S5 Edinburgh

Regional o | User Note 87

eoineureH Centre April 1986

Handling Non—printing Characters in EMAS Files

Author: Software Support
Category:

Arthur Wiison i i
rthu SO Advisory service See Note 15

Synopsis
EMAS 2900 and EMAS-~A text files can contain non-printing characters. This Note

describes methods for finding these non-printing characters, highlighting them,
inserting, removing and re-locating them.

Keywords

ADDNP, BECCE, CHEF, CODECHANGE, COUNT, #DEC, DEGROT, DETAB, ECCE, EM,
FIXCODE, #HEX, Non-printing characters, NOPRINT, SUPERSNAP.

Edinburgh Regional Computing Centre
James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ. Telephone 031-667 1081

© 1986 Edinburgh Regional Computing Centre

TABLE OF CONTENTS

INTRODUCTION
Acknowiedgements

N -

NON-PRINTING CHARACTER PROBLEMS AND HOW TO SOLVE THEM

3 Non-printing character problems
(1) Non-printing characters inserted by the BACK SPACE key
(2) Non-printing characters inserted by EMAS programs

4 How to find them
5 How to remove them
SIMPLE PROGRAMS FOR HANDLING NON-PRINTING CHARACTERS
6 The NOPRINT Command
7 The COUNT Command
8 The DEGROT Command
9 The FIXCODE Command
10 The DETAB Command
11 The CODECHANGE Command
12 The ADDNP Command
EDITORS FOR THE EXPERTS
13 The EM Command
14 The CHEF Command
15 The EMAS Subsystem Editor (EDIT)
(1) Finding non-printing characters using EDIT
(2) Inserting non-printing characters using EDIT
(3) Removing non-printing characters using EDIT
16 The BECCE Command
(1) Displaying the contents of a file in HEX
(2) Finding and highlighting non-printing characters
(3) Deleting and inserting non-printing characters
(4) Notes on BECCE
17 The Edinburgh Compatible Context Editor (ECCE)
(1) Inserting non-printing characters
(2) Searching for Non-printing characters
(3) Deleting non-printing characters
(4) Controlling the output of non-printing characters
(5) Notes on ECCE
18 The SUPERSNAP Command
APPENDICES
| EMAS: Internal Character Set
] The Hexadecimal Numbering System
Il The binary representation of characters
IV The most significant bit
Vv Control Characters

(3) Non-printing characters in imported files

87-2

oo,

OCOWOoWWNN

—

1
12
14
14
14
15
15
15
16
17
17
18
18
19
19
20
20
20

21
22
23
24
25

1. INTRODUCTION

Files on the EMAS operating system consist of a set of accepted characters; this is
referred to as the Internal Character Set and is based on the set defined by the
International Standards Organization (ISO).

Each character is represented in the computer by a number in the range 0 to 127.
Thus, for example, when you type a capital A your terminal sends the number 65 to
the computer; and when a line printer receives the number 65 it prints a capital A.
These numbers are called Character Codes All the usual printing characters - upper
and lower case letters, numbers, punctuation signs etc. - have codes between 32 and
126 (they are called printing characters because they produce a visible result when
sent to a printer or to your terminal). The Internal Character Set and its character
codes are shown in tabular form in Appendix |I.

The other character codes - 0 to 31 and 127 - are known as contro/ characters or
non-printing characters, and these are used for special functions in the computer or
on an output device. For example, a line printer is positioned to a new line by a
carriage return followed by a line feed - codes 13 and 10 - or to a new page by a
form feed character - code 12. The complete set of all codes is shown in tabular form
in Appendix I; the names and effects of some of the control codes are summarized in
Appendix V.

It is worth mentioning in passing that, while humans use the decimal numbering
system, computers do not. The main alternative numbering system is Hexadecimal
(HEX), which works to the base of 16 rather than 10 (see Appendix Il for a description
of the HEX numbering system). In this Note, HEX numbers are preceded by the letter
X, while decimal numbers have no prefix.

This Note explains non-printing characters and describes methods for handling them.
If all you want to know about them is how to find out if you have any in your file and
then how to remove or correct them, see the section headed NON-PRINTING
CHARACTER PROBLEMS AND HOW TO SOLVE THEM on page 5. If you want to perform
more complex functions then see the section headed ED/TORS FOR THE EXPERTS on
page 11.

To access the programs described in this Note, you must issue the following
commands once only:

Command: OPTION SEARCHDIR=CONLIB.GENERAL {on EMAS 2900}
Command: OPTION SEARCHDIR=KNTLIB.GENERAL {on EMAS 2900}

Command: SEARCHDIR KNTLIB:GENERAL {on EMAS-A}
Command: SEARCHDIR ERCLIB:GENERAL {on EMAS-A}

You are advised always to have used the command TERMINALTYPE at the start of any
session when you are using any of the commands described in this Note.

in most of the examples in this Note, | have used the file named

CONLIB.EXAMPLES_CTRLCHAR1 which all users on EMAS or BUSH can access.
On EMAS-A this file is called ERCLIB:EXAMPLES CTRLCHAR1.

