A GUIDE TO PROGKAMMING

THE NATIONAL-ELLIOTT 803

ELECTRONIC DIGITAL COMPUTER

o)

COMPUTING DIVISION

A GUIDE TO PROGRAMMING

THE 803

ELECTRONIC DIGITAL COMPUTER

5th Edition
June 1962

Copyright Reserved

Elliott Brothers (London) Ltd., Computing Division,
Elstree Way, Borehamwood, Hertfordshire, England.

NCR Electronics, National Cash Register Co. Ltd.,
206-216 Marylebone Road, London, N.W.1.

The information contalned in this guide is issued for instruc-
tional purposes only, and 8oes not constitute a specification of the
equipment described. The main part of the text iswritten with reference

to the basic 803 computer, while an appendix describes the Automatic
Floating-point unit.

CHAPTER 1

1.1

1.2

1.3

1.4

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6

2.1

CHAPTER 3

3.1
3.2
3.3
3.4

3.5

CONTENTS LIST

INTRODUCTION

General

The Component Parts of the Computer

- Figure 1. Theoretical Block Diagram
Form of Instructions

Transfer Instructions

REPRESENTATION OF DATA AND INSTRUCTIONS

General

Representation of Numbers within the Computer
Scaling

The Overflow Indicator

The Telecode

Representation of Instructions

Store Parity Checking

THE INSTRUCTION CODE

Group 0
Groups 1 to 3
Group 4
Group 5
Group 6

Group 7

Page

13
14
15

16

17
18
18
21
26

27

CHAPTER 4 B-LINE MODIFICATION AND SUBROUTINES

Page
4.1 B-Line Modification 31
4.2 Subroutines 33
CHAPTER 3 INPUT ROUTINES
5.1 The Initial Instructions 36
5.2 The Translation Input Routine, DI 2 37
5.3 Example 20: A Complete Programme 40
CHAPTER 6 THE KEYBOARD
8.1 Description of the Keyboard 45
6.2 Manual Control of the Computer 47
6.3 Recent Additions to the Keyboard 49
Appendix 1 The ELLIOTT Telecode 51
Appendix 2 Powers of 2 in Decimal 52
Appendix 3 The 803 Instruction Code 53
Appendix 4 A. Functions which can cause Overflow 58
B. The Accuracy of the Division Process 58

Appendix 3 The Automatic Floating-point Unit 60

CHAPTER 1 INTRODUCTION

1,1 genersl

The 803 is a general purpose electronic computer. It solves
problems by obeying previously prepared programmes of simple instructions
automatically and at high speed: the term "general purpose" is used to
indicate that programmes can be written for a very large variety of
applications. Once the programme required to solve one problem has been
prepared, it can be used time and again for the solution of similar
problems.

The writer of a programme, or programmer, requires a detailed
understanding of the problem which is to be solved, together with the
ability to express the solution as a sequence of elementary arithmetical
steps.

This guide comprises an introduction to programming, with
particular reference to the 803, and it is specifically intended for the
reader with little or no programming knowledge.

An extensive collection of programmes is available for use
with the 803, and full details are given in the publication "The Elliott 803
Library of Programmes". Reference is made to some of these in this guide,
and it 1s shown that use can be made of them to reduce the work of solving
new problems.

1.2 The Component Parts of the Computer

Pig. 1, overleaf, shows the parts of the computer with which
the programmer is concerned. There exist also, of course, control and
arithmetic units, which respectively cause and enable the computer to
carry out its programme., Detalled knowledge of these devices is not
essential to a programmer.

1.2.1 The Store

The instructions to be obeyed and the data to be used in a
calculation are placed in the store before the calculation commences, and
remain there until actually required, when they pass from it to the con-
trol and arithmetic units at a suitably high speed. Without such an
arrangement, the effective speed of the computer would be limited by the
delays incurred in feeding each instruction and number in, and taking out
each answer, including intermediate answers, by some manual or mechanical
method.

The store of the 803 is divided into many different compartments
termed locations; there may be 1024, 2048, 4096 or 8192 of these. Each
location can hold one gord, that is: one number or two instructions.
The locations are numbered from 0 upwards, the number of each location
being referred to as its address. The word stored inalocation, whether

1

it be a number or two instructions, is termed that location’'s content,
e.g. the word stored in the location whose address is 456 is "the content
of location 456, which is written *C(456)".

INPUT
TAPE READER

|

KEY -

AUXILIARY
ACCUMULATOR
BOARD REGISTER

]

STORE

|

OUTPUT
TAPE PUNCH

Fig.1 Theoretical Block Diagram of 803 Computer

In describing the action of the computer, the letter N will
frequently be used to represent the address of a location: C(N) therefore
indicates the "content of location N". 1In abridged notation, C(N) is
written n.

Locations 0 to 3 are reserved for a special purpose, as will
be explained later, but each of the remaining locations may be used for
instructions or data, the allocation being at the discretion of the
programmer.

1,2,2 The Accumulator and the Auxiliary Register

In most arithmetical operations there are two operands., The
usual manner in which 803 performs one step of a calculation is to take
one number from its store, and perform some arithmetical operation with
it and the number held in a device termed the accumulator., This device,
which is closely associated with the arithmetic unit, is capable of holding
one word. It is denoted by A, and its content by C(A). 1In abridged
notation, C(A) is written a.

In some operations an extension is required to the accumulator,
and this extension is called the auxiliary reglister.

1.2.3 The Input Tape Reader and Output Tape Punch

The tape reader is used for feeding instructions and data into
the computer before it carries out its calculations, and the tape punch
is used by the computer to pass out its results. Perforated teleprinter
tape, used in these devices, is a most convenient medium; for the input
tapes (programmes and data) may be readily prepared, and the output tapes
(results) readily interpreted, using standard teleprinter equipment,

Punched cards may also be used as an input medium. A separate
publication describes the method of use.,

2

1.2.4 Keyboard

This carries the push buttons, indicator lamps and other devices
which enable the operator to control the computer and check that it is
operating correctly.

1.3 Form of Instructions

) Bach instruction is composed of two parts, denoted by F and N,
of which:

P specifies the function, i.e. the operation to be performed, and
N is a number, which is either:

(1) the address of a location in the store, or
(i) a further specification of the function.

To distinguish between the two uses of the number part of an
instruction, we use N for the general case and for use (i), and N for use
(11).

1.3.1 Examples of Instructions

Name of Punction -Number Effect

Instruction F N

Replace 30 N The existing C(A) is deleted, and
replaced by a copy of C(N).

Subtract 05 N C(N) is subtracted from the exist-

ing C(A), which is deleted and re-
placed by the difference.

Note: neither of the above actions affects C(N) itself,

Exchange 10 N C(A) and C(N) are interchanged.

Double C(A) 55 N C(A) is doubled N times.
e.g. ifN=35, the new C(A) will be
32 times the old.

1.3.2 Example 1

suppose that, at some stage inacalculation, the two numbers x
and y are held in locations 5 and 6, and that it is required that (8x - y)
be placed in location 7, for use later on. The instructions which the
computer must obey to effect this are:

F N Contents after obeying each instruction
c(A) C(5) C(8) c(n
Initially.... ? x y ?
30 5 b 4 x y ?
58 3 8x X y ?
05 8 (8x~-y) x y ?
10 17 ? x y (8x-y)

As mentioned in 1,2,1, instructions are held in the store, two
instructions occupying one location. The instructions in the above
example could be held, for instance, in locations 100 and 101, To express
this we would write:

Address Instructions

F1l N1 P2 N2
100 30 5 55
101 05 6 10

The computer is designed to obey the two instructions in one
location, and then proceed with those in the next location, and so on,
automatically.

1,3,3 Exercise 1

Given the same starting point as that in Example 1, write the
programme needed to cause the following to be placed in location 7,

(a) 64x + 8y (see below)
(b) 2x - 4y
In (a), use will be needed of the following function:

Name F N Effect

Add 04 N C(N) is added to the existing
C(A), which is deleted and replaced by
the sum.

1.4 Transfer Instructions
1,4,1 conditional Transfers
Situations of the following type arise in many problems:

Two unequal positive numbers, p and q, are held in locations 8
and 9, and these must be rearranged, if necessary, so that the lesser is
in location 8, and the greater in location 9.

In order that the computer may determine whether a rearrange-
ment is needed, it is designed to carry out what are termed conditional
transfer functions, of which the following is typical:

Name P N Effect

Transfer to first 41 N If the number in the accumulator is posi-
instruction if tive or zero, the computer takes no action,
C(A) 1is negative. and proceeds to the next instruction in

normal sequence.

But if the number in the accumulator is
negative, the computer breaks normal se-
quence, proceeds to obey the first in-
struction in I,pcat ion N,and then continues
to obey instrictions in sequence from that
new point.

4

Exanple 2
The scheme to solve the problem posed above is:

Form the difference (p-q). If this is positive, a rearrangement
is necessary, 80 carry it out. But if (p-q) is negative, no rearrangement
is required, so the rearrangement must be omitted.

The programme is:

Address Instructions

Fl N1 P2 N2
150 30 8 05 9 Form (p -~ q) in accumulator.
151 41 153 30 8 If negative, omit these steps,
152 10 9 10 8 if positive, interchangep and q
153 Next part of programme.

1,4,2 Unconditional Transfers

In the case instanced above, the computer is required to deter-
mine whether "to do something™ or "not to do something". Where the
problem requires a discrimination between "doing one thing" and "“doing
another", an unconditional transfer function may be useful as acomple-
ment to the conditional transfer. Such a function is:

Name F N Effect

Transfer 40 N The computer breaks normal sequence,
unconditionally to : proceeds to obey the first instruction
first instruction -in-location N, and then continues to

obey instructions in sequence from
that new point.

Exasple 3

Two different positive numbers are held in locations 24 and 25,
and it 18 required to make both equal to the greater.

The scheme is:

Compare C(24) and C(25). If C(24) is greater, place a copy in
location 25 and proceed to next part of programme. If C(25) is greater,
place a copy in location 24, and proceed to next part of programme.

The unconditional transfer is used to effect the underlined step,
as the programme shows:

Address Instructions

Pl N1 P2 N2
250 30 24 05 25
251 41 253 30 24 If C(24) is greater, place a copy in

location 25, and skip the next two

252 10 25 40 254 instructions
253 30 25 10 24 If ¢c(25) is greater, place a copy in
254 Next part of programme. location 24,

Other Uses of Unconditional Transfers

It is not always convenient to have two parts of a programme
in adjacent sections of the store. For instance, in Example 3 the next
part of the programme might be in locations 500, 501,....

In such cases, an unconditional transfer instruction would be
inserted at the end of one section to cause the computer to transfer to
the next.

1,4,3 Exercise 2

() Expand the programme of Example 2 to deal with the case where
Cc(8), C(9) and C(10), all different positive numbers, have to be assem-
bled in ascending order of magnitude, using the following scheme;

Compare C(8) and C(9); if C(8) is greater, rearrange. Repeat
for C(8) and C(10). Repeat for C(9) and C(10).

(b) Place your instructions in locations 250 upwards and assume
that the next part of the programme is in location 700,

(c) Examine the effect achieved if two of the numbers are equal.

CHAPTER 2 REPRESENTATION OF DATA AND INSTRUCTIONS

2.1 g@eneral

All data and instructions are held in the computer in the form
of binary numbers, that is to say, they are represented by groups of 1's
and 0’s. Although ability in binary arithmetic is not essential to a
programmer, an understanding of the notation is required, and a brief
explanation follows.

Since there exist only the two digits 0 and 1, counting in the
binary scale proceeds thus:

One 1
Two 10
Three 11
Four 100
Five 101
8ix 110
Seven 111
Eight 1000

The digits represent, from right to left, the powers of 2,
i.e. 1, 2, 4, B etc,, just as in the decimal scale the positions repre-
sent the powers of 10, i,e. 1, 10, 100 etc. The binary number 1101
therefore represents. o

1.2°9 + 0,2! + 1,22 1..23 = 1+4+8 = 13

Similarly, in the representation of fractions, the digits to
the right of the binary point represent negative powers of 2, i.e., 1/2,
1/4, 1/8 etc., thus:

Binary Vulgar Decimal
.1 1/2 ' .5
.11 1/2 + 1/4 .15
.101 1/2 + 0 + 1/8 . 825

2.2 Representation of Numbers within the Computer

In any calculating device, some 1imit is imposed upon the range
of numbers which can be directly represented. For example, on the lower
scale of a standard slide rule the numbers run from +1 to +10, Yet it
is quite practicable to multiply .003 by -140 on the rule and obtain the
result -.42, provided appropriate scale factors are applied to each
operand and to the apparent result. 8Similarly, there is no real bar to
using any device for calculating with numbers outside the range which can
be directly represented,

7

follows:
(a)
(b)

(c)

(1)

(11)

(1i1)

(iv)

(d)

(v)

(vi)

(vil)

In 803 this range is from -1 to just less than +I, achieved as

In each word there are 39 digits.

