ICL E)gr?voe r 1900 Series

The policy of International Computers Limited
is one of continuous development and improve-
ment of its products and services, and the right
is therefore reserved to alter the information
contained in this document without notice. ICL
makes every endeavour to ensure the accuracy
of the contents of this document but does not
accept liability for any error or omission. Any
equipment or software performance figures and
times stated herein are those which ICL expects
to be achieved in normal circumstances. Where-
ever practicable, ICL is willing to verify upon
request the accuracy of any specific matter con-
tained in this document.

Technical Publication 4285

© International Computers Limited 1972

Preliminary Edition February 1972
Reprinted May 1972

{incorporating Amendment List 1)

Issued by Technical Publications Service
International Computers Limited

Head Office: iICL House, Putney, London SW15
Produced by ICL Printing Services

Data Processing Publications

ICL

title 1900 DRIW R part chapter pagei ii

Preface

This manual is a guide to the design and implementation of
real time transaction processing programs using 1900 Driver.
A description of such programs, and the operation of Driver,
may be found in the ICL 1900 Series manual Introduction to
1900 Driver (Edition 1, TP 4311).

The manual is for use by systems designers and programming
staff. Chapter 1 gives a general description of the
operation of Driver facilities. Chapter 2 describes the
factors to be taken into account when designing Driver
programs. Chapters 3, 4, 5 and 6 describe the programming
standards to be observed in producing the user-written part
of a Driver program. Advice is given on designing and
writing individual routines, together with details of the
options available. Chapter 7 describes a recommended
procedure for testing user-written routines, whilst Chapter 8
comprises specifications of the programs and routines
provided to carry out this task.

1900 Driver may be used on a 1900 Series central processor
using a multi-programming overlaid Executive or GEORGE 3.

Data Proceésiﬁg' Publications

titlt 1900 DRIVER part chapter ¢ page iv

Contents

Preface iii
Chapter 1 Introduction
GENERAL

Control routines

Testing aids
STRUCTURE AND OPERATION OF A DRIVER PROGRAM
Program structure
Method of operation
BASIC METHOD
ADDITIONAL FEATURES OF MULTITHREADING OPERATION
DRIVER ROUTINES
Control routines

o 0 U W W N NN

|
=

Housekeeping

[
[\

File handling routines

—
N

Overlay routines

THE MASTER ROUTINE

Chapter 2 Program design and implementation
INTRODUCTION

PLANNING THE PPOGRAM STRUCTURE

THE CONTROL ELEMENT

Single threading versus multithreading

(=]
w

Standard routines
MESSAGE SCHEDULING
OVERLAY
COMMUNICATIONS MONITOR
STORE ADMINISTRATION
USER WRITTEN ROUTINES AND OWN CODING
Master routine
Monitor routines
User entry voints
Replacement of standard routines
Language
THE PROCESSING ELEMENT
Choice of language

0 NN NN UV s W W W

Bead size

L

Data Processing Publications

titlt 1900 DRIVER ~ part

chapter ¢ page v

System beads
INITIAL BEAD
INITIALIZATION BEAD
ERROR RECOVERY BEAD

'COMMON SUBROUTINES

STORE ORGANISATION AND USE
TABs and associated areas
GENERAL DESCRIPTION
TAB PARAMETERS
TAB FORMAT
ASSOCIATED AREAS
STANDARD LOCATIONS
Address of current TAB (HDRTABSTORE)
The Service TAB (HDRSCST)
User Common Areas (HDRLUCDAT, HDRUUCDAT)
ALTERNATIVE METHODS OF STORE ORGANISATION
System considerations
Message area allocation
Fixed store system
Dynamic store system
2AVOIDING STORE LOCKOUT
AVOIDING BEAD LOCKOUT
AVOIDING TOTAL PARALYSIS
IMPLEMENTATION
Specification of user-written routines
ESTIMATING PROGRAM SIZE
Program composition
Sizes of standard Driver control routines
Housekeeping routines
Total program size
ESTIMATING EFFORT
Beads
Control routines
Testing
Chapter 3 Beads
GENERAL

Data Processing Publications

titte 1900 DRIVER part chapter ¢ page vi

RESTRICTIONS ON BEAD FUNCTIONS
SUBROUTINES
USE OF ACCUMULATORS
ACCESSING A TAB AND ITS ASSOCIATED AREAS
Introduction
Method
COBOL BEADS
PLAN BEADS
PROGRAMMING PROCEDURE
Entry and re-entry to a bead
Bead tidying
Issuing requests
PARAMETERS
EXIT TO DRIVER
BEAD REQUESTS
PERIPHERAL REQUESTS
COMMUNICATIONS REQUESTS
STORE REQUESTS
SYSTEM BEADS
Initialization bead
Initial bead (bead 1)
Error Recovery bead (bead 0)
EXAMPLES
Chapter 4 The Master routine
INTRODUCTION
PROGRAMMING PROCEDURE - SINGLE THREADING PROGRAMS
System organisation
COMPILE DIRECTIVES
ACTIVATION OF OTHER PROGRAM MEMBERS
Main store organisation
TAB AREA DEFINITIONS
User Common Areas (HDRLUCDAT, HDRLUUDAT)
Other user-defined locations and areas
REQUEST ANALYSER REQUIREMENTS
SYSTEM CONTROL REQUIREMENTS
BEAD SCHEDULER REQUIREMENTS

W 00 0 N 4 U W w W w w NN

i i I i I I =
O NN W O

WO O W B BN NN

Dl
o O

I c Data Processing Publications
_ L title 1900 DRIVER part chapter c Page;;

PERIPHERAL MONITOR REQUIREMENTS (OPTIONAL) 16
COMMUNICATIONS MONITOR REQUIREMENTS (OPTIONAL) 16
Activating the Driver 16
PROGRAMMING PROCEDURE - MULTITHREADING PROGRAMS 17
System considerations 17
Main store organization 19
TAB AREA DEFINITIONS 19
STORE CELL COMMON POOL 20
OTHER USER DEFINED LOCATIONS AND AREAS 25
Bead number of initial bead (HDRBDA) 25
Highest bead number constant (HDRBDCONST) 25
Queue management area for Bead Scheduler
initial queues (HDRBDQ) 25
Queue management area for Bead Scheduler
external queue (HDRBSEXTQ) 26
Queue management area for Bead Scheduler
internal queue (HDRBSINTQ) 26
Bead Scheduler user entry point (HDRBSUE) 27
Bead Branch table (HDRBT1) 28
Bead Storage table (HDRBT2) 28
Bead free/busy indicator table (HDRBT3) 28
Communications Monitor close-down indicator
(HDRCHAFIN) 29
Communications Monitor GET constants (HDRCHAGC) 29
Communications Monitor input/output subroutine
calls (HDRCHAGET, HDRCHAPUT) 30
Queue management areas for Communications
Monitor output gqueues (HDRCHAOQ) 31
Communications Monitor user entry point 1
(HDRCHAQC1) 31
Communications Monitor user entry point 2
(HDRCHAQC2) 32
Communications Monitor TEST constant (HDRCHATES) 32

Additional user entry points - Communications
Monitor PUT and GET routines (HDRCHAUC1,

HDRCHAUC2, HDRCHAUC3) 33
Communications Monitor input displacement
constant (HDRCHAUID) 34

Queue management areas - Communication Monitor
WAIT queues (HDRCHAWQ) 35

1900 DRIVER C

Operator intervention cbnstant (HDRCHO1)
Communications Monitor table 1 (HDRCHTAB1)
Communications Monitor table 2 (HDRCMTAB2)
Driver count (HDRDCT)

Dynamic store indicator (HDRDCIND)

FHR branch table (HDRFHRCALL)

FHR exception mode indicator (HDRFHREM1)
FHR error reply indicator (HDRFHRER1)
Device reply word addresses (HDRFHRREP)

Queue management areas for Peripheral Monitor
device queues (HDRFHRQ)

7900 housekeeping indicators (HDRHMPINDS)
Lower user common area (HDRLUCDAT]
Overlay indexes (HDROLINDl1l, HDROLIND2)
Overlay area table (HDROLTAB)

Overlay count and exception indicators (HDROLCT,
HDROLX)

Highest file reference number constant
(HDRPMCONST)

Periphexral Monitor user entry point 1
(HDRPMENT1)

Peripheral Monitor user entry point 2
(HDRPMENT2)

System control first branch table (HDRSCBR1)
System control second branch table (HDRSCBR2)
The Service TAB (HDRSCST)

TAB count (HDRTABNO)

Current TAB's address (HDRTABSTORE)

Enter Exception Mode subroutine user entry
point (HDRUENT)

Upper user common area (HDRUUCPAT)
USER END POINTS (HDRHEHALT, HDREND)
ENTRY TO DRIVER
Chapter 5 Single-threading Driver routines
INTRODUCTION
The service TaB
1900 DRIVER CONTROL ROUTINES
HDRRA1l
NAME

viii

35
36

37
38
38
39
39
40

40
41
41
41
42

43

43

44

45
45
46
47
47
48

48
49
49

g W

ICL

Data Processing Publications

title 1900 DRIVER

part

chapter ¢ page ix

TITLE

ENTRY POINT/CUE NAME
DESCRIPTION

CONTROL

Entry

Exit

Locations used
HDRSC1

NAME

TITLE

ENTRY POINT/CUE NAME
DESCRIPTION

CONTROL

Entry

Bxit

Locations used
HDRBS1

NAME

TITLE

ENTRY POINT/CUE NAME
DESCRIPTION

CONTROL

Entry

Exit

Locations used

USER WRITTEN CONTROL ROUTINES - INTRODUCTION

W W VW VW VW O N N9 0 »

R R S Sy R I il ol i i e il o
H W W W VW OO L1 11 1 1 b W W W

PERIPHERAL MONITOR AND ASSOCIATED FILE HANDLING

ROUTINES

Entry point/cue name
Description
Functions
Recommended routine

SYSTEM CONSIDERATIONS

Coding

PERIPHERAL MONITOR
FILE HANDLING ROUTINES
COMMUNICATIONS MONITOR

23
23
23
23
24
24
25
25
28
29

ICL

Data Proéess'iwng Publications

tittt 1900 DRIVER

part

chapter ¢ page x

Entry point/cue name
Description
Functions
SET HMPUC
OUTPUT AND INPUT
ERROR RECOVERY
TAB AND SERVICE TAB SETTINGS
EXIT
STORE ADMINISTRATOR
Entry point/cue name
Description
Chapter 6 The multithreading Driver

INTRODUCTION

THE STANDARD ROUTINES

Driver structure

Outline of operation
GENERAL
Normal mode and exception mode
Full scans
REQUEST ANALYSER
SYSTEM CONTROL
PERTPHERAL MONITOR
Entry routine
Cycle routine
Continuation routine
Exit routine
COMMUNICATIONS MONITOR
CM Entry/Exit routine
7900 interface routine
STORE ADMINISTRATOR
BEAD SCHEDULER
SUBROUTINES
Queueing subroutines
Deallocate TAB
Enter Exception Mode
Return to Normal Mode
General Suspension

29
29
30
31
31
32
33
33
34
34
34

O W VW VW & & =

10
11
11
11
13
13
13
15
15
15
17
17
18
18
18
18
19
19

ICL

Data Processing Publications

titt 31900 DRIVER part

chapter ~ page y;

THE QUEUEING SYSTEM

Queue organisation

Queue manipulation
ADDING A TAB TO A QUEUE
REMOVING A TAB FROM A QUEUE

Operation of the standard queueing system
PERTPHERAL MONITOR QUEUES
COMMUNICATIONS MONITOR QUEUES
STORE ADMINISTRATOR QUEUES
THE BEAD SCHEDULER EXTERNAL QUEUE
BEAD SCHEDULER INTERNAL QUEUES

Message priority queueing
ASSIGNING MESSAGE PRIORITIES
QUEUE MANIPULATION
General
Procedure

FILE HANDLING ROUTINES

File handling by housekeeping

THE OVERLAY SYSTEM

Chapter 7 Program testing

1900 DRIVER TESTING AIDS

TESTING BEADS

TESTING OTHER USER WRITTEN ROUTINES

Chapter 8 Driver testing aids

#XJBA and #XJBB

NAME

VERSION

TITLE

HARDWARE REQUIREMENT

EXECUTIVE PRIORITY

DESCRIPTION

General
SET UP MODE
AMENDMENT MODE

Input

Output

CONTROL PARAMETERS

21
21
22
22
23
24
24
24
25
28
28
30
30
31
31
32
3¢
38
39

N

B B R W W NN NN NN

Data Processing Publications

titte 1900 DRIVER part chapter C page xii

Run description parameter 5
FORMAT 5
IN 6
BASIC FORMAT 7
EXTENDED FORMATS 7
ouT 8
BASIC FORMAT 8
EXTENDED FORMAT 8
REName 10
BASIC FORMAT 10
EXTENDED FORMAT
PEND parameter 12
FORMAT 12
INPUT DATA PARAMETERS 12
Introduction 12
General description 13
Items 13
OVERALL FORMAT 14
Item types 17
RECORD HEADER ITEM 17
DECIMAL ITEM . 20
OCTAL ITEM 23
STERLING ITEM 25
NEW ITEMS 28
END ITEM 29
Input amendment parameters 29
DELETE ' 30
INSERT 30
REPLACEMENTS A 31
PARAMETER TERMINATOR REOCRDS 31
THE TRIAL DATA FILE 32
File Header record 33
DESCRIPTION : 33
LAYOUT 33
TAB Header record 33
DESCRIPTION 33

