KENT ON~LINE SYSTEM

Document: KUSE/SCAN/2

SCAN - a sub-system for document searching

P.J. Brown

Computing Laboratory

University of Kent at Canterbury
May 1972



RNL7 o/1 KUSE/SCAN
Table of contents
Chapter 1 Introductipn
1.1 «Thé'éoﬁrce document
1.2 Introductory examnles }
1.3 KOS commands for using SCAN
1.4 The ASK facility
1.5 Breaks
1.6 Incremental compilation
Chapter 2 Elements of SCAN
2.1 Data types
2.2 Variables and their classes
2.3 System variables
2.4 Sentence variables
2.5 Free variables
2.6 Naming of variables
2.7 Constants
2.8 Specification of layout characters
2.9 Expressions
2.10 Mixed data types
Chanter 3 SCAN statements
3.1 Spaces and tabs
3.2 The AT statement
3.3 Initialization
Chanter 4 Execution-mode statements
<.1 IF clauses
4.2 The null statement
4.3 The LET statement
4.4 The PRINT statement
2.5 Printing the current sentence
4.6 The WARN statement
2.7 The STOP statement
4.8 The GOTO statement
Chapter 5 Scanning and matching
5.1 Sequence of operation
5.2 Sentences
5.3 Woxrds and sevarators
5.4 Scan-mode and execution-mode



KNL 7 0/2 KUSE/SCAN

5.5 Returning to scan-mode
5.6 Repetition
5.7 The start and end of the source. document

Chapter 6 Examples of SCAN proorams

6.1 Changing the source document
2 Searching.for multiple words
.3 Use of arrays

Appendix A Character set

Appendix B List of variables

Appendix C Exrrors

Syntax errors

c.1
C.2  Execution errors
c.3 Storage exhausted



RNL7 1/1 KUSE/SCAN

Chavter 1 Introduction

The nurnose of SCAN is to provide a relatively simple
means for the lavman to search and to analyze information, and
thus £ind out for himself what computers can and cannot do in this
area. Its aims are to be easy to understand (¥or a computer lan-
quace) and to he easy to use for simple annlications such as might
be set as nroblems for students. It is hoped that SCAN will-also
be usable for some more sonhicticated amplications that may arise
in research work. SCaN is, however, unlikely to be adequate for
really sonhisticated text analysis and information rutrieval work
and workers in these areas would do better to use 2 porvarful list
processing lanquage (e.g. L6) or a string manipulation lanquage
(e.g. SHOBOL) or to explore the use of other text processing lan-
quaaes (e.g. PROTEXT).

High-sounding aims always tend to be compromisced by
neractical realities, and this is certainly true of SCAN. For SCAN
to be usable in an on~line environment the program controlling it
mast be small and must use limited space. This has meant that
certain Aesirable features have bean curtailed or simvlified, and
the notation for writino SCAN nroqgrams has heen nmade verv concise
and terse.

This document contains a complete description of SCaN,
as imnlemented under the Kent On-line System (KOS). SCAN has also
been immlemented on other commuters, and these imnlementations
have senarate, though similar, Usar Manuals. A shorter, less
detailed, descrintion of SCAN can be found in the March 1972
issue of Comnuters and the flumanities.

1.1 The source document

The document that SCAN i3 to examine 1is. called the
source document. The source document may contain any sort of
character information, for example a sonnet, a computer program or
a list of names and addresses.

SCAN divices the source docurment into sentences. The
user himself decides what constitutes th2 end of a sentence; for
a piece of nrose it would be a full stop but for a commuter program
it would be the ond of a line. A sentence need not necessarily
corresnond to a sentence of English grammar. It is.usually best
to analyze poetrv line by line, so that 1€ the source document is
a piece of pnoetry, a sentence should probably be defined as a line.

Each sentence is in turn split up into words and
separators (i.e. commas, spaces. etc.).




KNL7 1/2 KUSE/SCAN

The action of SCAN is to pass through-the.source document
sentence by sentence from beqinninq to end.. The user of SCAN
specifies certain words that are to 'be specially recognized, and
the action to be taken in each case. -Typical actions might be to
update a count, to print the sentence or to check if another word
has also occurred. The specification of the words. to be recogonized
and the action to be taken at each is written as a series of SCAN
‘statements, which, taken as a whole, make un a. SCAN- groaram.

As well as words, SCAN can be made to recoqnize
separators and take action on these, .

In many cases SCAN statements have been made similar to
statements in the BASIC programming language. There are, however,
considerable differences between the two because BASIC generally
deals with rational numbers whereas SCAN deals with characters,
words and sentences. When learning about SCAN it is certainly
a help if one knows BASIC but this is not essential. :

l.2 Introductory ‘examples

A full specification of SCAN is given in subsequent -
Chapters. However the reader may like to look at some examples

girst, in order to get an overall impression of the workings of
CAN

Exgggle 1

This program counts the number of occurrences of the word
"it" in the source document, and, at the end, prints the total.
Note that, unlike BASIC programs, SCAN programs do not need an
END statement to terminate them.
10 AT nIpe

20 LET Nl =Nl +1°

50 AT ~END, ; . THIS MEANS AT END OF SOURCE
60 PRINT N1, "IS THE COUNT OF °‘IT' " -
An occurrence of a semicolon terminates-a statement and the’ text

beyond it is a corment for the benefit of the reader. This is
illustrated by statement 50.



KNL.7 1/3 KUSE/SCLN

Example 2

This program prints all sentences that contain words
longer than seven letters that end in "-ing". It illustrates the
use of some of the “"system variables" for communicating with SCAN:
the variable LENGTH. is the length of the current word and the
variable .PRINTOPTION. controls the printing of the current sen-
tence -~ a value of one means print it.

10 AT "-ING"

20 IF .LENGTH.>7 LET + PRINTOPTION. =1

Example 3

- This is a more complicated example. It searches for all
sehtences that contain "if" followed subsequently by “then" and
prints the text in between. SCAN stores the current sentence in
an area called B and, on each word, it sets the variables .INITIAL.
and .FINAL. to give the position of the beginning and end of the
word.

10 AT “IF"

20 LET M2

1 ; M2 IS ONE OF THE VARIABLES THAT IS ZEROIZED
AT THE START OF EACH SENTENCE

30 LET M3 = .INITIAL.; M3 POINTS AT START OF 'IF'
50 AT  "THEN"

60 IF M2>0 PRINT B(M3) TO B(. FIVAL ); PRINT FROM 'IF! TO
'THEN'

1.3 KOS commands for using SCAN

The SCAN processor is entered by means of the command
&ENTER SCAN DR-spec
{(DR-specs are only needed when disc files and other devices are

to be used; for the ordinary console user all DR-specs can be
omitted and the command &ENTER SCAN is all that need be typed.)



KNL 7 1/4 KUSE/SCAN

SCAN has the supplementary commands RUN, PROG and TEXT.
These are identical to those found in BASIC, but for those readers
unfamiliar with BASIC they are explained below. All the commands
can be followed by DR-specs.