87-3

This file contains a mixture of printing and non-printing characters; the sequence of
characters is as follows:

a. a form feed character (decimal 12, X0C);

b. 11 spaces (decimal 32, X12);

(2]

. a horizontal tab character (decimal 9, X09);
d. the letters H, E, L and P;

8. a line feed character (decimal 10, X0A).

If you were to list this file on your terminal the output would look like this:

Command: LIST CONLIB.EXAMPLES_CTRLCHAR1
HELP
Command:

You will notice that the form feed, horizontal tab and line feed characters are not
visible in your output, this is because they are non-printing characters.

This file is permitted to all users, so you can copy it into your process and try out
some of the examples shown in this Note. All these examples were carried out on
EMAS or BUSH. If you wish to try them out on EMAS-A, you should copy the file
ERCLIB:EXAMPLES_CTRLCHAR1. To copy this file you would issue the following
command:

Command: COPY CONLIB.EXAMPLES CTRLCHAR1,TEST {on EMAS 2900}
Command: COPY ERCLIB:EXAMPLES_CTRLCHAR1,TEST {on EMAS-A}

The three non-printing characters contained in this file are not the only ones that can
be handled by the commands described in this Note. The most common ones and
their functions are described in Appendix V.

All the commands described in this Note work on character files and character
members of partitioned files.

If you are using Fortran programs from DEC systems, you will find that they are
spaced out using the horizontal tab (decimal 9, X09) character. There is a program
which removes these characters and inserts the equivalent amount of spaces. This
program is called DETAB: for more details see section 10 on page 9.

2. Acknowledgements

I would like to thank Nick Stroud for helping me to make this User Note a more
heipful one to both the novice and the expert. The structure of the Note and some of
the text were suggested by him. | would also like to thank Neil Hamilton-Smith for
suggesting this Note and for giving me his comments at various stages. John Murison
and Malcolm Brown also gave me comments on various drafts and 1 would like to take
this opportunity to thank them for their help.

87-4

NON-PRINTING CHARACTER PROBLEMS AND HOW TO SOLVE THEM

3. Non-printing character problems

The main problem with non-printing characters arises when they appear in your file
where they are not wanted. This can cause the terminal or the printer you are using
to behave in a peculiar way. It may also adversely affect the package or program you
are using. .

Their appearance can be caused by a variety of reasons, some of which are described
below.

(1) Non-printing characters inserted by the BACK SPACE key

If you were to use the BACK SPACE key while editing a file, you would move the
cursor back one space over the offending character. This removes the previous
character from the screen, but not from the file. What it does is insert a BACK
SPACE character in your file, so instead of deleting a character you are adding
one.

For this reason avoid using the BACK SPACE key as it can insert unwanted
non-printing characters in your file.

(2) Non—-printing characters inserted by EMAS programs

If you created your file by using a text formatting program such as SCRIBE or
LAYOUT, it is possible that these programs will have inserted certain non-printing
characters. The form feed character will be inserted when the program asks for a
new page, and the carriage return when underlining is requested.

(3) Non—-printing characters in imported files

In files imported via tape or microcomputer, the occurrence of non-printing
characters is common. This is usually because:

a. the Internal Character Set of the remote system is not based
on ISO but on another system such as Extended Binary Coded
Decimal Interchange Code {(EBCDIC);

b. on a micro, a word processing package may have been used
on the file, so inserting control characters or creating
characters with codes above 127;

¢. the parity of the remote system or micro may differ from
EMAS, or it may have been set wrongly by the method used to
import the file. This will result in the most significant bit of
some or every byte being set (see Appendix IV headed
The most significant bit on page 24 for more details).

87-5

4. How to find them
These characters may appear anywhere in your file. If you want a report giving .

details of what they are and where they are situated, you should use the NOPRINT
command as described in section 6 on page 7.

5. How to remove them

a. To remove all non-printing characters - use DEGROT (page 8),
DETAB (page 9) or FIXCODE (page 8),

b. To change the character code system (e.g. EBCDIC to 1SO) - use
CODECHANGE (page 10),

c. To correct characters that have had the most significant bit set
use FIXCODE (page 8),

d. To remove all non-printing characters but preserve tabulation
settings created by the horizontal tab character ~ use DETAB
(page 9).

