SCAN: A Simple
Conversational Programming Language
for Text Analysis

P. J. Brown

Among the new programming languages designed to exploit the opportunities
of conversational mode when it was first developed, the most important were Joss
(Shaw) and Basic (Kemeny and Kurtz). These were intended primarily for numerical
work and, in their original forms, they were much simpler (and less powerful) than
numerical programming languages developed primarily for batch mode, such as ALGOL
and FORTRAN. They had the merit that they were especially designed for conversational
use. In particular, the languages had the following five properties:

(1) there were built-in facilities for making corrections during a run;

(2) whenever possible, errors were pointed out immediately they were made;

(3) programs were easy to type;

(4) compilers for the languages were small, and could be shared by any number of
simultaneous users, thus minimizing the demands on the storage space availabie on
the computer; _

(5) compilers were incremental. This means a program can be changed statement by
statement without the time-consuming process of recompiling the whole program
each time,

It is possible to adapt FORTRAN or ALGOL for conversational use, but since these

languages were not designed with this in mind they are not totally suitable and are only

used for historical reasons or reasons of compatibility.

The programming language SCAN described in this paper represents an attempt to
provide an equivalent, in the field of text processing, to 30ss and BASIC. SCAN has the
five properties outlined above, and, compared with a powerful text processing language
such as sNoBoL4 (Griswold, Poage, and Polonsky), it is much simpler and much less
powerful. Its compiler, which consists of under 2,000 words of 24 bits each on the ICL
4130 computer, is perhaps twenty times smaller than the compiler for SNOBOL 4 would
be. It is very suitable for use by students or any other computing laymen. It can be used
by research workers for simple tasks, but a user trying to do a complicated stylistic
analysis woald stretch it beyond its limits.

No attempt will be made here to describe SCAN in detail, as a full description is
given elsewhere (Brown). Instead the main principles of its operation will be described
and some examples presented.

P. J. Brown is a lecturer at the University of Kent at Canterbury. He expresses his gratitude to Mr.
David Shaw and Miss Eveline Wilson for their useful suggestions after using the early pilot versions of
SCAN.

223

224 Computers and the Humanities/Vol. 6, No. 4/March 1972

Method of scanning

The text that SCAN is to process is called the source document, and each time he
runs a program, the user specifies which source document is to be used. It will normally
be stored on a disc. The source document may contain any kind of information in
character form. It may, for example, consist of a poem, a piece of prose, some historical
records, a computer program, a bank statement, a list of names and addresses, or even,
perhaps, a musical score in a suitably encoded form.

SCAN divides the source document into sentences. The user himself decides what
constitutes the end of a sentence; for a piece of prose it would be a full stop, but for
other material it might be the end of a line. A sentence need not correspond to a sentence
of English grammar. It is often preferable to analyze poetry line by line, so that if the
source document is a piece of poetry, a sentence would probably be defined as a line.
Each sentence is in turn split up into words and separators (i.e., commas, spaces, etc.).

The action of SCAN is to pass through the source document sentence by sentence
from beginning to end. The user specifies certain words and separators that are to be
specially recognized, and the action to be taken in each case. Typical actions might be to
update a count, to print the sentence, or to check whether another word has also
occurred. The specification of the words and separators to be recognized and the action
to be taken at each is written as a series of SCAN statements which, taken as a whole,
make up a SCAN program,

In many cases, SCAN statements have been made similar to statements in the
BASIC programming language. There are, however, considerable differences between the
two because BASIC generally deals with real or floating point numbers, whereas SCAN
deals with characters, words, and sentences.

Example of a SCAN program

The following is a simple SCAN program
16 AT “HE”, “SHE”
20 LET N1=N1+1

40 AT .END.

§0 PRINT “THE COUNT FOR ‘HE’ AND °‘SHE’ IS *,N1
This program causes a variable, N1, to be increased by one at each occurrence of ‘he’ or
‘she’ in the source document. At the end the total value of N1 is printed and a typical
output from the program might be

THE COUNT FOR ‘HE’ AND °‘SHE' IS 16
The purpose of the numbers preceding each program statement is explained later.

As can be seen, a program consists of a number of AT statements specifying words
or separators to be recognized, and each AT statement is followed by one or more
statements specifying the action to be taken on recognition.