The RUN command is used to run the current program. The
DR-spec specifies the source document and where the results are to
go. .

The TEXT command outputs the current program on the
results device.

The PROG command introduces a series of corrections or
additions to the program. Program lines are always taken from
the data device.

SCAN uses the same editing system as BASIC. Each state-
ment is preceded by an integer called the statement number. If
a new statement has the same statement number as an existing one
then the new one overwrites the existing one. If a statement
number occurs on its own with no statement following it this de-
letes any existing statement with that statement number. Lines
of a program may be input in any order; they are automatically
sorted into numerical order of statement number before a program
is run. Thus, for example, it is possible to insert extra state-
ments into the middle of a program by means of lines added on to
the end.

Blank lines or lines starting with a semicolon are
completely ignored within a program. The TEXT command automatically
inserts a blank line before each AT statement in order to improve
readability.

These concepts are best illustrated by an example. The
examole shows the use of SCAN at a console to count occurrences
of “it'in two source documents, which are stored on disc files
(DICKENS,CURO99) and (FIELDING,CUR099), both of which are on
disc number 9. Characters typed by KOS are underlined.

&ENTER  SCAN

310 AT "IT"

220 LET Nl = N1l+l1ll

:30 AT .END. : .

40 PRINT N1, "IS THE COUNT OF 'IT'™

S PRINT “FINISHED": . . :
20 LET N1l = N1 + 1 Correct line 20

O

'.. l'.l.ll..'



RNL7 1/5 KUSE/SCAN

&RUN FROM DC 9 (DICKENS,CUR099)
23 IS -THE COUNT OF 'IT®
FINLISHED . -

&PROG
:50

&TEXT-
10 AT *"1T"
20 LET N1 = N1+l

30 AT .END.

40 PRINT N1 "IS THE COUNT OF ‘'IT'”
& RUN FROM DC 9 (FIELDING,CURO99) -

1l IS THE COUNT OF 'IT®

‘It-is-conventional to write statement numbers as multi-
ples of ten, This leaves plenty of room to insert new statements.

1.4 The -ASK facility

‘iThis Section can ‘be skipped on é ftrst-reading.):

‘The SCAN processor allocates a fixed number of each
clase of variable (see later). In the case of two of these =
classes the default number can be increased or decreased by the
user when SCAN is entered. This is done by placing the argument
ASK. immediately after ENTER SCAN and before the DR-spec that -
follows. then this is done, the SCAN processor asks the two
following questions

NUMBER OF C VARIABLES =
NUMBER OF M VARIABLES =

The user can supply any non-negative integer as answer to these
questions, and, if there is enough room, he is given the number
of variables he asks for. However, the more variables there are,
the less room there is for storing the program or sentences of the
source document.

: The questions are in the form of optional data question-
and-answers. This means that they come from the data device, not
the command device. In'non--conversational mode either ox both
question-and-answers may be omitted if the default allocation of
ten variables is required; if the data device is not a console
the ASK parameter is, in fact, redundant since SCAN always checks
to see whether these question-and-answers are present.

If an answer is incorrect the message "EH" is output
and the question repeated.



KNL 7 1/6 KUSE/SCAN

The. TEXT command outputs these gquestion-and:-answers at
the start of the program in cases vwhen the number of C variables
or N variables is not the default number of ten.

1.5 Breaks

Bn on~line user can "break” SCAN at any time by pressing
the CONTROL G key. If a break occurs during initialization before
any program lines have been specified then an exit is made. Other-
wise the SCAN processor returns to command status within itself
and the program remains intact.

1.6 Incremental compilation

(This Section is not of direct relevance in using SCAN
and can be skipped by a reader unfamiliar with computers.)

The SCAN processor compiles each statement of the program
into an internal code so that it can be run more speedily. This
compiling process is incremental in the sense that statements are
compiled one by one as they are supplied, thus ensuring that in a
conversational environment syntactic errors are detected immediately
they occur, and if one line of a program.is changed only that line
is recompiled. The source text is not preserved but is recreated
from the internal code when the TEXT command is used. This means
that there may be minor changes in format, though not in meaning,
between the program as supplied and as printed by the TEXT command.
In particular the spacing might be different.




KWL7 2/1 KUSE/SCAN.

Chapter 2 Elements of SCAN

2.1 Data tvypes

» SCAN deals with fwo types of data, namely integers and
characters. -

: ._Integers may be positive or negative. There is an upper
limit in the ROS implementation of SCAN of just over eight million
on the size of integers (including those that arise in intermediate
calculations) but this is so large that normal users will not be
affected.

_ In addition to integers SCAN deals with characters. The
full set of characters available in this implementation of SCAN is
given in Appendix A. It includes the (upper~case) letters A to 2
and the digits O to 9 together with a set of characters that are
neither letters nor digits. These latter are called separators.
Examples of senarators are the comma, the plus sion and the full

Btop [

In additidh to the ofdinary visibIé characters thé
character set of SCAN includes soime special separators called -

layout characters. These control the nrinting mechanism or "indi-
cate the state of scan. Layout characters affecting printing are
the characters space, tab and newline. The newline character occurs
at the end of each line of the source document. The remaining
layout' characters are

(a) start-of-source. This is an imaainary character
inserted by SCAN at the very start of the source
document. '

(b) end-of-source.- This is an imaginary character
inserted by SCAYN at the very end of the source
document.

All these three are completely ionored on output. The purpose of
(a) and (b) is to allow the user to specify actions to be taken
when these imaginary characters come up, for examnle to perform
initialization at "start-of-source” or to print out some statistics
at "end-of-source”. The main purpose of "null” is for blanking
out previous information, since null characters are ignored .on
output. ' -



KNL7 ‘ 2/2 KUSE/SCAN

2.2 Variables and their classes

There are two types of variable,corresponding to the two
types of data, namely integer and character. Character variables
can have as their value any single character in the character set
of the implementation. (Note that in SCAN it is only possible to
deal with one character-at a time. It is not possible to deal with
multi-character strings as a unit - they must be processed character
by character. The only exceptions to this are statements concerned
with matching or with output.) '

Each type of variable is divided into the following
classes: gystem. variables,  sentence variables and free variables.
These are described below. . ° C ' ' o

?.3 System variables

A principle of the SCAN processor is that it is highly
parameterized. In layman's terms this means that it has a large
number of control knobs for the user to adjust if he wants to.
However, SCAN is set up so that it will work very well if the
control knobs are left untouched. The control knobs are imple-
mented by means of system variables. These variables have preset
values which are maintained by the SCAN processor, but can be
changed by the user at any time if he wishes to modify the action
of the SCAN processor. For example the system character variable
A2 contains the character that denotes the end of the sentence.
Initially this is set to newline, so by default a sentence is a
line. However the user can change the end-of-sentence character
to a full stop at any time by supplying the statement

10 LET A2 = ","°

Some system variables serve a slightly different purpose
from acting as control knobs. Instead they provide information
about how the scan is going. For example the system integer
variable L30 contains the number of words so.far scanned. Every
time it encounters a new word, the SCAN processor increases L30
by one. L30 is useful in print. statements, for example

30 "PRINT " 'AND' OCCURRED AS THE ", L30, "TH WORD"
It is unlikely that the user would want to change the values of
system variables like L30, but there is nothing to stop him from
doing so if he wants to.