87-6

SIMPLE PROGRAMS FOR HANDLING NON-PRINTING CHARACTERS

6. The NOPRINT Command

This command looks at every character in 3 file. I|f it finds a non-printing one,
it displays its location and HEX value.

The only non-printing character not picked up by this command is line feed (decimal
10, X0A), which is a vital component of all text files, and is therefore valid.

The NOPRINT command takes one parameter which is the name of the file you want
to check. Here is an example of how you could issue the command and the resuits it
would produce.

Command: NOPRINT TEST

Line 1 Character 1 is value X0C

Line 1 Character 13 is value X09

File TEST contains 2 non-printing characters
Note that the form feed character (12, XOC) is part of line 1 and the horizontal tab

character (8, X09) is on the same line. The values given are in HEX; to see which
characters they represent, see the table in Appendix |.

7. The COUNT Command

You can use this command to check a file for the occurrence of any particular
character. [t takes two parameters:

a. the name of the file to be checked;
b. the code of the character to be searched for.

You could check the file TEST for the occurrence of the form feed character like this:
Command. COUNT TEST,12

where 12 is the decimal code for the form feed character.

The above command would produce the following output:

Finished! - 'TEST' contains 18 characters -
1 of them have the value 12!

Note that COUNT uses decimal code values and not HEX.

The COUNT command is not yet available on EMAS-A.

87-7

8. The DEGROT Command

This command can be used to remove all non-printing characters (except line feed)
from a text file. It does not delete the characters, but makes a copy of the file with
the non-printing characters omitted.

The DEGROT command takes two parameters:
a. the name of the file which contains the non-printing characters;

b. the name of the new file which will have the non-printing
characters omitted.

The following example shows how you would strip the file TEST of non-printing
characters: .

Command.: DEGROT TEST, TESTNEW
No of non-printing characters removed from EKLDI1.TEST = 2

Note that the file TEST would remain unchanged, but the file TESTNEW would be a
copy of TEST with the two non-printing characters omitted. ’

9. The FIXCODE Command

This program was written for the purpose of handling characters that have had the
most significant bit of each or some of its bytes set. This can happen when a file is
imported via a magnetic tape or micro computer. See section 3(3) on page 5 for
more details.

If you do not understand the terms most significant bit and byte you should refer to
Appendix Il and IV.

The FIXCODE command unsets the most significant bit from every byte in a file so
that every character in the file will be represented by a byte with a value in the range
0 - 127 or X00 - X7F. If unsetting the bit turns the character into a control character
i.e. gives it a value in the range 0-31 or 127 (X00-X1F or X7F), then the character will
be removed. So like DEGROT, FIXCODE can be used to remove non-printing
characters. The only difference is that FIXCODE will try to convert any non-printing
characters into printing ones.

The FIXCODE command takes two parameters:
a. the name of the file which contains the non-printing characters;
b. the name of the new file which will be similar to the first, but with

the non-printing characters amended or removed.

To give you an example of what FIXCODE does you could use it with the file
CONLIB.EXAMPLES_CTRLCHAR2 which is accessible on EMAS and BUSH (the same file
is available on EMAS-A where it is called ERCLIB:EXAMPLES_CTRLCHAR2). This file
contains four characters, all with their most significant bits set. The HEX values of
these characters are XCD, XC5, X88 and X8A.

87-8

Before using this file you would copy it into your own process like this:
Command: COPY CONLIB.EXAMPLES_CTRLCHAR2,SET

To unset the most significant bit from every character in this file, you would issue the
following command:

Command: FIXCODE SET,UNSET

which would produce the following output on your terminal:
Characters read

Control characters deleted

Valid characters written
Invalid characters amended

o unou

W~ h

The file UNSET created by the FIXCODE command would contain the characters with
their most significant bits unset. The HEX values of these characters would be X4D,
X45 and X0A, which represent the ISO characters M, E and line feed.

The character with HEX code value X88 reverted to X08 when the most significant bit
was unset. This code represents the back space which is a control character. For this
reason it was omitted from the output file.

10. The DETAB Command

You would use this command to remove all non-printing characters (except line feed)
from a file, and replace any horizontal tab characters with the number of spaces
needed to move the cursor or carriage to the next tab stop. The original file is not
changed, but an edited copy is made.

As an example, take the file TEST, the contents of which are described in the
Introduction. You could put it through the DETAB program like this:

Command: DETAB TEST,TESTAB2

DETAB detabbing program, version 03 (24th May 1985)

Finished! - 1 lines read.
1 TAB characters were replaced with spaces.

The following miscellaneous control characters have been removed:
1 FFs (code value 12)

The file TESTAB2 created by this example would have the form feed and horizontal tab
characters removed and the word HELP moved from column 14 to 17.