LAYOUT 33

Data Processing Publications

title 1900 DRIVER part chapter ¢ page xjij
TAB Continuation records 36
DESCRIPTION A 36
LAYOUT 36
Request Header records 37
DESCRIPTION 37
LAYOUT 37
Request Continuation records 38
DESCRIPTION 38
LAYOUT) 38
End-of-file record 38
DESCRIPTION 38
LAYOUT 39
OPERATING INSTRUCTIONS 39
Exception conditions 41
LINE PRINTER OUTPUT 42
Warning lines: output record padded or truncated 44
CLOSEDOWN FORCED error message 44
End reports 45
Postmortems 45
Error codes 46
ERRORS IN CONTROL PARAMETERS 46
SDAD AND SDAT ‘ 50
SUBROUTINE GROUP NAME 50
VERSION 50
TITLE ' 50
COMPONENT ROUTINES : 50
HARDWARE REQUIREMENT 51
DESCRIPTION 51
General 51
Method of operation 52
Input ‘ 55
Output 55
GENERAL BEAD TESTER STANDARDS 55
Store organization 55
GBT Master routine 56
DEFINING THE TAB AND ASSOCIATED AREAS 56

USER DEFINED CONSTANTS AND TABLES 57

ICL

Data Processing Publications

titte 1900 DRIVER

part

chapter = page xiv

Request codes
TAB DEALLOCATION
PERTPHERAL INPUT
STORE REQUESTS
Overlay
Entry to General Bead Tester
CONTROL PARAMETERS
IN
BASIC FORMAT
EXTENDED FORMATS
ouT
BASIC FORMAT
EXTENDED FORMAT
REName
BASIC FORMAT
EXTENDED FORMAT
PEND
FORMAT
OPERATING INSTRUCTIONS
Exception conditions
#XJBC AND #XJBD
NAME
VERSION
TITLE
HARDWARE REQUIREMENT
EXECUTIVE PRIORITY
DESCRIPTION
General
SELECT MODE
COMPARE MODE
input
Output
HEADER RECORDS
Run description
INA
INB
SELECT AND EDIT RECORDS

58
58
58
59
60
60
61
6l
61
61
63
63
63
64
65
65
66
66
67
68
70
70
70
70
70
71
71
71
71
71
72
72
73
73
73
74
74

I c Data Processing Publications :
L title 1900 DRIVER . part chapter c page ..,

Select records 75
SELECT ALL RECORDS 75
SELECT RECORDS BY MESSAGE IDENTIFICATION 75
SELECT RECORDS BY RECORD TYPE ’ 76

Edit records 77
EDIT ALL SELECTED RECORDS 79
EDIT TAB INPUT RECORDS 80
EDIT TAB OUTPUT RECORDS 8l
EDIT REST OF DATA 82
END RECORD 83

OPERATING INSTRUCTIONS 83

Exception conditions 84
ERROR CODES 86

LINE PRINTER OUTPUT 87

Run heading lines 88

Printing of GBT output records 89
BEAD TEST PATH ENTRY RECORDS 89
TAB INPUT AND TAB OUTPUT RECORDS 89
BEAD TEST PATH EXIT RECORDS 93
RECORD IGNORED RECORDS 94

End of run 94

Line printer error messages 95

Appendix 2 Driver error codes

Data Processing Publications

i a < 1
title 1900 DRIVER | part chapter page xv

List of illustrations

page
Figure 1 Peripheral Monitor - outline flowchart 6/12
Figure 2 Communications Monitor - outline flowchart 6/1L
Figure 3 Organization of a TAB queue 6/21A

Figure 4 Typical file handling routine 66/36A

Data Processing Publications

ICL

i art chapter]

e 1900 DRIVER P pter, page
Chapter 1
Introduction

GENERAL

1900 Driver is a set of routines for users wishing to implement
real time transaction processing systems on a 1900 Series
configuration. Two types of routines are provided: control
routines and teeting atids.

Control routines

Driver control routines are provided to carry out the complex
administrative tasks required by real time programs during

their operation. These tasks include scheduling and initiating
all communication between the program and its environment (i.e.
communications and peripheral input/output, and overlaying),
supervising the processing of messages by user written

routines, and, in some cases, making available areas of main
store to meet the processing requirements of specific messages.

The control routines are consolidated into the user's program
and remain resident in main store throughout its operation.
Facilities are available for the user to omit, modify or
replace certain control routines in order to achieve the best
possible response times consistent with the amount of main
store available to the program. Use of the routines thus
enables the individual user to save a considerable amount

of programming effort without losing ultimate control over the
operation of his program.

A further feature of the control routines is that, subject to
certain restrictions, they are suitable for use in conjunction
with standard ICL housekeeping and overlay packages. If these

ICL

title

Data Processing Publications

1900 DRIVER part chapter ; page ,

are used, the user-written part of the program may be restricted
almost entirely vetting input data and using it to generate

data for output; the only exceptions being application orient-
ated control functions such as initialization, file handling,
message recognition and error recbvery. All other non-process-
ing functions are initiated by passing control to the
appropriate sequence of control routines.

Tésting aids

The testing aids enable the real time environment created by
the control routines to be realistically simulated under
batch testing conditions. Routines provided by the user for
incorporation into a Driver program may be tested individually
or in groups before inclusion in the program, Use of the
testing aids is fully described in Chapters 7 and 8.

STRUCTURE AND OPERATION OF A DRIVER PROGRAM

Program structure

A Driver program is composed of modules. These are routines
written in such a way that each forms a logically complete st
in the processing of one or more input messages. This
modular structure enables individual routines to be written,
tested or modified without reference to the remainder of the
program, provided that they conform to the standards outlined
later on in this chapter.

The modules forming a Driver program are organised into two
groups, namely the control element and the processing element.
The control element, otherwise known as the Driver, comprises

a suitable selection of the 1900 Driver control routines;

these routines interface with further items of stadard software
and/or user written PLAN routines. The processing element

ICL

Data Processing Publications

title 1900 DRIVER part chapter ; page 3

consists entirely of user written PLAN or COBOL routines known

as beads.

The processing of an input message involves the execution

of routines in both elements of the program. The sequence of
routines which must be executéd in order to process a particular
message is known as that message's thread. A program which can
only support the processing of one message at a time is known

as a single threading program, whilst a program which can

handle several different messages simultaneously is known as

a multithreading program, Since multithreading operation is
considerably more complex than single threading, two main
versions of the 1900 Driver package are available, one for each
type of operation.

Method of operation

BASIC METHOD

Under both single and multithreading versions of Driver, the
method by which individual messages are processed is essentially
the same. On input of a message to the program, Driver
allocates to the message a parameter area of standard size and
format known as a Task Administration Bloeck or TAB. Allocation
is performed by placing the message in a data area permanently
chained to the TAB. Control is then passed to the first bead
in the message's thread and processing of the message proceeds.

The beads forming the processing element cannot pass control
between themselves: transfer of control between beads is a
Driver function. Similarly, they may not perform any other
functions of Driver, for example, store allocation or any form
of input or output. When, in the course of processing a
message, a bead reaches a point in its execution where a Driver
function, otherwise known as a Driver service, is required, it
sets parameters in the TAB specifying the action to be taken

ICL

Data Processing Publications

tittt 1900 DRIVER part chapter 1 page 4

and passes control to Driver via a standard entry point. This
procedure is known as issuing a request. A message's thread
therefore enters the Driver at each point where a bead in the
thread issues a request for a Driver service. If a request
specifies that control is to be passed to another bead, or that
the bead issuing the request is to be re-entered in order to
complete its execution, Driver passes control to the nominated
bead and the thread hence re-enters the processing element.

If required, the less frequently used beads of a program may

be overlaid. Where the overlay facilities available with -
Driver are included, Driver checks each request for transfe;

of control to a bead to determine whether the specified beaa

is in main store. If this is not the case, Driver brings

the bead into main store and then passes control to it in the
normal manner. This operation is entirely automatic: a bead
issuing a request makes no distinction as to whether the next
bead required is store resident or transient. For this reason,
both types of bead are written to exactly the same standards.

In the course of its execution, a bead may need to access

input data in the form of the input message and, possibly,
records read in from backing store. Conversely, at least one
of the beads in the message's thread will usually be required
to generate a reply message, whilst other beads may be requ!

to generate data for updating a file. In some cases, a bead
may also need to pass data to the next bead in the current
message's thread: this data must be stored in such a way that
there is no risk of it being corrupted during the execution of-
the intermediate routines within Driver. To enable Driver

to pass input data to the beads for processing, and, conversely,
to allow the beads to store data for output by Driver, two

data areas, known as the ¥Yessage area and the Input/Output area,
are chained to the TAB. During the processing of the input
message to which the TAB is allocated, the Message area holds
the input message and is also used by the beads to store reply
messages prior to output. Similarly, any data transferred.

ICL

Data Processing Publications

title 1900 DRIVER part chapter ; page 5

between the program and backing store during the processing

of the message is stored in the Input/Output area following
input or before output. A third area, known as the Additional
Core area may also be chained to the TAB: this area can be

used for transfer of data between one bead and another, and
also to provide additional working storage for both beads and
user written control routines.

When the last bead in a message's thread reaches the end of
its execution, its final request (typically for output of a
reply message) also specifies that the TAB in use is to be
deallocated. Driver performs deallocation by clearing the
TAB of all variable parameters, ready for allocation to
another input message.

ADDITIONAL FEATURES OF MULTITHREADING OPERATION

The basic principles of multithreading are exactly the same
as those of multiprogramming, the difference being that time
sharing occurs between message threads instead of between
free-standing programs.

The processing of a message will evidently be delayed at each
point where its thread passes through the Driver. For example,
if a bead processing a message issues a request for peripheral
input, processing of the massage cannot continue until Driver
has obtained the required data and passed control to the next
bead in the message's thread. Whenever the processing of a
message is delayed in this way, the multithreading Driver uses
the processor time and thus made available to initiate or
complete the servicing of as many other requests as possible.
This includes passing control to a selected bead to enable the
processing of another message to begin or continue.

The simultaneous handling of several different messages in a
single program imposes a fairly complex message scheduling task

I ' l_ Data Processing Publications o
title 1900 DRIVER part chapter ; page ¢

in the multithreading Driver. For example, Driver must

ensure that each message receives a reasonable share of
processor time. If this is not done, there is a possibility
of individual messages being locked out of the processing
element, resulting in unacceptably delayed response times.

To describe the same situation in another way, the processing
delays experienced by individual messages due to the competing
demands of other messages for processing and Driver servicing
must be kept to a minimum, A further factor to be taken
into account is that the delay incurred whilst Driver is
servicing a particular request, for example accessing a
particular file, means that further identical requests from
beads in other threads may accumulate whilst the request is
being serviced.

The multithreading Driver carries out message scheduling by
means of a TAB queuing system. Under this system, Driver
maintains one or more chained queues of TABs for each Driver
service: for example, a separate queue of TABs is usually
maintained for each peripheral device or peripheral control
unit, depending on the configuration in use. A TAB containing
a request for a particular service is placed on the appropriate
queue following entry to Driver from the bead issuing the
request.

Since each TAB in a multithreading program is allocated to a
different message, the order in which inidvidual TABs are
queued and their contained requests are serviced directly
influences the response times of the messages to which the
TABs are allocated. Under the standard multithreading Driver,
requests are serviced in a first imn first out basis: each TAB
is placed at the end of a queue and servicing of its request
cannot continue until the preceding TABs in the same queue

have had their requests serviced.

The user may, if he wishes, implement a message priority

ICL

Data Processing Publications

title 1900 DRIVER part chapter 1 Page .

system allowing for especially rapid processing of selected
message types. The standard queueing system can be modified
so that TABs found to be allocated to high priority messages
are queued in fromt of TABs allocated to lower priority
messages. Facilities are also available for manipulating
message priorities in the course of Driver servicing to avoid
the possibility of low priority messages being locked out of
the processing element.

The other major feature distinguishing multithreading from
single threading operation is the facility for dynamie store
allocation. Under this system, Input/Output and Additional
Core areas need not be permanently dedicated to each TAB, '
but may instead be allocated from a common pool of store cells
when requested by a bead. A bead requesting this service
specifies the size(s) of the cell(s) required as Input/Output
and/or Additional core areas during the processing of the
current message: Driver accordingly chains.a cell or cells of
the required size to the TAB allocated to the message. On
deallocation of the TAB from its message on completion of
processing, the cells are returned to the common pool, ready
for allocation to another TAB.

Compared with the conventional fixed store system, whereby
Input/Output and Additional Core areas are permanently chained
to each TAB, use of a properly organised dynamic store system
can considerably reduce a program's store requirements. In a
fixed store system, the chained areas must evidently be of
sufficient size to cope with the store requirements of all
message types: if the requirements of different messages vary
widely, some areas of store will be largely redundant for a .
high proportion of the time that the program is operational.
Moreover, since each Input/Output and Additional Core area is
permanently dedicated to a particular TAB, ir cannot be used
whilst its TAB is inactive, i.e. awaiting allocation to an
input message. In a dynamic store system, by contrast, store
cells of varying sizes are distributed between TABs according

, I c Data Processing Publications ' :
. title 1900 DRIVER part chapter 1 page g

to the processing requirements of the messages currently
passing through the program: an individual cell becomes
available for use by another TAB as soon as the TAB to which:it
is chained is deallocated. However, this relatively efficient
method of store utilization involves some increase in overall
response times, due to the additional entries to Driver each’
time store cells are allocated or deallocated. For this
reason, a fixed store system is usually employed if there is
sufficient main store available.

DRIVER ROUTINES

Control routines

A standard single or multithreading Driver may contain up to'
six control routines. These are '

Request Analyser
System Control
Communications Monitor
Peripheral Monitor
Store Administrator
Bead Scheduler

The main functions of the control routines are shown below:
detailed information is given in Chapters 5 and 6. In
particular, some of the multithreading versions of the routines
additionally perform complex queue handling functions and make
extensive use of subroutines; these operations are fully
described in Chapter 6.

Control routine M ain function Other major functions:
- name
Request Analyses requests, in 1l Stores current :

Analyser each case initiating the <contents of

I c Data Processing Publications
A tile 1900 DRIVER part

ghapter ; page g

Conirol routine Main funetion
name

required action via
System Control.

