Concepts

2.1 The Edit Buffer

2.2 The Editor Mode

2.3 The Status Line
2.3.1 Line Number
2.3.2 Column Number
2.3.3 Readfile
2.3.4 Writefile
2.3.5 Mode

2.4 Tabs

3 Using EDD

3.1 Starting EDD
3.2 Editing a short file
3.3 Editing a long file
3.4 Miscellaneous points
3.4.1 File format
3.4.2 Control characters

4 Commands

4.1 General Comments
4.2 Alphabetical list of commands

5 Keys
5.1 General Comments
5.1.1 IBM PC
5.1.2 Sirius
5.1.3 Apricot

5.2 List of Keys
6 Error Messages
1 References

Il Possible Future Enhancements

86-2

NNNOOOOOOOo; 3]

© 00 0o o -]

-
o

10
"

22
22
22
22

22
23

35
36

CHAPTER 1
INTRODUCTION

EDD is a screen editor for MS-DOS (version 2.0 or higher) systems. There are
currently versions available for the IBM PC, the Sirius, and the Apricot (PC series)
microcomputers. This document describes all these implementations. EDD is
intended to replace the awful EDLIN line-based editor supplied as part of MS-DOS,
and is designed for preparing programs source files or .BAT batch files. It is not a
word processor.

EDD was originally written in the C language by E.K.Ream for CPM 80 systems.
A description was published in reference [1]. It was then modified for the IBM PC by
A.D.Howard and M.Desmet, and distributed in source form through the US and UK |{BM
PC user groups. C.J.Adie subsequently further modified it, gave it its present name,
and implemented it on the Apricot and Sirius machines. E.K.Ream has aiso progressed
the editor, and distributes it in the USA under the name "RED”. In fact, editors based
on the original one in [1] appear in a number of places, including in the operating
system OS9, where it is called "SCRED".

This version of the editor is in the public domain, is available free of charge, and
may be freely copied, subject to the restriction that no charge (apart from reasonable
distribution costs) be made for such copies.

To obtain a copy of EDD for your machine, please send a formatted blank floppy
disc, indicating which machine it is for, and giving a return address, to:

Service Support Unit

ERCC

59 George Square

Edinburgh EH8 9JU.
1.1. IBM PC Version

The distribution disc contains the following files:

EDD.EXE The editor program
EDD.DOC A copy of this manual
EDD.HLP The editor help file

1.2. Sirius Version

The distribution disc contains the following files:

EDDS.EXE The editor program

EDD.DOC A copy of this manual

EDD.HLP The editor help file

EDD.BAT Batch file to load keys and run editor
EDDS.KB Keyboard for the editor

The editor is started by typing EDD (optionaily followed by a filename), which loads
the keyboard file EDDS.KB, saving the old keyboard in a temporary file. The MODCON
utility is used to do this, and MODCON.EXE should therefore be in the search path
when EDD is invoked. When the editor is exited, the old keyboard is restored.

86-3

Note that EDDS.KB must be in the current directory on the current disc when
editing.

The Sirius does not support flashing characters. References to flashing in this
documentation should therefore be ignored.

This editor requires MS DOS version 2.0 or higher, and therefore cannot be used
on Sirius micros which have not been upgraded to run a suitable version of DOS.

1.3. Apricot Version

The distribution disc contains the following files:

EDD.EXE The editor program
EDD.DOC A copy of this manual
EDD.HLP The editor help file

The Apricot does not support flashing characters. References to flashing in this
documentation should therefore be ignored.

Note that the editor does not currently work on the Apricot F-series.

86-4

CHAPTER 2
IMPORTANT CONCEPTS

This chapter describes the essential concepts which you need to understand
before using EDD.

2.1. The Edit Buffer

The edit buffer is an area of memory in your computer which is used to hold the
text being edited. It is roughly 50 Kbytes long. If you are editing a file shorter than
this, the entire file is usually read into the edit buffer, and it is the contents of the
edit buffer that you will change. The original input file is unaitered until you write the
contents of the edit buffer over it. (Naturally, you may write the contents of the edit
buffer to another file if you wish.)

If the file is larger than the edit buffer, the usual procedure is to read the file in
‘chunks’ of (say) 1000 lines, edit the chunk, and then write it out to make space for a
new chunk of the input file.

There are two other buffers used by the editor which are mentioned in this
documentation. These are the “pick buffer” and the “record/repiay buffer”, and they
are described in later chapters.

2.2. The Editor Mode

EDD has three ‘Modes’, and is always ‘in’ one of these modes, which are called
“edit”, “insert”, and “command”.

In command mode, you are prompted at the bottom left-hand corner of the screen
with a flashing “>"“ symbol, and you may type in commands, perhaps with one or
more parameters, terminated with return. Commands can do things like: read files
into, or write files from, the edit buffer;, move or delete groups of lines; or perhaps
make specified changes through the buffer. Chapter 4 describes all the commands in
detail.

From command mode, edit mode is entered by pressing the Escape key. {In fact,
command mode may be returned to from either insert or edit modes by pressing
Escape again.) In edit mode, the contents of the buffer are displayed on the screen,
and you may use the arrow keys on the keyboard to move the cursor around.
Changes can be made simply by overtyping with the correct text. In edit mode,
several special keys may be used to do things like: move through the file a page at a
time; move to the top or bottom of the file; mark a group of lines for further action;
or delete characters or lines. These keys are different on different machines, and are
described in detail in Chapter 5.