In the above example the horizontal tab character was replaced by 3 spaces to move

HELP to the next tab stop. By default, these tab stops are set every 8 columns, at 1,
9, 17, 25 etc.

87-9

You can change this default by giving a number, representing the distance between
tabs, as the third parameter. For example: '

Command: DETAB TEST,TESTAB2,7

would set the tab stops to 1, 8, 15, 22 etc. and wouid move the text HELP along to
column 15,

Note that this command is not yet available on EMAS-A.

11. The CODECHANGE Command
This command converts the whole of a file from one character set to another. it takes
the following two parameters (which can be typed on the same line as the command
or issued after prompts):

a. the name of the file you want to change;

b. the name of the character code set you want to change it to.
At present, the valid values for the second parameter are EBCDICTOISO, ISOTOEBCDIC
and CDC6600TOISO. Note that this command converts the contents of your file,
it does not create a new one. If you want to preserve the contents of your file you

should make a copy of it before converting it.

Note that any non-printing characters contained in your file will be converted to the
equivalent non-printing characters in the new character set.

As an example you could convert the characters in the file TEST from iSO to EBCDIC
by issuing this command:

Command: CODECHANGE TEST.ISOTOEBCDIC

EBCDIC codes are not described in this Note, but details of them can be obtained
from the ERCC Advisory service.

Note that this command is not yet available on EMAS-A.

12. The ADDNP Command

You can use this command to add the form feed character to the top and bottom of a
file. If one is already in place at these positions then no action is taken.
The command could be issued like this:

Command: ADDNP TEST
The effect is to throw a page at the beginning and end of your file when you are

listing it on your printer. This means that your file will begin on an new page and the
closing banner will be moved over onto a new page.

87-10

EDITORS FOR THE EXPERTS

This section gives details on how you can use certain editors to handle non-printing
characters. If you want to:

a. display the I1SO values of non-printing characters as they occur in
the file - use EM;

b. display the HEX values of non-printing characters as they occur in
the file - use CHEF or EM;

c. search for non-printing characters - use EDIT, ECCE, BECCE or
SUPERSNAP;

d. insert non-printing characters - use EDIT, ECCE, BECCE or
SUPERSNAP;

e. delete non-printing characters - use EDIT, ECCE, BECCE or
SUPERSNAP.

Many users will be familiar with the EMAS Subsystem Editor (EDIT) and the Edinburgh
Compatible Context Editor (ECCE), both of which can handle non-printing characters.
For more details see the section on EDIT (page 14) and the one on ECCE (page 18).

13. The EM Command

EM is an editor imported from the University of Kent at Canterbury. It is not yet
available on EMAS-A, but is available on EMAS 2900.

You could use it to indicate the non-printing characters which occur in a part or the
whole of a file. You have the option of displaying the ISO name or the HEX value of
these characters.

To start the program you would type the EM command with the name of the file as
its parameter. For example:

Command: EM TEST
The first thing the program does is to print the message E£ditor followed by the
number of lines in the file, followed by the editor prompt (which is the > character).
For example:

Editor

7
>

87-11

After this prompt, you should give:

a. the number of the first line you want to display (followed by a
comma);

b. the number of the last line you want to display (to display to the
end of a file, you would give an asterisk instead of the line
number);

c. the letter L for the List command.

For example:
>11L

would display the first line of the file which would look like this:

{1f} {tabJHELP{nl}
>

in the above example, the non-printing characters are indicated by letters representing
their ISO names, for example: {tab} represents the horizontal tab (HT) character and
{ni} represents the line feed (LF) character. The most common of these characters
are described in Appendix V.

If you wanted to display their HEX codes instead of their ISO names you would add
the letter H to the command line. For example:

> 1,1H
would produce the following output

(0C} (09)HELP{OA}
>

To find out which characters these HEX codes represent, see the table in Appendix .
You would exit from the program by typing the letter Q on its own, for example:
>Q

A document describing EM (Ref K2.7/1) is available from the ERCC Advisory service.

14. The CHEF Command

CHEF is an editor imported from the University of Kent at Canterbury. It is not yet
available on EMAS-A, but can be accessed on EMAS 2900.

CHEF can be used to indicate the non-printing characters which occur in a section or

all of a file. It displays these characters in HEX and precedes them with the #
character.

87-12

You would start the program by issuing the CHEF command with the name of the file
as its parameter, for example:

Command: CHEF TEST
CHEF will then: display the number of characters in the file; give details of available
help information; display the CHEF editor prompt and then ring the bell of your
terminal (if it has one). For exampie:

18

Enter H for help (Q for quit)
>

You should reply with a command consisting of four items in the following order:

a. the number of the first line you want to display (followed by a
comma);

b. the number of the last line you want to display (to display to the
end of the file, you would give the fuil stop symbol . instead of a
line number);

c. the letter P for the print command;

d. the letter L to tell the editor to print in lucid mode, which means
that non-printing characters will be printed in HEX and preceded
by the # character.

