Appendix 7
Technical Details of the Elliott 4100 Series
Computers

A7.1 General Overview of the Family

The specification and hardware design for the Elliott 4100 series had largely been
completed by the start of 1964 [1]. Alan Wakefield, an Elliott Sales engineer,
recalls [2] that ‘we, the Sales force, were introduced to the 4100 series, internally,
at a three-day sales training course on December 14th, 15th and 16th 1964.
Customer visits, demonstrations, seminars and sales campaigns started in earnest
early in 1965.” The Elliott 4100’s instruction set represented a new direction for
Borehamwood, in that it strongly reflected the influence of programmers such as
Roger Cook (see also Chap. 8). Roger Cook remembers [3] that: ‘we designed the
4120 with NCR in mind and the 4130 for our more technical users. We were also
dimly aware that compilers would become the norm.” Evidence of the hardware
support for high-level languages is given in Sects. A7.2 and A7.3.

There were two members of the 4100 series family, of which the 4120 was the
first to be delivered to an outside customer in 1965. By 31 March 1967, 58 of the
4120 systems (including the ARCH 2020 variant) had been delivered and a further
86 machines were on order [4]. The more powerful Elliott 4130 computer was the
next to arrive. By 31 March 1967, 21 of the 4130 systems (including the ARCH
2030 variant) had been ordered but none had yet been delivered to an external
customer.

When Elliott-Automation’s main computing interests were absorbed into ICL
at the end of 1968, the 4100 series were the only Elliott computers to be mar-
keted by ICL, albeit as a poor relation to the more comprehensive and powerful
English Electric System 4 and ICT 1900 series machines and to the last of the
LEO III computers (LEO III deliveries spanned the period 1962—-1969). Many of
the surviving 4100 series software technical manuals are held in the ICL
Archive [5]. As mentioned in Chap. 13, ICL did at least acknowledge in 1968
that the Elliott 4100 series had been ‘most successful in universities, research
establishments and for industrial automation schemes. The graphical display
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system associated with 4100 central processors is a recognized leader in com-
puter design technology’ [6].

The Elliott type 4280 Graphical Display Unit had a 10 in. x 10 in. viewing area
with 1,024 x 1,024 addressable positions, giving a resolution to within 0.01 of an
inch. The image was automatically re-generated ten times per second from a dis-
play file held in the computer’s main memory, to give a flicker-free picture. Curves
or lines could be drawn at the rate of 100 ps per displayed inch. The type 4280 unit
included a vector generator for drawing straight lines, a character generator which
displayed the alphanumeric characters of the 4100 series internal codes in three
sizes (5/64th in., 5/32nd in. or 5/16th in.) and a hand-held light pen which enabled
the user to identify points on the display. (The light pen achieved the same effect as
a modern mouse and cursor.)

Despite its apparent enthusiasm for Elliott’s graphical display system, ICL
showed little interest in maintaining the existing 4100 machines or their peripher-
als. Largely because of this, three ex-Elliott-Automation engineers founded
Systems Reliability Ltd. (SRL) at Luton in 1968, as described in Chap. 14.

According to [7] manufacture of the 4100 series ceased in 1970. It is not known
when the last 4100 was retired from active service but it is likely to have been at
the beginning of the 1980s.

The 4100 series machines were based on bit-paralle]l CPUs employing silicon
transistors. For each of the 4120 and 4130 computers, there was originally a choice
of ferrite core store: either 2- or 6-us cycle time. The 4130 had a faster CPU and
implemented floating-point operations in hardware. Floating-point was performed
by software extracodes in the 4120. The Autonomous Transfer Unit (ATU) was an
add-on extra for the 4120 but was built into the main cabinet of a 4130. The
comparative figures given in Table A7.1 are taken from [8], which is dated
October 1967.

The physical dimensions of a basic Elliott 4130 processor were: height 63.5 in.
(161 cm), width 70 in. (178 cm), depth 26 in. (68.5 cm), weight 1,040 Ib (450 kg)
and power consumption 2 kVA.