A complete list of system variables and the values they
are given appears in Appendix B.



XNL 7 2/3 KUSE/SCAN

There are currently over forty different system
variables used within SCAN, and the user will clearly have trouble
in remembering which is which. To help alleviate this problem
SCAN contains -a facility for using mmemohic synonyms for the names
of these variables. Por example, the system nteger variable that
.contains the number of words :scanned can be called .WORDS. instead
. of L30. Appendix B shows the.aynanyms that are avallable. A
- number of them begin with "S:", which means "pertaining to the
current sentence”. For example .S:WORDS. is the number of woxrds
in the current sentence, and the synonym for A2 mentioned above
8 .8:END..

‘In datail, the working of the synonym feature is as
follows; every time a dot is encountered in a position where a
variable is expected, the SCAN processor looks ahead until it
finds the closing dot. The first 3 characters of the text in
between the dots (ignoring spaces and tabs) are compared with all
the possible synonyms given in Appéndix B. If no match.is found
an error message is given. Othérwise the corresponding variable
name is substituted in place of the -synonym.

Vhen a program is output using the TEXT command, the
reverse applies. Synonyms are substituted in place of all rele-
vant system variable names, even if the synonyms were not used
in the original program.

Note that the matching process only takes account of
the first three characters in a synonym. Thus the following are
all equivalent- :

.WORDS.., .WOR. , . W O R. , . WORDS THAT HAVE BEEN

SCANNED (INCLUDING THIS ONE).

Throughout this document synonyms have normally been
used wherever possible.

2.4 Sentence variables

. A number of SCAN variables is local to each sentence.
The sentence character variables Bl, B2, B3, etc. contain the
current sentence. Note that this includes separators, so that if



KNL7 2/4 KUSE/SCAN

a sentence starts with a space (as it usually will if a full stop
ends ' the previous sentence), then Bl will be a space and the first
word of the sentence will start in B2 or, if there is more than one
separator at the start of the sentence, at some subsequent B vari-
able. For each word and separator in the source document the
system integer variables .INITIAL. and .FINAL. are set to give the
position within B of the initial and £inal characters in the woxd
or separator (see Example 3 in Chapter 1).

_ There is also a set of sentence integer variables. They
are set to zero at the start of each sentence. They have no set
meanings and are available for the user to employ as he wishes
(see Example 3 of Chapter l).

2.5 _Free‘ variables
‘Pree variables are variables that have no inherent mean-
ing but are entirely at the discretion of the user. Initially

they are all set to zero by the SCAN processor, but thereafter the
SCAN processor never touches them.

j_2.6 _ Naming of variables -

A name of a variable consists of a letter followed by
a subscript. The subscript may be an integer constant, the name
of a variable or an ' expression in parentheses.
The initial letter determines the class of variable as follows
A means system character variable.
means sentence character variable.
means free character variable.

system integer variable.

2 0 0w
B
5
@

means sentence integer variable.
N means free integer variable.
Examples of variable names are therefore
al, B16, L1, M2, N(L4+6) ,
N(L(L3+LM2)#3)



KNL? 2/5 xosn/scnﬁ

Xf the subscript is not a constant its value 1s.calculated and this
value acts as the subscript. Thus if M2 has value:6 then

BM2 means B(M2) means B(6) means B6,
and N{M2*2 - 10) means N(2) means N2,

(Note that this is a different naming convention from many program-
ming languages. In BASIC, for example, if a variable is called

Al the value "1" does not act as a subscript and Al is not the
same as A(l). In SCaN it is )

The above names of variables (and their synonyms) are
the only ones availablein SCAN. The user cannot make up his own
names. He does not need to delcare or reserve his variable.names.
These exist whether he makes ‘use of ‘them or not. -

The numbers of each class of variable, apart from the
sentence character variables, are fixed as follows

Al, Az' see ,AZO
cl, €2, ...,Cl0%
Ill' Lz.. LX) 'L4°
m' m es» ,Hlo
Nl, Nz g eon o ,Nlo*

(In the cases marked by an asterisk the number can be changed when
SCAN is entered by using the ASK facility mentioned earlier.)

The sentence character variables contain the current
sentence, and hence the number that exists is the number of charac-
ters in the current sentence (which is given by the system variable
.s FINAL. ).

‘The value of a subscript must be within the range of the
variable class concerned. This includes the sentence character
variables, i.e. it is not possible to look beyond the last charac-
ter of the current sentence.

3.7 Constants.

Constants may be integers or aingle characters. Integer
conatants are written simply as a string of decimal digits, for

example
23 2 0 32000



KML?7 : 2/6 KUSE/SCAN

The hichest permissible intecer constant in the KOS irmplememtation
of SCAN is 32767. This is rather smaller than the maximum per-
mitted integer value (which is over eight million) and integers

areater than 32767 can be formed by multiplyving other integers
together.

Character constants are represented by a sinale character
~enclosed within double quotes, for example

;'.’A" ’ ll+ll ' un Il.
In the last example above the character itself is a double quote.

Character constants of mors than one character are
alloved only within AT, PRINT and ARY statements. These ara
called long character constants and are written just like ordinary
character constants. the entire string being enclosnﬁ within
double quotes, for example

"ANSWER IS", /4  4-g"
If the strinc itself contains a double auote this can only occur
at the start of a string. This may sometimes necessitate a
strina being split into two, for example
20 PRINT "HAND", "T OCCURS 3 TIMES"
would print
. "AND" OCCURS 3 TIMES

2.8 Specification of layout characters

It is often necessary to use character constants repre-
senting layout characters such as tab, start~of-source or null.
Apart from space and tab, none of the layout characters can be
represented as character constants in the way described above.
Hence another mechanism has been provided for specifying layout
characters. The SCAN processor initializes certain system wvari-
ables to contain the values of these layout characters. These
system variables have synonyms that are the same as the layout
characters they represent (e.g. .NULL.,.NEWLINE,) or abbrevi-
ations of them (e.g. .START. and .END. contain start-of-source
and end-of-~source). : : ' '



KNL7 2/7 KUSE/SCAN

Examples of the use of these are

10 AT .START.

20 LET C3= .NULL.

30 LET .S:END. = .NEWLINE.

40 PRINT “NAME", .TAB., "AGE",.TAB., "SEX"

2.9 Expressions

Expressions consist of variables and constants connected
by the arithmetic operations plus, minus, multiply and divide.
These operators are represented as

+: = *l /

respectively. Parentheses may be freely used.

As regards precedence the normal rules of arithmetic
apply unless parentheses override them, i.e. multiply and divide
are done bhefore vlus and minus but otherwise operators are exe-
cited from left to right. For example

2 + 3 *2 is 2 + (3*2) is 8.
2 ~6 -4 is (2 -6) -4 . is - 8.
2 -~ (6 - 4) is o.
2

+ 64/8/2 is 2 + ((64/8)/2) is 6.