For example:
> 1,1PL

would produce the following:

#0C # O9HELP
>

See the table in Appendix | to find out which characters these HEX codes represent.
To exit from CHEF you would issue the Q command after the prompt like this:
>Q

The line feed character (decimal 10, X0A) is not treated as a non-printing character by
CHEF. _

A Kent User Note describing CHEF (Ref K2.7/3) is available from the ERCC Advisory
service.

87-13

15. The EMAS Subsystem Editor (EDIT)

This editor is described fully in chapter 8 of the EMAS 2900: User’s Guide and in
summary on the EMAS Subsystem Editor card, both of which are available from the
ERCC Advisory service.

You can use EDIT with the partitioned file CONLIB.CTRLCHAR to handle any control
character which may occur in your file. This file is also available on EMAS~-A where it
is called ERCLIB:CTRLCHAR.

This file has 66 members, each member contains one single non-printing character.
Each control character is contained in two members, one with a decimal name
{prefix C) and one with a HEX name (prefix X).

For example, the file named CONLIB.CTRLCHAR_C9 contains the horizontal tab
character. The number after the letter C corresponds to the decimal code of the
character, so the BEL character has the decimal code of 7, which will be held in a file
called CONLIB.CTRLCHAR_C7.

Those member files which begin with the letter X correspond to the HEX values of the
EMAS control characters. An example of such a file is the one containing the form
feed character. The HEX code for this character is X0C, so the file
CONLIB.CTRLCHAR_XOC would hoid this character. Note that the file
CONLIB.CTRLCHAR_C12 would also contain this character. You can see the names of
all the members if you give the following command:

Command: ANALYSE CONLIB.CTRLCHAR

(1) Finding non—printing characters using EDIT

This is done by issuing the Move command with the file containing the
non-printing character as its parameter. The name of the file should be enclosed
in angle brackets. For example, if you wanted to search for the first occurrence of
the horizontal tab character (decimal 9, X09), you would issue the following
command:

Edit: M<CONLIB.CTRLCHAR_X09>
If this was issued when editing your copy of the example file
CONLIB.EXAMPLES_CTRLCHAR?1, the EDIT cursor (indicated by the ~ character)
would be moved to the first occurrence of the horizontal tab character, and the
following output would be printed on your terminal:

:4'7":{'

A HELP

(2) Inserting non-printing characters using EDIT

The Edit command Insert is used, with the file containing the characters as its
parameter. For example:

£dit: I<CONLIB.CTRLCHAR_X0C>

would insert a form feed character at the position of the EDIT cursor.

87-14

(3) Removing non-printing characters using EDIT

The EDIT command Remove is used in this situation again with the file containing
the character as its parameter. For example:

£dit: R<CONLIB.CTRLCHAR X0A>

would remove the first occurrence of the line feed character from the file.
Note that the following command:

£dit: (R<CONLIB.CTRLCHAR_X0D >)*
would remove every occurrence of the carriage return character from your file.

The EDIT commands Delete, After, Uplift and Print can also be used with one of these
files as its parameter.

16. The BECCE Command

BECCE uses the same editing commands as ECCE, but prints the file on your terminal
in character codes (HEX or decimal) - not the characters themseives. You thus edit
entirely in HEX or decimal. This section shows how BECCE can be used to:

- display the contents of a file in HEX;
- search for a particular non-printing character;

- insert, delete or re-locate a non-printing character.

(1) Displaying the contents of a file in HEX
To examine the contents of the example file TEST you would follow these steps:

a. Type the BECCE command followed by the name of the file
you want to display. For example:

Command: BECCE TEST

The program will prompt you first for the character you have
chosen to indicate the end of each record in the file, then the
length of each record. For the purpose of displaying
non-printing characters, you may select the default values by
pressing the return key after the two prompts. The prompts
will look like this: ’

Separator:
Record length(20):

The above is an example of what would be displayed if you
were using BECCE on EMAS-A; on EMAS 2900 the record
length value would not be displayed. By default the separator
byte is given the value 255 and the record length is set to 20
bytes.

87-15

b. The program will print out the separator byte value and then
prompt you with the > character, to which you should reply
with a P for print, followed by the number of lines you want to
see (* for all of them). For example:

Separator byte = 255
> p*

This will produce the following output on your terminai:

0C 20 20 20 20 20 20 20 20 20 20 20 09 48 45 4C 50 0A
S‘*END**

¢. The command to terminate BECCE is- %C which you should
type after the prompt thus:

> %C

As you can see, the HEX values of the file are displayed. If you check them with
the table in Appendix |, you will find that the file contains:

- a form feed character (decimal 12, X0C);

11 spaces (decimal 32, X20);

a horizontal tab character (decimal 9, X09);

the letters H, E, L, and P (HEX codes X48, X45, X4C and X50);

a line feed character {decimal 10, X0A).