System Control Controls entry to
Peripheral Monitor,
Communications Monitor,
Store Administrator and
Bead Scheduler.

Communications Initiates servicing of

Monitor communications input/
output requests by
Communications
housekeeping.

Other major functions

écqnmulato:s 0 and 4
to 7 in TAB on receipt
of each request. '

2 Multithreading .
option

Initiates overlay
via subroutine
(optional).

1 Multithreading

vereion only
Initiates general
suspension of program
when no further
processing is
possible due to lack
of input messages.

l Allocates a TAB
to each input message.

2(a) Single threading
version

Performs TAB dealloc-

action.

(b)Y ultithreading
version
Initiates TAB dealloc-
ation by subroutine.

| CI Data Processing Publications '
. : |

Control routine Main function Other major functions

name

3 Multithreading
version only
Initiates TAB queueinc
by subroutines.

Peripheral Initiates servicing 1M ultithreading

Monitor of peripheral input/ version only
output requests by Initiates TAB
Direct Access/ deallocation by
Magnetic Tape house- subroutine (if
keeping and/or user required).

written file handling

routines. 2. Multithreading
version only
Initiates TAB queueinc
by subroutines.

Store Single threading 1 Multithreading
Administrator version version only
Optional dummy routine. Initiates TAB
Not normally required, queueing by
but see Chapter 5 subroutines.
page 34,

Data Processing Publications
| titte 1900 DRIVER

part chapter 1 page 11

Control routine

name

Bead
Scheduler

Housekeeping

Main funetion

Y ultithreading

version

Services store requests
(dynamic store systems
only)

Passes control to next
bead required following
either

(a) A specific request
for transfer of control
to another bead, or

(b) Servicing of any
other type of request

Other major functions

1(a) Single threading
version

Initiates overlay by

subroutine (optional).

(b) Multithreading
versions

Initiates overlay via

subroutine (optional).

2 Multithreading
versions only
Initiates TAB
gueueing by
subroutines.

As indicated above, standard housekeeping may be used in
conjunction with Peripheral Monitor and Communications Monitor.

However, in multithreading programs, any storage device
housekeeping package used is run in program member 3, to enable

processing to continue while the peripheral transfer is in

progress.

Data Processing Publications _
titte 1900 DRIVER part chapter 1 page 12

File handling routines

If direct access or magnetic tape housekeeping is used in a
multithreading program, Peripheral Monitor is only able to
initiate or complete the servicing of one peripheral request
in each entry. If, instead, peripheral requests for access
to different files or devices are distributed between a
number of user-written file handling routines coded at PERI
level, the multithreading Peripheral Monitor is able to
initiate or complete the servicing of several peripheral
requests in a single pass, thus improving the program's
throughput.

Use of separate file handling routines in a single threading
implementation of Driver can considerably simplify the task
of subsequently modifying the program for multithreading
oper tion.

Where direct access or magnetic tape housekeeping is used,

the user is still recommended to activate these packages via
file handling routines. This preserves the modular structure
of the program, with the usual advantages in terms of ease

of programming and enhancement.

Overlay routines

Overlay in both versions of Driver is carried out by the
standard ICL overlay routine %EROL.

In the single threading version of Driver, $EROL is entered
directly from Bead Scheduler whenever the latter routine
detects that the next bead to be entered must first be overlaid
In the multithreading version, $EROL operates autonomously in a
separate program number in order to avoid suspension of the
main program occurring during overlay transfers. In this case
a further subroutine, named Overlay Control is present witg

I c Data Processing Publications
L titlt 1900 DRIVER part chapter; page 13

Driver: this subroutine may be called by both Request Analyser
and Bead Scheduler in order to initiate overlay by %EROL.

THE MASTER ROUTINE

The User must write a PLAN segment, known as the Master
routine, to carry out initialization procedures and make the
first entry to Driver at the beginning of the program run.
The required coding is described in Chapter 4.

ICL

Data Processing Publications

titte 1900 DRIVER part chapter 2 page 1

Chapter 2

Program Design & Implementation

INTRODUCTION

This chapter contains guidelines and recommendations to the
programmer designing a Driver program, together with
considerations to be taken into account during production of
specifications and timetables. Detailed information on the
various modules of a Driver program will be found in later
chapters of this manual.

PLANNING THE PROGRAM STRUCTURE

Having decided that 1900 Driver will be used in the planned
program,' the basic structure of the program is fixed. This
structure is as described in the manual Introduction to 1900
Driver and in Chapter 1 of this manual. During the specific-
ation stage, however, choices need to be made from further
alternatives in order to create the most efficient program
for the job. The various decisions to be made are described
in the remainder of the chapter. '

THE CONTROL ELEMENT

Single threading versus multithreading

The first decision is whether a single threading or a multi-
threading Driver should be used. This decision should be
made based on the response time specified in the system
requirements and on response times calculated at the program
design stage. These calculations will take into account the

I Data Processing Publications '
L tite 1900 DRIVER part chapter 2 page 2

processing and file accessing requirements of the messages
in the system and the rate of arrival of these messages, so
no generalization can be made.

A single threading program may later be converted t-o multi-
threading without rewriting the processing element, providing
the standards described in Chapter 3 are adhered to.

I c Data Processing Publications
L titte 1900 DRIVER part chapter 2 page 3

Standard routines

Alternative versions of standard routines are only available
for a multithreading Driver. Details of the routines
available may be found in Chapter 6. This section summarises
the choices that must be made.

MESSAGE SCHEDULING

Multithreading Driver offers a choice of two message-scheduling
systems within Bead Scheduler. TABs queued to be accessed by
a bead may be serviced either on a first in-firet out basis
or according to a bead priority system. In the first system
all TABs queued for beads are held in one queue, regardless

of which bead they are waiting for, and are serviced in the
order in which they arrive, i.e. the order in which they are
held on the queue. In the "bead priority" system all tabs
queued for bead 1 will be serviced before those queued for
bead 2, etc. Alternative versions of Bead Scheduler are
provided and one appropriate to the scheduling system selected
should be consolidated into the program. .

OVERLAY

Where insufficientmain store is available to hold the entire
real time program in main store, beads in the processing
element may be overlaid from disc. When an overlay system is
used, the programmer must incorporate into the Driver
program the standard 1900 overlay package $EROL, and also,for
a multithreading progam, the Overlay Control module described
in Chapter 6. To enable the overlay of beads to be time
shared with other processing during multithreading, Overlay
Control functions autonomously in Member 2 of the program,
and is activated, when required, by Request Analyser or Bead
Scheduler. Alternative versions of Request Analyser and Bead

ICL

Data Processing Publications

tittt 1900 Driver part chapter o page 4

Scheduler are provided for overlaid and non-overlaid programs.
(Four versions of Bead Scheduler are provided so that the
choice of message-scheduling system is available in both
overlaid and non-overlaid programs).

COMMUNICATIONS MONITOR

The communications handling routines in the Driver program
may consist of the appropriate 1900 communications house-
leeping package or user-coded routines. Communications
Monitor provides the interface between these routines and the
main program.

In a single threading program, Communications Monitor is
always user-written. Details may be found in Chapter 5,

page 29.

Standard multithreading Communications Monitor routines are
provided to interface with the 7900 Message Buffering house-
keeping package, the Mk II local Visual Display Unit house-
keeping package and the Character Buffering housekeeping
package. The interface routine(s) appropriate to the
selected housekeeping package (s) will be supplied as required
for inclusion in the user's program. If it is wished to
use other housekeeping packages, or a user-coded communica-
tions handling routine in a multithreading program, the user
must write his -own interface routine for inclusion within
Communications Monitor. Details of the multithreading
Communications Monitor may be found in Chapter 6.

STORE ADMINISTRATION

Two methods of store allocation are available in 1900 Driver.
In a fixed store system sufficient core for the processing of
each possible message type is permanently allocated to each
TAB in the system. Multithreading programs may alternativel
use a dynamic store system in which the store necessary for

Data Processing Publications
titte 1900 DRIVER _ part chapter 2 page5

processing of a particular message is allocated during the
processing of the message. A description of these two
systems is given in the section Alternative methods of store
organisation in this chapter.

If a dynamic store allocation system is required, the Store
Administrator routine must be included in the program.
Details of Store Administrator may be found in Chapter 6.

Beads written for a dynamic store multithreading program
may also be used in a single threading program provided that
a dummy Store Administrator routine is included, as described
in Chapter 5.

USER-WRITTEN ROUTINES AND OWN CODING

Master routine

For any 1900 Driver program the user must code a Master
routine. This routine,details of which are included in
Chapter 4, performsthe following functions

1 It gives the program name, and the priority of Member 0.

2 It includes all compilation and consolidation directives
required by the program.

3 It contains the data definitions of the TAB or TABS
and associated areas, and all gtandard locations (see
page 1l6) containing user-defined Driver constants,
parameter areas, and tables.

4 It includes program entry points (the initial entry
points, plus any entry points associated with error
recovery procedures) .

Data Processing Publications
titte 1900 DRIVER part chapter 2 page 6

5 It sets up a TAB and makes the initial entry to Driver.

Monitor routines

In a single threading program, Peripheral Monitor and
Communications Monitor are user-written as described in
Chapter 5. Enhancement to multithreading should be considered
when designing these routines; in the majority of cases a
compromise will have to be found between ease of coding in

the first instance and ease of enhancement for the changeover
to multithreading. For example, by following the standards
given in Chapter 6, it is possible to write Peripheral Monitor
and its associated file handling routines in such a way that
the latter routines can be run unchanged in a multithreading
program. However, the extra effort needed to write the
requisite dummy subroutines, set up dummy locations, etc.

could delay implementation of the single threading program.

In addition, the interpretation of request codes and parameters
by the monitor routines before and after the changeover to
multithreading should be carefully planned to avoid the need for
major recoding during enhancement. '

In a multithreading program, Peripheral Monitor is a standard
routine which interfaces with user-written file handling
routines as described in Chapter 6. These routines may in turn
interface with Direct Access or Magnetic Tape housekeeping, or
else be coded at PERI level.

User entry points

User entry points are provided at several puints in the
multithreading Driver routines to enable the user to incorporate
his own coding in these routines, and to replace certain standard
subroutines. In particular, Driver enters all queuing sub-
routines by means of user entry points - this facilitates

Data Processing Publications

titte 1900 DRIVER part chapter 2 page 7

replacement of these subrodtines to cater for non-standard
queuing requirements and scheduling. Entry points are also
provided to allow user manipulation of certain parameters
and reply information within Communications Monitor. Full
details of these own coding options may be found in the
description of the multithreading Driver in Chapter 6.

Replacement of standard routines

Where it is decided that certain standard routines do not
meet special requirements, the user may code his own routines

to replace them. For instance, the user may wish to write his
own Bead Scheduler to implement a non-standard message- .
scheduling algorithm. Full details of the standard routines and
interfaces between them may be found in Chapters 5 and 6.

Lang uage

All control routines supplied by the user must be coded in
PLAN. '

THE PROCESSING ELEMENT

Choice of language

Beads may be written in PLAN or COBOL; PLAN and COBOL béads may
be incorporated into the same program. The normal advantages
of using COBOL all apply, and the language is extensively used
in Driver programs. PLAN beads are coded as program segments;
COBOL beads are written and compiled as subroutines, as
described in Chapter 12 of the 1900 COBOL manual.

ICL

Data Processing Publications

tilt 1900 DRIVER part chapter , page g

Bead Size

It is not possible to give fixed or recommended sizes for
beads. However, the following major factors should be
considered when deciding how to divide the processing element
into beads.

1 The program may split logically into independent units,
(for example, vets, updates, enquiries) each of which
can become a bead. This is the simplest method of
structuring a Driver program.

2 A multithreading Driver will not allow a message to
enter a bead until the previous message has made its
final exit from that bead. Greater throughput may
be achieved by terminating some or all beads at their
first exit to Driver, thus freeing them for use by other
messages. This reduces bead sizes, but increases the
number of beads required.

3 Overlay requirements may have some bearing on bead size
since the unit of overlay is always a bead. For
example, all beads allocated to a given overlay area
should be of approximately the same size if possible.
Much depends here on accurate estimation of the size of
beads.

4 Resource allocation may be a considereation. If few
programmers are available, then writing a few large beads
rather than a relatively large number of small ones may
possibly result in greater programming efficiency.

System Beads

Whilst beads are normally specific to the processing required
of the individual program, beads to perform certain control

functions will be found in every 1900 Driver program.

L

‘Data Processfr{g‘ Publications

titte 1900 DRIVER part chapter 2 page 9

Reference is made below to bead numbers: the means by which
these numbers are assigned to beads is described in the
section Bead Branch Table, Chapter 4, page 10 .

INITIAL BEAD

When a message has been received by a program and linked to

a TAB by Communications Monitor, it will be passed to a
nominated bead which will be the same bead for all messages.
It is recommended that this practice is followed in a single
threading program also. Bead 1 is conventionally the Initial
bead in every thread, and its function is to recognise each
message received and accordingly request entry to the first

processing bead required in each case.

INITIALIZATION BEAD

Before the first message is received into the Driver program,
certain initialization procedures must be performed, for
example, opening files and allocating the communications
terminals. Also, some form of introductory message will
normally be output to inform terminal operators that they
may now commence input. These procedures may be coded as
part of the Master routine, though they will then be store
resident. If it is wished to overlay them instead, they
should be coded as a bead. The first entry to Driver from
the Master routine will thus be a request to pass control to

this Initialization bead.

ERROR RECOVERY BEAD

Errors detected by Driver control routines are processed by
passing control to Bead 0. An error parameter will have been
set in word 8 of the TAB as described in the descriptions of
the individual routines in Chapters 5 and 6. Bead 0 should

ICL

Data Processing Publications :

titte 1900 DRIVER part chapter 2 page 10

therefore be coded as the first bead of the user's error process-
ing thready).