The division operator is such that the result is truncated. Any
remainder is ignored. For example

7/4 and 6/4 and 5/4 and 4/4 are all 1.

-7/4 and -6/4 and -5/4 and -4/4;
- are all -1
and 7/-4 and 6/-4 and 5/-4 an@ 4/-4/

HMinus may be used as a unary operator (i.e. without an
operand to the left), and when used in this way has top precedence.
It is possible (though not very useful) to write several unary
minus signs in sequence. Examples of expressions involving unary
minus are

-1, Y/-X, ~A*-3, A-~--6



KNL7 2/8 KUSE/SCAN

2,10 Mixed data types
(This Section may be skipped on a first reading.)

It is possible to mix data tyves, i.e. to treat charac-
ters as integers and vice-versa. To each character there
corresponds an integer that is its internal code. Appendix A _
shows the internal codes for the KOS implementation of SCAN. When
a character variable or constant is used within an expression or
as a subscript its internal code is used in its place. For
example the statement

LET' Nl= "aA"+]
would, if "A" had the internal code 33, set N1l to 34.

The reverse conversion occurs when an expression is
assigned to a character variable. Thus

LET Cl = 33
yould set Cl ﬁs the character “"A".

In the case of PRINT and WARN statements, a potential
pmbiguity arises. Consider the statement

PRINT A" + 1

Should this print the number 34 or the character whose internal
gode is 34? The ambiguity is resolved by taking the data type as
that of the first variable or constant that occurs in the
expression. Thus the above statement would print *B" (the charac~
ter whose internal code is 34) vhereas
: PRINT 1 + “A"
would print 34. As a more complicated examplé .

LET L("+") = 1

'PRINT L("+") + "A"
yould print 34.

Character variables in the XOS implementation of SCAN
‘can, in fact, take on any value that an integer variable can but
the effect of stateqents such as

LET Cl = -1
PRINT Cl
is undefined (since -1 is not a correct internal code).



KNL7 3/1 KUSE/SCAN

Eter 3 SCAN Statements.

Statements in SCAN are divided into statements defining
the words and separators that are to be matched and statements
that are executed when a match has been made.. The former are
called scan-mode statements and the. latter execution-mode state-
ments. The format of all statements is as follows

%, Number field. Each, statement must be preceded by a posi-
- . - tive integer (not exceeding 32767 in the
KOS implementation of SCAN). The integer
is called the statement number. It.is
used. in the GOTO statement (q.v. ), and for
editing. .

T

'2) Statement‘field, This is the statement itself. Execution-
' ,mode statements may- ‘be preceded by IF clauses,
see Chapter 4. . e 'y

3) Terminator, The terminator. is either the end of the
‘ ‘ ’ 1ine or a semicolon. In the latter case
-a comment may appear between the semicolon :
~ and the end of the line. . (A semicolon
within a character constant or a long
character. constant does not count as.a -
-terminator ) S

The follovinc are examples of statements
’ 100""tsi' | N3=N3+1; COUNT OF ALLITERATIONS.
- 150:v,iATt”“PIG6{ |
200~ LET  C3= ";"

3.1 Spaces and tabs

SCAN statements have a completely free format and any
spaces or tabs within them .are .completely ignored (except where
they occur within character constants or long character constants).
For example the following twp statements are exactly equivalent

100 LET Nl = M2 + 36
'100LETN1=H2+36



XNL7 3/2 KUSE/SCAN

3.2 AT statements

' This Chapter concludes by describina scan-mode statements.
All the execution—mooe statements are descrihed in the next Chapter.

 There is, in fact, ‘only one ‘type of scan-mode statement.
This is the AT statement, and has the form

AT AT element 1, AT element 2, ... , AT element N

~The list of AT elemerits must contain at least one item, and can be
arbitrarily long. Each AT element specifies a word or separator
to be matched. If the item to be matched is a separator it can
be specified either by a character constant (e.g. "+") or by the
name of a system character variable or free character variable.
"In the latter’ case the subscript must be an unparenthesized

" integer. Hence A3, ClO‘'or .TAB. would be permissible but A(3),

Bl or ANl would not.

: “If the item to be matched is' a word, this is specified
by an AT element consisting of a word-pattern enclosed within
*'double quotes. A word-pattern consists of a series of letters
(upper or lower case) and digits with dashes (minus signs) inter-
sperced. It must not contain any characters other than these; in
particular, spaces are not allowed. The letters and digits
represent characters to be matched and the dashes stand for any
sequence of letters or digits, possibly a null one. Thus CA-T
will match CAT, CART or CATARACT. However it will not match SCAT
or CATS, but a dash can be put at the start and/or the end of a
vord-pattern if matches such as these are required. Thus CA-T-
will match CAT, CATS or CARTHORSE but will not match SCAT. On

the other hand -CA-T- will match all these, together with SCAT

or even LMNCAP(OR123T789. Two dashes in sequence are not allowed.
A vword-pattern consisting simply of a single dash will match every
word. For example

20 ar ="
25 LET 2 = M2+.LENGTH.

‘might be part of a program to calculate the average word length
in each sentence. .

The arbitrary character string represented by a dash is
considered to end when the letters following theé dash are found.
If these letters occur at the end of the word-pattern then they
only end an arbitrary string if they occur at the end of the word
to be matched. For example if the word-vattorn ies D-G and the
word to be matched is DIGGING then the arbitrary string is matched
with IGGIN, not with I.



KNL 7 3/3 * KUSE/SCAN

The following examples show typical AT statements

10 AT ".", %37, ":", C3, "¢

20 AT "UNIVERSITQ", ?POLY—", 5coLLEGEW

30 . A%~ .TAB., .SPACE.

40 AT "-g-", “ZE-"; MATCHES WORDS CONTAINING ‘E' Gk *.S*

Note that the values of variables used as AT elements
can. change ‘dynamically. For example the program

10 AT .START.

20 LET G2=";"

30 AT C2

40 PRINT "FIRST SEMICOLON IS KFTER‘THE"d;;WORbs;, "TH -

. . wonq",
50 LET C2=.NULL.

would print a message after the first semicolon in the source

document was found. At this stage C2 would be reset to a null
value, so that no subsequent separator in the source document

would ever match it.

Note also that values of variables specified as AT
elements are only compared with separattrs in the source document
and never with words. Hence if the value of C2 was a letter or
digit it would never be matched. .

: There is a potential ambiguity with the AT ‘'element "~",
which qualifies as a word-pattern or as a character4c9nstant..
*This is resolved in favour of the former; hence -if it 1is required,
to match.dashes (minus signs, hyphens) this should be dohe- by a
technique such as ‘

10 AT .START.
20 LET Cl="-"

L ]

50 AT cCl



RNLY 3/4 : KUSE/SCAN

3.3 Initialisation

It often happens that the user wishes to give initial
values to some of his variables at the very start of-a process.
These values override the initial valuss set by the SCAN

processor.) To facilitate this, the SCAN processor automatically
assumes that

AT .8START.
. is appended to the very start of each program. Hence the

occurrences of AT .START. in examples in the previous Section
are actually redundant.