(2) Finding and highlighting non-printing characters

If you wanted to search the file for the occurrence of a particular non-printing
character (line feed for example), you would use the Find command, with the HEX
code of the character you are looking for as its parameter. For example:

Command: BECCE TEST
Separator

Record Length(20):

> F/oA/

The BECCE program in return would move the file pointer to the line feed
character. To display this pointer you would have to use the P command on its
own like this: .

>P

This would produce the following output on your terminal:

0C 20 20 20 20 20 20 20 20 20 20 20 09 48 45 4C 50+ 0A
>

The file pointer is represented by the ~ character.

87-16

(3) Deleting and inserting non-printing characters
Suppose you wanted to change the file TEST, so that the form feed in column 1 is

removed and the. line feed is replaced by a new form feed. To do so you could
use BECCE like this:

a. move the pointer to the top of the file by using the Move
command;

>M-0

b. delete the form feed character from the top of the file by
using the Delete command;

> D/0C/

c. move to the line feed character at the bottom of the file by
using the Find command and delete it by using the Delete
command;

> F/0A/D/0A/
d. insert a new form feed character by using the Insert command.

> 1/0C/

e. If you wanted to show the edited contents of the file, you
would do so like this:

>pl
2020 20 20 20 20 20 20 20 20 20 09 48 45 4C 50 0C
>

(4) Notes on BECCE

If you wish to input text in character form rather than HEX, give the following
command to BECCE:

> %I=C
The forms:

> %I=D
> %I=0

are also provided, specifying Decimal and Octal input respectively. The command
> %0=HC

causes output to be displayed in both HEX and Character form. You can get an

on-line description of BECCE by typing HELP BECCE at command level. A short

Note describing BECCE is available from the ERCC Advisory service. The BECCE
program is static; new facilities added to improve ECCE are not added to BECCE.

87-17

17. The Edinburgh Compatible Context Editor (ECCE)
With ECCE you can:

- insert non-printing characters by using the Insert command;

search for them by using the Find command;

remove them by using the Destroy command;

indicate where they occur in your output by using the %D command.

To start the ECCE program you would issue the ECCE command with the name of the
file you want to edit as its parameter. For example:

Command: ECCE TEST
This command wouid generate the following response on your terminal:

Edit
>

the > character being the ECCE prompt.
(1) Inserting non—printing characters
You can insert non-printing characters through ECCE by issuing the Insert
command and enclosing the HEX or CTRL codes between two ampersand (&)
characters. Note that if the file you are editing is empty or the pointer is at the
end, then any Insert command you issue will fail. The pointer is at the end of the
file when the following message is output:

*g o
>

To get round this empty file problem you should insert a blank line then move
back to the top of the file. The sequence of ECCE commands to do this would be:

>B
> M-0

Inserting HEX codes

If you wanted to insert the form feed character into a text file, you would use the
following ECCE command:

> 1&0C&

When inserting HEX codes, please note that:
- digits consist of one of 0-9, A-F, a-f;
- codes are made up of two digits;

- if only one digit is input, then a leading zero is assumed.

87-18

Inserting CTRL codes

Instead of specifying HEX codes, it is possible to specify the desired code using
the up-arrow character (representing the CTRL key) followed by a letter.

For example, if you knew that the form feed character was generated by holding
down the CTRL key and pressing the L key, you could insert the form feed
character like this:

> 1& " L&

Note that using the CTRL key with the letter L when in ECCE will have no effect -
the above form must be used instead.

More than one CTRL or HEX code can be inserted in one Insert command.
For example: ‘

> 1& " LOCOA " 1&

A description of the use of the CTRL key and the characters generated by it is
contained in Appendix V.

(2) Searching for Non—printing characters

To find a particular pattern of non-printing characters you would use the Find
command, with the HEX representation of the pattern enclosed in the ampersand
character as its parameter. For example, to find the first occurrence of the
horizontal tab character in the file CONLIB.EXAMPLES_CTRLCHAR1 (the contents of
which are described in the Introduction), you would issue the following command:

> F&098

This would move the file pointer to the first occurrence of the character and
produce the following output on your terminal.

A HELP
>

The file pointer is represented by the ~ character.

