SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 1, 269-277 (1971)

The Kent On-Line System

P. J. BROWN
Computing Laboratory, University of Kent at Canterbury, England

SUMMARY

KOS is a simple multi-access operating system that is particularly geared to the needs of
teaching and research. It is fully conversational in that it allows interaction between user and
program at all times, and it supports a variety of teaching packages, compilers, application
programs, etc.

KEY WORDS On-line Operating system Pure procedure

INTRODUCTION

The Kent on-line system, which runs on the ICL 4130, is an open-ended multi-language
operating system which provides fully conversational console working at a2 minimum cost.
This is achieved by making maximum use of pure procedures. The system is being developed
at the University of Kent at Canterbury on behalf of all the universities with an ICL 4100
as their main service machine.

When design work started on the Kent on-line system (KOS), there were, as is usual in
such exercises, many design requirements that had to be considered. However, one require~
ment took precedence over all the others. This was that the system be fully conversational.
In other words, throughout the operation of the system and, most important, of all the
compilers and packages that were to run under it, it should be possible for the console user
to type instructions and ask questions of the system and vice versa. (See Reference 1 for a
fuller discussion of this.) The reason for making this requirement paramount was that it was
felt that the consoles must extend the capabilities of the machine by providing facilities
that could not possibly be provided by batch processing; the consoles were not simply to
provide a more convenient way of running programs in the batch (as, for example, the
system described by Atkinson and co-workers?)—though this approach has considerable
merit and can be very popular with users—nor to provide a means for a privileged few to
queue-jump.

There is a very wide potential market in any educational or research organization for fully
conversational console working, in particular for teaching, simulation and application
packages. Participation is an excellent way of learning. If a student was, for example, trying
to understand matrix arithmetic, nothing could be better for him than to go and sit at a
console and experiment with a matrix package. The student could type in his matrices,
transpose, add, invert them and thereby get a feel for the way things worked. He would, of
course, make lots of mistakes, which the matrix package would diagnose, and it would be
by these mistakes, more than anything else, that he would learn. Ideally, the matrix package
should be designed such that, as well as catering for the novice, it could be shared by users
with production jobs to do. It is easy to think of a host of similar applications in other

Received 30 April 1971

® 1971 by John Wiley & Sons, Ltd.
269



270 P. J. BROWN

disciplines; for example, the simulated salmon fishery described by Zinn and Hesselbart®
is instructive to potential managers and, more generally, simulated models are invaluable for
any kind of design work. Furthermore, there is no better way of learning to program than by
using an interactive compiler.

This, therefore, is the kind of market at which KOS was aimed. The problem was to
provide fully conversational working cheaply, since KOS was to be run on university service
machines where the batch processing work could not be allowed to suffer. In solving this
problem, certain features of the hardware of the machine to be used, the ICL 4130, played
a major part.

THE HARDWARE

Broadly speaking, the ICL 4130 is a typical medium-sized scientific computer of its
generation. It has a 24-bit word and the store cycle time can be either six microseconds or
two microseconds. All the universities for which KOS is being developed have roughly
similar configurations. Core store sizes are 32K or 64K words; all machines have, or are
scheduled to have, a fairly comprehensive set of I/O devices; this includes exchangeable
disk units. Each disk pack has a capacity of one million words. Most installations are plan-
ning to have on-line consoles and some already have them; in most cases the consoles are
connected directly to the 4130 rather than to a satellite computer.

The 4130 has two modes of operation, namely ‘executive mode’ and ‘slave mode’. The
latter, however, has been completely ignored until very recently and virtually all programs,
whether written by the manufacturers or by users, have run in executive mode. The slave
mode of operation uses the well-known base and range register technique. There is an
important sub-mode of slave mode, called pure procedure mode. (The manufacturers call it
common program mode.) This has influenced the design of KOS more than any other hard-
ware feature. In pure procedure mode the program instruction counter is absolute and it is
only data references that are subject to the addition of the base. Using this hardware, a
single program can control any number of slaves. A slave is simply an area of workspace,
and the slave that is active at any one time is determined by the setting of the base and range
registers.

There is a further hardware feature that allows for ‘pure constants’. Each pure procedure
can have its own data area which contains all true constants, i.e. all data whose value is set
at load time and not subsequently changed. When using pure procedures, it is best to place
tables and error messages in this data area, so that there will only be a single copy of them
rather than one copy in each slave area.