Table A7.1 Overall characteristics of Elliott 4100 series computers

4120 4130
Word length, bits 24 24
Number of instructions per word lor2 lor2
Max. installed memory at 2 ps cycle time 64K words 256K words
Fxpt ADD time, direct addressing mode, with 6 ps store 12.0 ps 12.0 ps
Fxpt ADD time, direct addressing mode, with 2 ps store 5.6 us 4.5 ps
Fxpt MPY time, direct addressing mode, with 6 ps store 67.0 ps 22.0 ps
Fxpt MPY time, direct addressing mode, with 2 ps store 60.6 ps 15.0 us
Floating-point hardware? No Yes

Flpt ADD time, direct addressing mode, with 2 ps store 199 ps 15 ps
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A7.2 Systems Architecture and Visible Registers

The Elliott 4100 series’ 24-bit word employed two’s complement representation for
integers, as did all Elliott computers. Single-address format instructions were either
short (12 bits) or long (24 bits). A long instruction may be split across two consecu-
tive memory locations, in which case the instruction takes a little longer to execute.
The program counter, S, refers to the half-word address of the next instruction. The
effect of obeying an instruction in the second half of a word which has just been
altered by the instruction in the first half of the same word is not defined. For many
applications, four 6-bit characters were stored per word.

Roger Cook has commented retrospectively [3] that: ‘I (wrongly?) decided that
a 6 bit (rather than 8 bit) character would be cost effective — having been told that
memory was “quite expensive”’. When held in memory, floating-point numbers
were normally rounded and packed into two words containing 39 bits of mantissa
and 9 bits of exponent (see also Sect. A7.3).

As is described later, the Elliott 4100 series had a much more powerful reper-
toire of addressing modes than previous Borehamwood computers. The series also
implemented a neat and comprehensive mechanism for handling the various condi-
tion-bits (e.g. accumulator sign, overflow, interrupt, etc.) that contribute to the cur-
rent status of a computer. Roger Cook has observed [3] that: ‘As much as possible
of the internal operation was to be available to the programmer (eg interrupts, busy
etc) and was to be mathematically consistent’. The concept of a stack, as used for
example in block-structured languages, is given hardware support — see the MVE
and MVB instructions given in Sect. A7.3. There was hardware assistance for pack-
ing and unpacking characters. A distinction was made between the three forms of
shift, namely logical, arithmetic or circular. There was a flexible set of instructions
for register-to-register moves. Finally, the Elliott 4100 series had a Standard
Interface for all input/output devices, the physical manifestation of which was a
standard plug and socket arrangement for all peripherals.

Short instructions for the Elliott 4100 series have six function-bits (i.e. the
op code) and six address bits, thus only giving access to the first 64 memory loca-
tions for operands.

Short format instructions:

6 6
F N
Op code Address

For short instructions, the octal value of the F-bits lies in the range 00-37.
Almost all of the 32 short instructions are duplicated by long instructions that offer
richer addressing modes. Thus, short instruction op codes 00-27 generally have the
same arithmetical or logical definitions as long instructions that have op codes in
the range 4067 (see lists in Sect. A7.3).
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The layout of long, 24-bit, instructions is as follows:

Long format instructions:

6 2 1 15
F Y z N
Op code Addressing mode Extracode indicator Literal or address

For long instructions, the octal value of the F-bits lies in the range 40-77. The
values of the Y-bits denote the addressing mode, as follows:

Literal (N is treated as a positive integer — i.e. not signed)

Direct (N is an absolute address)

Modified (the contents of R is added to N to give the final address)

Indirect (the contents of memory location N gives the address of the operand)

WN=-=CO

When using modified or indirect addressing, bits 16-22 of the final address must
be zero. This gives the effect of being able to address a maximum of 256K words,
in blocks of 64K words.

The Elliott 4100 has the following programmer-accessible registers. When
describing digit positions, the 4100 convention is that bit 24 is the left hand (most
significant) position and bit 1 is the least-significant position.