Insert mode is very similar to command mode, except that when a key
corresponding to an ordinary character is pressed, the character is inserted into the
buffer, instead of overwriting the character already there. All of the special keys
which can be used in edit mode can also be used in insert mode. Changing between
edit and insert modes is done with a special key, called “Insert Toggle” (which will be
different depending on which computer you are using). See Chapter 5 for details of
what key to use on your machine. There is a limit of 254 characters per line, and an
attempt to insert 4 255th will be ‘belled’.

86-5

Note that there is no way to change from command mode to insert mode with a
single keystroke.

2.3. The Status Line

At the top of the screen is the editor’s status line. It usually carries five items of
information: line number, column number, readfile hame, writefile name, and editor
mode.

2.3.1. Line Number

The line number indicates the number of the line on which the cursor is positioned
(the current line). The first line in the buffer is line number 1, so if the file has been
read or written in chunks, the line number displayed may not correspond to the line
number in the file. However, if the entire file is in the buffer, the displayed line
number does correspond to the line number in the file. The line number is especially
useful when repairing compile-time errors, which are usually reported by the compiler
in terms of the line number. Line numbers are also used when specifying a section of
the buffer when in command mode.

2.3.2. Column Number

This is the current ‘virtual’ column, which is the position on the current line at
which the cursor is displayed. The first character on the line is at virtual column 0. If
a line is longer than 80 columns wide, the cursor may be moved along it until column
79 (the right-hand edge of the screen). If the cursor is driven beyond this position, the
whole line moves left by about 40 column positions, allowing some more of the line
to be displayed. The virtual column number displayed is always the position of the
cursor with respect to the start of the line, not with respect to the edge of the
screen.

For a very long line, this process may be repeated several times. Note that the
maximum length of a line is 254 characters.

2.3.3. Readfile

The readfile is the file which is currently open for input. If there is no such file, a
message no rdfileis displayed.

Consider the process of loading a file into the edit buffer. First, the file must be
opened (the “open” command), then read (the “read” command), then closed (the
“closeread” command). Normally, the “load” command performs all these actions,
assuming the file is small enough to fit into the edit buffer. If this is not the case, or
if the “open” command has been issued and the “read” command has not exhausted
the file, the name of the file is displayed as the third item in the status line. When the
entire file has been read, and the file closed, the name is replaced by the no rdfile
message.

Note that the readfile name displayed is the last component only of the full
pathname. Thus, if you issued a command such as:

>open ci;\user\chris\myfile.pas

the status line would display only the myfile.pas bit. However, the editor will

86-6

correctly access the file using the full path specified in the open command.

2.3.4. Writefile

The writefile is the file which is currently open for output. If there is no such file,
a message no wrtfile is displayed.

Very similar comments apply to the writefile as to the readfile. The commands
which specify a writefile are "name”, “rename” and "delname”: these are equivalent to
“open” for the readfile. The “write” command is used to output to the file in chunks,
and the “closewrite” command terminates output to the file. The command which
combines all three operations is “save”, equivalent to “load”.

2.3.5. Mode

The final item on the status line is the editor mode, which may be "insert”, “edit”,
or “command”, as previously described. However, several of the special keys will
place some other information in the status line in this position. The best way to find
out whether you are in edit or insert mode, if this is not clearly displayed in the
status line, is to press the “Insert Toggle” key twice.

24. Tabs

The tab key is useful for laying out programs in an indented fashion. The tab
stops are every 8 virtual columns, and inserting a tab into a file will ensure that the
next character will appear at the next tab stop. There is a command “showtab” which
displays tab characters in inverse video, and an equivalent "hidetab” to turn the
display off.

Because a tab occupies only one character, but is usually several virtual columns
wide, it is possible that a long line with several tab characters may have more than
254 virtual columns, but less than 254 characters, in it. The editor will cope correctly
with this situation.

86-7

CHAPTER 3
USING EDD

3.1. Starting EDD

EDD is started from the MS-DOS command line by simply typing EDD followed by
RETURN or ENTER. A filename may be specified following EDD, for instance:

A>edd myfile.prg

If myfile.prg exists, it will be loaded into the edit buffer, and the editor will start in
edit mode. If the file does not exist, or if no filename is specified after the EDD
command, the editor will enter command mode, ready for a load or open command.
Alternatively, if a new file is to be created, EDD can be entered without a filename
parameter, and the Escape key will put the editor into edit mode so that you may
start to type in your program.

3.2. Editing a short file

Where a program is short enough to fit into the edit buffer completely, the usual
sequence of operations is to “load” the file, edit it, and then “save” it, probably using
the “backup” option of “save” (see the section on “save” in Chapter 4). This is the
simplest way of using the editor.

3.3. Editing a long file

If the file is longer than will fit in the edit buffer, a “load” command will print out
the message caution: main buffer is nearly full and leave the readfile open. If this
happens, there will usually be about 2 Kbytes left free in the buffer to let you do
some editing on the chunk that has been read in. Open a writefile with “name”,
“delname” or “rename”, and write out lines you have finished with using the “write”
command. This will delete the lines from the buffer, freeing space for more lines to
be read in with the “read” command. When the readfile has all been read in, it will be
closed automatically. Having written all the lines to the writefile, you should close it
with “closewrite”.

