ELLIOTT

903

COMPUTER

CONTENTS

General Information

Facts for programmers

903 Telecode and Internal code
Basic instruction code times
Paper tape station instructions
Digital plotter instructions
9kcs magnetic tape facilities
Priority level program organisation
Initial instructions

Store addressing

Symbolic input routine (SIR)
903 ALGOL

903 ALGOL error messages
903 ALGOL entry points

903 FORTRAN

903 FORTRAN error messages
903 FORTRAN entry points
Peripherals and Interfaces
Tables of binary equivalents
Powers of 2 in decimal

Useful constants

15 to 21
19
22
23 to 26
25
27
28 to 29
30
30

GENERAL INFORMATION

The Elliott 903 is a desk-sized computer designed to meet the exacting
requirements of science, industry and education. Developed from the
successful Elliott 920, a second generation military computer, the 903
inherits a rugged reliability and is equally suitable for on or off-line
applications. Typical applications include :

Engineering Design

Medical Research

Structural Analysis and Design

Research and Teaching in all Educational Institutions

Process Control

Plant and System Simulation Studies

Computer Typesetting

Real Time Collection of Experimental Data etc.

The basic 903 system comprises a central processor, 8,192 word
core store, paper tape input and output equipment and control panel,
all housed in a single desk-type cabinet.

Input/output facilities consist of a tape reader, tape punch, teleprinter
and an 18-bit parallel data highway, to which up to 2,048 peripheral
devices may be attached.

With its large, high-speed immediate access store, effective instruction
code and full hardware arithmetic and input/output facilities, the 903
has a versatility and performance previously associated with larger and
more costly systems. It is backed by a wide range of peripherals and
effective software which are described elsewhere in this booklet.
Weight: (complete with tape reader and punch) 470 Ib.

Power Requirements: 250 volts a.c. 50 c/s, 120 W.
Dimensions: (desk version. excluding paper tape equipment):
Height: 3ft. 1in. Depth2ft. 2in., Width3ft. 7in

903 TELECODE
The standard 903 telecode is the International Standards Organisation
8-track code which is also used by the NCR-Elliott 4100 system. The
paper tape station can however read and punch 5, 6, 7 and 8 track
paper tape, a facility of great value in the reduction of ‘captive data’.

FACTS FOR PROGRAM

The 903 is a binary machine with an 18-bit word length and an internal
memory of 8,192 words. The store may be extended to a maximum of
65,636 words by the external addition of store blocks of 8,192 words.

Positive integers are represented directly. Negative integers are
represented using the “two’s complement” notation. The range of
integers allowed by single length working is —131072 to +131071.
Greater range and accuracy are obtained by multi-length working.

For floating point working, two words are used to hold one number
An instruction is stored and interpreted in the following manner:

B F N '
Modifier Function Address
bit 18 bits 17-14 bits 13-1 .

Bits13to1 (‘N’)
Address bits which specify any of 8,192 store locations.

Bits17to 14 ('F')
Function bits which specify the operation to be carried out.
Bit18 (‘B’)
The modifier bit. If it is a 0, the instruction is obeyed as stored; ifitisa 1,
the address bits are modified before the instruction is obeyed by the
addition of the contents of the B Register. The function bits remain
unaltered and the version of the instruction held in store remains un-
changed.

The Control Unit provides either manual or automatic control over the
computer. It can also be used to test operation of the computer inde-
pendently of its peripheral system.

In the “AUTO"” mode, only the power ON/OFF, RESET and TRACE
controls are operative. When switched ON in this mode, the computer
jumps to the program trigger location 8177 and commences operation.

The number generator keys are operative for setting up starting
addresses when the Mode Switch is either in the OPERATE or
TEST position. The Control Unit provides the following: Power
ON/OFF, COMPUTER STOP, COMPUTER RESTART, COMPUTER
RESET, JUMP.

With the Mode Switch in the TEST position additional number
generator keys are operative, allowing complete instructions to be set
up and the following special test controls are provided: ORDER
STOP/CYCLE STOP, CYCLE REPEAT, ENTER, OBEY.

A loudspeaker with volume control is provided as an audible means
of identifying individual program operation. Manual priority level control
is effected by three buttons while associated lights indicate the
level at which the computer is currently operating.