The binary point is assumed to lie between the left-hand digit
and that next to it,

Positive numbers, between 0 (which is regarded as positive)
and the upper limit, 1 - 2°3% are represented directly by
words beginning with 0, thus:

0 0000 0000 0000 0000 0000 0000 0000 0000 0000 OO
Zero
0 1010 1000 0000 0000 0000 0000 0000 0000 0000 00
1/2 + 1/8 + 1/32 = 21/32 ; . 85825
0 0000 0000 0000 0000 0000 0000 0GOO 0000 0000 O1
2738, the smallest possible positive number.
0 1111 1111 1111 1111 1111 1111 1111 1111 1111 11
2°1 4 272 4 23 4, ..., #2738 - 1 _ 2-38
the largest possible positive number.

Negative numbers, between -1 and -2° “. are represented by words
beginning with 1, on the basis that the negative number (-x) is
represented by (2 - x), thus:

1 o101 1000 0000 0000 0000 0000 0000 0000 0000 00

this is 1 + 1/4 + 1/18 + 1/32 = 1 u

32
which 1s (2 - %%). so the word represents :%%. (See footnote)

1 0000 0000 0000 0000 0000 0000 0000 0000 0000 00
represents -1, the largest possible negative number.
1 1111 1111 1111 1111 1111 1111 1111 1111 1111 11

represents -2-3%, the smallest possible negative number.

A quicker way of ascertaining the value of this negative number

i{s to write -1 for the first digit, and then + 1/4 + 1/18 + 1/32 for the
other "ones": adding gives ~21/32 directly.

(This technique gives rise to an alternative explanation of

the representation of negative numbers, namely that the first digit is
-1 ahd the remainder are + fractions. This is misleading, for the com-
puter treats all digits as positive.)

This method of negative number representation is most satisfac-
tory, for if the computer is made to add the two words representing 5/8
and -1/2 1t actually adds 5/8 to 1 1/2 and tries, therefore, to produce
the number 2 1/8, which would be

10 0010 0000 0000 0000 0000 0000 0000 0000 0000 0O

But there is no room in the word for the extra digit on the
left: this is therefore lost, and the result appears as

0 0010 0000 0000 0000 0000 0000 0000 0000 0000 0O

which is the proper representation of 1/8, the correct answer,

Similarly, all additions and subtractions are carried out
correctly, provided that the true answer lies between -1 and 1 -2°38,
Multiplication and division are also correctly performed.

2.2.1 B8ign Digit
The left-hand digit indicates the sign of a number, being 1
for negative numbers and 0 for zero and positive numbers, For this rea-
son it is called the sign digit.
2,2.3 cComplementing
Given the computer form of any number except -1
e.g. 0 1110 1000 0000 0000 0000 0000 0000 0000 0000 00
or 1 1111 1111 1111 1111 1111 1111 0101 0011 0110 11
to find the computer form of the equivalent negative number:

(1) Working from right to left, write down 0 for all 0’s, if any,
found before the first 1 is encountered.

(11) Write down 1 for this 1.
(111) Thereafter write 1 for 0 and 0 for 1.
Thus the negatives or "complements" of the above examples are
1 0001 1000 0000 0000 0000 0000 0000 0000 0000 0O
and 0 0000 0000 0000 0000 0000 0000 1010 1100 1001 O1

2,3 Becaling

(This section should be treated lightly at first
reading, and re-read later when needed.)

9

Most problems require calculations to be done with numbers
which exceed unity in magnitude. It is therefore generally necessary
to scale all numbers by a suitable factor, as in the example of the slide
rule, We now examine this question and look at number representation
from a fresh angle.

Consider the number 53 which, in binary, has the six digits
110101, 1If we wish to construct a computer word to represent 53, we must
add thirty-three zeros to make up a set of thirty-nine digits., These
may all be placed to the left of the 110101, or some may be placed to
the right and some to the left, thus:

(a) 0 0000 0000 0000 0000 0000 0000 0000 0000 1101 01
(b) 0 0000 0011 0101 0000 0000 0000 0000 0000 0000 00
(e) O 1101 0100 0000 0000 0000 0000 0000 0000 0000 0O

Oof these, (b) is an intermediate case, chosen at random, but
(a) and (¢) represent extremes. For if we try to place the 110101 any
further to the right than (a), some digits will be lost, whilst if we
place it any further left than (c¢), say:

(d) 1 1010 1000 0000 0000 0000 0000 0000 0000 0000 00
or (e) O 1010 0000 0000 0000 0000 0000 0000 0000 0000 00

either the result is "negative", as in (d) or digits are lost,
as in (e), or both,

To enable us to describe the varying positions of the digits
representing 53, we associate the values

20. 2.1' 2-2' 2.3 e 2-38

With the 39 digits of the word. We then inspect and determine
in whiéh position the units digit of the "53" lies, and we say that the
word is, in case (a): 53 x 2-38, and in (b): 53 x 2°!'?, and so on.

But it must be understood that what these expressions mean is
that in (2) the word represents 53, so placed that its units digit appears
at the right-hand end, while in (b) the word represents 53, so placed
that its units digit is 12 places to the right of the sign digit, with 26
places further to the right. PFor it is as important to know what the
word represents, and how, as what it is. To force this point home,
although (b) is to us 53 x 2°'2, i,e. 53 represented to scale 2°12, it
could equally well be 108 x 213, or 1696 x 2°!7 or 6,625 x 2°9,

The symbol "x" is used in this text as the "represented to
scale” symbol in preference to the more frequently used "." to avoid
confusion: for "53,2°!'2% could be read as "fifty three point two to the
minus twelve",

2,3.1 Arithmetic Operations on Scaled Numbers

If the computer is made to carry out an arithmetit operation
with the word (b), it will treat it as though it were in fact the number
10

(b) 53 x 2°1'? (= 108 x 2°!3 = etc.)
And if it is required to add it to
(f) T x 2°12 (=14 x 2°13 = ate,)

it will produce the answer
(g) 60 x 2°'2 (=120 x 2°13 = etec,)

Similarly, provided the two numbers with which we are dealing
are expressed to the same scale, the computer will give the correct
answer, in the same scale, in all additive and subtractive operations.

But if (b) and (f) are multiplied, the answer obtained will be
(h) 371 x 2°24 (= 1484 x 2°26 = etec,)

To bring this to the same scale as the original operands will
require doubling, and the number of doublings will depend on the scale
factor in use, for to bring 371 x2°2* to scale 2°!? requires 12 doublings
but from 1484 x 2°26 to 1484 x 2°!? requires 13 doublings.

2,3.2 Chotce of Scale

The choice of scale to use in any part of a calculation depeﬁds
upon two premises, namely: the maximum magnitude of the numbers to be
dealt with, and the accuracy to which the calculation must be performed.
This is best shown by example:

(a) 63 x 2°38%: 0 0000 0000 0000 0000 0000 0000 0000 0000 1101 Ol
(b) 53 x 2°!'8: 0 0000 0000 0000 1101 0100 0000 0000 0000 0000 00

Now (a) 1s such that a change of 1 in the last place corresponds
to a change of 1 in the number represented. This scale i1s therefore
suitable when dealing with integers, it is termed "integer scale", and
the scale factor 2°3% is often omitted in writing when it is obvious that
this scale is intended. The maximum positive capacity is (2%% - 1)

= 274,877,908,943

In (b) the right-hand digit is 20 places to the right of the
unit of the "53". A change of 1 here is therefore equivalent to a change
of 2°2°, or about one millionth, in the number represented. This scale
is therefore suitable where such & degree of accuracy is required. The
maximum positive number which can be represented is, in "non-computer”
binary:

14 1111 1111 1111 1111 . 1111 1111 1111 1111 1111
Which is evidently just less than
100 0000 0000 0000 0000 = 2!% = 262,144

Attention is invited to the table of powers of 2.in Appendix 2,

11

Fraction Scale

When 211 numbers to be used are less than unity in magnitude,
they may be represented at full scale. Thus

0 1010 0000 0000 0000 0000 0000 0000 0000 0000 00

represents .625 "as a ffaction". Iin this scale, the least change which
can be represented is 2-3% which is approximately .000 000 000 003 638,

If such a degree of accuracy is inadequate, a higher scale
still may be used, but capacity is proportionately reduced.

2.3.3 BExercises

3. What is the smallest step, and what is the maximum capacity,
in scale 2°%?

4, What (power of 2) scale should be used to obtain accuracy to
about one thousandth? What is the maximum capacity in this scale?

2.3.4 Other Scales and Methods of Storing Numbers

We have, so far, only discussed scales in which the factor is
a power of 2., That such scales may be more convenient than other is
suggested by the multiplication problem of 2.3.1, where rescaling is
done by doubling, a function provided in the computer, If the scale
factor is not a power of 2, rescaling is somewhat more difficult. But
other scale factors may be used, sometimes with advantage, where this
consideration is of little or no importance.

In rare cases in which it is not possible to find a suitable
scale factor for the solution of a particular problem, because the re-
quired accuracy and capacity cannot both be obtained simultaneously,
recourse has to be had to other methods of number representation, termed
"multiple-length" and "floating-point". The 803 library contains pro-
grammes which enable these methods to be used. See also Appendix 5.

When it is necessary to store a lot of fairly short numbers in
8 limited number of locations, recourse may be had to a process termed
packing, that is, making one word represent two or more numbers.

Example 4

Taking the simplest case, where two positive integers, say 127
(111111%) and 341 (101010101) have to be stored together, we may proceed
as follows:

Add 127 x 2°1!° to 341 x 2°3% and store the result. Thus:
0 0000 0000 0000 1111 1110 0000 0000 0000 0000 00
+ 0 0000 0000 0000 0000 0000 0000 0000 0101 0101 O}
= 0 0000 0000 0000 1111 1110 0000 0000 0101 0101 O1
12

in which it is seen that the two numbers have remained separate
from each other.

When either number 1s required for arithmetic purposes, a copy
of this word is taken from the store, and the unwanted number deleted by
a function provided for the purpose.

2.4 The Overflow Indicator

Whenever the 803 carries out an arithmetic operation, it auto-
matically tests the numbers being used to determine whether capacity is
being exceeded. If this is so, a special device called the overflow
indicator is set. The following operations, for example, would cause
this; in all cases, the correct answer is outside the proper range, so
the computer cannot represent it:

Operation Correct Result
1/2 + 1/2 1

-1 + -1/2 -11/2
-3/4 - 3/8 -11/8
Negate (-1) 1

-1 x -1 1

3/4 = 3/8 2

Double 5/16 twice 11/4

Once it has been set, the overflow indicator remains set until
one of the two "test overflow indicator" instructions (43 and 47) is
obeyed. These are conditional transfer instructions, by means of which
the computer can be programmed to do one thing if overflow takes place
and another if it does not., It is customary to insert one or other of
these instructions at intervals in any programme in which there is a risk
of capacity being exceeded. Since the overflow indicator, once set,
remains set until tested, it is not necessary to test after every opera-
tion.

A lamp on the keyboard is illuminated whenever the overflow
indicator is set,
2.4.1 Dpeliberate Overflow

In certain cases it is possible to allow capacity to be exceeded,
provided that compensating action is taken immediately.

For example, in the seguence:
Add 1/4 to 7/8, then subtract 3/8,

the addition 1/4 + 7/8 produces 1 1/8 in the accumulator. This
is the representation of -7/8, which is wrong, and the overflow indicator
is therefore Bet. But the immediate subtraction of 3/8 from this gives
the correct overall result 3/4.

13

Whenever the correct result of a series of additions and sub-
tractions is within the range -1 to 1 - 2-3% inclusive, the 803 will give
it correctly, even though the overflow indicator may be set during the
series. Deliberate overflow may also be used when employing doubling,
halving, multiplication and division functions but greater care is needed
when doing so.

2.5 The Telecode

Perforated teleprinter tape, or punched paper tape as it is
usually termed, 1s a medium upon which data are recorded by patterns of
punched holes. One character consists of between 0 and 5 code holes in
a line across the tape, arranged in 5 possible positions. Between the
second and third code hole positions there is a small hole, termed the
sprocket hole, which is required for mechanical purposes.

To the computer, a hole represents a 1, and "no hole" a 0;
each character therefore represents a five-digit binary number between
00000 (zero) and 11111 (thirty one). It is important to appreciate that,
although we may quite readily programme the computer to deal with letters,
figures and symbols in whatever way we please, the computer recognises
them only as groups of five binary digits, or "bits".

To the teleprinter equipment used in preparing input tapes and
interpreting output tapes, however, each of the 32 possible combinations
of holes has one or two specific meanings as shown in Appendix 1.

To enable a teleprinter to distinguish between the two meanings
of a character, two special characters are provided, "letter shift" and
"figure shift" (ls and fs). One of these precedes each group of other
characters on a tape, to indicate whether they are to be read as letters
or as figures and symbols.