Size, bits Description
M 24 Main accumulator
R 24 Reserve accumulator, also used as the address-modification
register, etc.
S 17 Program-counter, also known as the sequence-control register
K 12 Count register
C 14 Conditions register. Bits 16-7 are unallocated. The remaining C bits are

assigned as follows (according to an amalgamation of the information
contained in [1, 8])

c24 Result negative, denoted by Neg in the instruction listing given below

c23 Result standardized, denoted by St

c22 Result non-zero, denoted by Nz

c2l Carry out from ms accumulator bit during addition or subtraction,
denoted by Ca

c20 Arithmetic overflow, denoted by Of

cl9 Normal interrupt permit

cl8 Attention interrupt permit

cl? Invalid information transfer

c6 ~-cl These give the state of six manual switches on the operator’s console

The C bits can be inspected in toto by transferring C into the accumulator, M,
by the 700/520 instruction (see below). In some instances, a 24-bit link is formed
by adding the current value of the program counter S to bits 24-18 of C, thereby
preserving the essential control state of a program in a compact form prior to enter-
ing a subroutine.



Appendix 7 601

A7.3 Elliott 4100 Series Instruction Set

In the instructions listed below, m is the contents of M, r is the contents of R, s is
the contents of S, and k is the contents of K. Primes indicate the new values at the
conclusion of an instruction, a notation chosen in this book to be compatible with
the other instruction sets described in Appendices 2-6. It is significant that, in the
original Elliott-Automation documentation for the 4100 series [1, 8], the Algol
symbol for ‘becomes equal to’ ( ;=) was used instead of primes, yet another hint
that the architecture of the 4100 series computers was oriented towards the needs
of high-level language compiler writers. In the list below, square brackets indicate
‘contents of address’; thus, [r] means ‘the contents of location addressed by the R
register’. There are four 6-bit characters per word; these are denoted by {a, b, c, d},
where a is stored at the most significant end of the word.

There are several choices of operand-addressing for each combination of the F
bits (the op code), depending upon how the Y bits are to be interpreted. Rather than
showing every option explicitly in the listing below, we show the action for short
instructions and then the action for long instructions. For the latter, three possibili-
ties are distinguished in the listing below:

a. The action is independent of the setting of the Y bits.
b. A specific action is defined for the combination Y = 0.
c. A specific action is defined for the cases of Y = 1, 2 or 3.

In the listing below, these three cases are distinguished by filling in the Y col-
umn by: (a) nothing, (b) y = 0; and (c) y = 1,3. Finally, the actions for the shift
instructions, the register-to-register instructions, the input/output instructions and
the extracode instructions also depend upon the values of the N digits. For clarity,
these four sub-groups of instructions are listed separately, after the straightforward
computational orders have been described. Since the Z field in an instruction is zero
for all except extracodes, the Z field has been omitted from all but one of the sub-
sections below. The values of the F-bits are given in octal below.

The behind-the-scenes hardware decoding of the F, Y, Z and N fields of a long
instruction is complex. For this reason, the documentation issued to users (e.g. [8])
laid emphasis on assembly-language mnemonics, rather than on bit-patterns, when
tabulating instructions. The mnemonics, reproduced below, are those used in the
NEAT (National Elliott Assembly Technique) and the SAP (Symbolic Assembly
Programming language) programming manuals. Roger Cook remembers [3] that:
‘The symbolic names for the instruction codes were specified by NCR — (we [at
Borehamwood] tended to program using the basic numerical codes).’