903 PAPER TAPE AND IR {NAL CODES

-

[71s0 Value SIR Internal code | 1SO | SIR Internal Code
\Code | with | Telecode | Binary ~—-——| Code | with |Telecode| Binary ,———————
\Value _|Parity | Character | Pattern Octal | Decimal | Value | Parity |Character| Pattern | Octal ! Decimal |
—T i |
0 0 |blank 00000-000 64 192 | “(grave) | 11000-000 | 40 32
1 129 10000-001 65 65 A 01000-001 ; 41 33
2 130 10000-010 66 66 B 01000-010 | 42 34
3 3 00000-011 67 195 c 11000-011 | 43 35
4 132 10000-100 68 68 D 01000100 | 44 36
5 5 00000-101 69 197 E 11000-101 45 37
6 6 00000-110 70 198 F 11000110 | 46 38
7 135 |Bell®* 10000111 A 7 G 01000-111 47 39
8 136 10001-000 72 72 H 01001-000 | 50 40
9 9 |Hor.Tab' {00001.001 73 201 1 11001-001 51 41
10 10 [Line Feed? | 00001010 | 01 1 74 202 J 11001010 | 52 42
11 139 10001011 75 75 K 01001-011 53 43
12 12 00001-100 76 204 L 11001100 | 54 44
13 141 |Car.Ret.%4| 10001-101 77 77 M 01001-101 65 45
14 142 10001-110 78 78 N 01001110 | 56 46
15 15 00001-111 79 207 (o] 11001-111 57 47
16 144 10010:000 80 80 P 01010000 | 60 48
17 17 00010-001 81 209 Q 11010.001 61 49
18 18 00010-010 82 210 R 11010010 | 62 50
19 147 10010011 83 83 S 01010:011 63 51
20 20 |Halt"* 00010-100 84 212 T 11010100 | 64 52
21 149 10010-101 85 85 U 01010-101 65 53
22 150 10010-110 86 86 Vv 01010-110 | 66 54
23 23 00100-111 87 215 w 11010111 67 55
24 24 00011-000 88 216 X 11011-000 | 70 56
25 153 10011.001 89 89 Y 01011.001 A 57
26 154 10011.010 90 90 Z 01011.010 | 72 58
27 27 00011-011 91 219 [11011.011 73 59
28 156 10011-100 92 92 £ 010114100 | 74 60
29 29 00011-101 93 221 11 11011-101 75 61
30 30 000114110 94 222 4 11011110 | 76 62
31 159 10011111 95 95 <34 101011111 77 63
32 160 |Space 10100000 | 00 0 96 96 @' 01100-000

33 33 3
34 34 w8
35 163 %
36 36 $
37 165 %
38 166 &
39 39 * (acute)
40 40 (
41 169)
42 170 -
43 43 +
44 172 |, (comma)
45 45 —_
46 46 3
47 176 /4
48 48 0
49 177 1
50 178 2
51 51 3
52 180 4
53 53 5
54 54 6
55 183 7
56 184 8
57 57 9
58 58 z
59 187 H
60 60 <
61 189 =
62 190 >
63 63 10

00100-001
00100-010
10100011
00100-100
10100-101
10100-110
00100-111
00101.000
10101-001
10101.010
00101-011
10101-100
00101-101
00101-110
10101111
00110-000
10110-001
10110010
00110-011
10110-100
00110-101
00110110
10110111
10111-000
00111-001
00111.010
10111.011
00111:100
10111101
10111110
00111111

1ignored by Teleprinter
3lgnored by Flexowriter
4Space on Lineprinter
SUpper case on Teleprinter

255

J

La,s

N<Xg<c~¥-"QUWos33 " ~Ja—"0ao0oUw

<

erase

11100-001
11100010
01100011
11100-100
01100-101
01100-110
11100111
11101.000
01101.001
01101010
11101.011
01101100
11101101
11101110
01101111
11110000
01110-001
01110-010
11110011
01110-100
11110101
111104110
01110111
01111.000
11111.001
11111010
01111011
11111100
01111.101
01111.110
11111111

B imc

INSTRUCTION CODE TIMES

BASIC
-’Functlani‘ Effect Time us®
/ 'B-modification 6:6
ON B:=Q4. :=m Set B-register 300
1N A:=A+m Add 236
an {4 RI=m—a: Negate and Add 266
gu-' =m
18°= . %
3N Mygoyi=Qaeg S Store Q-register 25.0
4N = LOAD 23-6
6N m:=A STORE 25.0
6N A:=Aand m Collate 2356
7N if A=0 then S:=M Jump if zero 21.04
and Q:=undefined
8N 1= Jump 24-0
9N ifA<Othen S:=M Jump if negative 21.04
and Q:=undefined
10N =m+1 Count in store 24.0
Mygmqi=(S+1) 3~
11N Qg-14:=(S+1) 14-14 | | Store S-register 316
Qg 1=
12N | (AYQ) :=A"m Multiply 765
A= (Am;.) +2-17 .
13N Qi=AL£2-17 Divide 7956
Ayi=1;Q,:=0
(A, Q)+Q,:=((A, Q)+Q,)*2Z Left shift Upto48
14N (A, Q)+Q,:=((A Q)+0Q,)*2Z-8192 places
Right shift)) 224-3Z
2048<Z<6144 Block Transfer®
16N (2=7168) Program terminate. i.e.| 20-5
b return to lower level _(minimum) |
Notes
1. In the first stage of B-modification the Q register is affected in an
undefined manner, consequently the effect of a modified 3 instruc-
tion is undefined.
2. Interrupt cannot occur after this instruction.
3. Functions 14 and 15 are used with other addresses for input/output,
and block transfer. Details are given against the relevant devices.
4., Add 6:5ps if jump occurs.
6. All times are quoted to a tolerance of 4-10%.

A is contents of Accumulator (18 bits).

B is contents of B register for the current level (18 bits).

S is content of the sequence control register (containing the address
of the current instruction). The S register is incremented before the
instruction is obeyed.