3.4. Miscellaneous points

3.4.1. File format

The editor works with ‘plain vanilla’ text files. Lines may be up to 254 characters
in length, and should be terminated with a Carriage Return (CR). Lines may have Line
Feed (LF) characters following the CR, but these are ignored by the editor (if present)
when it is reading a file in. A control-Z character in the input file will be treated as
the end of file.

The output file will contain CR followed by LF at the end of each line. it will be

terminated by a control-Z character (this ensures compatibility with the IBM
Professional Editor).

86-8

3.4.2. Control characters

Control characters may be present in the input file. The following control
characters are displayed as the corresponding characters in inverse video:

ABCDEFGKLNOPQRSTUVWXYI[]"

Top-bit-set characters can usually ailso be edited, but note that neither control nor
top~bit-set characters can be inserted into the edit buffer from the keyboard.

86-9

CHAPTER 4
COMMANDS

4.1. General Comments

This chapter describes the commands which may be issued in response to the
flashing “>" prompt in the “"command” mode of EDD. The format which is used to
describe the commands is as follows:

Command name: The name of the command in full.

Abbreviation: A one or two letter abbreviation which may be used instead of the
name of the command.

Syntax: This gives the way in which the command may be used. If the command
takes no parameters, it is just the command name. If there may be parameters, these
are given names and enclosed in angled brackets <thus>. If some of the parameters
are optional, they are enclosed in square brackets [<thus>]. Note that the square
brackets, the angle brackets, and the parameter names are ‘metacharacters’, and
should not be typed when actuaily using the commands. Another metacharacter
which is occasionally used to describe the syntax is the vertical bar |, which
indicates that the two expressions on either side of it are alternatives.

Parameters: Each parameter named in the section on syntax is described in this
section. If there are no parameters, or if the parameters are of the generic types
described below, this section is omitted.

Description: This is a plain text description of the function of the command.
Example: One or more examples of the use of the command is given.

Errors: The errors which may be encountered when this command is executed are
listed here. For a description of what the error messages mean, see chapter 6. Note
that some “error messages” are informative, rather than indicative of an error
condition. If a command cannot produce errors, this section is omitted.

The following parameter names are not described explicitly for each command
which uses them, because there are many such commands.

<line range > This is a parameter which may or may not be present.
It specifies a range of lines over which the command will act.
If it is not present, the line range will be the block-start line to
the block-end line, inclusive. Chapter 5 describes how to set
the block-start and block-end lines. It is an error if one or
both of the block-start and block-end lines are not defined.
If the <line range> parameter is present, then it may either
be the asterisk character {(“*"), indicating the entire edit buffer,
or else two line numbers <start> and <end>, separated by
one or more spaces. <start> must be less than or equal to
<end>, and both of them must be greater than or equal to 1
and less than or equal to the last line in the buffer. The line
range always includes the <start> and <end> lines.

<filename> This is a file name specification which may include a device

86-10

name (e.g. B:) and a directory path (e.g. \user\£fred\). There
may, however, be no more than 64 characters in the complete
file name specification.

4.2. Alphabetical list of commands

Command name:

Syntax:

Description:

Example:

Errors:

change Abbreviation: ch

change [<line range>]

This command changes ail occurrences of a search pattern to
a replacement pattern in a given line range. You are prompted
first for the “search mask”, then for the “change mask”.

The search mask may contain one or more question marks “?".
These match any character in the buffer, so that for instance a
search mask "d?sk” will match both “desk” and "disk”. The
change mask may likewise contain question marks (so long as
there are no more than in the search mask).

All lines where a match with the search mask is found have
the matching text repiaced by the change mask. Where there
are question marks in the search mask, the characters they
match go to replace any question marks in the change mask.
Thus, if the search mask was “func(?)” and the change mask
was “arr{?]” then lines with “func(i)* would be changed to have
“arr(i]”. (Note that the double quotes are just for emphasis in
this documentation, and should not be typed in.)

Every line where a change has occurred is displayed on the
screen with its line number. If several changes are made in a
single line, the line is displayed after each change.

There is a special case where the first character in the search
mask is a "“. If this is so, the search mask is ‘anchored’ to the
start of a line. For instance, “begin” would match “begin” at
the start of a line, but not elsewhere. A “* in the change mask
has no special significance.

The matching process is case sensitive. The process of
change can be terminated at any time by hitting any key
(except the space bar, which only pauses the process).

>change *
search mask ? reasonable
change mask ? unreasonable

no line range

bad argument

invalid line range

new line too long

too many ?'s in change mask

86-11

Command name:

Syntax:

Description:

Example:

Errors:

clear Abbreviation: cl

clear

This command clears the edit buffer. If the edit buffer has
been changed since it was last loaded from a readfile, you are
prompted to see if you really want to clear the buffer. The
prompt message is; buffer not saved - proceed?and the
appropriate response is Y or y to clear the buffer - any other
response will cancel the request.

>clear

cancelled
buffer cleared

Command name: closeread Abbreviation: cr

Syntax: closeread

Description: This command closes the current read file and displays the
no rdfile message on the status line.

Example: >cr

Command name: closewrite Abbreviation: cw

Syntax: closewrite

Description: This command closes the current writefile and displays the
no wrtfile message on the status line. Note that any
remaining lines in the edit buffer are NOT written to the
writefile by this command. You should be sure that you have
written all you wish to write using the "write” command before
issuing closewrite.