The character "line feed” (1f) is interpreted by a teleprinter
a8 an instruction to print the next letters, figures or symbols on a new
l1ine, while "carriage return"™ (cr) causes printing to start or restart
at the left hand margin. "Space" (sp) characters are inserted on a tape
whenever required, to cause the teleprinter to space out the letters,
figures and symbols., "Blank"™ (bl) has no meaning, and the teleprinter
will ignore it; several inches of blanks are punched at each end of a
tape to simplify handling.

The choice of characters used to represent figures is governed
by the rules:

(1) The right-hand four digits are the binary form of the figure
represented.

(1i) The left-hand digit is such that the total number of 1's is
odd. This digit is termed the parity digit.

These rules are made so that, respectively:

14

(1) Conversion to and from pure binary is relatively simple: all
that is needed is to remove or insert the parity digit.

(i1) The most common mechanical errors in punching, which are
(a) Insertion of one extra hole,
(b) Omission of one hole,
(c) Omission of all holes,

may easily be detected in all numerical data.

2,8 Representation of Instructions

When a word represents a pair of instructions, each instruction
is denoted by a group of 19 digits, 6 for the function and 13 for the
number. The odd digit, which is the middle digit of the word, is termed
the B digit: this has a special purpose which will be described later.

The layout is shown below,

FIRST INSTRUCTION 8 SECOND INSTRUCTION

Fl NI F2 N2

Each function is denoted by six binary digits, which correspond,
in two sets of three, to its two-digit octal reference number. Thus
function 43 (four-three, not forty-three) is, in binary, 100011, This
provides a convenient means of grouping the functions in eight groups of
eight; thus Group 0 comprises functions 00 to 07, Group 1 comprises
functions 10 to 17 and so on to Group 7, which consists of functions 70
to 77,

The thirteen N digits in each instruction are sufficient to
provide a range of N from zero to 1111111111111 = 8191 i.e. to enable
the address of any location in astore of 8192 locations to be specified.
This is the largest size of store which can be fitted in an 803,

Each 803 computer with a store of 4096 locations 1s adjusted
in such a way that, if it 18 called upon to obey an instruction in which
N is larger than the address of the last location in the store, it will
ignore the left-hand N digit. Thus the instruction 04 4104 is treated
as the instruction 04 8, Where the store has 2048 (or 1024) locations,

15

the two (or three) left-hand Ndigits are ignored.

2.7 Store Parity Checking

Whenever one word, of 39 digits, is placed in the store, an
artificial 40th digit is automatically appended and stored with it: this
is termed the parity digit, and is a 1 or a 0 as may be needed to make
the total number of l's in the whole group of 40 digits odd. When a
word is taken from the store, the number of 1's in its 40 digits is
checked. 1If this is found to be odd, the parity digit is deleted, and
the computer proceeds normally. If it is even, the checking circuit
gives rise to a special signal. In the basic 803 the effect of this
signal is to stop the computer and illuminate a lamp on the keyboard.

This facility cannot be controlled by programming methods, and
the subject is not discussed further.

16

3 THi INSTRUCTION CODE

The 64 possible functions are now described., The full instruc-
tion code is given in Appendix 3.

Functions in Groups 0 to 3 are termed Basic Functions, and
these, together with the Transfer Functions of Group 4, have in common
the fact that the N digits always specify the address of a location,
although in some cases (functions 00, 01 and 06), the content of that
location does not enter into the operation.

The uses of the N digits in the functions of Groups 5 to 7 are
given in the appropriate sections below. The times taken to perform all
functions are given in Appendix 3,

3.1 gGroup O
Note: None of the functions in this group affects the content of any
store location,

Function 00 Do nothing

The usefulness of this function will be appreciated when the
use of the B digit is understood.

Punction O1 Negate

The content of the accumulator is negated.

Function 02 Replace and count

The existing C(A) is deleted and replaced by a number equiva-
lent to C(N) + 2-38,

Function 03 Collate

A new word is formed which has a 1 in each position in which
there are 1's in both C(A) and C(N), and 0's elsewhere. C(A) is then
deleted and replaced by this new word.

Example §

The collate function may be used when it is desired to extract
the wanted number from a location in which two numbers have been packed.
Returning to the case of Example 4 in section 2,3.4, if the word con-
taining two numbers is in location 300, and the integer 524287 is stored
in location 276, the following instructions suffice to get the right-
hand number into the accumulator on its own:

Address Instructions
F1 N1 B F2 N2
740 30 300 03 276

17

Por the effect 1s to collate
0 0000 0000 0000 1111 1110 0000 0000 0101 0101 O1
with the collating constant

0 0000 0000 0000 0000 0001 1111 1111 1111 1111 11

and thus obtain

0 0000 0000 0000 0000 0000 0000 0000 0101 0101 O1

Function 04 Add

C(N) is added to C(A), which is deleted and replaced by the sum.
Function 05 Subtract

C(N) is subtracted from C(A), which is deleted and replaced by
the difference.

Function 08 Clear
C(A) 18 deleted and replaced by zero.
Function 07 Negate and add

. C(A) 18 subtracted from C(N), C(A) is deleted and replaced by
the difference.

The result is the negative of that produced by function 05.

3.2 @groups 1 to 3

In Groups 1 to 3 the operations performed are similar to those
described above, but whereas in Group 0 the result is placed in the
accumulator and the store remains unaffected, the arrangements in Groups
1 to 3 vary. Appendix 3 lists these, and it can be appreciated that the
availability of so wide a choice of functions enables very compact pro-
grammes to be written for 803,

To "replace" is to delete C(A) and substitute a copy of C(N),
to "write" is to delete C(N) and substitute a copy of C(A), and to "ex-
change"” is to do both at once.

3.3 @roup 4 - Tranafer Instructions

Transfer or, as they are sometimes called, "jump" instructions
are inserted in a programme wherever it is desired that the computer
should obey instructions in a sequence different from that in which they
have been stored, Some examples of this have already been given in 1.4,
and others are given below.

Punction 40 Transfer, unconditionally, to first instruc-
tion

18

This causes the computer to break normal sequence, carry out
the first instruction in location N, and continue then in normal sequence
from that new point until a further transfer instruction comes to be
obeyed.

When the computer has completed a calculation, it must be
stopped. But the speed of the computer is too great for a human operator
to stop it at the right instant. An instruction to stop must therefore
be written into the programme. There is no specific instruction "stop”
in the code, so recourse is had to what is termed a "dynamic stop".

Suppose that the last two instructions of a calculation are in
location 843. Then in 844 we may place, as first instruction, "40 844",

It is left to the reader to work out what happens.

There is a loudspeaker on the keyboard, which emits a distinc-~
tive high-pitched noise when the computer comes to a dynamic stop.

Function 41 Transfer to first instruction if (and only
if) C(A) is negative

If the sign digit in the accumulator is a 1 (content negative)
when this instruction is obeyed, the action is as for function 40. But
if the sign digit is a 0 (content zZero or positive), the instruction is
interpreted as "do nothing".

Example 7

Suppose that, in some iterative process, certain steps of a
calculation must be performed 6 times. This could be organised as in
the programme below in which the entry point is the first instruction in
location 10,

Address Instructions
P1 N1 B P2 N2
9 . -5 This is the way in which the
number -5x2°3% i{s expressed
. on a programme sheet.
-10 . 30] 20 8 Place -5 in location 8
11)
) The instructions to be obeyed 6 times.

15)

18 32 8 41 11 Increase the content of loca-
tion 8 by 1, and repeat the set
of instructions if necessary

17 Next part of programnme.

19

When the instruction 32 8 is obeyed for the first time, the
number which comes into the accumulator is -5, On the second occasion
it is -4, then -3, -2, -1 and finally after the sixth iteration, O,

In the above programme "a count is kept in location 8" or
"location 8 is used as a count location". The number placed in a count
location at the start of such a process is called a "count constant”,
The action of placing 2 count constant in a count location is termed
"setting a count".

Function 42 Transfer to first instruction if (and only
if) C(A)Y is zero

If the content of the accumulator is zero when the computer
obeys this instruction, the action is as for function 40, But 1f the
content is not zero, the instruction is interpreted as "do nothing",

Function 43 Transfer to first instruction if (and only
if) theoverflow indicator is set, and clear
the overflow indicator.

The overflow indicator is tested, and if it is found to be in
the set condition, the action is as for function 40, coupled with the
fact that the overflow indicator is cleared. But if the overflow indi-
cator is found to be in the clear condition, the instruction has the same
effect as "do nothing".

Appendix 4 gives a complete list of all the funciions which
can cause overflow.

If it is desired to use the overflow indicator to test whether
some function or group of functions has caused overflow, it is necessary
to ensure that the overflow indicator is clear before they take place,
This may require the insertion of an instruction whose only effect is
"clear overflow indicator (if set)". The instruction 43 (N + 1) placed
in the second position of location N has this effect.

Functions 44, 45, 46 and 47

These functions are identical in operation to 40, 41, 42 and
43, except that where a transfer takes place it is to the second instruc-
tion in the specified location instead of to the first.

Any function of Group 4, except 43 and 47, may be used to
produce a dynamic stop. In the case of functions 41, 42, 45 and 46 the
stop is conditional.

3.3.1 Exercises

5. Write the two sets of instructions which cause the computer to
compare C(416) and C(417) and then clear location 418 if and only if they

20

are (a) Unequal
(b) Equal

6, (a) Why can neither function 43 nor 47 be used to produce a
dynamic stop?

(b) Write the instructions which cause the computer to add
C(735) and Cc(736) and then stop if the sum is in excess of capacity, but
go on to the next part of the programme otherwise, with the sum in the
accunulator.

1. C(24) and C(25) are two positive numbers. Write a programme
which places a number equa)l to the greater in location 28, using any
functions you require from Groups O to 4, (Target: 5 instructions).

3.4 Group 53 - Multiplication, Division and Shift Functions

When two fractions of equal length (e.g. +.23 and -.47) are
multiplied, the answer is, in general, twice as long as either (-,1081),
Similarly, if two computer words each of 38 fractional digits and one
sign digit are multiplied, the full product has 76 fractional digits and
one sign digit. Provision is made in 803 to "extend" the accumulator in
this and certain other cases to accommodate one such double-length number,
This is held in sucha way that the sign digit and the next 38 digits are
in the accumulator itself, while the remaining 38 digits fill the exten-
sion, which is termed the Auxiliary Register (A.Rx)

Group 5 functions are the only ones which effect the A.R,;
none of them affects the store.

In the case of functions 52, 53 and 56, (multiply and divide),
the N digits specify the address of alocation in the store. In function
57 (read A.R.), the N digits are not used. In functions 50, 51, 54 and
55 (shifts), the seven right-hand N digits specify a number N: this N
has therefore a range of from 0 to 127 inclusive, and if N = 145 say,
then N = 17,

Funetion 50 Halve the double-length number N times

The digits of the double-length number are shifted N places to
the right, the N right-hand digits being lost. If the original number
is positive or zero, N zeros are inserted at the left-hand end: if it
is negative N ones are inserted.

Thus the sign of the number is maintained, and the effect is a
true division by 2%, subject to any error occurring through loss of right-
hand digits.

21

Example 8
If the double-length numbers 1/2 and -1/2
i.e.: 0 1000 0000...c0vusecevovesoacsossssssenssssonnsessss 0000 0000
and 1 1000 0000....ccstccencssnsciosnrrsnssosssasasncasessss 0000 0000
and halved 4 times, the results are
0 0000 1000...0ceeereooecvtoosoncsasosssacsosonsnseesss 0000 0000
and 1 1111 1000, ..0cctieuees cvotonvcnassnscnsassssansass 0000 0000
which are 1/32 and -1/32 respectively.

Exercise 8

Verify that if the double-length number 10 x 2°7% be halved
twice, the result is 2 x 2-76,

Function 51 Shift C(A) right N places. Clear A.R,

The digits in the accumulator are shifted Nplaces to the right,
the N right-hand digits being lost, and N zeros are inserted at the left.
The A.R. has no part in this process: it is cleared as a separate opera-
tion.

Exercise 8

Verity the following:

(a) If the number in the accumulator is ~3/4, and th'e function
51 1 be performed, the result is +5/8,

(b) If the double-length number is 27 x 2°3%, and the function
51 2 be performed, the resulting double-length number is 3 x2°38,
(27 = 11011),

Function 52 Multiply with double-length product

The existing C(A) ismultiplied by C(N). C(A) and the existing
content of the A.R, (which is not used in the function) are deleted, and
replaced by the double-length product.

Function 53 Multiply withsingle-length rounded product.
Clear A.R.

The existing C(A) is multiplied by C(N). C(A) is deleted and
replaced by the left-hand 39 digits of the product, rounded off to be as
nearly correct as possible, The A.R., whose original content is not used
in the function, is cleared,.