COMMON SUBROUTINES

Subroutines called by several beads or file handling routines
may be included in the permanent part of the Driver program
as common subroutines. Such subroutines, however, must not
access peripherals directly, nor must they issue any Driver
request. These subroutines should be coded and compiled as a
free-standing program segment or segments, or be included in
the Master routine.

In a multithreading program there are several standard common

subroutines accessed by the Driver control routines; details
of these may be found in Chapter 6.

STORE ORGANISATION AND USE

TABs and associated areas

GENERAL DESCRIPTION

Whenever an input message is received into the program, Driver
allocates to the message a 28-word area of store known as a
Task Administration Block, or TAB. The TAB forms the interface
between Driver and the beads iequired to process the message:
during the message's life in the program, it holds all
parameters generated by Driver and the beads for each other's
use in processing the message. On completion of processing, the
TAB is deallocated from its message by Driver, ready for alloc-
ation to another message.

A TAB is confined to holding the control information required
by Driver and the beads during the processing of the message

Data Processing Publications
titte 1900 DRIVER part chapter 2 page 11

to which the TAB is allocated. Further areas of store are requi-
red so that user data, including the original input message,

can be accessed by the beads, and to enable reply messages and
other data generated by the beads to be assembled and stored

for output. Up to three such areas may be chained to the
TAB by means of link addresses stored in three reserved words
of the TAB. These areas are hence known as the associated
areas of the TAB.

Each associated area of a TAB has a specific purpose, and is
named accordingly, thus:

1 The Message area holds the input message to which the
TAB is currently allocated, together with certain relevant
parameters, for example, message length. During processing
of an input message, each reply message generated by the
beads is stored in this area, waiting to be accessed and
output by Communications Monitor on receipt of the
appropriate request from a bead. Note that throughout the
processing sequence, the TAB is considered as being
allocated to the input message, even though this message
may be overwritten by a bead-generated repiy message
during processing.

2 The Input/Output area holds all data read in by Peripheral
Monitor from backing store following a request from a bead
for peripheral input. Similarly, any bead-generated

data to be written to a file is stored in this area in
preparation for output by Peripheral Monitor.

3 The Additional Core area is available, if required, for
any other purpose. Typical examples of its use are as a
work area for the beads, and as a means of storing data to
be passed from one bead to another. There are two

restrictions on its use:

Data Processing Publications
titte 1900 DRIVER part chapter 2 page 12

(a) It must not be used for communications

or peripheral input/output.

(b) It cannot be used to retain data once
the TAB with which it is associated
is deallocated. Data which is to be retained

in the program for use in the processing
of another message must be placed in one of the

User Common Areas described on page 18.

TAB PARAMETERS
A TAB holds 4 main types of information:

1 Information provided by the beads for Driver. This
information is provided each time a bead issues a request
for a Driver Service: the following parameters are
inserted by the bead into reserved locations of the TAB
immediately before exit from the bead to Driver.

(a) A request code, defining the Driver facility
required.

(b) Request parameters, to control the operation
of the Driver routine providing the required
facility.

(c) Optionally, a bead re-entry parameter (if the
bead is to be re-entered following servicing

of its current request).

(d) If the current request is for transfer of control
to another bead, the bead number of the bead to

be entered.

Data Processing Publications
titte 1900 DRIVER part chapter 2 pagel3

2 Information set up in the TAB by the Master routine for

use by both Driver and the beads throughout the operation
of the program. This consists of

(a) The start address of the TAB*s Message Area.

(b) (Fixed store systems only - see page 19). The start
addresses of the Input/Output and Additional Core areas
permanently associated with the TAB.

3 Information placed in the TAB by Driver for use by the
beads. This consists of

(a) The logical terminal number of the device from which
the message currently being processed has been input.

(b) Contents of accumulators 0 and 4 to 7. The accumul-
ators are stored in the TAB by Request Analyser on
entry from a bead, and are restored immediately before
control is passed to a bead.

(c) (Dynamic store systems only - see page 19).
Following a store request from a bead, the start
addresses of the store cells allocated to the TAB
Store Administrator as Input/Output and Additional
Core areas. The link to the Input/Output area is
also used by Driver (Peripheral Monitor) when servic-
ing peripheral requésts.

(d) An error reply parameter. BAny Driver routine detecting
an error places a code defining the type of error in
a reserved word of the TAB. This word is
subsequently accessed by the Error Recovery bead (see
page 9) in order to determine the recovery action
required.

Data Processing Publications -
tite 1900 DRIVER part chapter 2 page 14

4 Information stored by Driver for its own use in controlling

the processing of messages. This includes

(a) The bead number of the bead issuing the current
request. Before control is passed to a bead, its
bead number, as mentioned in 1(d) above, is shifted
to an adjacent word of the TAB. Thus, when the bead
which has been entered issues a request, Driver can
determine its identity by examining the contents of
this word.

(b) (Multithreading systems only). A queue chain link
address. This is set up by the appropriate gueuin
subroutine within Driver whenever the TAB is queued
awaiting a Driver service. It consists of the start
address of the next TAB subsequently oplaced on the

same gqueue.

(c) (Multithreading systems only). The permanent and
temporary processing priorities of the message to
which the TAB is currently allocated. These para-
meters are only used when the standard multithreading
Driver routines are modified by the user to support
a message priority system of servicing bead requests.
Full details are given within the section Queue

manipulation, Chapter 6.

(d) (Multithreading systems only). The start address
of the Queue Management Area (QMA) for the Free TAB
queue. Full information on the use of the Free TAB
queue and QMAs in general is goven in the section
The queueing system in Chapter 6.

TAB FORMAT

A TAB is a 28 word area which is set up by the user in his
Master Routine, as described in Chapter 4. For a single
threading program, one TAB is required. For a multithreadin

Data Processing Publications

titte 1900 DRIVER part chapter 2 pagel5

program, the number of TABs set up must be equal to the
maximum number of messages that the program is to be capable of
handling simulataneously.

During the operation of the program the various types of
information described in the previous section are held in the
TAB in the following format:

Word O Request code

Words 1 to 7 Request parameters giggeSt

Word 8 Error reply parameter

Word 9 Logical terminal number

Word 10 Bead re-entry point

Word 11 Bead number of bead last
entered/originating current request

Word 12 Bead number of next bead to be
entered

Words 13 to 15 Spare

Word 16 Contents of Accumulator 4)

Word 17 Contents of Accumulator 5 on last

Word 18 Contents of Accumulator 6 { entry to/

Word 19 Contents of Accumulator 7 exit from

Word 20 Contents of Accumulator 0) Driver

Word 21 Queue chain link address

Word 22 Start address of Message area

Word 23 Start address of Input/Output area

Word 24 Start address of Additional Core
area

Word 25 Permanent priority of the message to
which the TAB is currently allocated

Word 26 Temporary priority of the message

Word 27 Free TAB Queue Management Area

address

I c Data Processing Publications
L titte 1900 DRIVER part chapter 2 page 16

ASSOCIATED AREAS

The Message, Input/Output and Additional Core areas associated
with a TAB'are areas of any required length which are defined
in the Master routine. A TAB must always have a Message

area associated with it, the Message area being permanently
chained to the TAB by means of a link address preset by the
user in word 22 of the TAB. The Input/Output and Additional
Core areas are optional, and the manner in which they are
defined depends on whether a fixed or dynamic store allocation
system is in use (see Alternative methods of store organisation,
page 18).

The first 4 words of each area associated with a TAB are
reserved for Driver control information. In practice, these
four words are only used by the multithreading Driver when
employing dynamic store allocation. The parameters used by
Driver in this case are described in the section Store cell

queueing, Chapter 6.

Beads written for simpler systems, however, will not be com-
patible with a dynamic store system if they access and store
data in these words. Words 0 to 3 of each associated area
should therefore be regarded as reserved for Driver use in
all programs; this standard should also be observed by user
control routines written for the single threading Driver.

STANDARD LOCATIONS

With the exception of the TAB(s) and associated areas, all store

locations and areas used within Driver are defined under standarc

common blocknames beginning with the letters HDR.

Some of these locations must be preset in the Master Routine
to enable Driver to perform the specific control functions
required by the User's individual program. For example, entry

to the beads by Driver is always carried out using a table of

Data Processing Publications
tite- 1900 DRIVER part chapter 2 page 17

CALL instructions; this table must be .set up under the common

blockname HDRBT1l, and contain one CALL instruction for.
each bead present in the user's program.

Full instructions for defining and presetting HDR locations

are given in Chapter 4. The three described below are of
particular importance.

" Address of current TAB (HDRTABSTORE)

For a single threading program, the location HDRTABSTORE is
preset to hold the start address of the TAB. Both Driver
and the beads access the TAB using this pointer.

In a multithreading program, all TABs are accessed on
exactly the same principal. In this case, however, HDRTABSTORE
is continually reset by Driver so that at any given moment it

——

holds the address of the TAB whose message is currently being
processed. The adjacent location HDRTABSTQRE + 1 is reserved
‘to hold the address of the current TAB if an error occurs
during servicing: full details are given in the section
Exception Mode in Chapter 6.

The Service TAB is a 3 - word area with the common blockname
HDRSCST. Parameters placedvih this area by .the Driver routines
determine the sequence in which the routines are entered in

the course of servicing a request, and also specify whether
error recovery action will be necessary on return to the
processing element.

In a single'threading program, all user-written control routines
provided as part of the Driver must be capable of updating
the parameters in this area before exit. Use of the Service

ICL

Data Processing Publications

title 1900 DRIVER part chapter o bage ;4

TAB in single threading programs, and the settings required
in exit from each routine, are fully described in Chapter 5.

Manipulation of the Service TAB parameters by the multithreading
Driver is a somewhat complex operation. However, since the
Driver modules which access the Service TAB cannot usefully

be modified or replaced, the parameters have no practical
significance so far as the user is concerned.

" User Common Areas (HDRLUCDAT, HDRUUCDAT) .

Data to be passed from one thread to another (that is,
preserved after TAB deallocation) cannot be stored in
any of the TABS associated areas. If this facility
is required, such data should be stored in a User Common
Area starting at the common block HDRLUCDAT in Lower -
Storage or the common block HDRUUCDAT in upper storage.

" ALTERNATIVE METHODS OF STORE ORGANISATION

Systems considerations

In a single threading program, the maximum size of each area
of store required during processing governs the size of the
associated areas to be defined for the TAB.

If there is sufficient store available for each TAB in a
multithreading program to have areas of the maximum required
size permanently chained to it, this is known as a fixed store
system. Where messages have greatly differing store require-
ments, particularly where excessive store requirements occur

for a small proportion of messages input, it may not be feasible
to have a fixed store system in a multithreading environment

and a dynamic store system is therefore employed.

Data Processing Publications
titte 1900 DRIVER X part chapter 2 page 19

Message area allocation

Message areas under bofh of the standard Driver systems of
store allocation are all the same size and are each permanently
allocated to a TAB. To meet the latter requirement, the user
presets word 22 of each TAB to hold the start address of the
Message area belonging to the TAB. Driver (Communications
Monitor) always access a TAB's Message area via this pointer.

Fixed store system

This is the simplest system of store allocation. It involves the
permanent allocation of sufficient store to give each TAB one
Input/Output and one Additional Core area of the maximum size
required at any time during the operation of the program. To
meet these requirements, the user presets words 23 and 24 of the
TAB (Input/Output and Additional Core area start addresses
respectively) as for the Message area.

Dynamic store system

A dynamic store system is used when there is insufficient main
store available to support a fixed store system. Under a
dynamic system, Input/Output and Additional Core areas are
allocated to a TAB by Driver (Store Administrator) on receipt
of a store request from the bead currently accessing that

TAB. The areas of store available for allocation in this way
are set up by the user in his Master Routine, each area being
termed a store cell. These cells collectively form the
program's common pool of store.

The size and number of cells in a pool is of course dependent
on the program's individual requirements. However, they must
always be defined as belonging to one or more common blocks

ICL

Data Processing Publications

tite 1900 DRIVER part chapter 2 page 20

of store, each block comprising a suitable number of equal size
cells in a chained queue. Parameters enabling Driver to deter-
mine the location and current availability of the cells in each
block must be set up in standard locations: full details are
given in Chapter 4.

Whenever a bead accessing a TAB (i.e. processing a message)
requires store, it issues a request for a cell of store from

a particular block, hence implicitly specifying the size of
cell required. Store Administrator allocates a cell from this
block to the TAB by placing the start address of the cell in
either word 23 of the TAB (Input/Output area requested) or wosd
24 (Additional Core area requested). The cell remains
allocated to the TAB until a deallocation request is

received by Driver, whereupon the cell is 'returned' to the
pool by clearing its address from the TAB and manipulating the
parameters controlling the organisation of the appropriate cell
queue.

Since only two address locations are provided in the TAB, it

is only possible to allocate one Input/Output and one Additional
Core area to a TAB during the life of a message in the system.

A bead may, if required, specify allocation of both these areas
in a single request. If this is done, however, there is a rigk
of certain undesirable system conditions occurring: to keep

this risk to a minimum, a standard method of defining store
cells and sequencing bead-generated requests for store is
recomménded, and is described below. The actual coding
required when defining store cells is described in Chapter 4.

AVOIDING STORE LOCKOUT

A condition known as store lockout occurs when allocation
of a store cell to a TAB is delayed due to no cells of the
required size being currently available, i.e. allocated to
other TABs. Consequently the processing of the message to

Data Processing Publications
title 1900 DRIVER part - chapter 2 page 21

which the TAB is allocated is also delayed. Store lockout is
particularly likely to occur when two cells are required by

a TAB: this is because only one cell can be allocated to a

TAB at a time, a further delay being necessary before the
second cell can be allocated. As.:a result, the first cell
allocated may be locked out from the other TABs for an
undesirably long period, due to the extra delay incurred whilst
the TAB is awaiting allocation of the second cell.