P 7 4/1 KUSE /SCAN

Chapter 4. Execution-mode statements

This Chapter lists all the execution-mode statements in
SCAN. Any execution-mode statement can be-preceded by one or
more IF clauses, for example

(a) 10 IF L3 = 8 PRINT "EIGHT"

‘(b) 20. IF N6/2 > NM6 IF 7 = ux® LET ML =1

The next Section describes IF clauses and the remaining
Sections describe the execution-mode statements.

4.1 IF ‘clauses

The exact form of an IF clause is

IiF expression relational operator expression

where a relational operator is one of the following

. = _  meaning "equal to".
> meaning "greater than".
< meaning "less than".
NE meéning "not equal to".
GE meaning "greatef than or equal to",
LE meaning "less thaﬁ or equal to".

The méeaning of an IF clause should be self-evident.

A statement 1s executed only if all the IF clauses
attached to it hold. Hence in Example (a) above "EIGHT" is printed
if L3 has the value 8, and in Example (b) above Ml is set to one
only if the value of N6/2 is greater than the value of NM6 and
also the value of 37 is the character “X"



KNL7 4/2 KUSE/SCAN

Note that relational operators such as "greater than"
can be applied to character variables. The collating sequence
for the KOS implementation of SCAN is given in Appendix A. 1In
particular, digits and.upper-case letters both collate in the
natural order. Thus, for example, "B" is greater than “A" and
“"6" is greater than "5",

4,2 The null statement

A statement consisting of a-statement number on its own
is ignored, except that, as part of the editing system, it serves
to delete any existing line of the same number.

A statement consisting of a statement number followed
by a comment is taken as a null statement in the program. Such
null statements are remembered as part of the program and are out-
put by the TEXT command. They are therefore useful for placing
comments, e.dq. :

10; THIS PROGRAM ANALYSES USE OF PUNCTUATION

" 4,3. The LET statement

General form LET variable = expression
Examples 10 LET N1 = M(L3+2) /6

20 LET C3 = "a"

Action The expression to the right of the equals sign is evalu-
ated and assigned to the variable on the left.

4.4 The PRINT statement

General form  PRINT print elementl, print element2,...,print elementN

where each print element is either an expression,

a long character constant or a compound element of-
form

variable 1 TO' variable 2

where variable 1 and variable 2 belong'to the same class
(1.e. have the same initial letter).




KNL7 4/3 KUSE/SCAN

mhe list of nrint elements may be arbitrarily long. It
mav, for instance, tontain zero, one or ten clements.

Examples
10 PRINT "ANSWER IS", M6+3 |
20 PRINT Bl,B6 TO B(N¥9-1) ,Ml TO M6, * _';
Action The print elements are output on the results device in

the order in which they are written. In the case of a com-
pound element all the variables from the first up to and in-
cluding the last are output. Hence for example

10 PRINT M3 TO M6
_'has an identical effect to
10 PRINT M3, M4, M5, M6

(If the subscript of the first element is greater than
that of the last element or if either of these subscripts is
out of range then nothing is printed. - Such.cases are not
treated as errors. )

The format of printing is as follows. Character stringg
are printed exactly as they stand; nothing is added to the
beginninq or the end, Integers are printed as a string of

" decimal digits, preceded by a minus sign if the integer is
negative, with no redundant: leading zeros. A space is
printed before and after the integer.

A nevline is printed at the end of a PRINT statement.
Thus the statement
25 PRINT
on its own, produces a blank line of output.
The characters printed at the end of each PRINT statement

and the characters printed before and after each integer can
be changed by the user at any time. They correspond to the

system variables .PREINTEGER., .POSTINTEGER. and .CLOSEOUTPUT.,

respectively. o
Thus 10 LET .POSTINT. = .NEWLINE.

20 LET .CIOSE. = .NULL.



KNL7 o 4/4 KUSE/SCAN

would cause a newline to be. output after each number but no
newline at the end of a PRINT statement.

4.5 Printing the current sentence

SCAN contains a special automatic facility for printing
the current sentence. This is dons by setting the variable
.PRINTOPTION., to the value one or two. The value two causes the
sentence to be prefixed by the value of .SENTENCES., which is a
count of the. number of sentences so far ( - the effect is exactly
as if the user had written .

PRINT .SENTENCES., Bl TO B.S:FINAL.

except that the final .CLOSEOUTPUT character is not printed). The
value one, on the other hand, causes the current sentence to be
copied identically over to the output, with no added characters.
.PRINTOPTION. is set to zero at the start of each sentence, so
printing of each sentence has to. be explicitly asked for.

Example 2 of Chapter 1 shows a simple use of .PRINTOPTION..

4.6 The WARN statement

General form WARN print elementl, print élémsnt2,...,print elementN

Example 70 WARN "HYPHEN FOLLOWS 'DOG' IN LINE",.LINES.

Action The WARN statement is identical to the PRINT statement
except that the output goes to the message device, not
to the results device. The purpose of the WARN state-
ment is to allow the user to supply his own diagnostic
messages.

4.7 The 8STOP statement

General form 250 - .STOP
_Action SCAN ignores the rest of the source document. It does,

however, supply an end-of-source character (unless there
has already been one) and hence performs any actions
. specified for AT .END..

4.8 The GOTO statement

General form (GOTO) .integer
(THEN)

where the integer is zero or corresponds to a statement
number occurring in the current program.



KNL7 4/5 KUSE/SCAN

Examnles 50 GOTO O
100 THEN 26
78 GOTO 250

Action The statement with the given statement number is taken
.as the next statement. If this statement is an AT state-
ment then a switch to scan-mode is made (see next Chapter).

A special convention applies if the statement number
is zero. This means return to scan-mode and continue the
scan vhere it left off, i.e. try to match the remaining AT
statements if any. Thus the example

80 IF M3 =0 THEN 100
.
90 LET Ml =1

100 AT ...
is équivalent to
80 IF Ml =0 GOTO O
90 LET Ml =1
100 AT ...

There is a built-in mechanism to prevent endless loops.
-This is controlled by the variable .GOLIMIT., which gives
the maximum permissible number of GOTO statements that can
be executed on any given match. If this number is exceeded
then an error message is printed and execution stops (see
Appendix C). .GOLIMIT. can be changed by the user if he
- wishes; such changes come into effect on the next match and
remain in effect until .GOLIMIT. is changed again.



~RNL7 5/1 KUSE/SCAN

Chapter 5 Scanning and matching

5.1 Sequence of operation

In the normal sequence of operation of SCAN, a program
is specified and then run. The program may then be run again,
possibly after making some changes to it using the PROG command.

Pach line of program is checked for syntatic accuracy.
Any errors that are found at this stage are called syntactic
errors. Yhen a syntactic error is found a message -

- (see Appendix C) is output, and the offending state-
ment is ignored. In hon-conversational mode the offending statement
is listed with the error message. A program can still be run even
if pyntactic errors have ococurred in it. :

“hen the program is run, the source document is ecanned
sentence by sentence until the end is reached or a STOP statement
is executed.