Qs content of bits 18 to 2 of the Q register (extension Accumulator).
M = (Sg.14+N)1gey OF (Sygagq+N+B)yq-,

m is the contents of location M

Z =Nor(N+B),s4 6

INSTRUCTIONS REFERRING TO

THE BASIC PAPER TAPE STATI!ON
Instruction Effect | Time' | Status
| bits*

15 2048 Input one character from the | 20-5us 1
paper tape reader to A%? l

16 2052 Input one character from the | 20.5ps 3
on-line teleprinter to A3

16 6144 | Output one character (A,.4) to | 20-5ps 2
the paper tape punch

15 6148 Output one character (A;.,) to | 20:-5ps 4
the on-line teleprinter

ADDITIONAL PAPER TAPE STATION FACILITIES

Instruction Effect Time Status
bits*

16 2050 Input one character from tape |20-5ps' 1
reader 2 to A%3
15 2054 Input one character from tele- |20.5ps! 3
printer 2 to A%3
15 6146 | Output one character (A,.,) to |20:5ps’ 2
punch 22

156 6150 | Output one character (A,.,) to |20:5ps’ 4
teleprinter 22

15 2049 Read status word* 20-5ps
15 6145 Output control word* 20-5us
15 2051 Read status word of second |20.-5ps
paper tape station*
15 6147 Output control word to second |20-5us
paper tape station*

1. If the device is busy, the computer will be held up and the instruction
will only be obeyed when the device becomes free.

2. The select input and select output switches may be used to override
the choice of source and destination respectively.

3. The exact effect of these instructions, if C,. 4 is the character input,
is defined as:
Ajg-9:=Ay-, (shift 7 places left)

8= m orCy

N 7 track or 5 track tape is used Cg or C4- respectively are undefined
"'~ oninput.

4, Status and control functions are only available if the appropriate

on-line adaptor is fitted. If the indicated bit of the status word is one
the appropriate device is available and the given instruction will be
completed in the time shown.
If the device is not available the output or input instruction will be
held up, unless the paper tape station is in on-line mode, set by
output, control with A=1. Return to off-line mode by output control
with A=0 or RESET.

INSTRUCTIONS REFERRING TO THE
DIGITAL PLOTTER

" Instruction Effect Time'
15 4864 Output one character to the plotter. 20-5ps
14 4864 Output Q characters (1 < Q <£4095) to sum of

the plotter. Characters are held one to a busy

word. A contains the address of the first | times

character. for each
character

" Bitof

word output Effect Time?
1 Move one step East.
3 Move one step West. 3.3ms
3 Move one step North,
4 Move one step South.
5 Raise pen.
6 Lower pen. 20ms

1 If the device is busy, there will be a delay and the instruction will only
be obeyed when the device becomes free,

* ‘Ii‘ime for which the plotter is busy and cannot accept another instruc-
tion.

9 KCS MAGNETIC TAPE FACILITIES

Programs are available forreading and writing blocks and records of data,
and opening and closing magnetic tape files. The 903 Skcs Magnetic
Tapes should normally be used via these routines. Details of the instruc-
tion code will be found in the Technical Manual. The status word read
from the controller is usually printed when anon-recoverable error occurs.
This may be interpreted by the table given below.

Bit Meaning when set to 1 in status word

Handler busy (rewinding)

Handler in manual, or not available. All other bits
undefined

Missed data transfer

Parity error

Short block

Long block

Wirite permit ring fitted

Tape on load point

End of tape detected

False end of block

An instruction has been rejected as ‘Do Nothing’

N =

- 0O WOoONOOUG W

- -

Tape speed: 45 inches/sec.
Rewind speed: 180 inches/sec. (approx.)
Density : 200 characters/inch

(3 characters per word)

Inter block gap: 0-75 inches

Block length: Between 5 and 2047 words
Start/stop time: 18 millisec. (approx.)
Maximum tape length: 2400 feet

PRIORITY LEVEL PROGRAM ORGANISATION

Each priority level has its own sequence control register (SCR) and
B register. These registers are locations in the store and can be referred
to by program in the normal way.

A program may not address its own SCR location. It may address the
SCR location of other priority levels.

Priority Level B. Reg. Location S.C.R. Location
1 ~h‘i5hest level 1 0
2 . 3 2
3 5 4
4 base level 7 6

The accumulator and the auxiliary register are shared between all four
levels so they must be safeguarded by program every time an interrupt
occurs. All these conditions are fulfilled by the following control
instructions. They are applicable to any program on levels 1, 2 or 3

which starts at location ENTRY.
L 0Q1 (Reset Q,,.,)
141
4 A1
15 7168 (Terminate)
ENTRY 5 A1 (A1 and Q1 must be distinct)
3 Q1 (for each interrupt program)
(INTERRUPT LEVEL PROGRAM)
8L
A1 +0
Q1 +0

Note that this program does not preserve bit 1 of Q.

Programs entered by the JUMP button are obeyedifrom level 1. The
Initial program should setup locations 2, 4 and 6 to appropriate addresses,
then terminate to level 4, which is regarded as the base level.

10

INITIAL INSTRUCTIONS

Locations 8180 to 8191 inclusive are used for the initial instructions,
used to input an initial program loader punched in ‘binary’ form. These
instructions are entered on level 1 at location 8181. On 903 processors
fitted with more than 8192 words of core store the locations 8180 to 8191
may be used as normal core store when the initial instructions are
‘disabled’. The instructions are disabled whenever a 15 7168 is obeyed.
They are enabled whenever the JUMP button is pressed. The contents
of 8180 to 8191 will be preserved unless program is obeyed from those
locations. The effect of reading these locations on a basic machine or
while the instructions are enabled should be regarded as undefined.