22

Example. 8

If 9 x 2°2° and 3 x 2°2° are multiplied by function 52, the
result is 27 x 2°*%, held as a double-length number. 27 in binary is
11011, so the result appears thus:

Accumuletor A.R.
00.'..0....."-..0.00001 10 11 0000...............,...0000
But if function 53 be used, the process is, in detall as follows;

(a) the double-length product is formed.
(b) the quantity 2°3° is artificially added.

(¢c) the left-hand 39 digits of the result are placed in the
accumulator, the other 38 digits are lost, and the A.R,
is cleared.

The arithmetic may be represented thus:

Accumulator A.R.
(8) 0...0i0uevnoneeess.r,0001 10 11 0000...........,....0000
+ 1
(b) 0....ovvveeasssss,.0001 11 01 0000,,,.....¢00....0000
(¢) O.iuivvenvnranssass 0001 11 00 0000,,,,...........0000

which is 7 x 2°38, the correct approximation,
Function 54 Double the double-length number N times

In this function, the digits of the double-length number are
moved N places to the left, N zeros are inserted at the right-hand end,
and the N left-hand digits are lost, Unless overflow takes place the
effect is multiplication by 2,

If N > 38, the A.R. is clear after this function.
Function 55 Double C(A) N times., Clear A.R.

The digits in the accumulator are moved N places to the left,
N zeros are inserted at the right-hand end, and the N left-kand digits
are lost, Unless overflow takes place, the effect is multiplication by
2K,

The A.R. has no part in this process: it is cleared as a
separate action.

Function 56 NDivide. Clear A.R.

Division is the inverse of multiplication, in that as a x b =
ab, so ab/b = a, Just as it is useful to have a double-length "ab"
(product) in multiplication, so it is useful to have a double-length
"abh" (numerator, or dividend) in division.

23

Function 56 therefore consists of the division of the double-
length number by C(N). C(A) is deleted, and replaced by the single-
length, unrounded quotient. The A.R. is cleared by the process.

When the numerator can be adequately expressed by a single-
length number in the accumulator, care must be taken to ensure that the
A.R, is clear before division takes place,

A note regarding the accuracy of the process used is given in
Appendix 4B, and the arithmetic is discussed in Appendix 5.
Example 10
() C(151) = a x 2°3%, Cc(152) = b x 2-38
To place a/b x 2°%% in location 153

Address Instructions
F1 N1 B F2 N2
387 30 151 50 38 Form a x 2°76
388 56 152 20 153 pivide, forming a/b x 2°3%, and
write,.
(b) C(251) = a x 2°!9, known to be positive

C(252) = b x 2°!%, To place a/b x 2°1°
in location 253

4817 30 251 51 19 Form a x 2°3% and clear A.R.
488 56 252 20 253 Divide, and write result,
(c) C(351) = a x 2°'?, sign unknown, C(352) b x 2°19,

State of A.R. not known. To place a/b x 2°1!°
in location 353.

587 51 0 30 351 cClear A.R., replace a x 2°19,
588 50 19 56 352 Divide a x 2°3% py b x 2°1'9,
589 20 353 Write result.

The instructions 51 0 and 55 O have the effect "Clear the
A.R.", and no other.

Function 57 Read A.R.

The existing C(A) is deleted, and replaced by a word compris-
ing a zero in the sign digit position and a copy of the 38 digits of the
A.R. content in the remaining positions,

The A.R. is not affected.

This provides, in effect, a fast double-length left shift of
38 places, subject to the following provisos:

24

(i) That the sign digit will be wrong if the number is negative.
(ii) That the A.R. 1s not cleared.

The second of these points is usually of little consequence:
in fact, it may well be found to be an advantage. How the former is
overcome is shown below.

Exercise 10

Verify that the following process is satisfactory, and that it
is faster than would be the case if the instruction 54 38 were used:

a and b are integers of unknown sign, in locations 643 and 644.
It is required to place the integer ab in location 645, it being known
that ab is of smaller magnitude than 237.

Address Instructions
F1 N1 B F2 N2
412 30 643 52 Rd4 ab x 2°7¢
413 57 0 54 1 Double signless ab x 2°3%
414 50 1 16 645 Store signed ab x 2-3%°8
Example 11

This emphasises the advantage of multiplying double-length and
dividing, successively, whenever an expression of the form

R.CoPuisoos
bedeoooes

is to he evaluated.

Suppose that a, b and ¢ are stored to scale p (where p may be
of the form 2°F or not), in locations 141 to 143. To evaluate ac/b and
place it to scale p in location 144, we need:

Address Instructions

Fl N1 B F2 N2
614 30 141 52 143 axp : acx p?
615 56 142 20 144 (ac/b) x »p

This gives a clue to the method used to rescale after multiplication or
before division when using scales not of the form x 2°F. For if we make
b =1 the result is ac x p ; if ¢ = 1, the result s (a/b) x p.

Example 12

To extract the positive square root of a fraction, x.
25

If the formula y _,, =%(yn + %)

n

be used to generate a series of numbers Yy it
can be shown that successive values of y, converge monotonically to the
square root of x whatever initial value y, be taken,

In adepting this process to the 803, y, = 1 - 2°%% ig chosen,
as this is the largest positive number which can be held, and must there-
fore be greater than or equal to the required root. Thus, until the
best possible approximation to the root is found each new y, is less
than the previous, and y_,, - y_ is negative.

Ideally, ¥ _4, = ¥, should eventually reach zero, but rounding
errors may bring about a situation in which it oscillates between +2°38,
The process is therefore repeated until some y_,, - vy is zero or posi-
tive, at which stage the programme "exits with y_ in the accunulator”.

Programme

It is assumed that x is in the accumulator, and that the A.R.
is clear. The entry point is the first instruction in location 501,

Address Instructions
F1 N1 B F2 N2
501 41 501 42 507 If negative stop. If zero exit.
502 20 509 30 508 Write x.
503 20 510 30 509 Write y,. Replace x.
504 56 510 04 510 Form 2y _,, = (¥, * ;)
n
505 51 1 15 510 Writey ,, formy_,, -V,
506 45 503 07 510 If negative, repeat: if positive,
exit with y .
507 40 511 00) EXIT
508 +274 877 906 943 1 - 2°9%
509 x
510 ¥,
511 Next part of programme.

The reader is advised to work through this example to find the
square root of 1 - 2-3%%, Attention is invited to 2.4.1 and to Appendix
4B.

3.5 Group 6
Group 6 instructions are not allocated in the basic 803, the
26

group having been reserved for special use in instellations having add-
itional equipment. In the basic machine they are interpreted as "do
nothing".

See Appendix 5 for the detalls of functions available when an
Automatic Floating-Point Unit is fitted to the 803.

3.6 Group 7

Group 7 functions are mainly concerned with input and output,
and are considered below individually.

Function 70 Read the Word Generator

On the keyboard there is a set of buttons, called the word
generator, on which a computer word can be set manually.

In funetion 70, the existing C(A) 1is deleted, and replaced by
a copy of the word set on the word generator. The N digits in the
instruction are not used.

This process can be used, in conjunction with other buttons
on the keyboard, to place a few words in the computer by hand whenevér
the need arises.

It is elso possible, by writing function 70 instructions in a
programme, to enable the computer operator to control the way in which
the computer obeys that programme.

Exanple 13

In some particular application of a computer, the calculation
consists of two separate parts, A and B, of which the second part may
take two different forms, B, and B,. Whether B, or B, is to be used is
at the discretion of the operator.

The instructions comprising part A end in location 200, B,
comnmences in location 301, and B, in 401, If the operator depresses the
top left hand (sign digit) button of the word generator, B, is used.
If he depresses the next button to it, B, is used., If he depresses
neither, or both, the computer waits until one and one only is depressed.

Programme
Address Instructions

P1 N1 B F2 N2
200 Last instructions of A.
201 70 0 45 203 Read: To 203 (rb) if l..,.c..
202 §6 1 41 401 Double: To B, if O0l..........
203 40 201 55 1 Return if 00.....: Double
204 41 201 40 301 Return if 11.,...: To B, if10

21

Punction 71 Read Input Channel 1 (normally Tape Reader)

In this function one character is read from the input tape,
and the five-digit binary number obtained therefrom is "mixed" into the
five right-hand positions of the accumulator. The instruction to read
Input Channel 1 is usually preceded by a 06, 16 or 55 5 instruction, so
that (at least) the five right-hand positions in the accumulator are
clear when function 71 is performed. If such is the case, the effect of
the function is to insert the character into the right-hand end of the
accumulator,

If however, any or all of the five right-hand digits of the
accumulator are not zeros when function 71 is performed, the effect
obtained in each digit position is defined by:

0+0 = 0; 0+1 = 1; 1+0 = 1; 141 = 1, without carry

After the character has been read, the tape reader drive
mechanism operates, and the tape is moved forward to bring the next
character into the reading position. If the next function 71 instruction
is so placed in the programme that the computer reaches it before the
tape has been moved far enough, a circuit known as the "tape reader busy
line"” automatically holds the computer up until the tape reader is ready.
However, the speed of the Elliott tape reader is such that this is not
likely to happen under normal circumstances.

The time taken for the tape to be moved depends upon the type
of tape reader fitted.

Example 14

A two-digit decimal number has been punched on the input tape,
and the tape has been placed in the reader in such a way that the first
character is in the reading position.

The following programme reads this number, and stores it as an
integer in location 98. The entry point is the first instruction in
location 100:

Address Instructions
F1 N1 B P2 N2
99 +15 Collating constant,
100 06 0 71 0 Read first charsacter.
101 03 99 20 98 Delete parity digit, if any.
102 24 98 55 3 Multiply by 10, and store in 98.
103 24 98 06 0
104 71 0 03 99 Read second character, delete
parity digit, if any.
105 24 98 Add to number in 98.

28

Exefcise 11

How long would an 803 completed before December 1960 (See
Appendix 3) take to nbey the above if the tape reader’'s maximum speed is
one character every

(a) 9.36 milliseconds
(b) 2.16 milliseconds?

(Note: These times are quoted for exercise only, and are not typical of
the equipment provided)

Function 72
This is described, with functions 75, 76 and 77, below.
Function 73 Write the address of this instruction

The N digits in the instruction specify the address of a loca-
tion. The action is:

C(N) is deleted, and replaced by a word in which the right-hand
nineteen digits correspond to the instruction "00 M"™, where M is the
address of the location containing the 73 instruction. The state of the
left-hand part of the new C(N) varies.

This instruction is generally used in conjunction with the B
digit when utilising subroutines, and detailed discussion is therefore
postponed until these topics are reached.

Function 74 Punch Specified Character on Output Channell

In this function, the character with telecode value N, where N
in this case corresponds to the five right-hand N digits of the instruc-
tion, is punched on the output tape.

The other N digits are ignored: no numbers in the computer
are affected,

When the necessary signals have been sent to the punch, the
computer is then free to proceed with other activity. But if the next
function 74 instruction is so placed in the programme that the computer
is ready to obey it before the punch has finished the punching process,
a circuit known as the "punchbusy line® automatically holds the computer
up until the punch is ready.

Example 15

The instruction 74 19 causes the punching of the character
which a teleprinter interprets as 8 or 3 according to the shift in use,

The instruction 74 115 has the same effect.

29

Functions 72, 75, 76 and 77 Channel 2 functions

The 803 has been designed in such away that a variety of input

and output devices or a magnetic film backing store may be attached to
what 1is termed Channel 2.

The interpretation of functions 72, 75, 76 and 77 is described
in the separate publications relating to the applications of such devices.

In computers in which use is not made of Channel 2, function?72

is interpreted as "clear the accumulator® and functions 75, 76 and 77 as
do nothing".

30

CHAPTER 4 B-LINE MODIFICATION AND SUBROUTINES

Examples have been given, in the earlier chaptersof this guide,
in which a programme has been so written that the computer obeys one set
of instructions several times. This technique saves storage space and
is of value whenever one small part of a calculation needs to be carried
out more than once.

This chapter describes methods whereby this can still be done
when

either (1) there must be some slight change in the instructions each
time the set is used.

(ii) the set is to be used on odd occasions during the course
of a long calculation, rather than several times together.

4.1 Be-Line Modification

Instances frequently occur in which the computer is required
to carry out, several times, an action which is much the same at each
repetition, but changes in some small detail each time it is performed.
An elementary example is the addition of, say, 100 numbers stored in
locations 100 to 199; after clearing the accumulator the functions .to
be performed are "add C(100)", "add C(101)", "add C(102)"...... "add
C(199)". The action here is always "add", the change is an increase 1in
the address of the addend.

Since instructions are stored in the computer in a numerical
code, it is possible to cause a numher to be added to an instruction,
and thereby change or modify it, before it is obeyed. This could readily
be done by using such a function as 24, specifying the location holding
the instruction to be modified. Better still, in the addition problem
considered above, would be function 22; for the addition of 2°3% to the
content of a location is tantamount to an increase by 1 of the N in the
second instruction therein,

But an automatic facility termed B-line modification which is
an improvement on either of the above is provided, and is as follows:

(1) If the B digit between a pair of instructions is a 0, then no
modification takes place, and each instruction is obeyed as stored.