The pure procedure mode of the hardware and its ease of use radically changes the
economics of time sharing for the 4130. For multi-access work the 4130 is at its most
efficient when there are one or more pure procedures, remaining permanently in store while
they are in use, being shared by several jobs. For example, there might be two pure pro-
_ cedures in use, 2 compiler and an application package; three console users and a card-to-
printer job might be using the compiler, and four other console users might be using the
application package. All should enjoy excellent response time. Moreover, if the pure
procedures are always resident in core there is no overhead in providing fully conversational
working.

The design requirements of KOS were therefore met by making it an operating system
that provided a convenient environment for writing, testing and running pure procedures.
A pure procedure, or a suite of related pure procedures, that runs under KOS is called a
sub-system.



THE KENT ON-LINE SYSTEM 271

CURRENT STATUS

Development work on KOS commenced in late 1968 and a preliminary version was made
available to the public in May 1969. By February 1970 all the features described in this
paper had been implemented and a regular user service set up. In December 1969 the first
fully documented release of KOS to outside users was made.

The emphasis of development has now shifted from the system itself to the provision of
sub-systems. A number of sub-systems are already working and went out with the first
release. These included a compiler/interpreter for Dartmouth BASIC4, a macro processor,®
a simulated desk calculator® and a multiple regression teaching/application package.” The
last-named has been used in teaching a statistics course.

As time goes by it is hoped that KOS will continually be augmented by new sub-systems
developed not only at Kent but at other installations as well, Indeed, KOS will have failed
if this does not happen. Particularly pleasing, therefore, is the development of the BASIC
compiler, which is a joint venture between Kent and the University College of North Wales,
and the development of an assembler/debugging system by W. D. Shepherd of Portsmouth
Polytechnic.

RESOURCES

The scale of available man-power resources has been a major consideration in the design
of KOS. The Computing Laboratory of the University of Kent at Canterbury is currently
small, and is only able, without prejudicing its other commitments, to allocate the equivalent
of about three full-time people to the KOS system and its sub-systems. In addition, an
extra research associate and secretarial assistance have been financed by the Computer
Board.

Nevertheless, since the implementation of efficient general-purpose multi-access systems
has defeated organizations with many times the resources, in both quality and quantity, of
the KOS project, it has been a policy to avoid over-ambitiousness. In particular, the natural
urge to re-write everyone else’s software has been resisted, and, where applicable, the
manufacturer’s software has been used.

KOS AS THE USER SEES IT

It is not worth giving a complete description of the features of KOS since 2 number of
them follow familiar principles pioneered by earlier operating systems. Instead, details will
be given only of those features which might merit special interest; other features will be
omitted or glossed over briefly.

In this latter category come editing and disk filing. KOS, in fact, uses the manufacturer’s
disk filing system in order to maintain compatibility and interchangeability with the batch.
There is also provision for small in-core files. These will be described later. During editing,
lines can be specified by a line count (e.g. line 209), by contents (e.g. the line starting with
‘[(XXXTY’), by relative line count (e.g. 11 lines further on) or by a combination of all these
(e.g. 11 lines beyond the first line starting with [XXX]’ after line 209). Editing is fully
conversational and thus the user can, prior to changing a line, examine it to make sure he
has got the right one.

USE OF 1/O DEVICES

Each of the job streams that KOS controls has a default input device and a default output
device assigned to it. Normally during a KOS session most of the job streams will be



272 P. J. BROWN

attached to consoles, the same console being used as the default input device and the
default output device. In this case KOS is said to be in conversational mode. However, it is
quite possible to have non-conversational job streams such as card-to-printer or paper tape
reader to paper tape punch. Apart from small differences, mainly concerned with physical
properties of devices, it makes no difference to the working of KOS whether it is in con-
versational mode or not. Thus production runs using sub-systems such as the BASIC
compiler can be performed in a batch mode. In such non-conversational cases a job will
usually involve only a short sequence of commands; in conversational mode a job will
normally encompass the entire stay of a user at a console.

The default devices for a job stream are said to be owned. Any device that is not owned is
free to be borrowed by any job that wants it. The purpose of the owned devices is that if a
job is suddenly stopped, for example, because of a filing error or because the user has
pressed the break key, there are always devices available on which KOS can output the
appropriate message and obtain the next command.

Each job has two types of input: commands and data. Commands commence with an
ampersand. For consoles, KOS types an ampersand when it is ready for the user to type a
command; for other devices the user supplies the ampersand. Commands come from the
command device. This is usually the same as the default input device but it can be altered
by commands such as

&COMMANDS FROM CARDS

&COMMANDS FROM JFILE. PJB.

(In KOS terminology the word ‘device’ means either a physical IO device or a file, i.e.
what some operating systems call a ‘stream’.)