The average time required for cell allocation can be kept to
a minimum if the blocks of store cells are set up with the
following facts in mind.

1 Under the dtandard Driver dynamic system, the various .
blocks of store cells are numbered in ascending order,
starting at Block 0. If a bead written to Driver
standards requests cells from two different blocks,

Driver will obtain the first cell from the lower numbered
block and the second cell from the higher numbered block.
For example, if a bead reqﬁests cells from Blocks 0 and 4,
the first cell will always be obtained from Block 0 and
the second from Block 4. '

2 As a general rule, the chance of a cell being allocated to
a TAB within a given period depends on the number of cells
in the block from which the cell is to be obtained. For
example, if Block 0 contains one cell, and Block 4 contains
six cells, there is a considerably better chance of a
cell in Block 4 being available at any given time.

The user can therefore keep the delay between allocation of the
first and second cells to a minimum by arranging the blocks -
- according to the number < cells contained, in ascending order.

For example a typical pool might be set up as shown below.

ICL

Data Processing Publications

titte 1900 DRIVER ‘ part chapter 2 page 22.

Example

Pool size 2012 words

Block 0: 1 x 256 word cell
Block 1l: 2 x 500 word cells
Block 2: 4 x 64 word cells
Block 3: 5 x 100 word cells

AVOIDING BEAD LOCKOUT

If any bead were allowed to make requests for store cells, the
possibility could arise of a bead making a request that could
not be satisfied for a relatively long period, due to one or
both of the required cells being allocated to other TABs. This
condition is known as bead lockout, and will cause a
considerable increase in the time taken to execute the bead,
resulting in delays, to other messages requiring processing by
that bead.

Therefore, either:

1 All store requests should be made by the Initial Bead.
These requests should also specify transfer of control to
another bead, thus freeiﬁg the Initial Bead to process
another message.

2 Alternatively, if store requests are made from beads other
than the Initial Bead, they should also specify transfer of
control to another bead. This avoids the possibility of
the bead issuing the request being locked out of the program.

The first method is particularly recommended since it avoids

ICL

Data Processing Publications

title 1900 DRIVER part chapter 2 page 23

the possibility of a bead attempting to access non-existent
Input/Output and Additional Core areas. This could happen,
if, due to an oversight in planning the message threads, a
bead attempted to access these areas before they were
allocated to the TAB.

AVOIDING TOTAL PARALYSIS

It is a Driver standard that beads requiring allocation of
two cells (i.e. both an Input/Output and Additional Core area)
to a TAB must request these cells in ascending sequence of
block number. If this is not done, i.e. cells are requested
in random block sequence, it is possible that mutual store.
lockout will occur between TABs, resulting in total paralysis
of the program. ‘

Example
Referring to the example on page 22, suppose that:

1 4 TABs have had store allocated from block 2 and each of
these TABs is now awaiting allocation of a second cell
from block 1. The cells have thus been requested in
descending block sequence. '

2 2 TABs have had store allocated to them from block 1 and
are each awaiting allocation of a second cell from block
). . .

It can seem that, since all the cells in both blocks are
allocated, the second cell requirements of the two sets of
TABs are mutually exclusive. Processing of the messages to
which thege TABs are allocated will therefore not continue.

Data Processing Publications

ICL

tittt 1900 DRIVER ' part chapter 2 page 24

IMPLEMENTAT ION

This section contains information specific to 1900 Driver
which should be used in conjunction with the Programming
Procedures manual when preparing specifications, estimates
and a project timetable for the Driver program.

Specification of user-written routines

All user-written control routines are subroutines of the program,
so specification of these should follow the standards for
subroutine specification as described in Programming Procedures.
Beads are also called as subroutines, so the subroutine
specification standards apply; however, as they perform
functions similar to programs in a batch suite, some portions

of the program specification standards may also be applicable,
depending on the design of the individual user's program.

ESTIMATING PROGRAM SIZE

Program composition

A 1900 Driver program will include the following:
Master routine, plus any initialization routines

Driver control routines (Request Analyser, Bead Scheduler,
System Control)

Tables and constants required by Driver (for example, bead
tables) '

Peripheral Monitor (supplied as standard control routine
in multithreading Driver)

ICL

Data Processing Publications

title

1900 DRIVER part chapter 2 page 25

File Handling Routines (if used)

Peripheral control routines, including any control areas
and buffers

Communications Monitor (supplied as standard control
routine in multithreading Driver)

Communications control routines, including any buffers,
etc.

Overlay Control (if used - multithreading programs only)
Overlay routines (if used)

Store Administrator (if used)

TABs and associated areas, comprising

28 word TABs

Message Areas one of each per TAB

Input-Output Areas
Additional Core Areas

Dynamic store common pool (if used)

User common Areas

Beads (somg may be overlaid)

Driver common subroutines (fultithreading only)

User common subroutines (if used)

Data Processing Publications |
tite 1900 DRIVER part chapter2 page 26

Sizes of -standard Driver control routines

The three standard control routines for single threading
Driver occupy less than 100 words of store. A multithreading
Driver, using standard routines throughout, will occupy up

to 2000 words of store. Detailed information on th- sizes

of individual routines may be found in Appendix 3.

Housekeeping routines

Details of communications housekeeping packages are given in
the manual Data Communications and Interrogation. Details of
peripheral housekeeping routines are given in the manuals
Direct Access and Magnetic Tape. Buffer sizes must be
included when calculating store requirements.

Total program size

The store requirements for a non-overlaid Drive: program will
be the sum of the sizes of the appropriate areas listed under
Program Composition above. For ah overlaid program
allowance must be made for some beads being overlay units;
the other areas listed will be in the permanent part of the
program.

ESTIMATING EFFORT

Beads

When using Driver, a bead corresponds to a program in a batch
suite. Thus the complexity factor for a bead, for estimating
purposes, should be the same as for a batch program
performing the same function. When coding a bead the
programmer must conform to Driver standards, but has no file
handling or terminal handling routines to code.

Data Processing Publications

title 1900 DRIVER part chapter 2 page 27

Control routines

The Peripheral and Communications Monitor routines for a
single ‘threading program and the file handling routines for a
multithreading program are more complex than beads, so a
complexity factor greater than 1 should be used for estimating
purposes. The effort required will depend on the experience
of the programmers involved, for instance, Communications
housekeeping package, Peripheral Monitor requires experience
of file handling.

It is recommended that the most expereienced PLAN programmer
be given the task of coding these control routines, other
programmers coding the beads.

Writing the Master routine for a single threading program is
a very small task once the program is specified. - One or two
days of effort should be sufficient. .Figures for a multi-
threading Master routine are not yet available.

Testing

The majority of the testing of a 1900 Driver program will be
carried out using the Driver Testing Aids. An extra few days
effort should be allowed to enable the programmers involved to
familiarise themselves with the Testing Aids. It is also
suggested that the first bead be tested as early as possible to
allow at least one programmer to gain experience of setting

up and using the testing system.

Once programmers are able to use the Testing Aids, testing should
proceed much the same as any other testing system. Beads are
normally tested individually, then link-tested. The last stage
of testing will be on-line testing; this is more complex than
batch program testing, but it is difficult to generalize about
the effort required. The effort will depend on the complexity
of the terminal network; for instance, a small network of local
terminals presents less problems than a'large remote network.

Data Processing Publications
titte 1900 DRIVER - part chapter. 3 page 1

" Chapter 3 -

" Beads -

Beads may be written as either PLAN segments or COBOL
subroutines. Since, with certain exceptions, all functions
of the user's program other than the processing of data

are delegated to the Driver, a bead normally consists

entirely of application coding, interspersed with requests for
Driver services at those points in the routine where input/
output, additional workspace, or transfer of control to
another bead is required.

Beads issue requests for Driver services using a parameter
area (the request area of the TAB) provided for this purpose.
Each bead performs its allotted function(s) within the
program by carrying out a logically complete set of operations
on data submitted to it in the user defined areas associated
with the TAB, namely the Message, Input/Output and

Additional Core areas.

As mentioned in the previous chapter, TABs and their
associated areas are the only means by which individual
beads can communicate with their environment. This fact,
together with the restrictions on bead functions outlined
above, mean that certain coding standards must be observed
if a bead is to operate successfully in a Driver based
program. Otherwise, the only difference between a bead
and the equivalent batch processing routine is that a bead
must initiate all non-processing functions required during
its execution by means of requests passed to Driver. The
remainder of this chapter describes the mandatory coding
standards and the procedure for issuing requests. Beads
written to these standards may be run without modification

ICL

Data Processing Publications

tittt 3900 DRIVER part chapter 5 pageé

under both the single threading and multithreading versiong
of Driver.

RESTRICTIONS ON BEAD FUNCTIONS

Beads must not contain file definitions,

As a general rule, they may not execute any
instructions which cause an Executive interrupt; for example,
input/output transfers. For this reason, PLAN instructions
with function codes in the range 150 to 161 inclusive may
not be used. The one exception to this rule is the
Initialization bead, which, if used, may carry out file and
communications handling in the conventional manner when
initializing the system at the beginning of the run. This
bead is described on page 1l6.

Beads may not contain any of the following directives:

#ENTRY
#PMODE
#PERIPHERAL
#OVERLAY
#PERMANENT
#ERRORSEG

#$ELASTIC

" 'SUBROUTINES

Provided that it conforms to the standards given in the
previous section, a subroutine may be held as part of the

bead requiring it.

Data Processing Publications
l L tie 1900 DRIVER | part chapter , page 5

" USE_OF ‘ACCUMULATORS -

Driver uses all the accumulators, but accumulators 0 and

4 to 7 are preserved on entry to Driver and are restored on
exit to the next bead. These accumulators may hence be
used to pass data from one bead to another. Preservation
of accumulators 1 to 3 by PLAN beads is the responsibility
of the user, and may be accomplished by storing the
contents of these accumulators in the Additional 'Core area
before issuing a request.

" ACCESSING A TAB AND ‘ITS ASSOCIATED AREAS - -

" Introduction -

A bead which contributes:to the processing of a particular
message shares the following COMMON areas with the other
beads processing the message.

1 The TAB allocated by Driver to the message.

2 The Message, Input/Output, and Additional Core areas
associated with that TaB.

In a single threading system, where there is only one TaB,
PLAN beads could address any of these areas directly, using
the symbolic names assigned to the areas in the Master
routine (see chabﬁer 4, page 4). However this method cannot
be used by COBOL beads, nor is it suitable for use in
multithreading systems, where a bead may have to access any
one of several different TABS and their associated areas,
depending on which message is currently being processed by
the bead. Moreover, in systems employing dynamic store
allocation the location of the Input/Output and Additional
Core areas during the processing of a particular message
depends on which cells of store are available in the common

g Data Processing Publications :
title 1900 DRIVER part chapter 3 page 4‘

pool, and hence cannot be predicated with any certainty.

The method of indirect addressing described below enables

a bead to access any TAB and its associated areas regardless
of circumstances. Single threading users writing PLAN
beads are strongly recommended to use this method, since

it enables PLAN beads to be run without modification under
both the single and multithreading versions of Driver.

" Method
COBOL BEADS

For COBOL beads the following addresses are supplied by
Driver on entry, in the order given.

Start address of TAB

Start address of the Message Area

Start address of the Inﬁut/Output Area

Start address of the Additional Core Area

Start address of Lower User Common Area (HDRLUCDAT)

Start address of Upper User Common Area (HDRUUCDAT)

To enable a COBOL bead to access these areas, they must be

defined, in the order shown, in the bead's Linkage Section.
Thus the first 01 level definition should refer to the TAB

(this may be followed by 01 level defintions REDEFINING the
TAB) and should be followed by 01 level defintions for the

other five areas. .

Alternatively the areas may be defined in the Linkage Section
in any sequence, in which case they must also be declared,

in the order indicated above, in the USING clause of the
Procedure Division. This is the standard COBOL subroutine

Data Processing Publications '
I L title 1900 DRIVER part chapter 3 page 5

interface, as described in Chapter 12 of the 1900 COBOL
manual.

PLAN BEADS

A PLAN bead may address a TAB and its associated areas by
either of the following methods

1l At any point during the execution of a PLAN bead, the
start addresses of the TAB and associated areas
currently to be addressed by the bead can be found in.
the'foilowing locations

Location
Start address of TAB HDRTABSTORE
Start address of Message area Word 22 of TAB
Start address of Input/Output area Word 23 of TAB

Start address of Additional Core Word 24 of TAB
area :

Note that:-

(a) In single threading programs, the addresses in
HDRTABSTORE and words 22 to 24 of the TAB are
preset in the Master Routine

(b) In all multithreading programs, HDRTABSTORE is set
by Driver each time control is about to be passed
to a bead, hence specifying which one of the
available TABs is to be accessed by the bead
during its execution.

(c) In multithreading programs employing a fixed
store system, the addresses in words 22 to 24 of
each TAB are preset in the Master routine, as for
a single threading program.

Data Processing Publications
titte 1900 DRIVER part chapter 3 page

(d) In multithreading programs employing a dynamic

store system, words 23 and 24 are not preset, but
are set by Driver following a store request from
a bead. When this has been done, the two words
respectively contain the start addresses of the
store cells allocated to the TAB by Driver as
Input/Output and Additional Core areas.

A bead using the above method of addressing may hence
be run without modification under both single and
"multithreading Driver systems.

2 A PLAN bead may alternatively obtain the address of the
current TAB and associated areas using the parameters
supplied by Driver for COBOL beads. On entry to a
bead, the instructions

OBEY 0(1)
OBEY 1(1)
OBEY 2(1)
OBEY 3(1)

will respectively place the start address 'of the TAB,
Message, Input/Output or Additional Core area into
accumulator 3. This method is also compatible between
single threading and multithreading systems.

I c Data Processing Publications
L title 1900 DRIVER part chapter ; page 7

A bead is always entered at the first instruction. If a bead
is to issue more than one request during its execution, it
must set word 10 of the TAB before each exit to Driver,

the parameter placed in this word being used by the bead on
re-entry to determine the point within itself at which
processing is to continue.