Group A: straightforward short and long instructions

F(short) F(long) Y Principal action(s) Description Mnemonic

0o 40 m =m+Q Add, using main ADD
accumulator

01 41 m=m-Q Subtract SUB

02 42 m=Q-m Reverse-subtract NADD

(continued)
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(continued)
F(short) F(long) Y Principal action(s) Description Mnemonic
03 43 m = Load accumulator LD
04 44 r=Q Load reserve accumulator LDR
05 $=0;C, =Ny Exit JIR
45 y=0 =N Unconditional jump J
45 y=13 §=Q Unconditional jump JI
06 46 m=m&Q Logical AND AND
07 47 m=mé&~-Q Logical AND NOT ANDN
10 50 r=r+Q Add, using reserve ADDR
accumulator
11 51 r=r-Q Subtract SUBR
12 52 r=Q-r Reverse subtract NADR
53 y=0 0=, ,+s5s=s+N Subroutine entry, addr JFL
zero for link
13 53 y=13 0=, .+ =Q Subroutine entry, addr JIL
zero for link
14 54 k'=Q Load K, the count LDK
register
15 Shift instructions — see explanation below
55 compare (m — Q) Set the conditions COMP
register accordingly
16 56 y=0 §=s+N Unconditional relative JF
jump forwards
56 y=13 s=s5s+Q Unconditional relative JA
jump forwards
17 57 y=0 ¢§=s-N Unconditional relative JB
jump backwards
57 y=13 §=s5-Q Unconditional relative IS
jump backwards
20 60 y=0 ifNegthens’'=s+Q Relative jump forwards  JN
if negative
21 61 y=0 ifnot Negthens’=s+ Q Relative jump forwards  JNN
if not negative
22 62 y=0 ifnot Nzthens’=s+Q Relative jump forwards JZ
if zero
23 63 y=0 ifNzthens’=s+Q Relative jump forwards  JNZ
if non-zero
24 64 y=0 ifStthens’=s+Q Relative jump forwards  JST
if standardized
25 65 y=0 ifOfthens’=s+Q Relative jump forwards  JOF
if overflow
26 (unassigned?)
27 67 y=0 Kk=k-1ifk,=1 Decrement, test and DKIN
thens’ =s+Q jump if
30 60 y=13 Q=m Store accumulator ST
3] 61 y=13 Q=r Store reserve accumulator STR
32 62 y=13 Q=-Q Negate the contents of NEGS
memory
33 63 y=13 Q@=Q-m Subtract acc from store ~ SUBS

(continued)
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(continued)
F (short) F(long) Y Principal action(s) Description Mnemonic
34 64 y=13 Q=Q+m Add acc to store ADDS
35 65 y=13 Q=0 Clear memory location  CLS
36 66 y=13 Q=Q+1 Increment memory INCS
location
37 67 y=13 Q=Q-1 Decrement memory DECS
location
70 y=0  Register-to-register moves — see explanation below
70 y=13 Q' =Q(bcda);m’ = Fetch next character GET
m(abc)Q(a)
71 y=13 Q =Q(bcd)ym(d) Store next character PUT
72 y=13 m’ =(m)Q Divide, double-length DIVM
73 y=13 (m) =(m)xQ Multiply, double-length MULM
74 y=13 m’=Q;[r]'=m;r’ =r- 1 Pop up from a stack MVE
75 y=13 Q=m;m’={r];r =r+ | Pushdownonto a stack MVB
76 y=13 swapQandm Exchange values EXC
of Qand m
77 y=13 swapQandr Exchange values EXCR
of Qandr

The input/output instructions, for which the F bits = octal 74-77 and for which the
Y bits = 0, are described later.

Group B: shift instructions.

The shift instructions, which are short orders for which the F bits = octal 15, use
the N bits to determine the mode of shifting (i.e. left or right, logical, arithmetic or
circular) and the K bits to determine the number of places shifted. The list of per-
mitted possibilities is as follows, in which the value of the six N digits is given in
octal:

F N Action Mnemonic
15 00 Shift r left arithmetically k places SRL
15 01 Shift r left circularly k places SRLA
15 02 Shift r right arithmetically k places SRR
15 03 Shift r by k 6-bit characters circularly left SRLC
15 04 Shift m left arithmetically k places SML
15 05 Shift m left circularly k places SMLA
15 06 Shift m right arithmetically k places SMR
15 07 Shift m by k 6-bit characters circularly left SMLC
15 12 Shift r right logically by k places SRRL
15 16 Shift m right logically by k places SMRL
15 20 Shift r until standardized, or k places, whichever is less SRST
15 24 Shift m until standardized, or k places, whichever is less SMST
15 40 Shift both m and r arithmetically left k places SBL
15 42 Shift both m and r arithmetically right k places SBR
15 52 Shift both m and r logically right k places SBRL
15 62 Shift m and r until standardized, or k places, whichever is less SBST

Group C: register-to-register instructions.
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The register-to-register instructions, which are long orders for which the F bits =
octal 70 and the Y bits = 0, use the N bits to define the registers involved. The list
of assigned combinations, for which the value of the 15 N digits is given in octal,
1s as follows:

F Y N Action Mnemonic
70 0 00020 r=k KTOR
70 0 00402 r=m MTOR
70 0 00404 r'=s STOR
70 0 00441 1 =r+ |if carry set CAIR
70 0 00541 r’ =r-1 if carry set CADR
70 0 01001 m =r RTOM
70 0 01003 m=mORT MORR
70 0 01010 m'=c CTOM
70 0 02001 s'=r RTOS
70 0 02002 s'=m MTOS
70 0 04002 c¢'=m MTOC
70 0 10001 k'=r RTOK
70 0 10002 Kk'= MTOK
70 0 10201 K'=-r RNTK
70 0 21000 m’ = interrupt word (see below)  ITOM
70 0 41000 m’ = attention word (see below)  ATOM

Group D: input/output instructions.

The input/output instructions, for which the F bits = octal 74—77 and for which the
Y bits = 0, use the first three octal digits of N to supplement the F bits. The last two
octal digits of N, denoted as nn below, define the peripheral channel number. The 4100
Standard Interface normally provides for up to 12 independent, asynchronous, input/
output channels (with extra channels as an option, up to 14?). Each channel can call
for either of two types of program break: an Interrupt or an Attention. Two 12-bit loca-
tions, the Interrupt word and the Attention word, are provided and each may be
inspected by program using the ITOM and ATOM instructions above. Beneath this
level, a hardware Hesitation (high-priority interrupt) is also provided for use with
devices using hardware-assisted autonomous data transfers (ADT) and cycle-stealing.

An optional hardware Autonomous Transfer Unit organizes bulk data transfers via
cycle-stealing in a manner independently from the main CPU. Thus, input/output
activity could be interleaved with normal computing. Up to three packed transfer units
and one unpacked transfer unit may be included in an Autonomous Transfer Unit.

The 4100 Standard Interface has 8 data-in lines, 8 data-out lines, 3 interrupt
lines and 11 other control, status and timing signals. The input/output instructions
for peripheral channel nn are as follows:

F Y N Action Mnemonic
74 0 000nn  Input data packed repetitive IDPR

74 0 100nn  Output data packed repetitive ODPR

74 0 200nn  Input data unpacked repetitive IDUR

74 0 300nn  Output data unpacked repetitive ODUR

(continued)



Appendix 7 605

(continued)

F Y N Action Mnemonic
75 0 000nn  Input status word packed repetitive ISPR

75 0 100nn  Output control word packed repetitive OCPR

75 0 200nn  Input status word unpacked repetitive ISUR

75 0 300nn  Output control word unpacked repetitive OCUR

76 0  200nn  Input data unpacked single to m IDUM

76 0 300nn  OQutput data unpacked single from m ODUM

77 0 200nn  Input status word unpacked single to m ISUM

77 0  300nn  Output control word unpacked single fromm  OCUM

Group E: Extracodes.

When Z = 1 and the F-bits are in the octal range 40-77, an extracode instruction
may be indicated, though only about 26 of the available F-bit combinations are
allocated as actual extracodes. The action upon encountering an extracode instruc-
tion, as deduced from [1], varies according to whether the Y bit (i.e. the address-
mode bits) are zero or in the range 1-3, as follows:

Action for literal address mode (Y = 0):

a. Place N in memory location 1

b. Place the link (c,, _,, +S) in memory location 2;

c. Jump to a memory location given by twice the value of the F-bits, that is to one
of the even-numbered locations in the range 64—126 inclusive. This is then the
start of a standard subroutine for implementing the extracode.

Action for other addressing modes (Y = 1, 2 or 3):

a. If Y = 1 then place N in location 1, or
If Y =2 then place (N + r) in location 1, or
if Y = 3 then place the contents of address N in location 1;

b. Place (c,, , +S) in memory location 2;

c. Jump to a memory location given by twice the value of the F-bits plus 1, that is
to one of the odd-numbered locations in the range 65-127 inclusive.