Example: >closewrite

86-12

Command name:

Syntax:

Parameters:

<from>

<to>

<count>

Description:

Example:

Errors:

copy Abbreviation: cp

copy [<from> <to> <count>]

Line number of first line to be copied.

Line before which copied lines will be placed.

Number of lines to be copied.

The <count> lines starting at line <from> are copied to
before line <to>. If any of the three parameters are present,
all must be. If none is, the lines copied are those delimited by
the block-start and block-end lines, and the destination <to>
is the current line.

>copy 13 210 20

bad argument
interleaving not permitted

Command name:

Syntax:

Parameters:

<n>

Description:

Example:

Errors:

count Abbreviation: ct

count <n>

A decimal number.

This command sets the “count” variable to the value of <n>.
It controls the number of times the replay buffer is replayed.
See Chapter 5 - section on Replay key - for further details.
The default value of count is 1.

>count 10

bad argument

86-13

Command name:

Syntax:

Description:

Example:

Errors:

delete Abbreviation: di

delete [<line range>]

All lines in the indicated line range are deleted. If there is
room, the lines are copied into the pick buffer, overwriting
anything already there. (See Chapter 5 - the section on Copy
to Pick Buffer - for details of this buffer.) The block-start and
block-end lines become undefined.

>dl 492 500

no line range

invalid line range

bad argument

deleted lines saved in pick buffer

Command name:

Syntax:

Description:

Example:

Errors:

deiname Abbreviation: dn

delname <filename>

This command opens <filename> for output. If a file with
this name already exists, it is deleted without further warning.
<filename> becomes the writefile.

>delname b:fred.txt

writefile open

Command name:

Syntax:

Description:

Example:

Errors:

extract Abbreviation: ex

extract [<line range>]

The indicated lines are written to the writefile. They are not
deleted from the edit buffer.

>ex 70 90

file not opened

no line range

invalid line range
bad argument

86-14

Command name:

Syntax:
Parameters:

<mask>

Description:

Example:

Errors:

find Abbreviation: f

find [<mask>]

The search mask to use.

If a <mask> is not given as an argument, it will be prompted
for. The format of the search mask is the same as for the
“change” command (qv). If a match is found, the editor will
enter edit mode and position the cursor at the start of the
matching text. The search starts on the line after the current
line.

>f d?sk

pattern not found

Command name:

Syntax:
Parameters:

<n>

Description:

Example:

Errors:

goto Abbreviation: g

goto [<n>]

A decimal number.

The editor enters edit mode and positions the cursor at the
start of line <n>. If <n> is omitted, the cursor is positioned
at the start of the current line.

>goto 65

bad line number

Command name:

Syntax:

Description:

Example:

help Abbreviation: ?

heip

Help information to do with the available commands is
displayed. If the file EDD.HLP can be found on the current
drive in the current directory, its contents are displayed a page

at a time. |If the file cannot be found, a restricted amount of
information (held in the editor program itself) is displayed.

>help

86-15

Command name: hidetab Abbreviation: ht

Syntax: hidetab

Description: Tab characters can be represented on the screen as blank
space, or as inverse-video blocks. This command selects the
former representation, which is the defauit when the editor is
started.

Example: >ht

Command name; load Abbreviation: id

Syntax:

Description:

Example:

Errors:

load <filename>

This command opens <filename> as the readfile, and
attempts to read the entire file into the edit buffer. If the
entire file is read succtessfully, it is then closed. However,
if the file is too large, it is left open to allow further reading
when there is room in the edit buffer. Note that the load
command is the same as an "open” command followed by a
“read *” command.

load myprog.pas

readfile still open

no file argument

file not found

line truncated

caution: main buffer nearly full

Command name:

Syntax:

Description:

Example:

Errors:

lowercase Abbreviation: lc

lowercase [<line range>]

The alphabetic characters within the indicated line range are
all converted to lower case.

>lc *
bad argument

no line range
invalid line range

86-16

Command name:

Syntax:

Description:

Example:

Errors:

merge Abbreviation: mg

merge <filename>

Insert the named file into the edit buffer at the cursor. If the
file is too big to fit into the edit buffer, an error message is
issued and the file is closed.

>merge mod3.pas

no file argument
file not found
line truncated
main buffer is full

Command name:

Syntax:
Parameters:
<from>
<to>

<count>

Description:

Example:

Errors:

move Abbreviation: mv

move [<from> <to> <count>]

Line number of first line to be moved.

Line before which moved lines will be placed.

Number of lines to be moved.

The <count> lines starting at line <from> are moved to
before line <to>. If any of the three parameters are present,
all must be. If none are, the lines moved are those delimited
by the block-start and block-end lines, and the destination
<to> is the current line.

>move 100 30 10

bad argument
interleaving not permitted

Command name:

Syntax:

Description:

Example:

name Abbreviation: n

name <filename>

<filename> is opened as the writefile, if it does not already
exist. If it does exist, an error message is issued, and the file
is not opened.

>name newfile.c

86-17

Errors:

writefile open
disk file exists
no file name

Command name:

Syntax:

Description:

Example:

Errors:

open Abbreviation:; o

open <filename>

<filename> is opened for input, and becomes the readfile.
Nothing is read from it.