Whenever control is passed to a bead from another bead, word
10 of the TAB is set to zero, indicating that the bead
issuing the request has completed its execution and is free
to access another TAB. All beads requiring re-entry must
conform to the following standards:

1 The value in word 10 of the TAB must be incremented
by 1 on each exit from the bead which is to be followed
by re-entry. Thus on the first such exit word 10
must be set to 1, on the second exit it must be set to
2, and so on.

2 For the final exit from the bead, word 10 of the TAB
must be reset to zero.

3 The first action taken by the bead each time it is
entered must be to use the value in word 10 of the TAB
to branch to the appropriate point in the application
coding. Since the interpretation of this parameter
on entry is self-evidently a bead function, the precise
means by which this is done is at the discretion of
the user. Possible methods of using the value in word
10 include

(a) As a modifier for an OBEY instruction on a table
of branch instructions to the various entry points

ICL

Data Processing Publications

titlt 1900 DRIVER part chapter 3 page g

within the bead (PLAN)

(b) As an identifier in a GO TODEPENDING ON
statement (COBOL)

" Bead tidying

Care should be taken to ensure that all variables within a
bead which influence the bead'sexecution are cleared or
reset to their original values between finishing the
processing of one message and proceeding with the processing
of the next message. Where necessary, the sequence of
instructions which is entered following initial entry to

the bead (i.e. word 10 of the TAB = 0) should be coded so
that any pointers, count values, modifiers etc. which may
have been updated during processing of a previous message are
reset before any further action is taken. ’

- Issuing requests

A bead issues a request by setting up parameters in reserved
locations of the TAB and passing control to Driver.
PARAMETERS

To issue a request, a bead must access the TAB (as described
on page 3) and place the following parameters in the

locations indicated.

TAB locations

1 Request code Word 0
2 Request parameters (if any) Words 1 to 7
3 Bead sequencing parameters Word 10 or

Words 10 and 12

Data Préééééiﬁé Publications

titt 1900 DRIVER part chapter 5 page g

A list of recommended request codes and parameters is given
in Appendix 2 .

Request code

A request code consists of 4 characters
faaa

where

f is a faeility code

aaa 1is an additive code

The facility code character is normally in the range 1 to 3

It specifies the Driver service required and hence, implicitly,
the control routine within Driver which is to be entered in
order to initiate servicing of the request. The alternative °
settings are as follows

|
w N [ot o

Facility Code Bead (Scheduler) request

Peripheral (monitor) request
Communications (monitor) request

Dynamic store allocation (Store Administrator)
request.

Note:- Further facility codes may be used if additional user-
written control routines are present within the Driver,
provided that the appropriate modifications have been made

to the System Control routine (see System control requirements

Chapter 4, page 10)

The additive code gives additional details, where necessary,
of the Driver service required. The significance of each
character of the code depends on the type of request being
issued, and is therefore described for each request type in
the appropriate sections of this Chapter (page 11 onwards)

titte 1900 DRIVER part chapter 3 page 1°

Request .parameters

The request parameters are supplementary to the request code
and provide all the additional information required by

the control routine which will service the current request.
The parameters required for each type of request are
described in pages 11 to 16 .

Bead sequencing parameters

If a bead is to be re-entered following servicing of the
current request, word 10 must be set to indicate the bead
re-entry point, as described in the section Entry and
re-entry to a bead on page 7 .

If control is to be passed to another bead, words 10 and 12
of the TAB are set as follows:

Word 10 0

Word 12 Bead number of the bead to which control
is to be passed.

Note:- Word 11 of the TAB is reserved for use by Driver and
must not be corrupted.

EXIT TO DRIVER
PLAN beads

A PLAN bead always passes control to Driver by branching to
the Request Analyser routine. This is done by means of the
instruction

BRN HDRRACUE

ICL

Data Procéssing Publications

titte 1900 DRIVER part chapter 3 page 11

COBOL beads

Exit to Driver from COBOL beads is always to bead
Scheduler and occurs on the Statement.

EXIT PROGRAM

Bead Scheduler then branches to Request Analyser in the
same manner as a PLAN bead.

BEAD REQUESTS

There are only two Driver functions which need be requested
in this category

1 Pass control to another bead (request code 0000)

2 Free a bead to access another TAB (request code 0001)

The first of these is self-explanatory: no request parameters
are required. The second is only used in multithreading
systems and is only issued by the Error Recovery bead. This
latter request may be required if a bead has issued a request
and a serious error has occured whilst Driver is servicing it.
If this happens, control will be passed to the Error Recovery
bead, which may issue a request for a bead to be freed from
iéb current TAB so that it is free to access another TAB and
hénce process another message. In this case, the Error
Recovery bead must place the bead number of the bead concerned
in word 1 of the TAB before passing control to Driver.

PERIPHERAL REQUESTS

Most of the parameters placed in the TAB by a bead issuing

a peripheral request are for use by file handling routines,
which are always user written. Accordingly, the nature and
format of these parameters, and their location in the Request

Data Processing Publications
I titte 1900 DRIVER part chapter 3 page 12

area of the TAB, is largely decided by the user. However,

the standards given below must be ohserved.

Request code

Significance
Character g Facility code
(always 1)
Character 1 Bits 9, 10 and 11 of
the request code when
set to 1, are of
special significance
as optional additive
codes, as follows:
bit 9 =1 More than one file

is to be accessed
during servicing of
the request.

bit 10 = 1 The TAB is to be
deallocated after the

request has been
serviced.

bit 11

Il
[

Return to normal
mode is to be
effected after the
current request has
been serviced
(multithreading
programs only - see
Chapter 6, page

Character 2 and 3 Available for user
parameters: otherwis

Zero.

Data Processing Publications

tite 1900 DRIVER part chapter 3 page 13

Request parameters

Word 1 of the TAB must contain a parameter specifying the
file to be accessed, typically a file reference number
(see Chapter 5, page 26)

Word 3 of the TAB must contain a displacement value which
when added to the start address of the Input/Output area
(in word 23 of the TAB) gives the address within the Input/
Output area where input or output of data is to begin.

COMMUNICATIONS REQUESTS

The main purpose of communications request codes and
parameters is to provide the parameters required by
Communications Monitor in issuing housekeeping macros. A
full list of the codes and parameters for the package interface
routines at present available within the multithreading
Communications Monitor is given in Appendix 1. For

requests issued to a single threading Communications Monitor
routine, or user-designed interface routines, the following
standards must be observed.

Request code

Significance
Character 0 Facility code
(always 2)
Character 1
Bits 6 to 8 Package identification
number

Bits 9, 10 and 11 of the
request code, when set to 1

I CI Data Processing Publications | |
title 1900 DRIVER part chapter 3 bage 1,

Significance

are of special significance
as additive codes, as
follows:

Bit 9 = 1 A message is to be
output to, or some
other action
performed in respect
of, more than one
device.

I
|

Bit 10 The TAB is to be
deallocated after
the current request

has been serviced

Bit 11

I
-

Return to normas

mode is to be effected
after the current
request has been
serviced (multithread-
ing programs only -
see Chapter 6, page)

Character 2 Reserved for a
function identifier,
specifying the type
of activity required,
e.g. input or
output

Character 3 Available for further
parameters defining
the action required
in more detail:
otherwise zero.

Data ﬁkdcessihg Publications

title 1900 DRIVER part chapter 3 page 15 .

Request parameters

If output to only one terminal is required, word 1 of the
TAB must be set to contain the appropriate device identifier.
Otherwise, this word must be set to zero.

Where relevant, word 2 of the TAB must hold the length in
characters of the message to be output.

Where relevant, word 3 must contain a displacement value
which when added to the start address of the Message area
(held in word 22 of the TAB) will give the address of tae
first word of the message to be output.

If a message is to be output to, or some other action
performed on, more than one terminal, word 7 of the TAB must
contain the start address of the user's device table (see
Chapter 4, page) and word 6 set as a counter/modifier
to progress down this table.

STORE REQUESTS

Request code

There are only two requests in this category

1 Allocate store (request code 3010)

2 Deallocated store (request code 3020)

Request parameters

Each request may relate to one or two cells of store, these
cells constituting an Input/Output and/or an Additional Core
area.

Data Processing Publications

title 1900 DRIVER part chapter 3 page 3¢

Two parameters, occupying two words of the TAB, are required
for each cell. The parameters are stored starting at word

1 of the TAB. Each pair of parameters comprises the block
number of the block containing a cell of the required size,
followed by the destination address (23 or 24) giving the
word of the TAB in which the start address of the cell is to
be placed (on allocation) or found (on deallocation). Giving
the destination address 23 will hence cause the selected cell
to be allocated as an Input/Output area: the destination
address 24 .ill similarly cause the cell to be allocated as
an Additional Core area.

Where two cells are to be allocated or deallocated following
a single request (i.e. two pairs of parameters are stored

in the TAB) words 1 and 2 of the TAB must contain the
parameters for the first cell to be allocated, or deallocated}
whilst -hese for the second cell must be held in words 3

and 4. The blocks in which these cells are held must be
referenced in ascending order of block number, for the

reasons given in the section Dynamic store system, Chapter 2,
page 19.

SYSTEM BEADS

System beads are so called because they play a significant
part in the overall operation of the user's system instead of
being confined to processing data. As explained in Chapter
2, the majority of Driver programs contain three system beads:
an Initialization bead, an Initial bead, and an Error
Recovery bead.

Initialization bead -

Use of this bead enables initialization procedures to be

overlaid. The bead carries out any initialization procedures

ICL

Data Processing Publications

tite 1900 DRIVER part chapter 3 pagej7

not contained within the Master routine.

The Initialization bead differs from conventional beads in
that it may, if required, directly execute PERI instructions
and issue housekeeping macros, thus avoiding the need to

code initialization functions,’®'such as opening files and
activating terminals, within the Master routine or the control
routines. Its final action, however, must be to issue a
communications or peripheral request specifying deallocation
of the TAB: if this is not done, input from the terminals will
not begin.

“Initial bead ‘(bead 1) -

Driver does not identify the processing requirements of
messages input to the program: this is hence a bead function.
The user is recommended to write a bead, known as the Initial
bead, which will always be the first bead entered whenever
processing of a message beings. The function of the Initial
bead is to identify the thread required to process each input
message, and transfer control to the first bead in the
appropriate thread.

" Exror Recovery bead (bead 0)

If any of the control routines detect errors which prevent
them from continuing the servicing of a request, they will
pass control, either directly or use System Control and Bead
Scheduler, to bead 0. The routine detecting the error will
also place an error code in word 8 of the TAB.

The Error Recovery bead must be written so that it will
examine the contents of word 8 of the TAB and accordingly take
or attempt the appropriate error recovery action.

N Data Processing Publications
titte 1900 DRIVER part chapter 3 page 18

" EXAMPLES

The PLAN and COBOL beads shown below will each set up a start
of day message starting at word of the Message area, request
output of this message to terminals 1, 2, 3, 8 and 9, and
also request deallocation of the TAB. Note that:

1 In both beads, character 1 of the request code (>)
sets bits 6 to 11 of the code to the pattern 001110
(#34). The significance of these settings is as
follows:

Bits 6 to 8 (=001) 7900 package identification

number (=1)
Bit 9 (=1) Multiple output required
Bit 10 (=1) Deallocation of TAB required
Bit 11 (=0) Return to normal mode option not

required in this case

2 The COBOL bead sets up the terminal list in word 5
onwards of the Additional Core area, thus enabling
it to set up the address of this list by accessing
the Additional Core area start address stored in
the TAB

PLAN 2 g
I~
#PROGRAM 222250/BEADO7 = g
#LOWER COMMON /HDRTABSTORE / S §
TABAD E a
#LOWER < g
MESS 28HSYSTEMVREADYV -VGOODVMORNING! T
LIST 1,2,3,8,9,-1 [TERMINAL LIST %
RQST 482510 [REQUEST CODE @
0,28,5,%#100,1,1,0/LIST
#PROGRAM
LDX 2 TABAD [PICK UP TAB ADDRESS
LDN 1 RQST ,
MOVE 1 8 [MOVE REQUEST TO WORDS 0-7 OF TAB
LDX 1 22(2) [PICK UP MESSAGE AREA ADDRESS
ADN 1 5
LDN 0 MESS -
MOVE 0 7 [MOVE MESSAGE TO MESSAGE AREA 3
STO0Z 10(2) [ZEROISE RE-ENTRY POINT
BRN HDRRACUE [EXIT TO DRIVER 9
#END f-:’;
A
5
[¢]
o

COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID, BEADO7.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ICL-1904.
OBJECT-COMPUTER. ICL-1904.
MEMORY SIZE 13000 WORDS.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 BROADCAST.
02 MESSAGE PIC X(28) VALUE
02 REQUEST
03 WD-0 PIC X(4) VALUE
03 WD-1 PIC 1(24) VALUE
03 .WD-2 PIC 1(24) VALUE
03 WD-3 PIC 1(24) VALUE
03 WwWD-4 PIC 1(24) VALUE
03 WD-5 PIC 1(24) VALUE
03 WD-6 PIC 1(24) VALUE

02 LIST

"SYSTEM READY - GOOD MORNING.".

"2>10",
ZERO.
28.

5.

64.

1.

1.

YIATIA 006T 911

1ed

0z obed ¢ sardeys

10l

suonealqnd Buissadold eieq

COBOL

LINKAGE

03
03
03
03
03
03

T™M-1
TM-2
TM-3
T™M-8
TM-9
T™™-Z

01 TAB
REQ-AREA

02
02
02
02
02
02
02
01

MESS-AREA ,

WD-7
FILLER
WD-10
FILLER
WD-24
FILLER

02 FILLER

02 DATA
01 IO-AREA,

02

FILLER

01 ADD-CORE
02 FILLER

PIC
PIC
PIC
PIC
PIC
PIC

SECTION

1(24) VALUE
1(24) VALUE
1(24) VALUE
1(24) VALUE
1(24) VALUE 9.