Certain programming errors may be detected at this stage,
for example division by zero. Thes: errors are called execution
errors, and cause an informatory message to be produced and the
run to stop immediately. See Appendix C for details.

_ One type of execution error is to GOTO a non-existent
statement. All GOTO statements are checked at the very start of
a run, and if there are any errors the run does not take place.

5‘2i ‘§entences

. The variable .S:END. contains the character that termin-
ates a sentence. Initially this has the value "newline®”, which
means that each line of the source document is taken as a sentence.
If he\qiahes, the user can change this to any other separator, -
This 1§ normally done once and for all at the start, but it ig
possible for it to be changed dynamically during a run. In the
case of a dynamic change, this cores into effect for the next:
sentence. In the unlikely case of .S:END. being changed back' to
newline in the middle of a run, the rest of the current line of
input is ignored and a fresh line is taken.

If .S:END., is set to a character that is not a separator
this is detected as an error when the next sentence is scanned.



KNL7 5/2 KUSE/SCAN

When the end of a sentence has been found, the sentence
is placed character by character in the variables Bl, B2, etc. up
to B.S:FINAL. and then -split up into words and separators as des-
cribed below. The user can, if he wishes, subsequently overwrite
any of these variables during the processing of the sentence
except for B.S:FINAL., which contains the terminating character
and cannot be changed. If a user overwrites part of the sentence
beyond the current point of scan - not a recommended thing to do -~

he can change subsequent scanning.
If there is an incomplete sentence at the end of the
source document, and if this sentence contains anything ( i.e.
characters.other than spaces and newlines), then the message
' LAST SENTENCE INCOMPLETE

is output. In any case the incomplete sentence is ignored.

5.3 Words and separators

, Each sentence is split up into words and separators. Any
character that is neither a letter nor a digit is taken as a separ-
ator. A word is any sequence of letters and/or digits bounded on
each side by a separator. Thus for example if .S:END. is a new-
line and a line of input reads

. "IT'S EX-ARMY", SAID J.SMITH.

then this consists of: the separator double-quote, the word IT,

the separator quote, the word S, the separator space, the word EX,
the separator minus (or hyphen), the word ARMY, the separator double
quote, the separator comma, the separator space, the word SAID, the
separator space, the word J, the separator dot, the word SMITH, the
separator dot and, lastly, the separator newline. . )

Snecial points to note are

(a) hyphen is a separator.

(b) more than one separator can occur together. In some
documents there might, for instance, be long sequences
of spaces. These are treated separately.

(c) 1if, in the above example, dot was the end-of-sentence

character then the. source would consist of th- two"
sentences



KNL 7 5/3 'RUSE/SCAN.

*IT'S EX-ARMY", SAID J. and SMITH.

SCAN does ngt have any intelligence - it just follows
the rules, sometimes with inconvenient results, as the
above illustrates.

5.4 Scan-mode and executicnwmods

Each word and separator in a sentence is compared
succesively with all the AT elements in the program. (Words ire
compared with word-pattexrns and separators with the values of
variables and character constants.) If there is a match, the SCAN
processor jumps to’ the statement immediately following the AT
statement that made the match, and starts executing the program.

On each match several aystem variables are set in order to give
information about the match (see Anpendix B). In particular the
subscript within the variable class B of the initial and final char-
icters of the matched item and of any subatrings matching dashes in
a word-pattern are given. The variable .ATPOSITION. gives the
position of the matched AT element in the AT statement it belongs
to. The first AT element is position 1, the sécond 2, etc.

Hence the program

10 AT "4V, v/, wew, nge
20 LET N.ATPOSTTION. = N.ATPOSITION. + 1
would increment Nl at a plus sign, N2 at a divide sign, etc.

Whan executing statements in the program, the SCAN
processor is said to be in execution-mode; when it is scanning
the source document tiying to £ind a match it 1s.said to be in :
scan-mode. “hen in execution-mode the SCAN processor executas
statements in sequence, performing any GOTOs it encounters on
the way, until one of the followirig happenings causes it to go
back to scan-mode:

(a) it runs into an AT ltatmnt..

(b) it executes a
GOTO O
statement. .

(c) it runs off the end of the program. In this case
scanning resumes with the next word or separator.

(1) 1t executes ‘a STOP ltatmt:.'



KNL:7 5/4 KUSE/SCAN

5.5 Returning to scan-mode

Before considering what happens in cases (a) and (b)
. above, it is best to consider a general example.

Once a word has been matched with one AT, it does not
preclude it from matching subsequent ATs. For example consider the
program

10 AT "-ING"

20 LET M8 = M8 + 1
40 AT “g-"

50 LET M9 = MY + 1
70 AT .S:END. ; AT END OF SENTENCE

80 PRINT M8, “WORDS END IN -ING"
90 PRINT M9, "WORDS START WITH 'S'"

Now the word STICKING would match the first two ATs.

Hence when SCAN matches an AT stateémént, it remembers
the position of the next AT statement, which is called the resump-
tion AT, so that it can resume there when the action of the current
AT 1s finished. Execution of the statement

GOoTO O

causes scanning to resume at the resumption AT. When execution-mode
ends because an AT statement has been encountered, scanning resumes
with the resumption AT or at the AT just encountered, whichever is
the later in the program. This allows the user tco inhibit certain
possible matches by employing forward GOTO statements. Note that
if an AT statement contains several AT elements, then if one is
matched no attempt is made to match subsequent ones with the same
word or separator. The following three examples illustrate these
rules.

Example 1
. 10 AT 1" =X B
20 GOTO 100

50 AT "-Y-*"
60 LET Nl=Nl+1
100 ... :

In this case if a word contains the letter "X" it
matches the first AT. This causes it to GOTO 100 and the second
AT is missed out. Thus the second AT matches words that contain
"y* but do not contain "X". ) '




KEL6 5/5 . KUSE /SCAN

Example 2

100 AT "=2-"

110 LET Nl=l

200 AT "=X="

210 GOTO 100

300 AT S G

This example does not represent a very- sensible proqram,

but just shows how the scanning rules apply. If the second AT is
matched, scanninc resumes with the third AT, since the GOTO state-
ment goes to a point further back in the program than the resump-

tion AT. The purpose of this rule is to ston the user nutting
the scan into an endless repetitive loop.

Example 3
10 AT “--", "-5-"; MATCHES WORDS CONTAINING °'E' OR 'S’
20 LET Nl =Nl +1

. In this case the word "MESSAGE" would cause N1l to be in-
cremented only once although it matches both AT elements - indeed
it matches both of them in two possible ways. -

5.6 Repetition

It is quite valid to have two AT statements with identi-
cal patterns. There are examples where this is very useful, for -
instance )
10 AT "-A-"
20 GOTO 100
30 ; THE FOLLOWING MATCHES WORDS CONTAINING "E" BUT NOT "A"
40 AT “-E~" .