>open oldfile.for

read file still open

no file argument
file not found

Command name:

Syntax:

Description:

Example:

Errors:

print Abbreviation: pr

print [<line range>]

List the indicated lines to the printer. Pressing the space bar
during printing will pause the printout: pressing it again will
restart printing. Pressing any other key will abort the
operation and return to command mode.

>p 100 200

bad argument
no line range
invalid line range

Command name:

Syntax:

Description:

Example:

Errors:

quit Abbreviation: q

quit

This command leaves the editor and returns to MS-DOS. If the
edit buffer has been changed since it was last saved, you are
prompted buffer not saved - proceed ?. A “Y” or “y” response
will exit to MS-DOS, while any other key will cancel the
command. If there are any open files, they are closed before
the program terminates.

>q

cancelled

86-18

Command name:

Syntax:
Parameters:

<n>

Description:

Example:

Errors:

read Abbreviation: rd

read <n> | *

A decimal number

The next <n> lines are read from the readfile. If this
exhausts the readfile, it is closed. If <n> is replaced by "**,
as many lines as possible are read from the readfile.

>rd 1000

no read file

bad argument

line truncated

caution: main buffer nearly full

Command name:

Syntax;

Description:

Example:

Errors:

rename Abbreviation: m

rename <filename>

The current writefile is closed, and <filename> becomes the
new writefile, unless it already exists. Very similar to the
“name” command.

>rename newprog.for

no write file

disk file exists
no file name

Command name:

Syntax:

Description:

save Abbreviation: sv

save {<filename>]

The entire edit buffer is written to <filename>. Unlike the
"load” command, writefile may be open when this command is
executed. If <filename> is omitted, then the name used is
the last readfile name, or the name used by the last save
command, whichever was more recent. (The default name
used may be found from the “savename” command.)

If <filename> already exists, you are prompted with Cancel/,
Replace, Backup 2 Pressing C will cancel the save command
(but the filename will still be recorded as having been used by
save). Pressing R will prompt again to confirm you really want
to overwrite the indicated file. Pressing B will rename the

86-19

Example:

Errors:

existing file to have a .BAK extension, and then save the edit
buffer as a new version of the file. (An existing .BAK file of the
same name will be deleted.)

Although this description of the save command may sound a
little complex, in fact it is the easiest way to store your edited
text in a file.

>sv myprog.pas

cancelled

no file name

file already exists

cannot form backup name
cannot delete old backup

cannot rename old file as backup

Command name:

Syntax:

Description:

Example:

Errors:

savename Abbreviation: sn

savename

This command simply prints out the default name which wouid
be used by the “save” command if it were to be issued.

>sn

no default name

Command name:

Syntax:

Description:

Example:

Errors:

search Abbreviation: sr

search [<line range>]

You are prompted for a search mask 7 which should conform
to the convention described under the “change” command.
All matching lines within the <line range> are displayed on
the screen with their line numbers.

>search *
search mask ? " begin
no line range

bad argument
invalid line range

86-20

Abbreviation: st

Command name: showtab

Syntax: showtab

Description: Tab characters may be represented on the screen as blank
spaces, or as inverse video blocks. This command selects the
latter representation. The "hidetab” command reverts to the
former, default, condition.

Exampie: >st

Command name: uppercase Abbreviation: uc

Syntax:

Description:

Example:

Errors:

uppercase [<line range>]

The alphabetic characters contained within the indicated line
range are all converted to upper case.

>uppercase 10 30
bad argument

invalid line range
no line range

Command name:

Syntax:
Parameters:

<n>

Description:

Example:

Errors:

write Abbreviation: w

write <n> | *

A decimal number.

The <n> lines from the front of the buffer are written to the
writefile and then deleted. If <n> is replaced by "*”, the
entire edit buffer is written to the writefile, and the buffer is
then cleared.

>write 1000

file not opened
bad argument

86-21

CHAPTER 5
KEYS

This chapter describes the special keys used for editing when in insert or edit
mode.

5.1. General Comments

There are about 40 keys or key combinations which have special significance when
in edit or insert mode. Most have the same effect in the two modes. Because the
keyboards of the various MS-DOS machines which this editor runs on are different,
the special keys may be different. For this reason, for the purposes of this
documentation, the keys are usually named by their function, rather than by the actual
keys pressed on the keyboard. Thus, we refer to the Split Line key rather than the F3
key {or whatever).)

~ Many keys have an effect which is not limited to the current line (the line with the
cursor on it). Where this is the case, the effect is normally above the current line.
Thus, (for example) the Insert Line key will insert a new (blank) line above the current
line.

The function key overlays are printed at the back of this User Note. The
appropriate version for your machine may be photocopied, cut out, and placed beside
the function keys to which it refers.

You may wish to go through the list of keys below, highiighting the appropriate
key for your machine with a suitable felt pen.
5.1.1. IBM PC

The F2 key on the IBM PC may be used instead of the Escape key.

Note that use of the numeric keypad with the ALT key should be avoided, as it
may produce unexpected results. The numeric keypad may be used unshifted, or with
the shift or control keys, as detailed below.

5.1.2. Sirius

The Sirius ALT key has the same function as SHIFT when used in conjunction with
the function keys. It may still be used with the arrow keys to adjust the display
intensity and contrast, as normal. Apart from this, the Sirius keyboard is the ERCC
standard layout.