Variables

Names of variables in SCAN consist of a letter followed by a number or a
parenthesized subscript. Examples of names of variables are N1, N20, B3, B(3), or
B(N1+3). There are two types of variables: character variables can take any single
character as their value, and integer variables can take any integer as their value.

Several of the variables are used by scaN for special purposes. The current
sentence is stored character by character in B1, B2, B3, etc. Variables with prefix A orL
are called system variables. Each system variable has a predefined purpose and is used to
communicate information between SCAN and the user. For example, A 2 is the character

Brown/SCAN 225

that indicates the end of a sentence. Thus the statement

LET A2 = “»
would cause full stops to end a sentence. The variables L1 and L2 give the position of the
current word within the current sentence. B(L1) is the first character of the current word
and B(L2) the last. Further system variables are used for such purposes as relaying
statistical information from SCAN to the user (e.g., how many words, sentences, etc., so
far) or for the user to tell SCAN what printing options he needs. Since the user cannot be
expected to remember the numbers of all the system variables—thereare about fifty of
them in all--a facility for mnemonic synonyms is provided. Thus, for example, .INITIAL.
and .FINAL. can be used for L1 and L2, respectively, and .END., as used in the above
example, means A 3, which is the imaginary end-of-document character.

To aid the user, all variables that do not have predefined uses are initially set to
zero or null, and certain variables, in particular those starting with the letter ‘M ’are set to
zero at the start of each sentence. These latter are useful for counts within sentences.

The following example illustrates some of these concepts. It is a program that
searches for instances of ‘if’ followed, within the same sentence, by ‘then.’ At each
occurrence it prints the text in between. An explanation follows the program.

10 LET .S:END, = «”

20 AT “IF"
30 LET M1 = .INITIAL.
40 AT “THEN”

50 IF Ml >0 PRINT BM1) TO B(.FINAL.)

In statement 10, .S:END. is the synonym for A2, the sentence terminator. Thus
this statement defines a sentence to end with a full stop.

In statement 30, M1 is set as the subscript of the start of the ‘if,’ thus remembering
it in case it needs to be printed later.

In statement 50, the prefix ‘IF M1> 0’ eliminates the case where M1 has never been
changed from its initial value of zero, i.e., where no ‘if’ has preceded the ‘then.” When an
‘if’ has occurred, the text from the ‘i’ of ‘if’ up to and including the ‘n’ of ‘then’ is
printed.

Word-patterns

Words that are to be recognized are specified by means of word-patterns in AT
statements. In the examples so far the words to be recognized have been explicitly
specified, and word-patterns have been literals such as “HE** and “SHE.” It is possible to
specify word-patterns involving arbitrary elements. This is done by placing a hyphen in
the word-pattern at the place where the arbitrary string is to be allowed. A hyphen will
match any string, including a null one. The following examples illustrate the use of
hyphens.

(@) “p-» will match all words beginning with ‘p.

(b) «sPr-ING” will match all words beginning with ‘sPr’ and ending with ‘ING’,
including the word ‘SPRING’.

(c) - matches every word.

(d) «-s-s-s- will match all words containing three or more occurrences of the letter ‘s’.

When a word-pattern containing arbitrary strings is matched, certain system
variables are set to indicate the position of the first and last letter in each arbitrary string
within the word, so that the program may examine them. These system variables have the
mnemonic names .1INITIAL., .1FINAL., .2INITIAL., .2FINAL., etc., corresponding to
the first, second, etc., arbitrary strings within the current word.

The following sample program prints all palindromes in the source document that
start with ‘R,” ‘s,’ or “T* and consist of at least four letters. An explanation is given at the
end.

226 Computers and the Humanities/Vol. 6, No, 4/March 1972

10 AT “R-R”, “S-§”, “T-T”

20 IF .LENGTH. <4 GOTO 0

30 IF B(.1INITIAL.) NE B(I1FINAL) GOTO 0
40 LET .1INITIAL.=.1INITIAL.+ 1

50 LET .1FINAL.=.1FINAL.—1

60 IF .1INITIAL.<.1FINAL. GOTO 30

70 PRINT B(INITIAL.) TO B(.FINAL)

Statement 10 means AT any of the three alternatives.

Statement 20 uses the system variable .LENGTH., which gives the length of the
current word. ‘GOTO 0’ means “abandon the action for the current match.”

Statement 30 causes abandonment if the initial letter in the arbitrary string is not
equal to (NE) the final letter.