(3) Deleting non-printing characters

As with the Insert and Find commands, the Delete command takes the HEX
representation of the character or characters to be removed from the file as its
parameter (enclosed between ampersand characters). For example, to remove the
line feed character from the example file, you would issue the following
command:

> D&0AR

To remove every occurrence of the carriage return character from your file you
would issue the following command:)

> (D&OCE)*

87-19

(4) Controlling the output of non—printing characters

With the %D command you can control the output of non-printing characters on
your terminal while using ECCE. The command takes a number as its parameter,

thus:

%D=0 is the default value and allows non-printing
characters to be sent to your terminal. What your
terminal does with these characters depends on its
make and how it is set up: most of them wiil have no
effect on your terminal;

%D=1 replaces the non-printing characters with the ?
character;

%D=2 replaces the non-printing characters with the ?

character and also rings the bell of the terminal
(if it has one).

You can save the value assigned to %D for future ECCE sessions by using the %P
(profile) command.

The %D command can also be used in this way in the commands SHOW and
RECAP.

(5) Notes on ECCE

A description of ECCE can be found by issuing the command HELP ECCE or by
reading chapter 8 of the EMAS 2900: User’'s Guide.

18. The SUPERSNAP Command
SUPERSNAP is a file editor similar to BECCE. You could use it to:

- list all or part of a file in HEX so making it possible to pick out the
non-printing characters;

- search through a file for the occurrence of non-printing characters;

- remove, alter or delete non-printing characters.

SUPERSNAP is fully described in User Note 36, which is available from the ERCC
Advisory service.

87-20

I. EMAS: Internal Character Set

The table below shows the Internal Character Set used by the EMAS operating system.
The first column gives the decimal code for each character, the second column gives
the HEX value and the third displays the character itself.

[

| 0 00 NUL 32 20 space | 64 40 @ | 96 60

| 1 01 SOH 33 21 ! | 65 41 A | 97 61 a
| 2 02 STX 34 22 g | 66 42 B | 98 62 b
| 3 o3 ETX 3’ 23 #(£) | 87 43 c | 99 63 c
| 4 04 EOT 36 24 $- | 68 44 D | 100 64 d
| 5 05 ENQ 37 25 % | 69 45 E 101 65 e
| 6 06 ACK 38 26 & | 70 46 F 102 66 f

| 7 07 BEL 39 27 Ay G 103 67 9
| 8 08 BS 40 28 { | 72 48 H 104 68 h
} g 09 HT 41 29) | 73 49 I 10S 69 i

| 10 0A LF 42 2A * | 74 4A J 106 8A i
jon 0] vT 43 2B + | 75 4B K 107 68 k
bo12 ocC FF 44 2C | 76 4C L | 108 6C |

| 13 oD CR 45 2D - | 77 4D M | 109 6D m
| 14 0E SO 46 2E | 78 4E N 110 6E n
| 15 OF Si 47 2F / | 79 4F (o] 11 6F o
| 16 10 DLE 48 30 0 | 80 S0 P 112 70 p
| 17 11 [n]0g] 49 31 1 | 81 51 Q 113 71 q
| 18 12 DC2 | 50 32 2 | 82 52 R 114 72 r
| 19 13 DC3 51 33 3 | 83 53 S | 118 73 s
[20 14 DC4 52 34 4 | 84 s4 T | 16 74 t

| 21 18 NAK 53 35 5 | 8 55 u | 17 75 u
| 22 16 SYN 54 36 6 | 86 56 v | 118 76 v
] 23 17 ET8B 55 37 7 | 87 57 w | 19 77 w
| 24 18 CAN 56 38 8 | 88 58 X | 120 78 x
| 25 19 EM | 57 39 9 | 89 59 y | 121 78 Y
| 26 1A sus | 58 3A | 90 SA 4 | 122 7A 2
| 27 18 ESC 59 3B | 9 58 [] 123 78 {
| 28 1C FS 60 3C <] 92 5C \ | 124 7C |

| 29 1D GS 61 3D = i 93 sD | | 125 70 }
| 30 1E RS 62 3E > | 94 S5E ~ | 126 7€ -~
| 31 1F us 63 3F ? | 95 5F - | 127 7F DEL
[

87-21

Il. The Hexadecimal Numbering System

Because of the internal organization of computer storage, every character has to be
represented by a HEX number.

The HEX system works to base 16 as distinct from the decimal system which works to
base 10. This means that where decimal uses hundreds, tens and units which are
powers of ten, HEX uses powers of 16 (i.e. 1, 16, 256 etc.).

The HEX system requires 16 digits and uses the numeric digits 0-3 supplemented by
the letters A-F. The digits with their decimal equivalents are shown below:

Decimal HEX
0 X00
1 X01
2 X02
3 X03
4 X04
5 X05
6 X06
7 X07
8 X08
9 X09

10 X0A
11 Xoe
12 X0C
13 X0D
14 X0E
1% XOF

To convert HEX to decimal or vice versa, you could look up the values in the Internal
Character Set table on the previous page.

