KENT OM-LIWE SYSTE!

Document: KUSE/ML1 /2

the ML/l sub--system

P. J. Browvm
University of XKent at Canterbury
September 1973

KNL6 KUSE/ML1

Note

ML/I is a general purpose macro processor. It is specified
in the ML/I User's Manual, which can be obtained from the author.
This document is an Appendix to the User's iManual and describes
the features peculiar to the KOS implementation of IML/I.

Another document available from the author is "The ML/I
macro processor: a simple introductory guide". This is specially
applicable to introducing the user to ML/I at a console session.

KNLS G/1 KUSE/ML1
ML/I User's Manual

Appendix G - KOS version of ML/I for the ICL 4130

G.1 Restrictions and additions

The implementation of ML/I that runs under the X0S on-line
system for the ICL4130 contains all the features described in the
ML/1 User's Manual (4th Edition, August 1970), plus the New
Features 1 to 4 (startlines, stop markers, controlled line numbers
and optional warning markers) described in a supplement to the
manual, except that, since the ML/I processor may be shared bet-
wveen several users, MCALTER is not available. (MCALTER is
not even recognized as a macro name:) The MCCOMT macro is a feature
peculiar to this implementation (see G.2.6.). : o

As in most recent versions of ML/I, newline, not semicolon,
is the terminator for operation macro calls. Since FCALTER is not
available the user must stick with this.

G.1.1. Compatibility with NICE version of ML/I

There is another implementation of !"L/I for the ICL4130. .
This runs under the NICE executive. It is described in Appendix
E of the ML/I User's anual. The two implementations of HL/I
differ in the way they are operated, but they are functionally
identical to the following extent:

(a) Any ML/I process run under the KOS imblementation
will also run under the NICE implementation.

(b) Any ML/I process run under the NICE implementation
will run under the KOS implementation provided that
t’CALTER is not used and provided the usage of -S-
variables conforms with the KOS implementation.

G.2 Operating instructions and I/0

The KOS implementation of ML/I is a sub=-system of KOS.
It is entered by means of the command: ‘

ML1 DR-spec

where the DR-spec, which is omitted if the default devices are to
be used, is as descrilie. in the KOS User's 'fanual. Any error in
the entry command to ML/I will cause the command to be treated as
illegal and hence ignored.

KNL6 G/2 . KUSE/ML1

G.2.1 Use of user’s workspace

ML/I needs some of the user's workspace for holding macro
definitions, stacks, etc.. A reasonable algorithm for estimating
the number of words of worksvace needed is

requirement = 100 + 11/10 x number of characters needed
to define macros.

On entry ML/I finds out the largest pniece of user's vork—
space that is free. Assume the size of this is N words. It
outnuts the message '

N VIORDS OF STORAGE AVAILABLRE

and then uses an optional data question-and-answer to find out how
much of this the user wants. The question is

STORAGE REQUIRE!ENT=
and the ansvwer must be an integer between 50 and ¥ (inclusive).

If ML/I is not running in conversational mode and the
above question-and-answer is omitted (or supplied with an illegal
answer), then all I vords are allocated to ML/I. If the question-
and- ansver is supplied, it must immediately follow the entry
command to ML/I. o

Note that if nearly all the user's workspace is taken by
ML/I, workspace may subsequently become exhausted if job files are
created or extended while within IML/I, In thig case it is usually
hest to exit from ML/I and then re-enter it, asking for rather less
workspace.

G.,2.2 Examples o£ entrv commands

(a) &MLY
{b) &MLl FRoit JPILE 1 TO PRINTER

(e) &ML1 ‘
STORAGE REQUIREITMNT = 2040

might be used when !ML/I was being
run in non--conversational mode.