Some commands have associated data. For example, the data to the BASIC command
is a program to be compiled and the data to some of the editing commands is the text to be
inserted. Data comes from the data device. The data device only logically exists during the
execution of a command that requires data. By default the data device is the same as the
command device, but this may be changed by adding a suffix to a command, for example

&BASIC FROM CONSOLE 4

For console input KOS types a colon when it is ready to receive a line of data. The use
of a colon rather than an ampersand is to prevent a confused user typing data when he
thinks he is typing a command. This helps to prevent some of the ludicrous situations that
often arise when users get at variance with the system. If a console user wishes to return
from data to command status he must type the data terminator (a single full stop) or, more
drastically, press the break key.

For input from other devices, data has no special prefix. It is terminated by the next
command, i.e. the next line starting with an ampersand. This exactly mirrors the 4130
batch operating systems, to which many KOS users will be accustomed; here control cards,
which are the equivalent of commands in KOS, are identified by an initial ampersand.

As for input, so for output. There are two output devices, namely the message device and
the results device. The message device always exists and is usually the same as the default
output device. The results device is created for those commands that produce answers.
Results can be sent to a device other than the message device by adding a suffix to a2 com-
mand, for example

&RUN TO JFILE 3
&CHESS FROM CONSOLE 1 TO CONSOLE 2

or



THE KENT ON-LINE SYSTEM 273

(RUN is the command to run a BASIC program. The CHESS command is hypothetical.)
With these facilities a console user can do work where all or most of his data is on
disk files and all or most of his results are to go to disk files, but he can, if he wishes,
have all error and informatory messages sent to his console.
In practice this I/O scheme has so far worked very well. One can, however, imagine
possible future sub-systems which would be seriously hindered by the restriction that there
can be, at any one time, only two different input devices and two different output devices.

QUESTION-AND-ANSWERS

A further feature of KOS IfO is the question-and-answer. The basic purpose of this is to
allow a sub-system to ask a console user a question and get a reply on the same line, for

example
NUMBER OF POINTS = 36

OPTIONS REQUIRED =

where the text up to and including the equals sign is the question and is typed by KOS
and the remainder, which in the second case is null, is the answer and is supplied by the user.

However, question-and-answers have been designed so that they work just as well in
non-coversational mode, and indeed, serve an additional function in this situation. (The
question-and-answer is, in fact, currently the only feature of KOS which works in a
significantly different manner depending on the mode of operation.) Assume, for example,
that card input is being used. In this case the user would supply, at the point in the deck
where KOS would ask the question, a card containing the question and his answer. For
example

NUMBER OF POINTS = 29

When KOS executes a question-and-answer from cards it reads the next card and tries to
match the text at the start of the card with its intended question. If it succeeds, all is well.
If the match fails, however, it is not necessarily an error. KOS then ‘backspaces’ the card
reader and tells its sub-system that the required question-and-answer is not there. The
sub-system can then take one of three courses:

(1) It can try to match the card with another question.
(2) It can treat the situation as an error.
(3) It can assume some default option and proceed normally.

Course (3) would probably be taken for a question-and-answer such as the ‘OPTIONS
REQUIRED ="’ example above. In this case the question-and-answer serves the same
purpose as optional keyword parameters do in IBM macros and operating systems.®

JOB FILES

As well as disk files, KOS allows for files to be kept in core. These are called job files since
they are deleted at the end of each job. In most cases job files must be small as users will
normally have very limited core workspace; they are useful for temporary storage of small
amounts of data, such as a student might need for a tutorial package. Editing of job files is
destructive, i.e. only one copy of each file is maintained and as the file is edited it con-
tinually changes. (The user can, if necessary, explicitly make a copy of a file before editing it.)
Job files are therefore very useful for short files that are likely to be extensively edited during

12



274 P. J. BROWN

a console session, since they provide fast access and fast editing and relieve the necessity of
creating a new version of the file after each edit and remembering which version is which.
Job files can be copied on to disk at any time when it is felt that a more permanent record is
needed.

HIERARCHY OF COMMANDS

A KOS sub-system is entered by typing its name as a command. In this case KOS exits
from the current sub-system, if any, and enters the named one. Initially no sub-system is
in control. KOS commands consist of two types: global commands and supplementary
commands. Global commands are part of the KOS system itself, and may be used anywhere,
whether a sub-system is in control or not. Typical global commands are commands for
entering sub-systems, for changing devices, for editing job files and for enquiring about the
environment.

When a sub-system is entered it can return to command status within itself and can
augment the global KOS commands with its own supplementary commands. For example,
the BASIC sub-system has supplementary commands such as PROG (amend program),
SCR (scratch everything), CONT (continue after break), LIST and RUN. These commands
do not exist outside BASIC. It is also possible, while remaining in command status within
BASIC, to execute any of the global KOS commands.