The extracodes are now listed, with F, Y, Z and N being given in octal except that, for
the Y field, a ‘y’ indicates any number in the range 1, 2 or 3 and for the N field, an ‘n’
indicates any valid address. Note that the 14 floating-point extracodes are implemented in
hardware on the Elliott 4130. On the 4130 where hardware is used, the mantissa occupies
48 bits within CPU registers and the exponent 12 bits. This friple can be accessed col-
lectively via the WUF and FLU extracodes (see below). When held in memory, floating-
point numbers are normally rounded and packed into two words containing 39 bits of
mantissa and 9 bits of exponent. The following abbreviations are used in the list below:

fpa = floating-point accumulator;

fQ = the floating-point operand held in locations Q, Q + 1;

dQ = the double-length operand held in locations Q, Q + 1;

tQ = the triple-length operand held in locations Q, Q + 1 and Q + 2.
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F Y Z N Action Mnemonic
40 0 1 0 fpa’ = - fpa FN

40 0 1 2 fpa’ = integer m in floating-point form FCP
40 0 1 4 fpa’ = modulus (fpa) FMOD
40 0 1 6 m’ = entier (fpa) FENT
41 0 1 10 Iffpa<0,m’ =~ 1;iffpa=0,m =0;iffpa>0,m =1  FSIG
40 y 1 n fpa’ =1Q FL

4 0 1 O Copy to lower address CTLA
41 0 1 1,000 Copy to higher address CTHA
4 y 1 n fQ’ =fpa WF

42 y | n fpa’ = fpa+ fQ FA

43 y 1 n fpa’ = fpa—fQ FS

4 y 1 n fpa’ = fpa x fQ FM

45 y 1 n fpa’ = fpa/fQ FD

46 y | n set ¢,, ,, from (fpa - fQ) FCP

50 y 1 n m=mxQ MULS
51 y 1 n m’ = m/Q; r’ = remainder DIV

52 y 1 n (r,m)’ =Dq BL

53 y 1 n dQ’ = (r,m) WB

54 y 1 n Jump indirect and restore link JIRX
55 y 1 n Jump indirect JIX

56 y 1 n Jump indirect, setting link JILX
57 y 1 n Access chapter item with index Q, placing its addr in R INDEX
60 y 1 n fpa’ = tQ (unrounded representation) FLU

61 y 1 n (Unrounded representation) WUF
77 0 1 n nth letter of alphabet displayed (on console) TR

77 'y 1 n Q displayed in octal (on console) CH

The INDEX instruction in the above list assumes that a program’s memory-

space is organised into chapters — see also under SPAN in the next section — and
that a particular chapter contains some form of structured data such as an array or
table. If an INDEX instruction is issued with the address of a codeword (or descrip-
tor) in R, then the address of the ith element of the data-structure to which the
codeword points is placed in R.

A7.4 Operating Systems, Time-Sharing
and Multiprogramming Facilities

According to [9], there was originally an intention to provide hardware assistance
for multiprogramming. The 4130 was intended to offer two programming environ-
ments: Executive Mode and Protected Mode. Under the latter, which was to be the
normal user mode when the multiprogramming system was in operation, a program
was restricted to its allocated area of memory and was limited in its use of periph-
eral devices. An Alarm Clock was to be provided that set a limit on the time for
which a particular user program could run within Protected Mode before
being terminated. Within Protected Mode, core store was to be allocated to a user
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program via two 10-bit registers that gave the Base address and the Range of per-
mitted memory. Any attempt to access a location outside the permitted area would
cause the user’s program to be suspended and Executive Mode entered.

To facilitate the above proposed multiprogramming environment, several addi-
tional Elliott 4130 instructions were suggested, including:

EXEN Enter Executive Mode
PMEN  Load the Base and Range registers and the Alarm Clock setting and then enter
Protected Mode

It is believed that the above multiprogramming facilities were seldom activated
for the Elliott 4130 computer, except in the KOS operating system described later.
An Alarm Clock, actually known as the Real Time Clock, was, however, provided
as standard for the 4130 and as part of the Autonomous Transfer Unit for the 4120.
This produced an interrupt once every second and could be set to ‘ring’ by transfer-
ring data after N seconds.