80 GOTO 200

90 ; THE FOLLOWING MATCHES WORDS CONTAINING "E" AND "A"
100 AT "“-E-"

200 LN N



KNL.7 5/6 KUSE/SCAN

5.7 The start and end of the source document

As mentioned esdier, the SCAN processor supplies -an
imaginarv .START, character before it starts scanning, so that
any AT action for this can be performed. Similarly it supplies
an .END. character when scanning is complete. WNeither of these
characters counts as a sentence or as part of a sentence; each
is entirely divorced from sentence,scanning, and no sentence
character variables exist when either is matched.

“hen SCAN returns to command status after a run it is
quite possible to perform another run. Subsequent runs start
again entirely from scratch, all variables being set back to their
initial values.

- In KOS, a line of output is .only sent to the relevant
device when a newline is output to terminate the line. If, at
the end of a SCAN run, there remains an incomplete line of output,
a newline is automatically added so that the line will be output
in the normal way. .



XL 7 6/1 KUSE/SCAN

Chapter & sxamoles of SCAN programs

6.1 _ Changing the source document |
- 'The main use of SCAN isyto extract information from the

source document. It -can, however, be iused to make changes to the
source document.. In this case the rdsults device for the run will
normally be a disc file, - so that “printind’ means writing to
disc. . As an example consider the following program -

SENTER SCAN

10:: AT 13"

20° LET. B.INITIAL. = ";" ;; REPLACE I BY A SEMICOLON

30 AT . S:END. :

40 TLET +PRINTOPTION. = 1 ;' PRINT BZ_\CH SENTENCE

aRUN 'FROM DC .(A) TO DC (B)

The results output from this progrim vill be an identical copy . -
of the. source éwcument but with every colon replaced by a semicolon.

 na-sifiilar technique can be used to replace one word by
afiothiéy; ‘proyided that the nev word is. the same length or shbrter: -
.tHan the old. (If it is shorter it can be padded out with null
characters so that it is the same length as the old word and hehce
completely overwrites it.)

If the new wvord is longer than the old it is best to
control the changes by the use of PRINT statements. When a re-
placement. is to be made, the sentence should be printed up to
where the change is to be made and then the new word should be
printed. At the end of each sentence the remaining unprinted
part should be dealt with. A prdgram to replace PEEWIT by
LAPWING might read ' '

AENTER SCAN . .

10. LET .CLOSEOUTPUT, = .NULL.; SUPPRESS NEVLINE AT END OF PRINT
20, . AT . "PEBWIT" - '

30 PRINT B(M2+1l) TO B(.INITIAL.~1)
40 PRINT "LAPHING" °.

50 LET M2 =  FINAL.

70 AT .S:iEND.
80 -PHINT. B(2ii) TO 'R.S:FINAL,
SRUN FROM-DC (BIRDS.CURO99) TO DC (WEMMIRDS,CURO99)



KNL7 6/2 XUSE/SCAN

The program works even if a sentence contains the word WIT
several times. The variable 12 is used to aive—the-siibscrint of
the latest character of the current sentence that has heen printed.
Note that, beina a sentence variable, M2 is automatically set to
zero at the baginning of eadfi new sentence.

The technique illustrated by this nroaram will work
irresmective of the relative lengths of the renlacer and the re-
placee, and hence is a good general method. ' It can be made to
work for plurals and other derivatives by the following edits

&PROG‘ )
20 AT “PEEWIT-"

50 LET M2 =.,1INTTIAL. -1; M2 POINTS AT 'T' of PEEWIT

6 * 2 - searching e Yol AN Gl s o ol o ol b VWS da WA AT

it is often required to sea;ch for the simultaneous .
occurrence of several different words or separators within the
same sentence. An earlier example showed a search for IF followed
subsequently by THEN within the same sentence. Two examples below
show how use can be made of the fact that it is possible to look
ahead or behind within the current sentence. -

Example 1

§ENTER SCAN
10; THIS PROGRAM PRINTS OUT ALL LINES THAT

20; CONTAIN THE WORD "DIABECTIC" AND' ALSO HAVE
30; AN °'F' IN COLUMN 20 AND A 'U' IN COLUMN 7

&
S

50, AT "DIABETIC" s . |
60 IF B20 = "F" IF B7 = "U" LET .PRINTOPTION. = 1

(If there existed lines of fewex than twenty characters that contained
the word DIABETIC the reference to B20 would cause an error. Hence
.an extra claus.IF. .S:FINAL.GE 20 at the start of statement 60 would

be a useful safety precaution.)



KNL7 6/3 KUSE/SCAN

Example 2
&ENTER SCAN
10: THIS PROGRAIM PRINTS OUT_ALL LINES CONTAINING 'GUN-DOG*®
20 AT “GUN™ -
30 IF B(.FIN.+1)="-" IF B(.FIN.+2)="D" IF B(.FIN.+3)="0" GOTO 50
40, G6TO0 O | N ’
50 IF Bé.FiN;44)§"G"'LET .PRINTOPTION. =2

(The piogram is longer:than it otherwise need be as it is impossib/™
to get all the IF clauses onto one line.)

6.3 Use of arrays

‘ The following program prints out a histogram of sentence
length. Sentences of zero words (resulting from a sequence of dots
in the original) or more than 80 words are ignored. The histogram
consists of a sentence length on the left with an asterisk against .
it for each sentence that has been found to have that length. For
example part of the histogram might read :

20 *

21 *hk
22 '

23 * ke
24 *nk

From a programming -point of view, this example is of interest as
it shows the use of the N variables as an array: N1 counts
sentences of length one, N2 sentences of length 2,etc.:

&ENTER 'SCAN ASK

il
O

NUMBER OF C VARIABLES

80

- NUMBER OF N VARIABLES
10 LET .S:END.= "."
20 AT .S:END.

30 IF .S:WORDS.> O IF .S:IJORDS.<81 LET N.S:WORDS.=N.S:WORDS.+1l



KNL-7 6/4 KUSE/SCAN

40 AT L.END.

50 LET .CLOSEOUTPUT. = .NULL.

60 LET Ml =1 ; LOOP Ml =1 TO. 80
70 PRINT .NEWLINE., Ml,.TAB.; SENTENCE LENGTH
80 ; NOW PRINT THE ASTERISKS

90 LET Nifl = NMl-l

100 IF NM1 < O GOTO 130

110 PRINT "#*¢

120 GOTO 90

130 LET Ml=M1l+l

140 IF M1 < 81 GOTO 70



KNL7 a/1 KUSE/SCAN

Appendix A Character set

The following table gives the character set of the KOS
implementation of SCAN and the internal code for each character.
These internal codes, which are decimal integers, determine the
collating sequence when an IF clause tests whether one character
is greater than another.