This hierarchical scheme has the advantage of insulating the non-user of a sub-system
from its supplementary commands while still allowing the full repertoire of global KOS
commands to be used within any sub-system.

THE USE OF DEFAULT OPTIONS

To minimize the typing necessary for simple-minded users, KOS makes considerable use
of default options. For example, if nothing is said to the contrary, the default I/O devices
are used throughout. Similarly, there are concepts of the current line and the current file,
which are used by default. Similar concepts to these are used in the Cambridge Multiple-
Access System.® In this way KOS has followed PL/I,1° while hopefully avoiding some of the
controversial situations where it is not sufficiently manifest what the default option should be.

USE OF STORE

The number and nature of the KOS job streams to be run and the amount of workspace
allocated to each is fixed when a KOS session starts and cannot be changed during the
session. Pure procedures are loaded dynamically when they are needed and are auto-
matically cancelled when they are not in use. Core storage is divided into fixed partitions.
The whole philosophy of pure procedures is against thein being swapped in and out of
core while in use, but KOS currently has the additional restriction that slave workspace
areas also remain in core throughout. Typically, these workspace areas are about 2K for
console job streams and perhaps 4-6K for a card-to-printer job stream.
A map of the current store layout is given in Figure 1.

INTERFACE WITH MANUFACTURER’S OPERATING SYSTEM

Currently, virtually all the intending users of KOS use the manufacturer’s standard single
job stream operating systems for all their production work., We will use the term
ICLBATCH for these operating systems. (The manufacturers have recently introduced a



THE KENT ON-LINE SYSTEM 275

ICLBATCH

cperating system

Storage for
ICLBATCH background

job (if any)
_

KOS system

Dynamic area
for loading sub-
systems and for

disk buffers

Slave 1 workspace

Slave 2 workspace

Slave 3 workspace

Figure 1, Layout of core storage when KOS is running. The relative sizes of the boxes above bear no particular
relationship to the relative sizes of the storage areas they represent

new multi-programming operating system. Currently this is little used, but it will, no doubt,
gradually find wider usage. KOS will eventually run under this system and certain of its
features will need to change as a result. In this paper, however, attention will be restricted to
the current implementation of KOS.)

The following features of KOS have been introduced to minimize the inconvenience to

ICLBATCH work while KOS is running:

(1) An ICLBATCH batch background job stream can be run against KOS. In this
case ICLBATCH, rather than any KOS job stream, owns the card reader and the
printer.

(2) KOS runs under ICLBATCH. A KOS session is initiated from ICLBATCH using
ordinary control cards and at the end of a KOS session control is handed back to
ICLBATCH. As far as ICLBATCH is concerned, a job that creates a KOS session
looks no different from any other job. There is a completely smooth transition from



276 P. J. BROWN

ICLBATCH to KOS and vice versa and no time is wasted by the need for the
operator to intervene. When KOS is in control, of course, it places so many tentacles
round ICLBATCH that KOS is effectively the boss. KOS can even re-enter
ICLBATCH and leave it to run a background job as mentioned in (1).

(3) As mentioned earlier, both ICLBATCH and KOS use the same disk filing system.

TESTING AND RUNNING

A consequence of (2) above is that test runs of new KOS sub-systems can be run as ordinary
batch runs. This is done as follows: A test deck for the sub-system is prepared on cards.
(This may also make use of disk files.) Since question-and-answers can work from cards,
comprehensive test decks can be built up even for sub-systems which are so interactive that
they would not normally be used with card input. The test deck is preceded by ICLBATCH
control cards to set up a KOS session with a single card-to-printer job stream. A command
to terminate the KOS session is placed at the end of the test deck. The entire deck is then
run as an ordinary ICLBATCH job; if the deck is short it may only take a few seconds of
computer time to run it. If the program under test goes awry it will almost inevitably
produce a trap, probably for a store reference out of range, and at this point an automatic
post-mortem program comes into effect.

INTERFACE BETWEEN KOS AND ITS SUB-SYSTEMS

KOS consists of some modules that run in executive mode and some that run in slave mode;
the former include modules for job stream creation and scheduling and for allocation of
1/O devices; the slave mode modules, which are themselves pure procedures, provide a set
of routines, called UTILIT routines, for use by sub-systems. These UTILIT routines
call executive mode routines when they need them.