From [10] it is deduced that the default operating system for Elliott 4100 comput-
ers in the period from 1965 to 1968 was the Systems Executive known as EASE.
This consisted of three sections: NICE (Normal Input and Control Executive), SPAN
(Storage Planning and Allocation) and TSS (Time Sharing Supervisor). It is believed
that the three sections of EASE constituted independent modules, as follows.

NICE was a simple Executive that enabled an operator to input relocatable
binary paper tapes, enter a named program, remove a program, cause a printout of
an area of memory, etc.

SPAN handled the housekeeping for information transfers between primary
memory (core) and secondary memory (e.g. disc pack). It assumed that a program’s
storage space was divided into chapters, each containing one or more blocks, each
block containing one or more entry points known as labels. A program may call
upon one or more of SPAN’s routines, which include the following utilities:

ALLOC asks SPAN to reserve space (in primary memory) for a chapter. This may result in
the response No Room if SPAN cannot find sufficient space

DELETE frees up space no longer needed by a chapter
BANISH move a chapter to secondary storage
RECALL bring a chapter into primary storage

TSS was available to look after Interrupts and Attentions coming from each
Standard Interface channel, transferring control to a routine appropriate for each
peripheral device. The Elliott 4100 series defines three levels of program priority,
the highest being called the Interrupt level, the intermediate one being called the
Attention level and the lowest level being that of normal computation. There exist
appropriate TSS routines running at each level. Transfers to/from a level within
TSS occur either as a result of an Interrupt or Attention signal or as a result of
subroutine entry/exit. TSS organises queues and buffers as appropriate, for input/
output transfers.

An early in-house Elliott 4100 operating system used on the commissioning
floor at Borehamwood was called SysD (System D). This offered ‘a very simple
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system control vocabulary, was interactive on the Selectric typewriter, and made it
easy to load and run paper tape based programs’ [11].

By the 1970s, it is thought that several other operating systems had been imple-
mented for Elliott 4100 series computers. DES (Disc Executive System) was a
standalone operating system used by individual large users, for example when
working overnight and at weekends. It allowed programs to access the whole of
physical memory. DES2 had a ‘slave’ area of memory where a second program
could be run in tandem with the first program. DES BATCH was the batch job
operating system, used for example in computing service environments.

DES reflected the fact that the Elliott 4100 series was amongst the first
Borehamwood products to offer disc packs as standard peripherals. Disc (or disk)
memory — in fixed or exchangeable form — was one of the significant innovations of
the mid-1960s. Disc storage as an intermediate, direct-access, medium between core
primary memory and magnetic tape backing store had begun to make its presence felt
in the late 1950s, following the trend set by IBM in 1956 with their IBM 305 RAMAC
product — as mentioned in Chap. 10. However, a few years were to elapse before disc
technology made a significant impact upon the design of standard operating systems.
The disc equipment offered for the Elliott 4100 series computers in 1967 consisted of
ten disc surfaces, each with 100 tracks split into 16 sectors of 64 words. The on-line
capacity was therefore about one million words. The read-write heads took about 100
ms to traverse 33 tracks and, once the desired cylinder of tracks had been reached, the
mean access-time was 12.5 ms and a sector could be transferred in 1.5 ms [8].

Elliott 4100 series computers were installed at several UK Universities, where they
inspired systems software developments by the academic users (see also Sect. 8.5). The
University of Kent at Canterbury was especially active, being responsible for the Kent
On-line System KOS [12], a simple multi-access operating system which allowed both
batch use and on-line terminals simultaneously. KOS, implemented on an Elliott 4130
in the period late 1968 to early 1970, supported a fully conversational incremental
BASIC compiler via eight teletype terminals [13]. The development of the BASIC
compiler was a joint venture between Kent and the University College of North Wales.

Another, unrelated, on-line multi-access system had come live in 1967 when the
functional language POP-2 and Multi-POP was implemented on an Elliott 4120 at the
Department of Machine Intelligence and Perception at Edinburgh University [14]. As
further evidence of the interest amongst researchers in the Elliott 4130’s features, the
Institut de Programmation at Orsay (south of Paris) of the Institut Blaise Pacal
ordered a 4130 in 1967 ‘pour le time sharing et le conversationnel’. To quote [15],
‘We are about to receive an Elliott 4130, equipped for time-sharing use, and possess-
ing a wired structure which will enable us to develop advanced studies on program-
ming systems, memory hierarchy management, handling of virtual memories.’