5.1.3. Apricot

There are eight function keys at the right of the upper edge of the Apricot
keyboard. These are engraved with legends which are not particularly relevant to the
editor, and so for the purposes of this documentation, the keys will be referred to as

F1 through to F8. The correspondence is:

Fl1 HELP F3 REPEAT FS PRINT F7 MENU
F2 UNDO F4 CALC F6 INTR F8 FINISH

86-22

The Apricot Control key has the same function as the Shift key when used in
conjunction with the function keys.

5.2. List of Keys

Key name: Backspace

Description: Delete the character immediately before the cursor, and move
the rest of the line leftwards.

Key name: Return

Description: In edit mode, move to the start of the next line: if at the
bottom of the buffer, move to the beginning of the last line.
In insert mode, create a new (blank) line below the current line
and move to the start of it.

Key name: Up Arrow

Description: Move up to the same screen column on the line above,
if there is a line above.

Key name: Down Arrow

Description: Move down to the same screen column on the line below,
if there is a line below.

Key name: Left Arrow

Description: Move one character position to the left on the current line.

Tab characters are moved over as a single character. If the
line has previously scrolled left, moving left beyond the
left-hand edge of the screen will cause the line to be scrolled
right again.

86-23

Key name:

Right Arrow

Description: The cursor moves one character position to the right.
Tab characters are treated as a single character. If the line
extends beyond the right-most screen position, driving the
cursor past the right-hand edge of the screen will cause the
line to scroll left. This can be repeated until the end of the
line is reached. Note that when the cursor is moved off the
line, the line is scrolled back to its beginning.

Key name: Begin Line

IBM PC: Control left arrow

Sirius: Shift left arrow

Apricot: Shift left arrow

Description: Move to the beginning of the current line, scrolling right if
necessary.

Key name: End Line

IBM PC: Control right arrow

Sirius: Shift right arrow

Apricot: Shift left arrow

Description: Move to the end of the current line, scrolling left as necessary.

Key name: Delete to EOL

IBM PC: End

Sirius: Line dei eol

Apricot: Clear

Description: Delete from the current cursor position to the end of the line.

86-24

Key name: Insert Toggle

IBM PC: Ins

Sirius: Line ins mode

Apricot: Line insert char

Description: Toggle between insert and edit mode, reflecting the current
mode in the status line.

Key name: Delete

I8BM PC: Del

Sirius: Del char

Apricot: Line delete char

Description: Delete the character at the cursor, moving the rest of the line
left.

Key name: Home

IBM PC: Home

Sirius: F7

Apricot: Home or F8

Description: Move the cursor alternately to the top and bottom of the
screen, at column position 0.

Key name: Page Up

IBM PC: PgUp

Sirius: Shift scrol

Apricot: Shift scroll

Description: Move the text display up by 20 lines, and position the cursor

at the start of the top line on the screen.

. 86-25

Key name: Page Down

IBM PC: PgDn

Sirius: Scrol

Apricot: Scroll

Description: Move the text display down by 20 lines, and position the
cursor at the start of the top line on the screen.

Key name: Scroll Up

IBM PC: Controi-PgUp

Sirius: Shift up arrow

Apricot: Shift up arrow

Description: Start to scroll upwards through the buffer one line at a time.
Pressing the space bhar will. pause the scrolling, and pressing it
again will restart it. The scrolling process stops when the top
of the buffer is reached, or when any key other than the space
bar is pressed.

Key name: Scroll Down

IBM PC: Control-PgDn

Sirius: Shift down arrow

Apricot: Shift down arrow

Description: Start to scroll downwards through the buffer one line at a
time. Pressing the space bar will pause the scrolling, and
pressing it again will restart it. The scrolling process stops
when the end of the buffer is reached, or when any key other
than the space bar is pressed.

Key name: Goto

IBM PC: F1

Sirius: F1

Apricot: F1

Description: You are prompted at the top right-hand corner of the screen

for a line number to go to. The editor will position the cursor
at the start of the given line. If the Escape key is pressed
instead of entering a number, the editor will return to edit or
insert mode as appropriate.

86-26

Key name:

Escape

Description: When in insert or edit mode, this key will cause the editor to
enter command mode. When in command mode, it will cause
the editor to enter edit mode. It is the only special key which
is operational in command mode. (Note that the F2 key on the
IBM PC serves the same function as the Escape key.)

Key name: Split

IBM PC: F3

Sirius: F5

Apricot: F5

Description: - The current line is split into two. The character the cursor is
on becomes the first character of the lower line. The Join key
reverses the effect of Split.

Key name: Join

IBM PC: F4

Sirius: Shift F5

Apricot: Shift F5

Description: The current line is joined with the preceding line. If the
resulting line would be too long, the join is not performed.
The cursor moves to the start of the joined line.

Key name: Insert Line

IBM PC: F5

Sirius: Shift line ins mode

Apricot: Shift line insert char

Description: A new line is inserted above the current line; the cursor is

positioned at the start of it; and the editor enters insert mode
(of course, it may already have been in insert mode).

86-27

Key name: Delete Line

1IBM PC: F6

Sirius: Shift line del eol

Apricot: Shift line delete char

Description: The current line is deleted from the edit buffer. The text
below is moved up by one line. (The deleted line may be
recovered by using the Undelete Line key.)