It is through the UTILIT routines and only through these, that sub-systems communi-
cate with KOS. UTILIT routines are called by ordinary sub-routine calls. All I/O is done
through UTILIT routines. To a sub-system, all I/O appears to be device independent.
A sub-system never knows or needs to know the number and nature of the jobs that are
using it. Hence a sub-system is written in exactly the same way as any more conventional
program is written.

In addition to I/O, the UTILIT routines also provide a large number of other functions
that are, or may be, needed by sub-systems. Of these, the most interesting is probably the
routine UDECODE. This is an extremely elementary table-driven syntax analyser (though
not, it seems, quite so elementary that it is easy to persuade people to use it). If, for example,
a sub-system wishes to add some supplementary commands to KOS, it supplies UDECODE
with a table for recognizing and analysing these commands and their arguments.

Although the size of each slave workspace area is fixed once and for all at the beginning
of each KOS session, storage within this area is allocated dynamically. It is shared between
buffers, job files and sub-system workspace. A fixed two hundred or so words of slave
workspace are reserved as directly addressible storage for the current sub-system. If a
sub-system needs more store than this it must ask for it dynamically using UTILIT
routines.

It is not, in general, very difficult to convert an existing program in assembly language
written for, say, the ICLBATCH operating system, to make it run as a pure procedure under
KOS. The main difficulty is converting the operating system interface; for a highly operating
system dependent piece of code, such as a compiler, this is very hard to do.



THE KENT ON-LINE SYSTEM 277

FURTHER DOCUMENTATION

Full descriptions of KOS as it appears to the user, the computer manager and the sub-
system writer are given respectively by Brown and Brown,}* Brown!? and Brown.!® User
manuals for sub-systems are also available as given in the references.

ACKNOWLEDGEMENTS

A good proportion of the KOS system was coded by Mrs. H. Brown. The routine to control
the consoles, which was, of course, vital to the utility of KOS, was provided by Spratt and
co-workers.’* In addition, since KOS stands or falls by the sub-systems it provides, the
sub-system writers already cited have played a major part.

Finally, the Computing Laboratory of the University of Kent at Canterbury is very
grateful to the Computer Board and to ICL for their assistance and co-operation.

REFERENCES

. M. V. Wilkes, Time-sharing Computer Systems, Macdonald, London, 1968.
. M. P. Atkinson, A. M. Lister and A. J. T\ Collin, ‘Multi-access facilities in a single stream batch
processing system’, Comput. Bull, 14, 75-77 (1970).
3. K. L. Zinn and ]J. C. Hesselbart, ‘Interactive programming languages adapted for instructional use
of computers’, Int. Symp. Man-Machine Systems, Cambridge, 1969.
4. S. E. Binns, W. H. Purvis and E. B. Spratt, Kent On-line System: Compiler for a Subset of Dartmouth
Basic, Document KUSE/BASIC, Computing Laboratory, University of Kent at Canterbury, 1969,
S. P. J. Brown, ML{I User'’s Manual, Appendix G: KOS Version of ML|I for the ICL 4130, Com~
puting Laboratory, University of Kent at Canterbury, 1969.
6. D. Glanville, Kent On-line System: Desk Calculator, Document KUSE/DESK, Computing
Laboratory, University of Kent at Canterbury, 1969.
. M. J. Garside, Kent On-line System: MYGREG, General Stepwise Multiple Regression Program,
Document KUSE/MJGREG, Computing Laboratory, University of Kent at Canterbury, 1969.
. D. N. Freeman, ‘Macro language design for System/360°, IBM Systems J1, 5, 63-77 (1966).
. D. F. Hartley (Ed.), The Cambridge Multiple Access System: User’s Reference Manual, University
Mathematical Laboratory, Cambridge, 1968.
10. G. Radin and H. P. Rogoway, ‘NPL: highlights of a new programming language’, Communs Ass.
comput. Mach. 8, 9-17 (1965).
11. P. J. Brown and H. Brown, Kent On-line System: User's Manual, Document KUSE/AAA, Com-~
puting Laboratory, University of Kent at Canterbury, 1969.
12. P. J. Brown, Kent On-line System: How to run KOS, Document KOP/AAA, Computing Laboratory,
University of Kent at Canterbury, 1969.
13. P. J. Brown, Kent On-line System: Sub-system Writer’s Manual, Document KOS/AAA, Com-
puting Laboratory, University of Kent at Canterbury, 1969.
14. E. B. Spratt, D. Glanville and J. Dobby, Specification of a Device Routine for the Multi-Access Tele-
printer Controller on the ICL 4100 System, Document KOS/MATPCD, Computing Laboratory,
University of Kent at Canterbury, 1969,

N =

~1

O Co