Code Character Code Character
0 space
1l tab 27 :
2 newline 28 <
3 ¥ 29 =
4 $ 30 >
5 $ 31 10
6 & 32 c]
7 “{acute) 33 to 58 Atn 2
8 ( 59 [
.9 ) 60 £
10 * 61 ]
11 + 926 * (grave)
12 ’ 97 to 122 a to 2
13 - 123 "
14 . 124 +
15 / 128 null
16 to 25 0O to 9 129 end-of-source
26 3 130 start-of-source

Most input/output devices only permit a sub-set of
_these characters. Few devices, for example, allow for lower-
case letters. Teleprinters vary slightly as to their represen-
tation of some of the more unusual characters. Some teleprinters,
for example, use the character @ where others use a grave accent.



KNL7" B/1 KUSE/SCAN

Appendix B List of Varxiables

This Appendix gives a complete list of the available
variables, together with the meaning and system setting of each.
In the ““hen set™ column, I means initizlly, S means at the
gtart of each sentence, W means on each word, SEP means on each

separator, M means on each match and L means on each line.
Synonym Name Usage When set System setting
1. System character
' «START. Al start-of-source I séart-oﬁ-source
.S:END, a2 end of sentence I newline
.END. A3 end-of~-source I enﬁ-éffsource. .
.NULL. A4 null I null '
-TAB. AS  tab I tab
-NEWLINE. A6  newline I newline
«SPACE. A7 space | I space
ABvA;3 .resexved
.PREINTEGER. Al4 PRINT statement:
' " character at start
of integer I space
« POSTINTEGER. Al5 PRINT statement:
' character at end
of integer I space
.CLOSEOUTPUT. Al6 PRINT statement -
. . character at end'I newline

Al7-A20 reserved

2. Sentence chafacter

Bl ~ B.S:FINAL., current S

current sentence
sentence



KNL 7 B/2 ‘ KUSE/SCAN.

3. Free character

Cl-Cl0 available to user ‘T null

4. Syétem integér

(L1 - L1l describe the current word or separator. L4 ~ L1l are set
only on an AT statement where the word-pattern contains dashes.
These values and the values of L12 - L19 should not be changed.

The effect of doing so is undefined.) .

- INITIAL. Ll subscript of initial character M
.FINAL. L2 subscript of final character M
.LENGTH. L3 length M
. 1INITIAL, T4 subscript of initial character
in first arbitrary string M
. 1FINAL, LS subscript of final character
in first arbitrary string M
. 2INITIAL. L6 subscript of initial character
in second arbitrary string , M
. 2FINAL. L7 subscript of final character ,
' _ in second arbitrary string M
. 3INITIAL., L8 subscript of initial character ;
- in third arbitrary string M
. 3FINAL. L9 subscript of final character
in third arbitrary string M
+4INITIAL. Llo subscript of initial character _
. in fourth arbitrary string M
. 4FINAL. L1l subscript of final character
' - in fourth arbitrary string M
L12-L15 reserved
.S:FINAL. . L16 subscript of. final character
. of current sentence S
-ATPOSITION. L17 position in list of matched
AT element ‘ ‘ M
' L18-L19 - . reserved
.PRINTOPTION. IL320 O means do not PRINT current .
: : sentence )
1 means PRINT current sentence * S. [s]

2 means PRINT current sentence'
, : ' with‘number , ,
GOLIMIT. L21 limit on GOTOs I 1000



KNL 7 B/3 KUSE/SCAN

(L30-L35 give information on the progress of the scan. The
statistics always include the current word or separator and the
current sentence. Changing the statistics will not chance the scan.
Ebréffample increasing L30 by one will not advance the scan by one
word.

- WORDS. L30 number of words so far .
. S:YORDS. L3l " " » n ¥ 4n current
sentence W

-SEPARATORS. L32 " " sgeparators so far SEP

+S:SEPARATORS. L33 " " o n " 4in -
current sentence SEP

-LINES, L34 " * 1lines so far L

. SENTENCES. L35 " " gentences so far S

L36-L40 reserved

5. Sentence.integer

M1-M10 available to user . 8 (o]

6. Free integer
N1-R10 available to user I 0



RNL7 c/1 KUSE/SCAN

Appendix C Errors

C.l Syntax errors

The following errors can arise when a SCAN program
is being compiled.

(a) SYNONYEF ERROR. Iliegal synonym or missing dot at end of
synonym.

(b)  SUBSCRIPT ERROR. Subscript too large or too small.
(This error is only detected during compilation if the
subscript is an integer constant.)

(c) INTEGER TOO BIG. An integer constant exceeds the
implementation maximum.

(d) SYNTAX ERROR. A statement has not been specified in the
correct way, e.g. the statement number is missing, quotes
round a message or dots round a synonym are wrong, a comma
is missing between AT or PRINT elements, etc.

(e) UNMATCHED PARENTHESES XRROR.



KNL7 c/2 RKUSE/SCAN

C.2 Execution errors

On detecting an error when running a program, the SCAN
nrocessor abandons the run immediately. It gives a message to
the user to help him find out vhat has gone wrong. A tywnical
message might be .

VARIABLE M(1l) IS NON-EXISTENT IN LINE 30 OF THE PROGRAM
CURRENT SENTENCE IS: 16 HE OPENED THE DOOR.

23 LINES OF THE SOURCE DOCUMENT HAVE BEEN SCANNED
RUN ABANDONED

The number preceding the print-out of the current sentence is its
sentence numbér, as given by .SENTENCES.. If an error is detected
at the start oxr end of the source document the current sentence is
not orinted (since it does not exist).

The following is a list of all the types of execution
errors that can occur.

(a) VARIABLE ... IS NON-EXISTENT. The subscript on the given
variable is too large or too small. This includes the case
- of a reference to a character beyond the end of. the current
sentence or a reference to the current .sentence when it does
not exist (i.e. during AT.START. and AT.END.).

(b) NO PROGRAM TO RUN.
(c) SUSPECTED ENDLESS LOOP. See Section 4.8.
(d) DIVISION BY ZERO.

(e) UNDEFINED GOTO IN LINE ... OF THE PROGRAM. The statement
number used in a GOTO statement does not exist.

(f) ILLEGAL SENTENCE TERMINATOR. The end-of-sentence character
(.S:END.) is not a separator.

(g) END OF SENTENCE OVERWRITTEN. An attempt has been made to
overwrite the last character in the current sentence.

(h) LAST SENTENCE INCOMPLETE. This is a warning message rather
than an error message. It is described in Section 5.2.

(1) TOO MUCH. The amount of program between two AT elements
is too much for the implementation.

(3) LOGICAL ERROR. This error should never occur. If it does,
consult the implementor -~ it is his fault.



RNL7 c/3 RUSE/SCAN

C.3 Storage exhausted

The message
LACK OF STORAGE CAUSES ABANDONMENT

may occur at any time. If it occurs during compilation the source
program is lost and an exit is made from SCAN. Possible causes
of the error are too many C or N variables, too big a program,

a very long sentence or a combination of all these three factors.
On a KOS console the available storage is usually very limit:- 2,
and it may be necessary to switch to batch working if this error
occurs. Before abandoning hope, however, the user should check
that his end-of-sentence character is reasonable. If the end-of-
sentence character is, say, a question mark, it may be that a
sentence will cover several hundred lines of the source document,
and, since the current sentence is kept in store, store is almost
certain to be used up.