The instructions are as follows:
8180 /15 8189 (-3)
ENTRY 0 8180

4 8189
8183 15 2048
9 8186
8185 8 8183
15 2048
8187 /5 8180
10 1
8189 41
9 8182
8191 8 8177 (Trigger to program)

STORE ADDRESSING

The basic 8192 words of store can be addressed directly by the 13 bit
instruction address (N). Larger stores are considered to be divided into
modules of 8192 words (Module numbers from 0 to 7). Within each
module, program and data are addressed relative to the first location
(location 0) of that module. B-modification is used to access program
and data outside the current module. The address actually accessed is
(Sy6-14+N+B),¢., therefore the address used for modification must be
relative to the current module. Attempts to address store modules not
fitted cause the processor to hold up.

1"

SYMBOLIC INPUT ROUTINE

Symbolic Input Routine (SIR) enables programs to be written in modified
machine code form. Essential details of SIR are given below. Full de-
tails of the routine can be obtained from the SIR Handbook.

S.I.R. Symbols used for the Major Facilities
(i) IDENTIFIER Group of up to six letters or numbers commencing
with a letter.

(i) GLOBAL IDENTIFIER LIST [] e.g. [CAT "DOG RAT]
(CAT and RAT are Global, DOG is Sub-Global.)

(iii) CONSTANTS
(a) Integer or fraction + e.g. —71032
(b) Octal groups & eg. & 770123
(c) Alphanumeric groups £ e.g. £A23
(iv) ADDRESSES

(a) Absolute an unsigned integer

(b) Block relative address N;

(c) S.L.R. relative ;4N

(d) Identified address Identifier + Integer (if required)
(e) Literal address Any constantasin (ii) above or =

followed by a quasi instruction
(absolute address only)

(v) SKIP >+N

(vi) COMMENT (THIS IS A COMMENT)
(vii) PATCH +A
(viii) RESTORE $

(ix) OBEYED INSTRUCTION f‘eg.f8A"*

(x) END OF TAPE (A (HALT CODE)

(xi) END OF PROGRAM %

(Locate literals, cancel Sub-Global identifiers, list undeclared
Global Identifiers and display a FIRST LAST NEXT message.)

Note
N is an unsigned integer.
A is any currently located address.

12

(xii) OPTION *N where N is the sum of the

following :
_ Availability ___|
Value Effect Load | Non- ? f
GO _| LoadGO_Check
1 | Display labels. Oor1l Oorit| 1
2 Load and go operation (otherwise 1 0 {0
punch relocatable binary tape). {
4 Clear the store up to the assembler. | Oor 1] 0
8 Punch a binary loader tape. 0 Oor1 0
16 Continue assembly at location 32. | Oor1 0 0
32 Set dictionary below the program. | Oor1 0 0
64 Check without assembly. 0 0 1
t 903C only. ;
N is an unsigned integer.
The presumed option is *+ 3
ERRCR INDICATIONS
Assembling
EO F > 15 or quasi-instruction not absolute.
" El Contextual error.
E2 Error in Octal or Alphanumeric Group.
E3 Label declared twice:
E4 Global identifier list error.
E5 Store full or patch error.
E6 Number overflow.
E7 Buffer overflow (over 120 characters in a line).
E8 lllegal character.
E9 Stop code not first on line.
EG Global label error.
EL Literal error.
EP Patch or Obeyed instruction error.
EU Unlocated identifier.
Loading
FA Misread or mispunched tape.
FC Label used twice.
FD Misread or mispunched tape.
FE Store full,
FF Check sum failure.
FP Patch or Obeyed instruction error.
FU Unlocated identifier.

13

903 ALGOL HARDWARE REPRESENTATION

Algol Symbol 903 hardware Recommended mode
representation of writing the symbol

a-z A-Z a-z

X . L]

+ “DIV" div.

< “LE" le

= “GE" ge

o “NE” ne

A “AND" and

\" “OR" or

=] “IMPL" impl

= “EQUIV"” equiv

1 “NOT” not

tLgln' _end etc. “BEGIN” “END" etc. b_egﬂl end etc.
“CODE”"ALGOL" code algol

SUMMARY OF STANDARD PROCEDURES

In the following representation :
X is a real expression

Ziis a real variable

I, J are integer expressions
M is an integer variable

A is an integer array

B is a real array

Qs a boolean expression

H is a handler number
N is a block number
P is number of words in a block
E is integer variable :=

last block or error
STAT isinteger variable := status
T is an integer indicating

S is a string operation required
Real Boolean Input
abs (X) checkb (Q) readZ, M,...
exp (X) reader (1)
In (X) Output instring (A, M)
sqrt (X) printX, 1, S, ..
sin (X) digits (1) Control
cos (X) scaled (1) wait
arctan (X) freepoint (l) stop
checkr (X) aligned (1, J)
Integer sameline Magnetic Tape
entier (X) prefix (S) MTCHECK (H, E, STAT, L)
sign (X) punch (1) MTOPEN (H, A, T, S)
range (B, 1) outstring (A, M) MTWRITE (H, A, P)
lowbound (B, I) checks (S) MTREAD (H, A, N)
checki (1) MTCLOSE (H, T)

14

©
o

€2

CoONIODLWN =

17

18
19
20
21
22
23
24

25
26
27
28

29
30
31

ALGOL TRANSLATOR ERROF

read misplaced.

.;Tm misplaced.

Constant or expression in read list.
Wrong delimiter in switch declaration.
lllegal actual parameter.

Too many parameters to a procedure.
lllegal number.

Integer constant too big.