S1(23) VALUE -1.

.

L)

O 0 W N

PIC X(28).
PIC 1(24).
PIC X (8).
PIC 1(24).
PIC X(52),
PIC 1(24).
PIC X(12),

PIC X(20).
PIC X(28).

PIC X,

PIC X(16).

JIATEA 006T oI

1ied

12 abed ¢ Jadeyo

10l

suoneolqnd Buisseso.ld eleq

COBOL

*k k%

02 LIST-2 PIC X(24).
01 vUCA-1.

02 FILLER PIC X.
01 UCA:'Z.-

02 FILLER PIC X
PROCEDURE DIVISION.
L1,
MOVE REQUEST TO REQ-AREA.
MOVE WD-24 TO WD-7.
ADD 4 TO WD-7.
MOVE MESSAGE TO DATA.
MOVE LIST TO LIST-2.
MOVE ZERO TO WD-10.
EXIT PROGRAM,

YIATIIA 006T 9l

11ed

zz abed . Jardeys

101

suonealgnd Buissasold eieq

Data Processing Publications

tite 1900 DRIVER part chapter 4 page ;

Chapter 4

The Master routine

INTRODUCTION

The Master routine is written by the user in PLAN and is
resident in main store during the running of the program.
It carries out the application orientated tasks required
by the user's system before entry is made to the main program.

The Master routine must contain the following information.

J
1 Program name/priority
2 All compilation and consolidation directives required

by the program as a whole (e.g. #PERMANENT, #LIBRARY)

3 Definitions of all data areas to be preset before entry
to the program (for example, the TAB(s) and associated
areas)

4 Program entry point(s) and, optionally, program end
point.

It may also:

5 Allocate peripherals and open all files to be used by
the program.

6 Carry out the initial activation of any other program
members to be used.

7 Activate the communications network
8 Carry out any additional initialization procedures

required by the user, for example broadcasting start-of-
run messages to terminals

ICL

Data Processing Publications

title 1900 DRIVER part chapter 4 page 2

In some systems, incorporation of last four types of function -
into the Master routine may result in the routine occupying

an unacceptably large area of main store during the running

of the program. Such functions may instead by overlaid

using an Initialization bead, which is brought into main

store and executed once the program has been entered from the
Master routine. This bead is described in Chapter 3, page 16,

PROGRAMMING PROCEDURE - SINGLE THREADING PROGRAMS

The standards for writing a Master routine for a single
threading program are described below. The standards are
similar for a multithreading program, the main difference
being that certain types of area are defined more than once.
For example, a different TAB will have to be defined for
each message type to be processed. The additional area
definitions and other coding required for multithreading~are
described from page 17 onwards.

System organisation

COMPILER DIRECTIVES

All compiler directives required by the program must appear
in the Master routine. These will include:

1 A #PERMANENT directive for the 1900 Driver routines in
the program. The single threading 1900 Driver routines
are listed under this directive using the following

names.

Routine Name
Request Analyser HDRRA1
System Control HDRSC1

Bead Scheduler HDRBS1

Data Processing Publications
I L tite 1900 DRIVER part chapter 4 page 3

2 All communications housekeeping subroutines required by
the program must similarly be listed under a #PERMANENT
directive.

3 If a PLAN compiler with magnetic tape output is to be
used to compile and consolidate the program, the library
subfile SDRV holding the 1900 Driver control routines
must be listed under a #LIBRARY directive. All other
library subfiles containing routines to be used by the
program, including those containing subroutines in the
S-RS group, must also be specified under this directive.

4 For an overlay program, the Master routine must be
preceded by the Overlagy steering segment, which must be
the first segment presented to the consolidator.

This segment will comprise the following items:

(a) The program name and priority of program number 0,
under a #PROGRAM directive.

(b) A #PERMANENT directive for the overlay package
$EROL

(c) A #OVERLAY directive followed by a list of the
overlay beads and their area/unit numbers in the
format described in the PLAN reference manuagl
Edition 1, T.P. 4004 Chapter 6, page 23.

Note that the name and priority of the complete program will
be as defined in (a) above.

ACTIVATION OF OTHER PROGRAM MEMBERS

If members other than member 0 are to be used by the program,

their initial activation should be carried out from within the
Master routine. This rule does not apply to the member

L

Data Processiné Publications

titte 1900 DRIVER part chapter 4 page 4

containing the Communications housekeeping: the macros
required to establish and implement the housekeeping member
may alternatively be coded either within the Initialization
bead or within an initialization subroutine which is executed
on the first entry to Communications Monitor.

Main store organisation

TAB AREA DEFINITIONS

The TAB and its associated areas may be defined using any

desired symbolic names, provided that names beginning with the-
letters HDR are not used.

Mandatory areas:-

1 x TAB (length 28 words)

1 X Message area (of maximum length required)
Optional areas

1 x Input/Output area (of maximum length required)

1 x Additional Core area (of maximum length regquired)

TAB presets

When defining the TAB, the request area and Words 10 and 12
of the TAB may be preset for initial entry to the program as
described in the section Activating the Driver, on page 16.

Both PLAN beads and the Driver control routines will use

link addresses held in the TAB to locate the TAB's associated
areas. These link addresses are set up by storing the

start addresses of the various areas in the following locations

Data Processing Publications - |
I L title 1900 DRIVER part chapter 4 page 5

Location
Start address of Message area Word 22 of the TAB
Start address of Input/Output area Word 23 of the TAB

Start address of Additional core area Word 24 of the TAB

Message area presets

Words 0 to 3 of the Méssage area are reserved for Driver use:
Word 0 must be preset to contain the total length of the
area in words and words 1 and 2 set zero.

Following input of a message, word 4 of the area will be set
by Driver to a value equal to the total length if the message
in characters. It is therefore suggested that this word

be initially set zero and not used for any other purpose.

Any preset parameters which may be required by the beads when
accessing the Message area should be stored in contiguous
words of the area starting at word 5.

If a start-of-run message is to be output on activation of
the Driver, the message should be specified within the
Message area definition.

Input/Output and Additional core area presets

When defining either the Input/Output or Additional Core area,
word 0 must be preset to give the length of the area in words.
Words 1 to 3 are reserved for Driver-generated control
parameters and must be preset to zero.

HDRTABSTORE

The start address of the TAB must be set up in the common block
HDRTABSTORE. This word will be examined by both the control

I CI Data Processing Publications
title 1900 DRIVER part ~chapter 4 Page ¢

routines and PLAN beads in order to locate the TAB in main
store.

Example

#UPPER

10

AC

MESS

516,0,0,0

" PERIDATA (512)

49,0,0,0

WORKSPACE (45)

128,0,0,0,0

MESSAGE (124)

TAB (22)

0/MESS,0/10,0/AC

{ INPUT/OUTPUT AREA

[ADDITIONAL CORE AREA

[MESSAGE AREA

[TAB

[ADDRESSES IN WORDS 22~24 OF TAB

apr

YIATIEA 006T

1ed

L sbed ¥ imdeyo

101

suoneolqng Buissasold eleq

#LOWER

TABAD

SPAREWORDS (3)
COMMON/HDRTABSTORE/

0 [TP«B

[BRINGS TAB UP TO REQUIRED LENGTH

[ADDRESS OF TAB IN HDRTABSTORE

(28 WORDS)

10l

~+
= 8
© 5
v
S
=
O o
o ®»
o 0
3
o @
)
a
;32
W8
=3
o
3
w
ge]
Q
-
—*

g abed § iardeyo

Data Processing Publications
tile 1900 DRIVER part chapter 4 page 9

User Common Areas (HDRLUCDAT, HDRLUUDAT)

The User Common Areas HDRLUCDAT and HDRUUCDAT are declared

as Common blocks of any required length under a #LOWER and
$UPPER directive respectively. If either of these areas

is not required, it must still be declared as a one word area
to avoid missing cues in the program when it is consolidated.

Other user-defined locations and areas

A number of locations and areas used by individual control
routines must be preset before entry to the main program,
They must be defined as Common blocks under a #LOWER
directive.

REQUEST ANALYSER REQUIREMENTS
Facility code constant HDRRACONST

A location HDRRACONST must be provided for use by Request
Analyser in vetting requests (see Chapter 5, page 6). Within
the Master routine, HDRRACONST must be set to a value one
greater than the highest facility code used in the program

(see Chapter 3, page 9). In the majority of cases, HDRRACONST
will be set to 3 (4 if a dummy Store Administrator routine

is present in the program).

ICL

title

Data Processing Publications

1900 DRIVER part chapter , page ;,

SYSTEM CONTROL REQUIREMENTS

System Control does not use amny user defined locations
unless the standard 1900 Driver and user written control
routines are augmented by further routines in order' to
meet special system requirements. In this case, one
additional branch instruction must be appended to the
System Control Second Branch Table HDRSCBR2 for each
additional routine, the format of the instruction being

BRN cuename

where cuename is the entry point/cue name of the routine.
The branch instructions are declared in the Master routine
starting at the location HDRSCBR2+4. Use of this table
by System Control is described in Chapter 5, page 1ll.

BEAD SCHEDULER REQUIREMENTS

Highest bead number constant (HDRBDCONST)

A one word area HDRBDCONST is used by Bead Scheduler to
check that a valid bead number has been specified in a
request for transfer of control to a bead. HDRBDCONST
must be set to a value one greater than the highest bead
number in the program.

Bead branch table (HDRBTI)

The bead branch table HDRBT1l consists of a one-word entry
for each bead in the program. If required, it may also
contain dummy entries for beads that are to be incorporated
into the program at some future date.

Data Processing Publications
I titlh 990 pRIVER - part chapter ; page ;;

An entry for a bead already present in the program consists
of a CALL instruction of the form

CALL 1 beadname -
where beadname is the name of the bead.

An entry for a bead not present in the program may be any
value or string of characters that can be stored in one
word, but is conventionally given as zero.

When servicing a request for transfer of control to a bead,
Bead Scheduler will branch to the appropriate CALL
instruction in the table using the bead number specified"
by the user as a modifier (see Bead Scheduler,

Chapter 5, page 15}, Beads must therefore be
referenced by the CALL instructions in ascending order,
according to the bead numbers allotted to them by the user.
Thus the first CALL in the table will always be to the
Error Recovery bead (Bead 0).

Example

#LOWER

BT1

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

COMMON/HDRBT1/

ERRORCOPE

ALLMESSAGES

INVOICEPRINT

0,0,0

RECEIPTVET

INVOICEVET

CREDITCHECK

RECEIPTCHECK

INVOICECHECK

0,0,0,0

[BEAD 0 - ERROR RECOVERY BEAD
[BEAD 1 -'INITIAL BEAD

[BEAD 2

[BEADS 3 TO 5 - DUMMY ENTRIES
[BEAD 6

[BEAD 7

[BEAD 8

[BEAD 9

(BEAD 10

[BEADS 11 TO 14 - DUMMY ENTRIES

=Te1))

JIATIA 006T

1ied

Ja1deyo

1

¢t 56ed

101

suonealqnd Buisseso.d eleq

CALL 1

CALL 1

#LOWER

BDCON

RECEIPTPRINT

INITIALIZE

COMMON/HDRBDCONST/

17

[BEAD 15

[BEAD 16

[HIGHEST BEAD NUMBER CONSTANT (=16+1)

I =17

apn

YUIATYA 006T

1Jed

e obed § saadeyo

10l

suoneolqnd Buissasold eleq

Data Processing Publications

ICL

title 1900 DRIVER) part chapter 4 Page 4,

Bead Storage Table HDBRT2

The bead storage table contains a one word entry for each

of the beads referenced in the Bead Branch Téble, including
those referenced by dumﬁy entries. As with the Bead Branch
Table, entries must be made in ascending order of bead number,
starting with the entry for bead 0.

The entries in the Bead Storage Table classify the beads
as follows:-

Store resident
Overlay

Non-existent (i.e. not yet present in the program)

Before passing control to a bead (by means of the appropriate
CALL instruction in the Bead Branch table), Bead Scheduler
will access the corresponding entry in the Bead Storage
Table to check if the bead is available in main store,

taking suitable action if it is not (see Chapter 5, page 16).

Each entry in the table is set up as follows

Bead type Entry (1 word)

1 Store resident 0

2 Overlay area/unit number
3 Non-existent immaterial
EXAMPLE

The following coding will set up a bead storage table for

the beads referenced in the previous example (page 12).

For the purposes of this example, ERRORCOPE, ALLMESSAGES,
CREDITCHECK and RECEIPTPRINT are defined as being permanently
resident in main store, and all other beads currently present
in the system are defined as overlays.

#LOWER

BT2

COMMON/HDRBT2/
0,0,3/1

DUMMY1 (3)
2/2;2/1,0;1/2,1/1

DUMMY?2 (4)

0,1/3

[BEADS 0 TO 2

[BEADS 3 TO 5

[BEADS 6 TO 10

[BEADS 11 TO 14

[BEADS 15 AND 16

aqnn

JIATIYA 006T

191deyd 1ed

ST aBed 7

O
L

suonedqnd Buissasoid eieq

L

Data Processing Publications

title 1900 DRIVER part chapter 4 pagej¢

PERIPHERAL MONITOR REQUIREMENTS (OPTIONAL)

If the users Peripheral Monitor routine is written so that

file handling functions are delegated to separate routines, it
may make use of a table of branch instructions in order to enter
the required file handling routine(s) following each peripheral
request. The user can set up this table either within the Master
routine or within Peripheral Monitor itself. Further details

and an example are given in the description of Peripheral Monitor
in Chapter 5, page 26.

COMMUNICATIONS MONITOR REQUIREMENTS (OPTIONAL)

In programs requiring multiple communications output, i.e.
transmission of particular reply messages to more than one
terminal, the user's Communications Monitor routine will require
a table of device numbers in order to initiate output to each
terminal in turn. Communications requests specifying multiple
output, if issued in the recommended format (see Appendix 1),
assume that such a table exists.