Statement 40 moves .1INITIAL. forward one letter and statement 50 moves
.1FINAL. back one letter. They thus point at the next pair of letters to be compared, and
statement 60 goes back to repeat the comparison process unless the two pointers have
met, thus indicating the word is indeed a palindrome. In this latter case, statement 70
prints the palindrome.

Searching for alliterations

The following example shows a SCAN program to search for alliterations in the
source document. To do this it is necessary to match every word and then to compare the
first letter of each with the first letter of the previous word within the current sentence.

10 LET.S:END.= >

20 AT *.”

30 IF M1>0IF B(M1) = B(.INITIAL.) PRINT B(M1) TO B(.FINAL,)

40 LET M1 = INITIAL.

Statement 10 defines sentences to end with a full stop.

Statement 30 has two IF clauses: the first eliminates the case where the current
word is the first in a sentence; the second compares the first letter of the current word
with the first letter of the previous word (which is pointed at by M1 because of the action
of statement 40 for the previous word),

The program is, in fact, rather oversimplified, as in practice it would be desirable to
eliminate such trivial alliterations as ‘to the’ or ‘an axe.’

Summary of examples

These examples have shown most of the important features of SCAN. It can be seen
that the accent in the design of SCAN was to provide the user with a few simple and
adaptable building bricks rather than with a comprehensive range of facilities.

SCAN programs could be expressed more concisely in many other programming
languages, but it is hoped that as they stand they are in a form that is fairly easy to read
and understand. If a complete layman were shown a SCAN program and given, say, five
minutes of explanation, there is a reasonable chance he would have some glimmer of an
understanding of what was going on.

How SCAN is used

SCAN runs under the KOs operating system (Brown) on the 1cL 4130. When a user
wishes to use SCAN he simply types
ENTER SCAN
and then types his program. When his program is complete and syntactically correct he
types ‘RUN’ to run it, specifying what source document to use.

Brown/SCAN 227

SCAN uses the same scheme as BAsIC for making corrections and additions to a
program. This scheme uses the numbers that precede each program statement. If a new
statement is typed with the same number as a previous one then the previous one is
overwritten. If the new statement number comes between two existing ones then it is
inserted between these statements. The current form of the program can be printed out
by typing ‘TEXT.’ For example, if the statement

25 IF .LENGTH. < 3 GOTO 0
were added to the program in the previous example, this new statement would be
included between the existing statements 20 and 30. The effect would be to eliminate
alliterations involving one-letter or two-letter words.

Practical usage

SCAN was used with fair success in a programming course for humanities students
during the past year. Miss Eveline Wilson, who ran the course, thought out a very
imaginative example of its use. Three texts were stored on disc as follows:

(1) A chapter of one of Ian Fleming’s James Bond books.

(2) A chapter of an imitation James Bond book, written by Kingsley Amis under a
pseudonym.

(3) A chapter of Kingsley Amis writing under his own name.

The students were asked to investigate whether Amis pretending to be Fleming was
more like Amis or more like Fleming. It is doubtful whether any of the students
produced an irrefutable answer to the question, but by working on the problem they
learned a great deal about what computers can and cannot do.

SCAN cannot be claimed to be a powerful programming language, and it clearly will
not help any research workers to break new horizons in methods for stylistic analysis by
computer. It is, however, hoped that in its role as a conversational programming language
for the layman who wants to learn about text analysis scAN will fill a gap in the range of
available programming tools. If scAN makes some contribution to alleviating the massive
ignorance of computer techniques in the humanities, or if it acts as a stepping stone for a
potential research worker, it will have succeeded in its aims.

References

Brown, P.J. “The Kent On-Line System.” Software—Practice and Experience 1,iii(July 1971):269.

Brown, P.J. SCAN-A Sub-System for Document Searching. Computing Laboratory, University of
Kent at Canterbury, 1971.

Griswold, R.E., J. E. Poage, and L. P. Polonsky. The SNOBOL4 Programming Language. Englewood
Cliffs, N.J.: Prentice-Hall, 1969.

Kemeny, J.G., and T.E. Kurtz. BASIC. 6th ed., ed.Stephen V. F. Waite and Diane G. Mather,
Hanover, N.H.: University Press of New England, 1971.

Shaw, J.C. “JOSS: A Designer’s View of an Expetimental On-Line Computing System,” Proc. AFIPS
1964 Fall Joint Computer Conference, Vol 26, p. 455.