Two statements in the same block are prefixed by the
same label.

Identifier or constant not as expected.
Letter, digit, “."” or **;,"" misused.

true or false follows an identifier or constant.
comment does not follow * ;** or begin
<Lreserved>

Unrecognised basic symbol.

No assignment to the procedure identifier occurred
within the body of a type procedure.

An identifier in the value or specification part of a
procedure is not a formal parameter.

Use of undeclared identifier.

lllegal symbol.

Non procedure identifier used as a statement.
“: =" omitted from for clause.

lliegal use of label name.

Inadmissible array declaration.

<switch name> not an actual parameter nor
preceded by goto.

Non type procedure as function designator.
switch misplaced.
Declaration without identifier.

‘1 =" preceded by a constant or used inside an
expression.

1" in type or switch declaration or misused.
Adjacent delimiters inadmissible.

Constant before “:="" or “[”, or constant or name of
a string in a read list.

15

32
33
34

35
36
37
38
39
40
41
42
43

45
46

47

49
50
51
52
53
54
55
56
57
58

59
60

61
62

Item other than a non-type procedure used as a
statement.

Identifier or constant follows a closing round or square
bracket.

Relation on each side of a simple arithmetic
expression.

llegal statement, delimiter misused.

Declaration starts incorrectly.

Error between for and " :=".

Missing array or switch name or ** [misplaced.
1" misused in array declaration.

end misused.

Local identifier used in array bound.

goto follows an identifier or a constant.

mng for clause preceding do

for misused.

Misused Boolean constant.

Assignment to procedure identifier outside procedure
body.

real integer or boolean misplaced.

Identifier declared twice in same block-head.
Blank parameter.

No begin at start of program.

Wrong number of subscripts or parameters.

*:="" appears in an actual parameter list.
Statement ends incorrectly.

Declaration follows statement.

*:", goto or for used in expression.

lllegal parar-n—eter comment or) precedes identifier.
Wrong use of delimiter.

Relational or logical operator used as an arithmetic
operator.

lllegal use of logical operator.
Omission or error precedes begin or begin follows

(" misplaced or missing procedure name.
Function designator as designational expression.

16

63
64
65
66
67
68
69

70
7

72
73
74
75
76
77
78
79

80
81
82
83

84
85

86
87
88
89
80
91

92

93

Misplaced declarator.

Subscripted variable as statement.

lllegal specifier.

Misused comma or colon in an expression.

if misused.

Tfused in type declaration.

Eorresponding if has been omitted, or conditional
expression without an else.

Corresponding then mi.sTng.

lllegal character in inner string or missng close quote in
previous string.

array misplaced.

-L?t-square bracket not preceded by an identifier.
Unmatched closing square brackets.

Upper bound missing in array declaration.

lllegal type declaration.

lllegal array list.

Corresponding for missing.

A jump is made to a label declared, but not placed in
the block that ends here.

step, until or while misused in fo_r_ list element.
msT)" other than in expression.

)" misplaced or unmatched.

Program too complex, i.e. some statement is too
complicated.

Wrong delimiter after procedure statement.

Program too large, i.e. contains too many names,
labels, constants or switches.

Error before procedure.

Repeated formal parameter.

Wrong formal parameter delimiter.
<reserved >

Wrong delimiter in ‘Eﬂ’i or specification part.

Input buffer overflow, i.e. more than 120 characters
in aline.

Formal parameter has not appeared in the
specification part.

Declaration terminated by end or containing begin.

17

94

95
96
97
98

99

100
101

102

103
104
105
106
107
108

109
110
m

112

Note:

A formal parameter which is a switch, string or
procedure is called by value.

Switch designator has more than one subscript.
Wrong for clause.
then misused.

lllegal character or parity error. The character is
replaced by<— in the displayed line, but 1 is not printed
beneath it.

Current use of identifier inconsistent with previous
uses.

Conditional expression needs parentheses.

Wrong delimiter after procedure identifier in
procedure declaration.

No “;* between formal parameter part and value
or specification part. e
Commas or colons wrong in array bounds.

div used with a real argument.

l—ll';gal parameter deliminter after a string.

Integer labels not allowed.

Recursive function calls not allowed.

An actual parameter which is a procedure has one of
its parameters called by value.

Constant should not be used in procedure heading.
Wrong specification part.

Different number of parameters from previous use of
formal procedure or wrong number of subscripts.

Mixed types in multiple assignment.

The following errors will cause an Algol program tape
to shoot through and unload the reader, instead of
stopping at the end :

(1) No halt code at the end of a tape which is not the
last tape of the program,

(2) Insufficient end’s to match all the begin’s in the
program,
(3) Missing * at the end of a string.

18

The following errors will cause the end of an Algol
program to be found prematurely :

(1) Missing begin.

(2) end or the comment following end not followed
by end else or a semicolon cau'ﬁ'g a begm to
be treated as comment.
These errors lead to a breakdown of the block
structure of Algol and will usually cause many
error messages to be displayed.
Any one error, particularly in a declaration, may cause
many spurious errors to follow.
WARNING messages are output if identifiers are not used or the
comment following end contains a delimeter.

FA
FD} misread or mispunched tape.

FF

FC Two procedures (at least one of which is a library procedure)
have the same name.

FE Program too large to load.

FU Missing library procedure.