Key name: Mark Block Start

IBM PC: F7

Sirius: F2

Apricot: F2

Description: The current line is marked as the start of a block. The
block-start line, as it has been called earlier, is used by many
of the commands. Note that after some of the commands,
and when EDD is first started, the block-end line is undefined.

Key name: Mark Block End

IBM PC: F8

Sirius: F6

Apricot: F7

Description: The current line is marked as the end of a biock. The
block-end line, as it has been called earlier, is used by many
of the commands. Note that after some of the commands,
and when EDD is first started, the block-end line is undefined.

Key name: Copy To Pick Buffer

IBM PC: F9

Sirius: F3

Apricot: F3

Description: There is an area of memory called the “pick buffer” {about 2

Kbytes long) which is set aside for small copying operations.
This key copies the text delimited by the Mark Block Start and
Mark Block End commands to the pick buffer, if there is room
for it. Anything in the pick buffer already is overwritten. If the
marked block is too large to fit into the pick buffer, a message
not picked: no room is displayed on the status line.

86-28

Key name:

Pick Buffer To Edit Buffer

IBM PC: F10

Sirius: Shift F3

Apricot: Shift F3

Description: The contents of the pick buffer are copied to the edit buffer,
such that they appear above the current line. Using this key
in conjunction with the Copy To Pick Buffer key provides an
alternative to the "copy” command (but unlike “copy”, it is
limited in the amount of text it can copy). The block-start and
block-end lines become undefined after this operation.

Key name: Buffer Top

IBM PC: Alt F1

Sirius: Shift F1

Apricot: “ Shift F1

Description: This key places the cursor right at the top of the edit buffer
(not just the top of the screen).

Key name: Buffer End

IBM PC: Alt F2

Sirius: Shift F7

Apricot: Shift F8

Description: This key places the cursor right at the end of the edit buffer.

Key name: Goto Character

IBM PC: Alt F3

Sirius: Calc

Apricot: F6

Description: An ‘ordinary’ key should be pressed following this key. The

cursor will move rightwards along the current line until it finds
an occurrence of that character, or until it comes to the end of
the line.

86-29

Key name:

Delete To Character

1BM PC: Alt F4

Sirius: % (keypad)

Apricot: Shift F6

Description: An ‘ordinary’ key should be pressed following this key.
Characters are deleted from the line up to (but excluding) the
next occurrence of that character on the line. If there is no
occurrence of the character, the action is the same as
Delete To EOL.

Key namae: Abort Changes

IBM PC: Alt F5

Sirius: F4

Apricot: F4

Description: Any changes made to this line since it became the current line
are abandoned. The cursor is positioned at the start of the
line. Note that if the cursor has been moved off the current
line, this key will not restore the previous state of the line.

Key name: Undelete Line

IBM PC: Alt F6

Sirius: Shift F4

Apricot: Shift F4

Description: The last line to have been deleted by the Delete Line key is
replaced in the edit buffer immediately above the current line.
This key provides a simple way to move or copy a line.
Simply delete the line, undelete it into the same position if
required, move to the line below where the copied/moved line
is to go, then undelete it (again).

Key name: Goto Block Start

18M PC: Alt F7

Sirius: Shift F2

Apricot: Shift F2

Description: Move the cursor to the block-start line. No action if the

block-start line is undefined.

86-30

Key name:

Goto Block End

IBM PC: Alt F8

Sirius: Shift F6

Apricot: Shift F7

Description: Move the cursor to the biock-end line. No action if the
block-end line is undefined.

Key name: Virtual Column Left

1BM PC: Alt F9

Sirius: Divide key on keypad

Apricot: Times key on keypad

Description: The cursor moves one virtual column to the left. Unlike Left
Arrow, which treats tab characters as a single unit, this key
allows the cursor to be positioned anywhere “within” a tab.
If an "ordinary” key is typed when the cursor is in the middle
of a tab, sufficient spaces are inserted before the character so
that the character does appear at the position you expect.
Experimenting with the "showtab” command in effect should
clarify exactly what happens.

Key name: Virtual Column Right

IBM PC: Alt F10

Sirius: Times key on keypad

Apricot: Divide key on keypad

Description: The cursor moves one virtual column to the right. Similar
comments apply to this key as to the Virtual Column Left key.

Key name: Start/End Recording

IBM PC: Minus key on keypad

Sirius: Minus key on keypad

Apricot: Minus key on keypad

Description: There is an area of memory called the “record/replay buffer”

(about 100 bytes long), which is used to store keystrokes
entered from the keyboard for later replay. The Start/End
Recording key starts or terminates the process of storing the
keystrokes in this buffer. It has a “toggle” effect, and the
current record state is reflected in the status line.

86-31

Key name:
18M PC:

Sirius:
Apricot:

Description:

Replay

Plus key on keypad
Plus key on keypad
Plus key on keypad

This key tells the editor to take its input from the
record/replay buffer instead of from the keyboard. The “count”
command determines the number of times the record/replay
buffer is scanned for this purpose. Replay is terminated if one
of several conditions are met:

1. A key is pressed on the keyboard.
2. The end or the beginning of the edit buffer is reached.
3. Error conditions.
4. Attempts to replay file-oriented commands.
This feature of EDD is very powerful. It allows you to make an

arbitrary sequence of changes, and then repeat them as many
times as required throughout the edit buffer.