KNL8 G/3 KUSE/ML1
GC.2.3 Input/output and commands

FL/I takes its input from the data device and sends its
output to the results device. At the end of data 'L/I returns to
command status and permits, in addition to the global KOS commands,
the supplementary commands CONT and SPACE, These are described in
the Sections that follow.
G.2.3.1 Continue

Form of Command CONT DR=-spec

Examples (a) &CONT
(b) &CONT TO PRINTER
(c) &CONT FROM PTAPETO NC (XXX, YVY)

Action Continue processing using given data and results devices.
Note that, by using CONT, the user can split his data and his results
into several separate pleces, possible going to different devices.
However no call of a macro or any other construction may overlap
between vieces of data and ML/I diagnoses an .error if a construction
remalns unterminated at the end of a piece of data.

At each CONT command, all line counts are set back to zero,
so that line counts in error messages always relate to the current
plece of text.

G.2.3.2 Available space

Form of Command SPACE

Action Print out, on the message device, the numbsr of words of
ML/I's allocation of user's workspace that are still free.

G.2.4. Breaks
User breaks are always allowed. If a break occurs while

IL/I 1s processing it exits, but if a break occurs when ™L/I is in
cormand status then control remains within ML/I.

KNL6 G/4 XUSE/ML1

G.2.5 Examples of use of ML/I

The following is an exaﬁuple of how ML/X might be used at
a console. Characters typed by the machine have been underlined. -

*a% KOS READY - VERSION I(ngg E

SJFILE 1B
TTESTS FOR MACROS
F=~PIGHPIG
IMCSET Pl=45

-‘-‘P 1-8 .

&ML
¥*%662 YORDS OF STORAGE AVAILABLE

0 REQUIRE: =600

hhuded 73 § gVERSION RNL6D) PROCESSING
] H

TMCSKIP MT, < >
TMCDEF PIG AS DOG

**#3 LINES, 3 CALLS

8CONT FROM JFILE
TESTS FOR MACROS

i
37

*%%5 LINES, 3 CALLS

SCONT
i1 AM A PIG
I AM A DOG

$e
*%#] LINES, 1 CALLS
&708

k84 BXIT FROM ML

KNL8 G/5 KUSE/ML1

G.2.6. - Another use of ML/I - Convexrsational :acros

-If a macro tries.to insert argument zero (e.g. $A0.,
SWAO. or $BC,) then this ‘Is taken as a regquest for a fresh line
of source text. ‘'This source text, excluding the newline at the
- end, is ‘then taken as the argument and evaluated in the normal
way. The facility is best used at a conversational device, but
can also be used in non-conversational mode.

The following is an example. Assume a macro is
defined:

. MCDEF ASKME _
AS<WHAT IS YOUR NAME?
MCDEFG N AS $AO.
WHAT IS YOUR AGE?
MCSET Pl = $20.
WHAT IS YOUR WAGE? -
YOU SHOULD BE EARNING iORE THAN %20.,N
>

Then its use at z console might proceed thus:

3ASKME

WHAT IS YOUR NAME?

i

WHAT IS YOUR AGE

£ 29

WHAT IS YOUR WAGE? _

31£25,000 '

YOU SHOULD BE EARNING MORE THAN £25,000, JOHM

To completely master the use of argument zero it is
necessary to understand ML/I’s input routine fully, %hen ML/I is
processing an identifier it needs to read ahead to the next punctua-
tion character after it. Sometimes ML/I reads even further ahead.
Thus i1f there was a macro ilL. WITHS PIG, “L/I would need to read the
next atom after each newline character to see if it was PIG. Ve will
say that any text that ML/I has input but has not yet processed is
in linbo. Thus the newline following ASK'E in the above example
Is in limbo. Argument zero causes new input to be read, ignoring
any text in limbo. Characters are taken in sequence until a
newline is read, Note that if the current source line has only
been partially ‘input argument zero will absorb the remainder. Thus
in ASKME JACK,JACK would be taken ag the first argument zero, Any
text in limbo is processed after scanning returns to the source text.
Thus the newline following ‘ASKME would he processed after ASKME had
been called. Scanning would then resume with a fresh line of input.

KNL3 G/6 KUSE/ML1

1L/I uses the ordinary KOS output mechanisms, which means
output is in units of lines. Thus it is not possible to have a
question on the same line as the answer, and this is why all the
questions in the ASKME macro are followed by newlines.