903 ALGOL ENTRY POINTS

Translator
8 Normal translation,
9 Continue after halt.
10 Report mode.
11 Include check functions.
12 Library mode (for large programs).
13 Library mode plus check functions.
14 Normal plus reports (903C only).

Interpreter
8 Normal, load translated program.
9 Continue after halt.
10 Run program.
11 Load R.L.B. machine code.
12 Reload library.
13 Load large program overwriting library.

19

ALGOL RUN TIME ERRORS

Error
Number

Meaning

Value substituted or
Effect on continuation at 9

1
2

"
12
14

Parameter mismatch

Space overflow, e.g. too
much claim on store for an
array

Integer overflow

Jump error, i.e. switch
subscript outside its per-
mitted range

Subscript error, i.e. address
outside the store area
allotted to the array referred

to

lllegal symbol inside inner
string quotes (only
discovered when the string
is output)

Attempt to output an un-
standardised floating point
number. (Probably the result
of an error in a code
procedure.)

lllegal character or * found
when attempting to read a
number

Real overflow

Invalid argument for sin(E)
or cos(E), i.e. exponent
greater than or equal to 18
Negative argument for
sqrt(E)

Argument > 40 for exp(E)
Argument <0 for log(E)
lllegal character on data tape

continuation not possible
continuation not possible

continuation not possible
continuation not possible

continuation not possible

newline is substituted

*** is substituted

The read routine is re-
entered

P is substituted

0:0 is substituted
sqrt(abs(E)) is substituted
P is substituted

0-0 is substituted
space is substituted

20

Error
_Number

16
17

18
19
20

21
22

23

24

25

Mep{:_lng

Value substituted or
Effect on continuation at 9

Parity error on data tape
Overflow of input buffer in
920 Algol

Numeric character found
before * when attempting to
read a string

illegal form of number

e.g. 2 decimal points

A T B with A and B real and
ALO

Program corrupted, probably:
due to an error in a code
procedure

An attempt has been made
to assign a value to a formal
parameter which is a
constant

Range of array subscript
bounds is negative

Instring or outstring error,
i.e. Array not a one-
dimensional integer array,
subscript value is outside
range or instring overfills
the array

Attempt to jump to a label
in an inner block or into a
for loop

Translator used is
incompatible with this
version of the interpreter

space is substituted

The entire line of text is)
ignored

The instring operation is
ignored

Ignore existing number,
re-enter read routine

0.0 is substituted

Continuation not possible
Continuation not possible
Continuation not possible

Continuation not possible

Continuation not possible

Continuation not possible

Notes:

1. P=(1-2-27) x 283
except for overflow of a negative real number where
P=—1.0 x 2%

2. When continuation is not possible entry at 9 results in a dynamic

stop.

21

303 FORTRAN

oL

A 903 FORTRAN program is translated into SIR and then run as a SIR
program in conjunction with the 903 FORTRAN run-time routines
(tape 2). Input is free-format, and mixed type working is allowed, with
automatic type conversion. When a real number is converted to an
integer it is rounded towards zero.

-~ 2 7 E = ('
Summary of FORT

Control Specification Real functions
IF (E) ny, ny, ng GLOBAL, P1, P2,... PN] ALOG (X)
GOTO n DIMENSION A(10), K(20,20) SIN (X)
GOTO (n,, Ny, ...Ny)M COMMON A, K, M,.... R COS (X)
DOnM=L, L, L, FUNCTION ATAN (X)
DO nM=L,, L, SUBROUTINE ABS (X)
CONTINUE FORMAT SQRT (X)
EXP (X)

CALL Input-output Integer function
RETURN READ (L, n) M, R, A, K,... 1ABS (l)

° PAUSE READ (L) M, R, A K, ... SIR code
STOP WRITE (L, n) Z,,Z,, A, K, ... CODE
END WRITE (L) Z,,Z,, A, K,... FORTRAN

X represents a real expression

R represents a real variable

E represents any expression

| represents an integer expression

M represents a simple integer variable

L represents an integer constant or variable

n represents a statement number

A is a real array

K is an integer array

Z represents any expression not containing a Function

Field descriptors (r=repeat count)

Floating point rF w.d or Fw.d (d characters after point)
rE w.d or E w.d (Exponent printed)

Integer rlworlw (w=total print positions)

Alphanumeric nHh,h,hg...h, (n characters)

Spaces nX (n spaces)

22

18
19
20
21
22
23

24

25
26
27
28
29

Unacceptable form to left of = sign in an arithmetic
statement.

Two operators in succession in an arithmetic expression.
Parentheses do not match.

Subscripted variable has not been declared in a
DIMENSION statement or Function not in GLOBAL.

Unacceptable subscript form.

An unsubscripted array name has appeared in an arithmetic
statement.
In statements of type DO n M = L,, L,, L4 errors:

n is omitted, or is not an acceptable statement number.
i is not an unsubscripted integer variable, or is omitted.
There is an impermissible number of Li's.

One of the Li's is of impermissible form.

DO statement has no = sign.

DO statements have intersecting loops.

A DO loop terminates with a GOTO or IF statement.

There is at least one unterminated DO loop when END is
reached.

A number found where a variable expected.

No variable where one expected.

A statement number has more than 5 digits.
An integer or real constant is out of range,

A CALL statement has an unacceptable format.

A FUNCTION or SUBROUTINE statement has an
unacceptable format.

The word FORTRAN has not been preceded by a
CODE statement.

An error in GOTO or an IF statement.