Key name:

Description:

“Ordinary Keys”

These are all the alphabetic, numeric and punctuation keys on
the keyboard. In edit mode, the key pressed replaces the
character in the edit buffer at the cursor position. In insert
mode, the key struck is inserted before the cursor position.

86-32

CHAPTER 6
ERROR MESSAGES

Most of the following error messages are displayed in command mode. Those
which are displayed in edit mode or insert mode appear in the status line. For these
messages, it is necessary to press a key in order to return to normal edit or insert
operation.

Note that some of these error messages are informative rather than indicative of
an error condition.

bad argument - A command-mode argument which should be numeric contained a
non-numeric character.

bad line number - As for bad argument.
buffer cleared - The edit buffer has been cleared.
cancelled - The requested operation has not been carried out.

cannot delete old backup - During a “save” command, the old .BAK file could not be
deleted - perhaps it is write protected.

cannot form backup name - EDD could not parse the filename to construct the .BAK
file name.)

cannot rename old file as backup -~ The existing file could not be renamed to have a
.BAK extension - perhaps it is write protected.

caution: main buffer nearly full - During a “load” or “read” operation, the edit buffer
was nearly filled. There is usually about 2 Kbytes of space left in the buffer when this
happens. See section 3.3 for further details.

deleted lines saved in pick buffer - A delete command was issued, and the deleted
text was small enough to be copied to the pick buffer.

disk file exists - An attempt was made to “name” or “rename” as the writefile, a file
which already exists.

file already exists - As for disk file exists.

file not found - A “merge” or “open” command was issued for a file which did not
exist.

file not opened - A “write” command was issued when there was no writefile.

interleaving not permitted - A “move” or “copy” command was issued with the
destination line within the source line range.

invalid line range - A <line range> has been specified where the start line is after
the end line.

line truncated - While reading a file, a line in excess of the limit of 254 characters has
been encountered, and the excess characters have been ignored.

86-33

main buffer is full - During a “merge” command, the edit buffer has filled up. The file
is closed. Similar comments apply here as for the caution: main buffer full message.
This error may also occur when inserting text into a file which as a result causes the
buffer to become full. In this case, the last line of text entered is not stored in the
buffer.

new line too long - A “change” operation would have resulted in a line which
exceeded 254 characters.

no defauit name - A “save” command has been issued without a prior “load” or “open”
command.

no file argument - A command which requires a <filename> argument has been
issued without one.

no file name - As for no file argument.

no line range - No <line range> parameter has been given, and one or both of the
block-start and block-end lines are undefined.

no read file - A “read” command has been issued without a readfile having been
opened.

no write file - A “write” command has been issued without a writefile having been
opened.

pattern not found - A “find” or a “search” command has been issued, but no match
has been found.

readfile still open - an “open” command has been issued while there is an already
open readfile.

too many ?’s in change mask - In a “change” command, there were more question
marks in the change mask than in the search mask.

writefile open - A “name” command was issued when the writefile was still open.

86-34

.. References

1. E.K.Ream, Dr Dobb’s Journal, January 1982 p18.

86-35

Il. Possible Future Enhancements

In all software development, there is a tendency to go on adding bells and
whistles, and perhaps detract from the usability of the end product. The author has
resisted this tendency, and therefore the editor is basic and functional, rather than
large and complex. However, there may be a case for adding some of the extra
features described below:

- The Sirius and Apricot versions use a “virtual cursor” technique
which prevents the cursor appearing except when the editor is
actually waiting for keyboard input. This has the effect of preventing
the cursor flashing about the screen when it is being updated.
Perhaps this should be added to the IBM version.

- Some peculiar text files from certain environments use LF instead of
CR to delimit lines of text. Should EDD recognize LF on its own as
well as CR as indicating end of line?

- Some people may wish to insert control characters and top-bit-set
characters into text files. A way to do this could be provided.

- Auto-indenting is very useful when developing programs. It could
be included, being turned on/off by a command
(like show/hide tabs). What should the default be?

- Detab and entab commands would be useful for some people.

- A tabs command, to change the tab width, might be feasible.

- The mode display in the status line could be changed to be more
useful and more tidy.

- When “going to” a line, it would perhaps be more sensible to

position the line in question at the centre of the screen rather than
at the top.

If you have any strong views on the above possibilities, or on any other feature of
the editor, please let the author know.

86-36

w“m_nm__m__m JNOH AN 00TE MHYIN INNLIDS SIONVHOINITLHOEY | 44naxoidoLy001a | 1HVISNOOTE HHVI 3INI0L09
—_
LS aN3 0109 aNaYO078 0109 3INFINIOP 3NM3HOLSIY J4NEMOIIHISNI | 1HVISNO0180L09 d010109
10914dY an3 HYHD aNn | s3onvkO | ddnavoid | uvis
003 INOH fyoayuvin] 0109 mnds | annisosv| owoots [iootavuve] 3W10L09
~
- an3 HYHO N ann | 44n@void | 1uvis 5
14ms | ONFOL09 fyrmia0109] o130 Niot | awoisau | 1wasm [wootgorog| 0LOL09 8

MODE

JOIN LINE

END

INSERT
PICK BUFF

EDD:IBMPC

GOTOLINE

SPLITLINE

INSERTLINE | DELETELINE
START

MARKBLOCK [MARK BLOCK

BLOCKTO
PICKBUFF