(1i) But if the Bdigit isa l, then after the first instruction (F1 N1)
has been obeyed normally, the second instruction (F2 N2) is modified by
the addition of the right-hand part of the (new) content of location N1
before being obeyed.

The modification takes place in the control section, takes no
extra time, and does not affect the version of the instruction (F2 N2)
held in the store.

When & location (N1) is being used to hold a modifier, it is
referred to as a B-line. This term is a legacy from one of the earlier

31

Manchester University computers, in which numbers were represented by
lines of dots on & cathode ray tube. The A-line corresponded to the
accumulator, and the B-line held the modification, if any, to be made to
the next instruction.

There are restrictions on the combined use of B-line modifica-
tion and transfer instructions, and function 77; these are stated in
Appendix 3.

It is conventional to indicate B = 1 by placing a / in the B
column rather than by writing a 1.

It does not matter what use is made of the N1 digits in the
first instruction.

Example 16

If it is desired to have an instruction (P2 N2) modified by
the content of location 173, we may write any of the following:

Fl N1 B P2 N2
00 173 / F2 N2
22 173 / F2 N2
50 173 / F2 N2
57 173 / F2 N2
14 173 / F2 N2

In the second instance, where C(173) is altered by function 22,
the modification is by the new content.

Exanple 17

A situation is frequently reached, near the end of a calcula-
tion, in which the 5 right-hand digits of the accumulator content corres-
pond to a telecode character which must be punched on the output tape.
The following instruction pair causes the computer to do this:

20 4 / 14 0

The relevant digits are placed in location 4, and the instruc-
tion 74 0 is then modified into the required output instruction before
it is obeyed. :

But observe that there must be no 1's in the accumulator in
the F2 positions: for these would also be placed in location 4, and,
when added to the existing F2, would produce an instruction specifying
some function other than 74.

Exercise 12

Verify that, in Example 17, there may be 1's elsewhere in the
accumulator (e.g. in the F1 positions, or in the 8 left-hand N2 positions),
without spoiling the effect.

32

Exercise 13

Satisfy yourself by theoretical consideration, or by writing
the whole thing out in binary, that

If C(A) is -80x2°%% and C(238) is S, before the computer obeys
10 238 / 04 200

then afterwards C(A) = S + C(120)

and c(238) = -80 x 2-38

This is employed below.

Exanmple 18

The following programme adds together 100 items, namely the
contents of locations 100 to 199 inclusive, and exits with the sum in
location 238, It is entered at the first instruction of location 240.
(It is assumed that the sum is within capacity).

Address Instructions
Fl N1 B F2 N2
238 Count location and total store,
239 -100 Count constant.
240 26 238 30 239 Set total to zero: replace -100
241 10 238 / 04 200 Set count: add an item.
242 12 238 41 241 Count: test for end.
243 Next part of programme.

Note how the powerful "exchange" functions 10 and 12 are used.
They enable the total-to-date and the count to be switched between loca-
tion 238 and the accumulator. Without such functions it would be necessary
to allocate separate locations for the ccunt and the total, and there
would be more instructions in the loop.

4.2 Subroutines

Suppose that, during & lengthy calculation, it is necessary to
find the square roots of several numbers. The need would then arise for
the computer to carry out the functions of Example 12 several times, and
a considerable saving in storage requirements could be achieved by arrang-
ing that the same set of instructions is used each time, rather than by
having several similar sets, each to be used once.

This technique can be applied to any small section of programme
which is designed to fulfil a standard requirement, and such sections
of programme are termed subroutines. Several are available in the Elliott
803 Library of Programmes: these include, in addition to subroutines

33

which form algebraic and trigonometrical functions of numbers, others
which read numbers from the input tape or punch numbers on the output
tape, carrying out the necessary decimal-to-binary or binary-to-decimal
conversions.

As far as is practicable, each subroutine is written to conform
to the following standard:

(1) The first location, location p say, is spare.
(ii) The entry point is location p + 1.
(iii) The exit location contains the instruction pair.

00 p / 40 1

(iv) If the purpose of the subroutineis to calculate the
function of some number, that number must be in the
accumulator at the time at which the subroutine is brought
in to use, and the function is in the accumulator when
the subroutine exits,

N

The main programme and its subroutine(s) are placed in different
parts of the store. Wherever it is required to employ the subroutine, an
instruction pair of the following form is written in the main programme:

Address Instructions

F1 N1 B P2 N2
z 73 p 40 p+l
2+1 Next part of main programme.

This causes the link, the "instruction" 00 z, to be placed in
the spare location in the subroutine, and transfers to its entry point.
When the subroutine has been obeyed, the exit instructions

00 p / 40 1

are obeyed as "transfer to loecation 2z+1", i.e. to
the next part of the main programme.

To appreciate the value of this in programming, consider again
the case in which several square roots must be found during acalculation,
Provided steps are taken to see that the necessary subroutine is in loca-
tions p upwards, the instruction pair

73 p 40 p+l

————————

may be written as many times as is necessary, and be regarded as the
equivalent of one instruction: "form the square root of C(AY". 1t is
customary to underline each instruction which specifies a transfer to a
subroutine.

This technique is employed even when a subroutine is used only
once during a calculation. For, by doing so, the need to have different

34

versions of each subroutine is avoided, and so is the clerical effort of
copying the instructions into the middle of a new programme,

Detailed examples are given in the next chapter.

35

CHAPTER 3 INPUT ROUTINES

This chapter discusses the methods by which programmes are
placed in the store of the computer, and ends with an example of & com-
plete programme.

Although it is possible, by manipulating the buttons on the key-
board, to place a few words in the store of the computer by hand, the
process is slow and liable to error. The only practical means by which
8 new programme cah be stored is to make the computer obey a set of
instructions which cause it to read characters from the input tape, builld
the 5-digit groups obtained therefrom into words, and place these words
in its own store. Such a set of instructions is permanently "built-in"
in locations 0 to 3: it is referred to as "The Initial Instructions",
and can be quickly brought into use whenever it is desired to re-programme
the computer.

This set satisfies the main requirement of a fixed programme,
namely that it should not take up much storage space. But its process
of word-assembly is necessarily very rudimentary, and to prepare the
type of programme tapes which can be read by it is not easy. For this
reason, a second input routine, the Translation Input Routine (T.I.) has
been written, by means of which the computer can be caused to read and
translate programme tapes of a type which are easy to prepare.

S.1 The Initial Instructions
65.1,1 Method of Storage

The Initial Instructions are permanently held in locations 0
to 3 and cannot be overwritten. If, for example, the instruction 20 2
is included in a programme, it will be interpreted as "do nothing".

Locations 0 to 3 differ from other locations in one other
respect: namely that if any attempt is made to use them as sources of
numbers, they appear to be sources of zero. Thus the instruction 30 3
is "clear the accumulator™ whilst 02 0 is "replace C(A) by 2°3%) This
last is of practical value at times.

The Initial Instructions use location 4 as a count location:
progrannes may therefore be placed in locations from 5 upwards.

$.2.1 Binary-coded Programme Tapes

The Initiel Instructions are designed to read what is termed a
binary-coded programme tape. On such a tape each word is represented by
a group of eight characters, Thus 24 18 / 381 21 is represented by
the eight characters

10101 00000 00000 10010 10110 01000 00000 10101,
in which the first digit is 2 1 and the remainder
correspond to the binary form of the word itself.

36

The words of the programme are preceded by the eight-character
group corresponding to the word

00 0 00 (N - 4)

where N is the address of the location in which
the first word of the programme is to go.

The way in which the Initial Instructions read such a tape
is described in the Elliott 803 Library of Programmes.

5.2 The Translation Input Routine

Programmes are usually written in the style shown in this guide,
that is to say, in an octal/decimal code, and each programme is usually
composed of a number of blocks. The T.I. has been designed to read pro-
gramme tapes on which the instructions are punched in a form which is
directly derived from the octal/decimal written form, the figures being
interspersed with control symbols to indicate which number is what. The
T.I. can also assemble one programme from several separate blocks of
instructions: furthermore, it can decipher programmes which have been
written in the relatively-addressed style described below. '

The T.I. is not held permanently in the store. Whenever it is
desired to re-programme the computer from a tape punched in the "T.I.
Code", it is first necessary to place the T.I., in the store by means of
the Initial Instructions. For this purpose, a binary-coded programme
tape of the Translation Input Routine is kept by each 803 computer. The
process may sound rather complex, but in practice it takes only a few
seconds.

5.2.1 Relative Addresses

Until the blocks of a programme have been written, their lengths
are not known, and it is therefore not practicable to allocate storage
space to them. But it is not possible to complete the writing of each
block unless there is some means of specifying the address of any word
in that or any other block: one cannot complete the instruction 40 N
until one knows what N is, This apparent deadlock is resolved by a
technique known as relative addressing

Before any instructions are written, a list is made of the
blocks which are needed. These blocks are numbered from 1 upwards., For
example:

1. Main Programme.

2. constants and working space used by 1.

3. Input subroutine. (To read in data).

4. Output subroutine. (To punch results).

317

There is no limit to the number of subroutines used, nor need
the main programme be all in one block: complex calculations are usually
programmed in several blocks.

Each block which does not comprise a subroutine chosen fronm
the Elliott 803 Library of Programmes is then written separately, each
address being written as though the block started in location "0,"., A
comma is placed after each such relative address, thus:

20 &6, represents "Write in location 6, of this block".
>
Cross-references to locations in other blocks are written thus:
22 7,2 represents "Count in location 7, of block 2",

Absolute addresses and numerical details (N’s) are indicated
in the normal way, without commas, thus:

04 128 represents "Add C(128) to C(A)".

4 29 represents "Punch cr",

Example 19

The following is the square root programme of Example 12, re-
written asarelatively-addressed subroutine, with standard entry arrange-
ments.

Address Instructions
Pl Al B F2 A2
Link.
1 41 1, 42 7, Enter withx in accumulator and
A.R. clear,
2 20 9, 30 8,
3 20 10, 30 9,
4 56 10, 04 10,
5 51 1 15 10,
6 45 3, 07 10,
7 00 0, / 40 1 Exit.
8 +274 877 906 943 1 - 2738
9 x
10 y

5.2.2 The Directory

When the programme has been completed, storage space is allo-
cated to the blocks, and a directory is written at the head of the whole
programme, This consists of a list of the block addresses, the absolute
addresses of locations 0, of each block. A copy of this goes on the pro-

38

gramme tape, and indicates to the T.I. where it is to place the variocus
blocks, and enables it to decipher the relative addresses,

The T.I. occupies and uses locations 5 to (176 + B) where B is
the number of blocks in the programme which it is reading. The Elliott
803 Library of Programmes contains a number of checking routines by means
of which any mistakes in a new programme can be more easily diagnosed.
These are customarily placed in locations at the "top" end of the store.
It is therefore best to place programmes between locations 192 and 3800
unless the need arises to use more space than this.

5.2.3 Numerical Data

The T.I. can read constants as well as instructions: these
should be written on a programme sheet as shown below.

(1) Integers
+ 453 represents 453 x 2°38
-9 represents -9 x 2°38

(i1) Fractions

+.5 rerresents 1/2
-,825 represents -5/8

There must not be more than eleven decimal digits

(iii) Pseudo-Instructions

Best shown by example.
Since 00 3 / 00 0
is stored as 000000006000000001110000000000000000000

this pseudo-instruction pair is a convenient way of writing 7 x 2°1?,

(iv) Constants to a preset scale

When many constants, all to some scale which 18 not provided
for above, are needed in a programme, it is possible to "adjust™ the
T.I. in such a way that it divides any constant which contains a decimal
point by a preset scaling factor before storing it. Thus to use scale
x 10°% the scaling factor is preset to 100,000 (one hundred thousand).
When this facility is in use, facility (ii) above is lost.

Such constants should be preceded by + or -~ and must contain
a decimal point, thus:

-500,
+17.23
-.006

39

Further details of this, and of all other facilities offered
by the T,1. are given in the Elliott 803 Library of Programmes.

5.3 Example 20 A Complete Programme

Problem To calculate the arithmetic mean X and standard deviation SD
for each of several sets of numbers X,. Each set has a reference number
M and contains N items. Each item is a positive decimal fraction:
32X, <1 for any set.

Formulae 1 1 ;
X = ZX, ;8D ={§2x1’- i’}

Formats Qutput The results tobe printed in four columns without head-
ings. The columns to represent:

M N Mean SD

Input The data tape to be punched with each set represented
by the integer M, then the integer N, and then each of
fractions xi of the set,

Note: These formats must be decided before programming can
begin in earnest. The problem itself usually suggests a suitable output
format: unheaded columns are being accepted here merely to simplify the
example., The general arrangement of the input format can be determined
by answering the question ‘What numbers would I need, and in which se-
quence, if I had to do the calculation myself?" The detailed arrange-
ment for each input number must be in accordance with the specification(s)
of the input subroutine(s) to be used: it is assumed here that this is
so.