A mis-spelt or otherwise corrupt or unrecognisable statement.
Statement too long or too complex to compile.

Program too long or too complex to compile.

Error in FORMAT statement,

23

31
32
33

38
39
40
Ll

42
43
44

45
46

47 (i)
(ii)

48

49

50

101

105
106
108
109
110

113

Error in DIMENSION statement.
Error in COMMON statement.
A variable has been declared twice in a COMMON list.

In a DIMENSION statement, a bound exceeds 8192,
A variable has been declared twice in a DIMENSION list.
A sub-program has more than 18 parameters.

A continuation line has been used other than after a
GLOBAL or FORMAT statement.

Too many sub-programs declared in a GLOBAL statement.
Error in a READ or WRITE statement.

A FUNCTION or SUBROUTINE statement has appeared
in a sub-program.

Error in a GLOBAL statement.

Too many variables have been used in a program or
sub-program.

A sub-program does not contain a RETURN statement.
RETURN has occurred outside a sub-program.

A number appears against a statement that should not be
labelled.

The channel number in a READ or WRITE statement is not
an integer.

Halt code not preceded by new line, therefore last statement
not translated.

FORTRAN TRANSLATOR QUERIES

Variable name has more than 6 characters (first 6 are
significant).

CONTINUE statement not numbered.

Statement following GOTO or IF is not numbered.
Un-numbered FORMAT statement.

EQUIVALENCE statement used (statement ignored).

An executable statement has occurred before a COMMON
or DIMENSION statement. (Statement may be wrongly
compiled).

More than one GLOBAL statement in a program unit.

24

E1
E3

E3
ES

EU

EU
EU

FORTRAN LOADING ERRORS

Qn

<identifier>

Qn

<sub-program name>
<identifier>

Paper tape mispunched.

(n is an integer). Two statements
numbered n.

Two different entities with this name.

Program too large to load by batch
mode.

statement number n referred to in
GOTO, IF, READ, WRITE statements,
but does not occur in program.

This sub program has not been loaded.

This identifier has been used, but has
not been assigned any value (possibly
mis-spelt).

203 FORTRAN ENTRY POINTS
Translator (tape 1) for basic system only.

8 Translate to SIR code.
9 Continue after halt.
10 Report mode.
Tape 2
8 Load SIR code for batch mode.
9 Continue after wait.
10 Indicate program complete.
1 Run the program.
12 Load for batch mode, display store map.
13 Load SIR code for relocatable mode.
14 Load relocatable program tape.
16

Load an extra relocatable binary (user’s library) tape.

26

FORTRAN RUN TIME ERRORS
(Continuation is only possible where specified. A=address in object
code.)

E1 A P1 P2
Number of parameters in sub-program not compatible with
the call.
P1=Number in definition, P2=Number in call.
E2 A Q1 Q2
Types of parameters in sub-program not compatible with
the call.
Q1 represents types in definition, Q2 those in call.
E3 A1 8182
Array subscript out of range. S1=actual value of subscript.
On continuation S1=1 or S2.
E4 A1 81 82
Computed GOTO variable out of range. S1=actual value.
On continuation S1=1 or S2.
E6 AC
Parity error on input. C=Decimal value of character.
On continuation, character ignored.
E7AC
lllegal character in number. C=Decimal value of character.
On continuation, character treated as terminator.
E10 A L3
Increment in DO statement, L3<0
On continuation L3 is taken as +1.
E11 AN
Attempt to output non-standardised real number on channel N.
On continuation, number is ignored.
E12 0
Compiler overwritten.
E13 0
Program incorrectly compiled (N.B. entry at 10).
E14 O
Translated program and systems incompatible.
E15 X A
Real number overflow. (Ignore X).
On continuation number=Ilargest possible signed value.
E16 X A
lllegal QF instruction (corrupt code).
E17 A
Overflow on real to integer conversion.
E18 A Z
Z=78 In ALOG (X), X<<0. On continuation, result=0.
Z=81 In SQRT (X), X<O0.
On continuation, result=SQRT (ABS(X)).
Z=88 In EXP (X), X>21¢
Note A**B is calculated EXP (B*ALOG(A)).
On continuation, result of EXP(X) is X.

26

PERIPHERALS AND INTERFACES

The following facilities can be added to the basic 903 at any time,
enabling the system to be adapted to changing requirements :

Multiplexer:

Core Store:

This unit enables more than one peripheral to be fitted
to the system. It consists of 8 channels which may be
extended to take an NPL interface.

Units of 8,192 words may be used to increase the
directly addressable core memory to a maximum of
65,5636 words.

Digital Plotter: Available with 14-inch or 30-inch paper width, and

operating at 300 increments per second, this unit
enables the computer output to be presented in the
form of permanently recorded graphs, charts and
diagrams.

N.P.L.Interface: The computer can be fitted with the standard N.P.L.

Store Access
Control Unit:

electrical interface which makes available the in-
creasingly wide range of peripherals conforming to this
standard.

Permits the transfer of data out of or into the extra
store units, as the computer is carrying out other tasks.

Magnetic Tape A 9,000 character per second unit, consisting of

Unit:

electronic controller and mechanism compatible with
the European Computer Manufacturers’ Association
standards.

4100 Interface: This allows standard 4100 peripherals such as card

Lineprinter:

readers and punches to be attached to the 903.

A 300-line per minute, 120 character per line line-
printer is available.