, Note that argument zero is evaluated, Thus if a macro
contains : '

MCDEF YES AS 1 -

and the user types YES, then this will be taken as 1. It is not
permissible to insert argument zero during the evaluation of
another argument zero. A violation of this rule produces the
message

ess IS ILLEGAL MACRO ELEMENT

An attempt to insert argument zero into the source text

also leads to this error.

If there is no data left when argument zero tries to
read some, then the process is aborted. (This is not, however,
treated as an error, and no message is given).

MCCONT macro

Purpose Similar to &CONT commangd.
General form 'ICCONT argA NL

Examples (a) MCCONT FROI DC(X¥Z)
(b) MCCONT FROi1 DC " (3Al.) TO DC (T%S10,)

System action The current data and results devices are closed.
If ARG ‘A is not a correct DR-:spec the usual KOS érror message is
output (e.g. SYNTAX ERROR IN COMMAND or DC ERROR...) and the
processes are aborted. If ARG A is correct, the data and results
devices are re-set accordingly and the line count set back to one.
(Note that the ML/I input routine sometimes needs to read ahead a
few characters, especially when multi-atom names are in the
environment. (See definition of "in 1imbo" in the previous
Section). Hence it is conceivable that a few characters taken
from the previous data device may be processed after MCCONT has
changed the device. If MCCONT is called from the source text
this will only happen if there is a construction of form

NL WITHS... in the environment.

KNL8 G/7 KUSE/ML1

G.3 Character set

ML/I accepts any character that the appropriate device
routine accepts. Spaces, tabs and newlines are treated as charac-
ters in the ordinary way. There is a method for inputting
characters not provided by the physical device being used (see
Section G.7).

G.4 Exror messages

Error messages are output on the message device as they
are detected. With reference to Chapter 6 (of the ML/I User's
Manual), the number 2N (i.e. the maximum number of characters in
a plece of text inserted into an error message without being
truncated) is 64, In conversational mode, some of the redundant
newlines are removed from error messages so that the output is less
bulky.

Illegal input characters are dealt with by the KOS
system, not by ML/I.

There are a number of special error messages and infor-
matory messages peculiar to this implementation. All of them
should be self-explanatory. It can be seen from the above
example that, when it has finished processing a piece of text,
ML/I prints a message giving the number of source lines scanned
(as given by S2) and the number of macro calls performed during
the processing of that text.

GeS Integer calculations

All macro variables and constants used in macro
expressions must fit into a 24-bit word. Overflow is not detected
and its effect is undefined.

The initial environment contains ten permanent variables.
They are not initialized to any particular values.

G.6 Lavout keywords

The five following layout keywords exist

SPACE meaning "space",
TAB meaning "tab".

NL meaning "newline".
SL meaning “startline".

SPACES meaning a sequence of one or more spaces.

KNL8 G/8 KUSE/ML1

G.?7 S—variables

The KOS implementation of !ML/I has twenty-one S-variables.
Hovever, since I/0 is controlled largely by the KOS system rather
than by S-variahles, their usage is rather limited and is a small
sub-set of the facilities provided by the NICE implementation.
The full list is as follows

Variable lMeaning Initial value
Sl - S4 see lMew Features o]
810 ‘ KOS device number of default

input device (i.e. console
number if console, 508 if
card reader).

Sl6 code to be translated on input -1
s17 code to replace S16 o)
s21 (O means suppress output) 1

(1 means normal output)

S16 and S17 are used to input a character not provided by the input
medium. If the input routine finds a character whose internal
code on the 4130 corresponds to the value of S16 then the character
vhose internal code is given by S17 is substituted in its place
before the character is fed to IL/I. For example if it is desired
to use a dollar sign (internal code 4) for a tab (internal code 1)
then this can be achieved by

HCSET S16 = 4
MCSET 817 =1
$2:$Y. L g

If it is required to switch this option off at any time (e.g. to
process some text on disc containing genuine dollar signs), S16
can be reset to an impossible internal code such as minus one.