Output is described in terms of aprinted page as the computer’s
output tape is always interpreted by a teleprinter,

Blocks 1 Main programme.
2 Working space for 1.
3 Input subroutine,
4 Print subroutine.
5 sSquare root subroutine.
Subroutines
For Block 3: General Number Input Subroutine, 803 T §
Entry: Standard.
Store: 55 Locations,
function: Reads one integer or fraction.
A.R.: Clear on Exit

40

For Block 4 General Number Print Subroutine 803 T 6

Entry: Standard entry with aparameter word inthe location after
that which holds the entry instructions 73... 40... .
Exit from the subroutine is to the location after that
holding the parameter word.

Parameters: To Print On New Line On_Same Line
Fraction 40 0 / 00 0O 40 0 30 0
Integer 200 / 000 200 300

Store: 131 locations.

Function: Prints C(A), regarded as a fraction or as an integer,

on the same line as the last number printed oron a new
line, according to the parameter used.

A.R.: Clear on exit.

For Block 5 Square Root Subroutine shown as Example 19 of
this guide.)

Entry: Standard.

Store: 11 locations.

Function: Forms square root of C(A).

A.R.: Must be clear on entry: clear on exit,

Main Programme and Block 2

When the above details have been attended to, the main pro-
gramme can be written, This isquite straightforward, and is given over-
leaf. Locations in Block 2 are allocated as the need arises, care being
taken to see that no new locatlion is taken up unless all those so far
allocated are still in use. Use is made of the exchange functions when-
ever possible,.

Block 2
0, Holds in.
1, Holds X, 2.
1
2, Holds N x 2°3% and later 5
3, count location, initially holds -N x 2°3%8,

Later used to hold X and then X3.

4, Holds X,.

41

Block 1

42

Address Instructions Notes
1l N1 B F2 N2
0 73 0,3 40 1,3 Read M.
1 73 0,4 40 1,4 Print M
2 20 0 / 00 0 Parameter for integer on new line
3 73 0,3 40 1,3 Read N.
4 26 0,2 26 1,2 Clear X, and 3x, %
5 20 2,2 21 3,2 N to 2,2: -N to 3,2,
6 73 0,3 40 1,3 Read X, and clear A.R.
7 2¢ 0,2 20 4,2 Add to 3x,.
8 53 4,2 2¢ 1,2 X, ? added to Ix .
9 02 3.2 42 11, count and test forend of set,
10 20 3.2 40 6. Set not ended, read next item.
11 02 0 56 2,2 2°3%8% L N x 2738 & 5. as fraction.
12 10 2,2 % to 2,2 and N to Acc.
13 73 0,4 40 1,4 Print N
14 20 0 30 0 Parameter for integer on same line
15 30 2,2 53 0,2 Form X.
16 20 3,2 53 3,2 Form X2.
17 100 3,2 00 0 X to 3,2 and X to Acc.
18 73 0,4 40 1,4 Print X
19 40 0 30 0 Parameter for fraction on same line
20 30 1,2 53 2,2 Form %Zx;’ and clear A.R.
.21 05 3,2 00 0 Form (SD)2.
22 73 0,5 40 1,5 Form SD.
23 73 0,4 40 1,4 Print sD.
24 40 0 30 0 Parameter for fraction on same line
25 40 o, 00 0 Return tﬁ deal with next set.

The Complete Programme

The following indicates one way in which the above programme could
be written out. The meanings of the various symbols are explained in full
in the 803 Library of Programmes. 1In brief they are:

bl

Beginning of label (i.e. title of programme).

End of label,

Beginning of directory (see 5.2.2).

Beginning of a number (here, in some cases, a block address).
End of directory, or of a block.

End of block and end of tape.

cr 1f fs =]s MEANS AND STANDARD DEVIATIONS cr 1f fs bl

@ +
+

+ + +

192
220
230
290
430

comeasaa

+ + 4+ + +
o O o O O

See note (a)

Copy 803 T 5 with * instead of) See note (b)
Copy 803 T 6 with * instead of)

43

The above is passed to a teleprinter operator, who prepares and

checks the programme tape.

Notes:

(a) These +0's ensure that the locations of Block 2 are set to
zero initially. 1It is not essential that this should be done,
but, for reasons which are outside ‘the scope of this book, it
is good practice always to arrange that the working space block
is clear at the start.

(b) The standard versions of library subroutine tapes end with
) which indicates ‘end of block and end of tape’. This remark
is an instruction to the teleprinter operator to copy the stan-
dard subroutine tape into our programme tape, but to change the
)-to * (‘end of block’).

(c) The information given above about Library Programmes con-
sists of extracts from the 803 Library of Programmes relevant to
our present purposes, and is not complete. Before attempting
any serious programming it is important to study the complete
descriptions given in the library.

44

CHAPTER 8 THE KEYBOARD

6.1 Description of the Keyboard

The keyboard of the 803 carries the word generator, the in-
dicator lamps, the loudspeaker, the ‘clear store’ and other control
buttons, and the ‘operate’ bar.

6.1.1 VWord Gemnerator

On the word generator section of the keyboard there are four
rows of buttons. These contain 6, 14, 6 and 13 buttons respectively, and
correspond to the F1, N1 and B (together), F2 and N2 digits of a computer
word, A depressed button represents a i1, and a released buttona 0., When
any button is depressed it locks down: the buttons in any row may be
released by depressing the ‘clear’ button at the end of the row.

A decimal word generator has been fitted to some early machines.
This has thirteen columns of 10 buttons each, labelled O, 1, 2, 3, 4, 5,
6, 7. 8 and 9. The buttons in each column are mutually exclusive: that
is to say, depressing any button in a column releases the one already
depressed, This set of 130 buttons is read in function 70 in various
modes, depending upon the positioning of four mutually exclusive buttons
provided for the purpose. However, for the operating steps described in
6.2 below, the ‘mode 1’ button should be depressed, so that the word
generator is in “"instruction* mode; that is to say, numbering the columns
from left to right:

Columns 1 and 2 represent F1 in octal
Columns 3 to 6 represent N1 in decimal
Column 1 represents B

Columns 8 and 9 represent F2 in octal
Columns 10 to 13 represent N2 in decimal

6.1.2 Indicator Lamps

The ‘display’ lamp is illuminated while the computer is switched
on,

The ‘overflow’ lamp is illuminated while the overflow indicator
is set.

The ‘parity’ lamp is illuminated and the computer stops when
store parity fails. The lamp is extinguished as soon as the computer is
restarted.

6.1.3 Loudspeaker

This is pulsed every time an instruction from Group 4, 5, 6 or
7 is to be obeyed, and the pitch of the note emitted therefore varies
with the frequency of occurrence of such instructions in the programnme

45

in use. There is a volume control knob adjacent to the loudspeaker.

When the computer is in a dynamic stop, the maximum pitch is
reached and maintained, The same pitch is heard for a short period when
the computer is waiting for a busy line to be cleared.

6.1.4 Clear Store Button

This is used to clear the store of its content, and to easure
that the parity setting in each location is correct. The effect of using
it is to make all the parity digits in locetions 4 to 8191 of the store
1's and all the other digits 0°s. It 18 a press-press button: that is
to say, if pressed, it locks down; if pressed again, it springs up. The’
method of use is given in 6.2 below.

While the ‘clear store’ button is in use, the computer does
not stop if wrong parity is found in any location of the store.

6.1.5 Control Buttons and Operate Bar

The ‘read’, °‘normal’ and ‘obey’ buttons, the ‘selected stop’
button and the ‘operate’ bar are the principal means by which the operator
controls the computer, Their use is described in 6.2 below.

The ‘read’, ‘normal’ and ‘obey’ buttons are together termed
the ‘step-by-step' buttons: they are mutually exclusive. The ‘selected
stop’ button is a press-press button. The ‘operate’ bar is spring-loaded.

46

6.2 Manual Control of the Computer

To understand the use of the control bhuttons and the ‘operate’
bar it is necessary to have a little knowledge of the way in which the
computer works,

In the cycle of actions in which the computer carries out one
function there are three phases, which may be summarised thus:

(a) Determine which instruction to obey next.

(b) Take a copy of this instruction from the store, and place
it in the control unit.

(c) Obey it.

Whenever the computer is stopped, whether by means of the con-
trol buttons or as a result of store parity failure, it is always in the
position of having just completed phase (b). There is therefore an
instruction in the control unit, waiting to be obeyed: this is termed
the present instruction.

Important Notes (a) The ‘step-by-step’ buttons must be pressed firmly,
and only one should be pressed at any one time:
otherwise the mechanical interlock between the
buttons may fail, causing the computer to operate
wrongly.

(b) Unless otherwise specified, the ‘selected stop’
and ‘clear store’ buttons must be kept in the
released position,

(1) To stop the computer immediately

Depress either the ‘read’ or the ‘obey’ button.

(11) To_cause the computer, having stopped, to obey the present
instruction, and stop again:

Depress, or leave depressed, the ‘obey’ button, and depress the
‘operate’ bar once.

(iii) To cause the computer, having stopped, to read one instruction
from the word generator, and replace the present instruction
thereby.

Depress, or leave depressed, the ‘read’ button, set the instrue-
tion on the F1 and N1 buttons of the word generator, and de-
press the ‘operate’ bar once,

(This instruction is obeyed when either (ii) or (iv) is per-
formed).

(iv) To cause the computer, having stopped, to obey the present
instruction, and continue then to obey the instructions in its
store at full speed:

47

Depress, or leave depressed, the ‘normal” button, and press the
‘operate’ bar once.

(v) To clear the store:

Depress, in this sequence, the ‘clear store’ and ‘normal’ butt-
ons, and the ‘operate’ bar. Wait at least 10 seconds., Then

press the 'read’ or ‘obey’ ‘button and release the ‘clear store’
button by pressing it again,

(vi) To cause the computer, while running, to stop before obeying
either instruction in a specified location:

Set the address of the specified location on the N2 buttons of
the word generator and depress the ‘selected stop’ button.

(On earlier machines it is necessary also to depress the ‘obey’
button.)

(vii) To cause the computer, having stopped, to start and run at full
speed (as in (iv)), but to & stop again before obeying either
instruction in a specified location:

As in (vi), then depress the ‘operate’ bar.

If the computer has stopped on a selected stop, and is then
restarted with the same selected stop setting still on the buttonms, 1t
will, in general, obey one instruction only, and stop again.' For if the
first stop was before obeying the first instruction of a pair, and if

this is not a transfer instruction, the next stop is made before obeying
the second instruction of the same palir.

The following practice is recomménded:
If the computer is stopped while it is obeying a programme, and

one or more instructions are inserted from the word generator, as in

(i11) above, the return to the programme should be by the method of
Example 21, below.

Example 21

To enter a programme at the first instruction in location X.
(1) Depress the ‘read’ button,
(i1) Set 40 X on the F1 and N1 buttons of the word generator.
(111) Depress the ‘operate’ bar.
(iv) Depress the ‘normal’ button.

(v) Depress the ‘operate’ bar

48

6.3 Recent Additions to the Keyhoard (April 1961)

In addition to the items described above, the latest models
also have:

6.3.1 Manual Data Button

This is a push-push button. While it is depressed the word
generator is "busy®. That is to say, if the computer’s programme con-
tains a Function 70 instruction, the computer will stop on reaching that
instruction, and will not proceed until the button is cleared. This
enables the operator to take his time about putting a setting on the word
generator, without needing to stop the computer altogether.

6.3.2 Step-by-Step Lamp

This 1s 1it whenever the 803 is in the step-by-step state.

6.3.3 Busy Lamp

This 1s 1it whenever the 803 is in the busy state: e.g. is
waiting for the manual data button to be released before obeying a 70
instruction, or is held up waiting for a magnetic film backing store
function to be completed.

6.3.4 Other Buttons and Lamps

The other buttons and lamps are used in conjunction with Channel
2 devices and the Automatic Floating-Point Unit. See separate publica-
tions, and also Appendix 5.