27

Multiple
of 64

0
64
128
192
256
320
384
448

612
676
640
704
768
832
896
960

1024
1088
1152
1216
1280
1344
1408
1472

1636
1600
1664
1728
1792
1856
1920
1984

TABLES OF BINARY
The purpose of these tables is to assist in the

1. Select the highest multiple of 64 less than (or equal
2. Set the first (left-hand) 7 buttons to the binary
3. Set the last (right-hand) 6 buttons to the binary

TABLE A

Binary Multiple Binary Multiple Binary
equivalent of 64 equivalent of 64 equivalent

0000000 2048 0100000 4096 1000000
0000001 2112 0100001 4160 1000001
0000010 2176 0100010 4224 1000010
0000011 2240 0100011 4288 1000011
0000100 2304 0100100 4352 1000100
0000101 2368 0100101 4416 1000101
0000110 2432 0100110 4480 1000110
0000111 2496 0100111~ 4544 1000111

0001000 2560 0101000 4608 1001000
0001001 2624 0101001 4672 1001001
0001010 2688 0101010 4736 1001010
0001011 2752 0101011 4800 1001011
0001100 2816 0101100 4864 1001100
0001101 2880 0101101 4928 1001101
0001110 2944 0101110 4992 1001110
0001111 3008 0101111 6056 1001111

0010000 3072 0110000 6120 1010000
0010001 3136 0110001 5184 1010001
0010010 3200 0110010 6248 1010010
0010011 3264 0110011 6312 1010011
0010100 3328 0110100 5376 1010100
0010101 3392 0110101 5440 1010101
0010110 3456 0110110 5504 1010110
0010111 3520 0110111 5568 1010111

0011000 3684 0111000 6632 1011000
0011001 3648 0111001 6696 1011001
0011010 3712 0111010 6760 1011010
0011011 3776 0111011 6824 1011011
0011100 3840 0111100 65888 1011100
0011101 3904 0111101 65952 1011101
0011110 3968 0111110 6016 1011110
0011111 4032 0111111 6080 1011111

28

EQUIVALENTS

setting of binary addresses on the word generator.

to) the required address, and work out the difference (if any).
equivalent of the multiple, working from Table A.

equivalent of the difference, working from Table B.

Multiple
of 64

6144
6208
6272
6336
6400
6464
6528
6592

6656
6720
6784
6848
6912
6976
7040
7104

7168
7232
7296
7360
7424
7488
7652
7616

7680
7744
7808
7872
7936
8000
8064
8128

Binary
equivalent

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111

1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111

1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111

1111000
1111001
1111010
1111011
1111100
1111101
1111110
111111

Binary
Difference equivalent Difference e

0

WO NOORWN=

TABL

000000
000001
000010
000011
000100
000101
000110
000111

001000
001001
001010
001011
001100
001101
001110
001111

010000
010001
010010
010011
010100
010101
010110
010111

011000
011001
011010
011011
011100
011101
011110
011111

E®

Binary
quivalent

100000
100001
100010
100011
100100
100101
100110
100111

101000
101001
101010
101011
101100
101101
101110
101111

110000
110001
110010
110011
110100
110101
110110
110111

111000
111001
111010
111011
111100
111101
111110
11111

137 438
274 877
549 755
1 099 511

JERS OF 2 IN DECIMAL

934
869
738
476
953
906
813
627

w = 3141
logee = 0-434
loge2 = 0-301

2=1

414

1radian =57.295

n 2-n

2 1 6

4 2 .25

8 3 126

16 4 0625

32 6 03125

64 6 -015 625
128 7 007 812 5
256 8 003 906 25
512 9 -001 953 125

024 10 -000 976 562 5

048 11 -000 488 281 25

096 12 -000 244 140 625

192 13 .000 122 070 312 6
384 14 .000 061 035 156 25
768 15 -000 030 517 578 125
636 16 -000 015 258 789 062
072 17 -000 007 629 394 531
144 18 -000 003 814 697 265
288 19 -000 001 907 348 632
576 20 -000 000 953 674 316
162 21 -000 000 476 837 158
304 22 -000 000 238 418 579
608 23 -000 000 119 209 289
216 24 -000 000 059 604 644
432 25 -000 000 029 802 322
864 26 -000 000 014 901 161
728 27 -000 000 007 450 580
456 28 -000 000 003 725 2390
912 29 -000 000 001 862 645
824 30 -000 000 000 931 322
648 31 -000 000 000 465 661
296 32 -000 000 000 232 830
592 33 -000 000 000 116 415
184 34 .000 000 000 058 207
368 35 -000 000 000 029 103
736 36 -000 000 000 014 551
472 37 -000 000 000 007 275
944 38 -000 000 000 003 637
888 39 -000 000 000 001 818
776 40 -000 000 000 000 909

Useful Constants

592 653 590 1/ = 0-318
294 481 903 loge10 = 2-302
029 995 664 e = 2.718
213 562 373 »\/3 = 1.732
779 513 082° = 0017

30

494 701 773

309 886 184
685 092 994
281 828 459
050 807 569
453 292 6520

radian

ELLIOTT COMPUTERS MARKETING
ENGLISH ELECTRIC COMPUTERS LTD
COMPUTER HOUSE, EUSTON CENTRE

LONDON N.WA1

Telephone: 01-387 7030

CATALOGUE No. 903 ISSUE 5 APRIL 1968