Returning to KOS, it is worth quoting Peter Brown, the leader of the KOS devel-
opment team at Kent, because of his appreciation of some of the Elliott 4130’s more
advanced features [12].

‘The 4130 has two modes of operation, namely executive mode and slave mode.
The latter, however, has been completely ignored until very recently and virtually all
programs, whether written by the manufacturers or by users, have run in executive
mode. The slave mode of operation uses the well-known base and range register
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technique. There is an important sub-mode of slave mode, called pure procedure
mode. (The manufacturers call it common program mode.) This has influenced the
design of KOS more than any other hardware feature. In pure procedure mode the
program instruction counter is absolute and it is only data references that are sub-
ject to the addition of the base. Using this hardware, a single program can control
any number of slaves. A slave is simply an area of workspace, and the slave that is
active at any one time is determined by the setting of the base and range registers.

‘“There is a further hardware feature that allows for pure constants. Each pure
procedure can have its own data area which contains all true constants, i.e. all data
whose value is set at load time and not subsequently changed. When using pure
procedures, it is best to place tables and error messages in this data area, so that
there will only be a single copy of them rather than one copy in each slave area.

‘The pure procedure mode of the hardware and its ease of use radically changes
the economics of time sharing for the 4130. For multi-access work the 4130 is at
its most efficient when there are one or more pure procedures, remaining perma-
nently in store while they are in use, being shared by several jobs. For example,
there might be two pure procedures in use, a compiler and an application package;
three console users and a card-to-printer job might be using the compiler, and four
other console users might be using the application package. All should enjoy excel-
lent response time. Moreover, if the pure procedures are always resident in core
there is no overhead in providing fully conversational working.’

KOS allowed both the Algol and the Fortran compilers to be resident in the
batch stream [16]. Brian Spratt, at the time the Director of the Computing Service
at the University of Kent, remembers [16] that KOS proved very successful and
was adopted by several of the other UK universities that used Elliott 4130 comput-
ers in their Computing Services for running student’s programs. ‘The Computer
Board [which administered UK academic computing resources] was quite pleased
and we (ie Kent and nine other universities) all had 64K 2 microsecond store
upgrades approved. But our (Ex Elliott) computer manager Des Caul managed to
upgrade the system with the original 6 microsecond store to give us a total of 96K
memory. The other 4130 sites quickly adopted this arrangement.” In all, Elliott
4100 series machines were delivered to about 18 UK universities and about five
technical colleges — see the delivery lists in Appendix 8.

Peter Brown ends his description of KOS by comparing KOS with the Elliott/ICL
software currently available in 1971 for the 4130 and states [12] that ‘the manufac-
turers have recently introduced a new multi-programming operating system.
Currently this is little used but it will, no doubt, gradually find wider usage’.

In contrast to the enthusiasm at Kent, Leicester University never used KOS on
its large 4130 installation consisting of 65K words of 2-ps core store, an
Autonomous Transfer Unit and eight magnetic tape decks. Leicester’s original
operating system was T30C, essentially a batch processor. John Thompson, who
ran the Leicester Computing Centre, has commented thus [17]. ‘Algol fitted the
Elliott software environment perfectly, but the Fortran team were adamant that one
could not have a Fortran system in that framework and designed their own from
scratch. So T30C essentially had to dump one system and spool in another in order
to change language. For speed, we allocated three tape drives to the system because
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we could afford to. The Fortran compiler was pretty awful (we were finding bugs
for ages and Elliott were slow to fix them) and certainly one could not access the
top half of the store. (Whether one could in Algol I cannot remember, but most of
the big linear algebra calculations were in Fortran, as were imported programs such
as IBMOL..) When we finally got hold of the Fortran compiler details - by which I
mean a poorly annotated listing - I was able to jury rig the thing so that a particular
named COMMON block, /ZZZZ/ actually, resided in the top half of the store.’
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