49

APPENDIX 1

The ELLIOTT Telecode

Tape Binary Decimal l Character Indicated
Value Value = Figure Shift = Letter Shift
. 00000 0 Blank '
.+ O 60001 1 1 A
. 0 00010 2 2 B
. 00 00011 3 . c
.0 00100 4 4 D
.0 0 00101 5 $ E
. 00 00110 6 = F
« 000 00111 (7 G
o. o1obo 8 8 H
o, © ‘01001 9 ' B ¢
o. 0 01010 10 ' J
0. 00 01011 11 + K
0.0 01100 12 L
0.0 O 01101 13 - M
0.00 01110 14 " N
0.000 01111 15 %]
o . 10000 16 0 P
o, o 10001 17 (Q
o. o0 " 10010 18) R
o.o00 | 10011 19 3 s
o .0 10160 20 ? Ky
0 .00 10101 21 L) u
0 .00 10110 22 6 v
0 .000 10111 23 / W
00. 11000 24 e X
|oo. o 11001 25 9 Y
0o0. © 11010 26 £ A
00. 00 11011 21 Figure Shift
00,0 11100 28 Space
00,0 © 11101 29 Carriage Return
00. 00 11110 30 Line Feed
00.000 11111 31 Letter Shift

81

APPENDIX 2

137
274
549

134
288
536
073

147
294
589
179
359

719
438
8717
758

16
32

64
128
256
512
024

048
096
192
384
768

536
072
144
288
576

152
304
608
216
432

864
728
4586
812
824

848
298
592
184
368

736
472
844
888

[y
DWW O+ D

o Pt b Pt e
Db WD e

DO o bt gt pus
OO

NN N
P W

NN
Q@ am

W oW W
(S0 N

0 W W
0 0 3

Powers

of 2 in Decimal

.25

. 125
. 0682
. 031

. 015
. 007
. 0038
. 001
. 000

. 000
. 000
.000
.000
. 000

. 000
. 000
. 000
. 000
. 000

. 000
. 000
. 000
. 000
. 000

. 000
. 000
. 000
. 000
. 000

. 000
. 000
. 000
. 000
. 000

. 000
. 000
.000
. 000

5
25

625
812
808
9563
9876

488
244
122
061
030

015
007
003
001
000

000
000
000
000
000

000
000
000
000
000

000
000
000
000
000

000
000
000
000

25
125
562 5

281 25

140 625
070 312
035 158
517 5178

258 789
629 394
814 697
807 348
953 674

476 837
238 418
119 209
059 604
029 802

014 901
007 450
003 725
001 862
000 931

000 485
000 232
000 118
000 058
000 029

000 014
000 007
000 003
000 001

25
125

0682
531
285
6832
316

158
579
289
644
322

161
580
290
845
322

661
830
415
207
103

551
275
8317
818

25

625
812
406

203
101
850
775
387

193
596
298
149
574

287
643
321
660
830

915
9517
978
989

125
562
781
390
895

847
823
461
230
615

3017
853
828
813
456

228
614
807
403

25
825
313

856
828
914
957
479

739
870
835
4617
734

3617
183
092
546

APPENDIX 3

The 803 Instruction Code

These tahles give the complete instruction code of the 8083.
Some special notes follow,

Unless otherwise stated the N diglts of an instruction specify
the address of a location,

In the "Result” columns a' and n' indicate "new contents"™ of
the accumulator and location N, aandn likewise indicate "old contents".

Function Operation Result
a' n'
GROUP 0 00 Do nothing a n
01 Negate -8 n
02 Replace and count n+1 n
03 Collate a&n n
04 Add & +n n
05 Subtract 8 -n n
06 Clear zero n
07 Negate and add n-a n
GROUP 1 10 Exchange n 8
11 Exchange and negate -n 8
12 Exchange and count n+1 a
13 Write and collate a&n a
14 Write and add a +n a
15 Write and subtract a-n a
16 Write and clear zero a
17 Write, negate and add n-a a
GROUP 2 20 Write a 8
21 Write negatively a -8
22 Count in store 8 n +1
23 Collate in store 8 a&n
24 Add into store a a +n
25 Negate store and add to
store a a -n
26 Clear store 8 zZero
27 Subtract from store a n-a

53

GROUP 3

GROUP 4

Punction

40
41
42
13

44
45
48
47

Function Operation Result

a' n'
30 Replace n n
31 Replace and negate store n -n
32 Replace and count in store n n+1
33 Replace and collate in store n a&n
34 Replace and add to store n a+n
356 Replace, negate store and n a-n
add
as Replace and clear store n zero
37 Replace and subtract from n R-a
store

N.B. The "1" added in count functions is to scale 2°38%,

The time taken to obey any instruction of Group 0 to 3
is 720 microseconds in early machines, and 576 microseconds
in machines completed after December 1980.

Operation
Transfer, unconditionally, to first imstruction.
Transfer to first instruction if C(A) is negative.
Transfer to first instruction 1f C(A) is zero.

Transfer to first instruection if the overflow indicator is
set., Clear the overflow indicator.

Transfer, unconditionally, to second instruction.
Transfer to second instruction if C(A) 1s negative.
Transfer to second instruction if C(A) is zero.

Transfer to second instruction 1if the overflow indicator is
set. Clear the overflow indicator.

If atransfer is made to the second instruction in a location,

that instruction is obeyed as stored, irrespective of the state of the B

digit.

If a transfer instruction is placed in the first half of an

instruction pair, the B digit in this pair must be zero.

The time taken to obey any instruction of Group 4 is 720 micro-

seconds in early machines, and 288 microseconds in machines completed
after December 1960.

54

GROUP 5

In functions 52, 53 and 56 the N digits specify the address of
a location in the store. In functions 50, 51, 54 and 55, the seven right-
hand N digits specify a number N, which therefore lies between 0 and 127
inclusive. In function 57 the N digits are not used.

By "double-length number" is meant the combined content of the
accumulator and the auxiliary register (A.R.), treated as one number of
1 sign and 76 fractional digits.

In the column *Time Taken®, the upper time is for early machines,
the lower time for machines completed after December 1960.

Function Operation Time Taken

50 Halve the double-length number N times N+2)x720 usec,
(with sign digit regeneration), (N+2)x288 usec.

51 Shift C(A) right N places (without sign (N+2)x720 usec.
diglt regeneration), Clear A.R. (N+2)x288 usec,

52 Multiply C(A) by C(N), with double-length { 41 x 720 usec,
product. (42-Y)x288 usec,*

53 Multiply C(A) by C(N), with single-length 41 x 720 usec.,
rounded product. Clear A.R. (43-Y)x288 psec.‘

54 Double the double-length number N times. (N+2)x720 usec.

(N+2)x288 usec.
55 Double C(A) N times, Clear A.R. (N+2)x720 usec.
(N+2)x288 usec.

56 Divide the double-length number by C(N), 41 x 720 psec.
with single-length quotient. Clear A.R. 42 x 288 usec.

57 Read A.R.
(Clear accumulator sign digit, and replace { 720 usec.
other digits of C(A) by a copy of the 576 usec.
A.R. content).

. Y is the number of consecutive 1's 0's at the left hand end

of the content of store. e.g. 1f C(N) = 10 x 2°3%%, Y is 35.°

GROUP 6

Spare. In the basic 803, all instructions of Group 8 are
Interpreted as *do nothing®, and take 720 microseconds to obey
in early machines, and 576 microseconds in machines completed
after December 1960. See Appendix 5 for Automatic Floating
Point functions.

55

GROUP 7

In function 73 the N digits specify the address of a location,
In function 74 the five right-hand N digits specify a telecode character
by its "value". 1In functions 70 and 71 the N digits are not used. The
other functions of this group vary according to the type of input and
output equipment fitted to the individual 803; this table gives outline
details of a typical arrangement.

Function Operation

70 Read the Number Generator.

71 Read the Tape Reader (normally attached to Channel 1) (Mix
one character into the 5 right-hand positions of C(A).)

72 Channel 2 function (See Note below),

73 Write the address of this instruction (in the right-hand
part of location N).

74 Punch specified character on Output Channel 1.

15 Channel 2 function (See Note below),

76 Channel 2 function (See Note below).

M Channel 2 function (See Note below).

The time taken to perform function 70, 71, 73 o0or 74 is 720 micro-
seconds provided the associated busy line (if any) is free, on
early machines, and 576 microseconds on machines completed
after December 1960.

Note on Channel 2. Separate publications relating to equipment
which makes use of Channel 2 should be consulted for the inter-
pretation of functions 72, 75, 76 and 77, but it should be
noted that 1f a function 77 instruction is placed in the first
half of an instruction pair, the B digit in that pair must be
zZero.,

Special Notes

(a) The B Digit

If the B digit is a 1, the right-hand instruction is modified
by the addition of the corresponding part of the content of the location
specified by N1, theNdigits of the left-hand instruction, before being
obeyed.

56

(b) Addresses 0 to 3

Locations 0 to 3 contain the Initial Instructions: if a trans-
fer is made to location 0, 1, 2 or 3, the compunter endeavours to obey
this routine. 1If location 0, 1, 20r3 is used as B-line, the modifica-
tion is by addition of the appropriate initial instruction.

If any instruction specifies the content of location 0, 1, 2
or 3 as operand, the operand used is zero: further it is not possible
to change the content of location 0, 1, 20r3. Thus the instruction 12
2 has no effect other than to change C(A) to 2°3%.

(c) Altering the content of a location by an instruction contained therein

This note is included for completeness: the situation desceribed
arises very infrequently.
If the left-hand instruction in a location calls for the altera-

tion of the content of that same location in such a way that the right-
hand instruction is changed, then, if the B digit is an 0, the right-hand

instruction is obeyed in its new form. But if the B digit is a 1, the
instruction actually carried out is the old form modified by the new.

Example: If C(250) 1s 22 250:14 10, the computer obeys it as 22 250
and then 14 11, But 1f C(250) is 22 250 / 14 10, the computer obeys 22
250 and then 30 21 (i.e., 14 10 + 14 11),

57

APPENDIX 4

This appendix is in two parts:

L]
A. A list of all functions which can cause overflow.

B. A note on the accuracy of the division process.

]
A. Functions which can cause Overflow

Title Function Circumstances causing Overflow
Negate 01, 11, 21, 31 In the case where the number to be
negated is -1,
Count 02, 12, 22, 32 When C(N) is 1 - 2738,
Add 04, 14, 24, 34 Whenever the sum is outside the

range -1 to 1 = 2°3%% inclusive.

Subtract 05, 15, 27, 317 Whenever the difference is outside
the range -1 to 1 - 2°3% inclusive.
Negate and add 07, 17, 25, 35

Multiply §2, 53 In the case of =1 x -1 only.

Double 54, 55 Whenever the correct result lies
outside the range -1 to 1 - 2°°%°
inclusive.

Divide 58 Whenever the modulus of the numera-

tor (dividend) is greater than that
of the denominator (divisor) and
in the three cases shown in B(c)
below.

* This does not include *Floating-Point Overflow®: See Appendix §

B. The Division Process. This note concerns the accuracy of the result
produced by the computer when the true quotient lies within the range -1
to +1 inclusive, in function 56,

(a) BSince the result is not rounded, when the true quotient is not
exactly expressible as a 39-digit computer number, the result may be 2°38
less than that which would be obtained by using a process containing a
round-off stage.

(b) If a and b are both positive, and b > a, and if the quotient
is exactly expressible as a 39-digit computer word,

then for

a/b, -a/b, 0/b : the computer results are correct,

58

but for

a/-b, =-a/=b, ©0/-b : the computer results are 2°3% less than
the arithmetically correct results.

(¢) Por the division ta/ta, a > 0, the effects of (b), combined
with the fact that there is no computer representation of +1, cause the
results shown below to be produced. Note also the result obtained for
0/0, and that the overflow indicator is set for this case, and for both
cases in which the result of ta/ta errs by more than 2°3%,

Division Computer Result Overflow Indicator
a/a -1 Set
-a/a -1 Not Set
a/-a 1-2-38 Set
-a/-8 1-2°38 Not Bet
0/0 -2°38 Set

59

APPENDIX §

THE AUTOMATIC FLOATING-POINT UNIT

1. INTRODUCTION

Floating-point representation 18 the term used to describe a
certain method of representing numbers within a computer. This method is
akin to the notation by which such a number as .000000000135 is
represented by writing 1.35 x 10°!°,

The purpose of such a notation is to enable very small or very
large numbers to be represented without the need to write long strings of
figures, In the same way, the purpose of floating-point representation
within the computer is to enable very small and very large numbers to be
represented by a limited numbers of digits - by one computer word, in
fact.

This representation can be used in any 803, but in the basie
machine it is necessary to use subroutines to perform even such simple
operations as addition, subtraction etc. However, if an automatic
floating-point unit is fitted, it is possible to carry out arithmetic on

floating-point numbers by means of special functions provided for the
purpose,

2. FLOATING-POINT REPRESENTATION

2.1 General

Any given number A can be represented in many ways by a pair
of numbers (a, b) which satisfies the equality

A= a x 2®

in which a 1is called the mantissa or argument and b the
(binary) exponent. Such a representation is termed (binary) floating-
point, by contrast with the forms discussed in the main part of this
manual, e.g. integers, fractions, etc, all of which are fixed-point.

For example, the number 6 can be represented by (8, 0) or by
(.75, 3) or by (12, -1).

The usefulness of the notation lies, however, in the fact
that any given non-zero number can be represented by a peir of numbers
in which the magnitude of the mantissa lies between % and 1 and the
exponent is integral. 1In practice when using this notation in the
computer there are upper and lower limits on the value of the exponent,

60

and so there are upper and lower limits on the magnitude of the non-zero
numbers which can be represented.