You could also use the EMAS commands #HEX or #DEC, for example:

a. To convert the decimal number 23 to HEX, you would issue the
following command:

Command: #HEX 23
X=00000017

Note that the leading zeros can be ignored, so decimal 23 is
converted to X17 by the #HEX command.

b. To convert the HEX number X1C to decimal, you would issue the
following command:

Command: #DEC X1C

N= 28

87-22

lll. The binary representation of characters

The EMAS operating system stores characters in locations known as bytes: these
bytes consist of 8 binary digits or bits. Every character in the Internal Character Set
has a unique 8 bit pattern.

To illustrate this method of storing characters, take the letter A. It has a HEX value of

X41 and would be represented in bits as follows:

HEX value = 4 1
Bit pattern = 0100 0001

As you can see, the first HEX digit (4) is coded into the 4 digit binary pattern of 0100
and the second HEX digit (1) is coded into the 4 digit binary pattern of 0001. The 8
bit pattern for the letter A (X41, decimal 65) is therefore 01000001.

87-23

IV. The most significant bit

The EMAS internal Character Set codes range from 0 to X7F (decimal 127). .
These minimum and maximum codes have bit patterns of 00000000 and 01111111
respectively.

You will notice that the bit pattern for the maximum character code has all the bits
set except for the left hand one. This left hand bit is known as the most significant
bit.

As this bit is not set for any of the characters in the EMAS Internal Character Set,
it can be ignored.

However, this bit can get set from 0 to 1 for a number of reasons (see the section
headed Non-printing characters in imported files on page 5 for more details).

If this happened on some or ail of the characters in a file, they will be given values
above X7F (decimal 127) and so will not be accepted as EMAS characters, but will
instead be treated as non-printing ones.

To restore these characters to their correct values, you should use the FIXCODE
command as described in section 9 on page 8.

87-24

V. Control Characters

Characters in the table in Appendix | with decimal values 0 to 31 are non-printing
characters, but because they each have a specific function, they are also known as
control characters {the DEL character, decimal 127, is also a control character).

These characters can be generated from a terminal by typing a letter while holding
down the CTRL key. Holding down the CTRL key subtracts the decimal value 64 from
the character key you press. This means that by typing the letter J (decimal code
value 74), while holding down the CTRL key (subtracting 64) you will generate the
character with the decimal code vaiue of 10 (the line feed character).

The most common control characters and their CTRL code equivalents are shown in
the table below. These CTRL sequences may vary according to the type of terminal
you are using, you should check the terminal handbook for specific details.

Decimal ISO CTRL & Key Function
0 NUL CTRL @ Used to accomplish time and media fill.
1 SOH CTRL A Start of heading - communications control character

used at beginning of sequence of characters
constituting machine-sensible address or
routing information.

4 EOT CTRL D End of transmission - communications control character
used to indicate conclusion of message transmission.

7 BEL CTRL G Bell - character used to cause an audible alarm
at a remote terminal.

8 B8S CTRL H Backspace - Format effector causing the cursor to
move one space backward on same line.

9 HT CTRL I Horizontal Tabulation - Format effector causing the
cursor to move to the next predetermined position
along the line.

10 LF CTRL J Line Feed - Format effector causing the cursor to
advance to the next line.

11 vT CTRL K Vertical Tabulation - Format effector causing
movement of paper to first predetermined line on
next form or page.

12 FF CTRL L form Feed - Format effector causing the form or paper
to be advanced one form (i.e. a new page is taken).

13 CR CTRL M Carriage Return - Format effector which causes the
cursor to move to the left hand margin.

16 DLE CTRL P Data Link €scape - Communications control character
which will change the meaning of a limited number of
continuously following characters.

24 CAN CTRL X Cancel - control character used to indicate that
the data with which it is sent is in error or is
to be disregarded.

27 ESC CTRL (Escape - control character used to generate an
interrupt.
127 DEL none Delete - character used primarily for time and media fill.

87-25

All the 33 non-printing or control characters are held in a partitioned file on EMAS
2900 called CONLIB.CTRLCHAR (ERCLIB:CTRLCHAR on EMAS-A). The contents of each
member of this file consists of one single non-printing character.

Some of these member files can be used with the EMAS Subsystem Editor to
manipulate non-printing characters (see section 15 on page 14 for more details).

Note that these non-printing character files can also be used with ECCE, CHEF and
EM. For more details you shouid refer to the documents which describe these editors.

The partitioned file CONLIB.EXAMPLES on EMAS 2900 (ERCLIB:EXAMPLES on EMAS-A)

contains the files CTRLCHAR1 and CTRLCHAR2 which are used as examples in this
Note.

87-26