Zero can, of course, be represented by any pair in which the
mantissa is 0.

2.2 Standard Floating-Point Representation within 803

In 803 computers fitted with automatic floating-point units the
details of the representation used are as follows:

(1) b 1is an integer, -256 € b € 255

(i1) if A > o0, b <€a<1
i A= 0, a=0, b= =266, always
iftA<0 -1€£8ac<-4%

(111) 30 digits representing the mantissa, a, and 9 digits
representing the exponent, b, are °"packed* together in one word.
a 1s on the left, and is represented in the same way as a normal
fixed point fraction: that is to say, the left hand digit is the
sign digit, the second is the 2°! digit, the third is the 2°32
digit, and so on down to the thirtieth, which 1s the 2-2° digit;
while if & 1is negative, it is represented by (2 - |a|).

The remaining 9 digits represent the integer (b+256) directly:;
this must satisfy the relation 0 £ (b+258) € 511,

2.3 Examples of floating-point numbers

For ease of reading, the numbers in the examples below have been
printed with the sign digit, the fractional digits of the mantissa and the
digits of the exponent in separate groups.

Zero

0 00000000000000000000000000000 000000000

1 00000000000000000000000000000 100000000

+1
0 10000000000000000000000000000 100000001

18

+ 240, i.e. o x 2°

0 11110000000000000000000000000 100001000

-.078125, f.e. (= §) x 273
1 01100000000000000000000000000 011111101

61

+(1 - 2°2%)x 2255, the largest possible positive number, about 5.8 x 1076
0 11111111111111111111111111111 111111111

<(% + 2°2%) x 2°2%6, the smallest possible negative number, about -4.3 x10°7°

1 01111111111111111111111111111 000000000

Observe that zero has the same form in floating-point
representation as in fixed-point, and that the sign digit of any positive
number or zero is 0, while that of any negative number is 1.

2.4 Accuracy, Range and Round-O0ff

The accuracy of any representation is determined by the number
of significant figures employed. Here this 18 29 binary digits, so the
accuracy is slightly less than that which would be expected from 9
significant decimal figures.

The last two examples given above show extreme values of numbers
which can be represented. The actual range is defined by:

Zero represented exactly and unambiguously
Largest positive number: (1-2°2%) x 23%%)

) representation

. «2586
Smallest positive number: % x 2 ; accurate to
Largest negative number: -1 x 23%%5) 29 significant
:) binary digits

Smallest negative number: -(% ¢+ 2°3%) x 27256)

This may be summarised approximately by saying that zero is
represented exactly and that any number A satisfying

4.3 x 10°7% < |A] € 6.8 x 1078

can be represented to an accuracy epproximately equal to that
obtained by 9 significant decimal figures.

Certaln rational numbers in this range can, of course, be
represented exactly., These include, in particular, all integers in the
range ~536 870 912 € n € 538 870 911,

In each floating-point operation executed by the computer the
result is rounded off without bias in such a way that its mantissa will
not differ by more than 2°29 from the correct result. If the true result
of any floating-point operation upon two numbers, which are represented
exactly, is itself capable of exact representation, then the result
actually produced by the computer will be exactly correct.

62

It will be appreciated that the value of the exponent
determines the absolute magnitude of the smallest increase or decrease
in any number which can be represented within the computer. Thus, in
general, the greater the magnitude of any particular number, the greater
the step to the next representable number,

2.5 Floating-Point Underflow and Overflow
The Floating-Point Overflow Lamp

(1) If the computer is called upon to execute any floating-point
arithmetic operation, the correct result of which is of such small
magnitude that it cannot be represented, the actual result
generated will be zero. This effect is termed floating-point

under flow, and does not affect the running of the computer, or any
indicator lamp.

(i1) If the computer is called upon to execute any floating-point
arithmetic operation, the correct result of which is of such great
magnitude that it cannot be represented, it will stop, and the
floating-point overflow lamp on the keyboard will be 1it. The
computer can be restarted by depressing the operate bar.

The result actually generated will be spurious.

(1i11) Floating point functions do not affect the fixed point
overflow indicator on later machines"*.

2.6 Difference between automatic and programmed

floating-point representation. Cautionary note

It should be observed that, before the advent of the 803
automatic floating-point unit, many subroutines and programmes were
written by means of which floating-point operations could be performed,
and that these remain in use on 803's not fitted with automatie
floating-point units. 1In most of these programmes, the representation
employed differs to some extent from the representation desecribed above.

Thia description applies to the automatic floating-point unit only.

3. THE FLOATING-POINT INSTRUCTION CODE

3.1 Group 8 Functions : Automatic Floating-Point Arithmetic

In functions 60 to 64 inclusive the computer treats both a
and n as standard floating-point numbers and produces a standard
floating-point result, which replaces the old content of the accumulator.

The content of the auxiliary register is cleared by any of these
operations, but the store 1s not affected.

63

Instruction Effect a' Time Taken

60 N Add n to a a+n 3 x 288 usec.
61 N Subtract n from & a=-n 3 x 288 usec,
62 N Negate a and add n n-a 3 x 288 usec.
63 N Multiply a by n an 17 x 288 usec.
64 N Divide a by n a/n 34 x 288 usec.
65 4098 Convert the fixed-point

integer in the accumulator 2 x 288 usec.

to floating-point from

Conversion

In obeying the instruction 865 40968 the computer treats the
existing content of the accumulator as a fixed-point integer to scale
x 2°3% and converts this to standard floating-point form,

For example:

0 00000000000000000000000000000000001111

which is the fixed-point representation of the integer 15
is converted to
0 11110000000000000000000000000 100000100

in which a = 12 and (b+256) = 260

-

so that a x 2° = %% x 2% =15

It should be noted that function 65, with values of N £ 4096,
is used for other purposes in certain special versions of 803, and that
65 4096 1is the only permitted form of the instruction to convert an
integer to floating-point representation,

Negating

Observe that if C(Ace) 1is a floating-point number it may be
negated by means of the instruction 62 0.

3.2 Other Functions which can be used straightforwardly with
Floating-Point Numbers

Functions Remarks
00 10 20 30 The effect is normal
03 13 23 33 Can be used to separate the exponent and
mantissa: otherwise noiL of much practical value
06 18 26 36 The effect is normal
41 42 45 46 will work equally well when C(A)'is a floating-

point number

1

3.3 Other Functions which will not, in general,
produce sensible results in floating-point foram

These functions are:

01, 11, 21, 31,
02, 12, 22, 32,
04, 14, 24, 34,
05, 18, 25, 35,
07, 17, 27, 31,
43, 417,

A1l Group 5

Where the effect of the above instructions is to perform
arithmetic on one or more words which represent floating-point numbers,
they will not, in general, produce sensible results. The functions 43
and 47 refer to the fixed-point overflow indicator, which is not usually
affected by floating-point overflow: see 2.6 (1ii).

It is, however, possible to carry out such actions as using
22 N to double a floating-point number in the store once, or using a
fixed-point add or subtract instruction to double or halve several times
by adding or subtracting an integer (thereby changing A = a.2® to
8.2%%3 = A,2%), It should be noted that these operations would not be
subject to the normal rules of floating-point overflow and underflow.

4. CONVENTIONS USED IN AUTONMATIC FLOATING-POINT PROGRAMMES

4.1 Floating-Point Decimal Notation

Just as with fixed-point programming, constants and data
which are to be operated on in binary in the computer, are expressed in
decimal on programme sheets and when writing out data.

While the actual details of the conventions used will vary
from one subroutine or programme to another, the general written
notation for a floating-point number is % a/b, representing + a x 10°.
b must be an integer, a may be a fraction, integer or mixed number.

Thus we could express the flosting-point number
123.45
by any of these:

(1) +.12345/3
(11) +12345/-2
(111) +123.45/
65

O0f these, the first is sometimes called the standard (decimal)
floating-point form, which is roughly defined by saying that the mantissa,
a, obeys the decinmal inequality

1€ |a] €1

In the second example, where there is no decimal point, the
mantissa is assumed to be an integer. 1In the third case, where there are
no figures after the /, the exponent is assumed to be zero.

4.2 Floating-point Translation Input Routine

An augmented translation input routine is available, which will
read and store floating-point constants written in any of the above
notations. This routine occupies more storage space than the standard
form, 80 programmes written for asutomatic floating-point conmputers can
conveniently commence in location 258.

4.3 Ploating-point Subroutines

Subroutines which will perform the functions of reading and
printing floating-point numbers, including if desired the conversion from
or to fixed-point form, are available. So also are subroutines to evaluate
mathematical functions of floating-point numbers.

8. A CONPLETE FLOATING-POINT PROGRARNE
WARNING

At the time (May 1961) of writing this text, the subroutines
to which reference is made exist only in a provisional form.
It should therefore be noted that the final details may
differ from those assumed here.

5.1 We assume that the following are available:

(1) An augmented translation input routine, of about 220 words
length, which will read and store floating-point constants.

This may also be entered from any programme by the
instruction pair 73 170 40 53 whereupon it will read
one number (fixed or floating-point) from the input tape,
and exit with this in the accumulator.

(11) A print routine which will, among other things, print a
floating-point number in standard decimal floating-point
form, The entry is standard, and the parameter 00 0 00 n
must be written in the location imnmediately following that
holding the eatry instructions, to specify that n decimal
digits are required in the mantissa of the printed number.

Storage requirements: 1less than 200 locations,
66

(111) A floating-point square-root subroutine, which will extract

the square root of the floating-point number in the accumulator.
Entry is standard, and not more than 25 locations are required.

The problem to be Programmed
Given: The integer r, and the surface areas of r spheres.

Calculate and print, to five significant figures, the volume of

each sphere and the mean volume per sphere.

5.3

Notation, Formulae, etc

The integer r 18 the number of spheres.
[}

r is the standard floating-point form of r.

If the area of a sphere is A, then its volume V is determined by

V=AaAvA/ 6 Vnm
and we note that 6/7 = 10.6347231

If T is the total volume, then
T =3V =0 + v, ¢+ V2 + ... ¢ vr

and if U is the mean volume, then

Ue=T /1
5.4 Preliminary Work
Blocks Main Programme

Constants

Print subroutine

1
2
3 Workspace
4
§ Square-root subroutine

(Input of data will be done by means of the augmented translation
input routine.)

Data Sequence

sequence:

The following numbers will be punched on the data tape, in this

The integer r

The floating-point numbers, representing the surface areas, one

after the other,

67

Output Format

The individual volumes %will be printed in a column, and the
mean volume will be printed to the right of the last individual volune,

5.8 Scheme, or Flow Diagram.

Read r

Set count -(r-1)

Form r' and store it
Set T to zero

Read an area A -
Form V

Add V to T

Print V on a new line

Count and test : 1f r spheres have not
yet been dealt with, go back

Otherwise: divide T by r’' to form U
Print U
Stop

68

5.6 Programme

ADDRESS INSTRUCTIONS REMARKS
BLOCK () DIRECTORY
1 +256 Main Programme
2 +280 Constants
3 +285 Workspace
4 +290 Print subroutine
[3 +520 Square root subroutine
. BLOCK 1
0,1 73 170 40 53 Read r
1,1 21 0,3 22 0,3 -(r-1) in 0,3
2,1 65 4096 20 1,3 r’ in 1,3
3,1 26 2,3 74 27 T to zero, punch fs!
4,1 73 170 40 63 Read an area A
5,1 20 3,3 00 0 Copy of A in 3,3
6,1 73 0,5 40 1,5 Form VA
7.1 63 3,3 64 0,2 Form V
8,1 10 2,3 60 2,3 Add to T
9,1 10 2,3 00 0 (V back in accunulator)
10,1 74 29 74 30 Punch cr 1f!
11,1 73 0,4 40 1,4 Punch V to
12,1 00 0 00 5 § significant figures
13,1 32 0,3 41 4,1 Count spheres and test
14,1 30 2,3 64 1,3 Form U
15,1 74 28 74 28 Punch sp sp!
16,1 73 0,4 40 1.4 Punch U to
17,1 00 0 00 5 5 significant figures
18,1 40 18,1 00 0 Stop
. BLOCK 2
0,2 +10.6347231/ 8/m

69

ADDRESS INSTRUCTIONS REMARKS
. BLOCK 3
0,3 +0 Count of number of spheres
1,3 +0 ' r'
2,3 +0 T
3,3 +0 A
¢ BLOCK 4
Copy Floating-Point
Print Subroutine
without)
. BLOCK §
Copy Floating-Point
Square Root Subroutine
with)
Note 1 The first character to be punched is fs,

to ensure that the results will be printed as figures.
Before each V, the characters cr 1f are punched,
to make the teleprinter "start a new line*® before
printing V. Before U we have sp sp: the student
may work out why for himself.

70