The user can set up this table either within the Master routine
or within Communications Monitor itself. Further details are
given in the description of Communications Monitor in Chapter
page 32.

ACTIVATING THE DRIVER

The following are three possible methods of making the initial
entry to Driver from the Master routine,

1 If an Initialization bead is in use, preset Words 0,
10 and 12 of the TAB to request entry to this bead,
as follows

ICL

Data Processing Publications

tittt 1900 DRIVER part chapter 4 page 17

Word O 0 (request code 0000)

Word 10

0
Word 12 = Bead number of Initialization bead

Control is passed to Driver in the same manner as a
PLAN bead, that is, on the instruction

BRN HDRRACUE

2 If no Initialization bead is in useJ but a start-of-day
output message is to be broadcast then:

(a) Set Words 0 to 7 of the TAB to request communications
output and deallocation of the TAB

(b) Set up the start-of-day messade when defining the
TAB's Message area.

(c) Pass control to Driver as above.

The program will output the specified message and
suspend awaiting input of the first user message.

3 Using a suitable entry point, brancj directly to the
suspension procedure, or any prior initialization

procedures, within Communications M&nitor.

PROGRAMMING PROCEDURE - MULTITHREADING PROGRAMS

System considerations

The standards given for single threading ;programs on pages 2
to 4 apply equally to multithreading programs, with the
exception of the Driver routines to be listed under the
#PERMANENT directive. The routines selected for inclusion

Data Processing Publications

titte 1900 DRIVER part chapter 4 page 18

in the program should be listed using the names indicated below.

Routine Name
Request Analyser 2 HDRRA2
Request Analyser 3 HDRRA3
System Control HDRSC2
Bead Scheduler 2 HDRBS2
Bead Scheduler 3 HDRBS3
Bead Scheduler 4 HDRBS4
Bead Scheduler 5 HDRBSS5
Store Administrator HDRSA2
Peripheral Monitor:
P.M. Entry HDRPMENTRY
P.M. Queue-select HDRPMQSELEC
P.M. Cycle HDRPMCYCLE
P.M. Continuation HDRPMCONT
P.M. Exit : HDRPMEXIT
Communications Monitor:
C.M. Entry/Exit HDRCM1
C.M. 7900 Interface . HDRCMA
C.M. Multiplexor interface HDRCMB
C.M. 7900 queue selector HDRCMQS1
C.M. Multiplexor queue-selector HDRCHQS 2
Subroutines:
Overlay control HDROC2
Deallocate TAB HDRDTAB
Enter Exception Mode HDREEM

Return to Normal Mode HDRNORM

I CI Data Processing Publications ,
' title 1900 DRIVER . part chapter 4 Page 4

. Routine . . Name
Queueing subroutine 1 HDRATQ..
Queueing subroutine 2 HDRRFQ
Queueing subroutine 3 HDRAHQ
General suspension 1 HDRGS1
General suspension 2 HDRGS2

Main store organisation

TAB AREA DEFINITIONS

The number of TABs defined in the Master routine must be equal
to the maximum number of messages to be handled by the program.
All but one of these TABs must be organised to form the
initial free TAB queue: the remaining TAB must be set to
request the first entry to Driver.

All TABs should be defined under a #UPPER directive. The
following standards must be observed in order to set wp the
free TAB queue. '

1 Word 21 of each TAB in the queue must be set to contain
the start address of the TAB following it. Word 21
of the last TAB in the queue must be set zero, indicating
end- of-queue.

2 A 2-word queue management area must be defiined for the
queue under a #UPPER directive. Word 0 of the area
must be set to contain the start address of the first
TAB in the queue, and word 1 set to contain the
start address of the last TAB in the queue.

3 The start address of the queue management area must be
specified in word 0 of the 2-word common block HDRAFTQ
under a #LOWER directive. Word 1 of HDRAFTQ must be

ICL

Data Processing Publications

titlkt 1900 DRIVER part chapter 4 page 20

set negative.

The remaining TAB should be set for initial entry to Driver
using either method 1 or (fixed store systems only) method 2
as described in the section Activating the Driver, pades 16
and 17. Word 21 of this TAB should be set zero. Note that
where output of a start-of-day message is required under a
dynamic store system, the functions of setting up the message
and issuing the appropriate output macro should be performed
within the initalization bead.

A number of additional standards apply to the individual
TABs, as follows.

1 Under a fixed store system, words 22 to 24 of each
TAB should be set as for a single threading program.
That is, they should respectively contain the start
addresses of the Message, Input/Output and Additional
Core areas éssociated with the TAB. Under a dynamic
store system, word 22 must similarly contain the
start address of the Message area, but words 23 and 24
should be set zero.

2 Words 25 and 26 (permanent and temporary processing
priorities) must be set zero, irrespective of the type
of queueing system in use.

3 Word 27 of all TABs must be set to contain the start
addresses of the free TAB queue.

STORE CELL COMMON POOL (DYNAMIC STORE SYSTEMS ONLY)

Each block in the common pool must be specified as a suitable
number of equal sized cells chained together to form a

queue. For the purpose of issuing store requests, the

blocks are taken to be numbered in the order in which they are
set up: the first block specified will be referenced in store

Data Processing Publications
l L titte 1900 DRIVER part chapter 4 page 23

requests as block 0, the second as block 1, and so on.
Store cell blocks may be declared under a #LOWER or #UPPER
directive.

The following standards must be observed:

1 Within each block, words 0 to 3 of each cell must be
set as follows:

Word 0 Total length of the cell in words

Word 1 Start address of the next cell in the block
(zero in the case of the last cell in the
block)

Word 2 Zero

Word 3 Start address of the queue management area of
the block (see 3 below). In practise it will
probably be necessary to set word 3 of each
cell zero when specifying the blocks and include
coding to load the appropriate addresses after
the #ENTRY directive.

2 Three 2-word queue management areas are required by
Store Administrator for each block in the pool. These
are specified as a series of 6-word entries in a table
with the common blockname HDRSAQ, starting with the
entry for block 0 and continuing in ascending sequence of
block number:

The entry for each block is as follows:

Word 0 Start address of first cell in block

Word 1 Start address of last cell in bleck

Data Processing Publications

ICL

tite 1900 DRIVER part chapter 4 page 22

Words 2 Zero
to 5

Where words 0 and 1 are the queue management area of the
block and words 2 to 5 are the queue management areas of
the first and second TAB queues for that block (see

Chapter 6, page).

HDRSAQ must be terminated by a word set negative.

Example

The following coding will set up a common pool consisting of
two 500 word cells and four 64-word cells,

#UPPER
STORO

STOR1

STOR2

STOR3

STOR4

STORS

#LOWER
SAQ

500,0/STOR1+500,0,0
DATAO (496)
500,0,0,0
DATAL (496)

64,0/5TOR2+64,0,0

DATA2 (60)

64,0/STOR3+64,0,0

DATA3 (60) °.

64,0/STOR4+64,0,0

DATA4 (60)

64,0,0,0

DATAS (60)
COMMON/HDRSAQ/
0/STOR0O,0/STOR1,0,0,0,0
0/STOR2,0/STOR5,0,0,0,0
-1

1

'

Block 0 (two 500 -
word cells)

Block 1 (Four 64-
word cells)

€Z eofed V¥ iaideqo

an

YIAIVA 006T

ed

10l

suoneaqnd Buissasoid eleq

#ENTRY

NXTBLK

LDN
LDX
STO
LDX
BNZ
ADN
BPZ

W W DN WD W

SAQ

0 (3)
3(2)
1(2)
*-2

6
NXTBLK

[Get address of Block 0 QMA

[Get address of first cell

[Store QMA address in word 2 of cell
[Get address of next cell in block

[Get address of QMA for next block

o

YIAIYA 006T

14ed

¥C abed V¥ iaydeys

O
L

suonueolqnd Buissasoid eleqg

Data Processing Publications
tittt 1900 DRIVER part chapter 4 page 25

OTHER USER DEFINED LOCATIONS AND AREAS

The following are all declared as common blocks, under a
#LOWER directive unless otherwise stated

Bead number of initial bead (HDRBDA)

Whenever Communications Monitor allocates a TAB to an
input message, it will set word 12 of the TAB to contain
the bead number held in HDRBDA. The bead whose number
is held in HDRBDA will hence always be the first bead
entered in the course of processing any message.

Length

1l word

Setting

Bead number of Initial bead (conventionally 1)

Highest bead number constant (HDRBDCONST)
Set as for the single threading driver. See page 10.

Queue management area for Bead Scheduler internal quenes
(HDRBDQ)

For programs employing a bead priority queueing system
(Bead Scheduler 3.or 5) a queue management area is required
for each internal queue (one queue of TABs per bead).

The areas are declared contiguously under the common
blockname HDRBDQ.

l CI Data Processing Publications
title 1900 DRIVER part chapter 4 page 2¢

Length

(2 x number of beads) + 1 words
Setting

_ The queue management areas should all be set to zero and
the block terminated with a word set negative.

Queue management area for Bead Scheduler Extermal queue
(HDRBSEXTQ)

Under all queueing systems, a queue management area is
required for the Bead Scheduler external queue.

Length

2 words

Setting

Zero

ueue management area for Bead d i
(HDRBSINTQ)

In programs employing the standard first-in-first-out
queueing system (Bead Scheduler 2 or 4) a queue management

area is required for the single TAB internal TAB queue
maintained by Bead Scheduler under this system.

Length

2 woxds

Data Processing Publications
I titte 1900 DRIVER part chapter 4 page 27

Setting

Zero

Bead Sched i

This enables a user-written subroutine to be called in order
to implement message priority queueing within Bead Scheduler,
Message priority queueing cannot be combined with bead
priority queueing, and the entry point may therefore only be
used in programs incorporating Bead Scheduler 2 or 4.
Depending in which of these versions is in use the instruction
in HDRBSSUE will be OBEYed either after the routine adds a
TAB to its external queue (Bead Scheduler 2) or is about to
add a TAB to its internal queue (Bead Scheduler 4). Full
details are given in the section Message Priority queueing

in Chapter 6.

Length
1 word
Setting
Where first—in first-out queueing is required:
NULL ‘ (Bead Scheduler 2)
CALL 1 HDRATQ (Bead Scheduler 4)
Otherwise:
CALL 1 wusername

where username is the cue name/entry point of the user's
subroutine,

Data Processing Publications

ICL

tittt 1900 DRIVER part chapter 4 page 28

Bead Branch table (HDRBT1)

Set as for the single threading Driver. See page 10.

Bead Storage table (HDRBT2)

Set as for the singlé threading Driver. See page 14,

Bead free(busy,i_Qigﬁigr;Ihhle_iHDRBIBJ

This table contains a l-word entry for each bead referenced
in HDRBT1 and HDRBT2. Each time control is passed to a
bead, Bead Scheduler will set an indicator in the appropriate
table entry. This indicator will remain set until final
exit from the bead, and will prevent servicing of any

further requests for transfer of control to that bead until
it has completed its execution in respect of the current TAB,

Length
(number of beads)+1l words
Setting

The entries for the beads must be set to zero, The table
must be terminated with a word entry set negative,

Data Processing Publications
tite 1900 DRIVER _ part chapter 4 page 29

Communications Monitor closedown indicator (HDRCMAFIN)

This indicator will be set by whichever C.M. interface routine
is in use when it becomes necessary to inform the CM Master
routine that closedown of the Communications network has
occurred,

Length

1 word

Setting

Zero

Communications Monitor GET constants (HDRCMAGC)

HDRMAGC contains the constants to be held in words 1 and 2
of the users control area HMPUC whenever the Communications
Monitor GET routine obtains input (MPGET macro:- See #the
appropriate chapter of Data communications and interrogation,
edition 2 TP 4201).

Length

2 words

Setting

Word 0 Maximum message length in characters

Word 1 Message terminator character

I CI Data Processing Publications ‘
title 1900 DRIVER | part chapter 4 page’ 30

Communications Monitor input u X

{HDRCMAGET, HDRCMAPUT)

These are only required by program using the hultiplexor
housekeeping package. They allow the user to choose
between the various input and output subroutines available
in the multiplexor package,

Length

1 word each

Setting

For input, HDRCMAGET may be set to contain any one of the
following instructions:

CALL 1 HMPGET
CALL 1 HMPGETTRANS
CALL 1 HMPSEGGET
For output, HDRCMAPUT may be set to either
CALL 1 HMPPUT
or
CALL 1 HMPPUTTRANS
A full description of these subroutines is given in the

manual Data communications and interrogation, (edition 2
TP 4201) Chapter 8, pages 151 and 154.

Data Processing Publications

i . part chapter page ..
title 1900 DRIVER 4 31

ICL

c icati Monit tont
queues (HDRCMAOO)

A queue management area is required for each output queue
(one queue per teleprocessor). The areas are declared
contiguously under the common blockname HDRMAOQ.

Length

(2 x number of teleprocessors) + 1 words

Setting

The queue management areas should all be set to zero.
The block must be terminated with a word set negative.

Communications Monitor user entry point 1 (HDRCMAQC1)

The instruction held in this location is OBEYed by
Communications Monitor whenever a TAB is to be placed on

the l(anipulate queue (see Chapter 6 page 2S5)

Length

1 word

Setting

Where TABs are to be queued by the standard first-in first-out
method, HDRCMAQCl should be set to contain a call to standard
queueing subroutine 1, that is, the instruction

CALL 0 HDRATQ

If, instead, a user-written subroutine is to be called at
this point, HDRCMAQCl should be set to contain the instruction

ICL

Data Processing Publications

titlt 1900 DRIVER part chapter 4 page 35

CALL 0 username

where username is the cue name/entry point of the subroutine.

Co i 0

The instruction held in this location is OBEYed whenever
a TAB is to be placed on one of the output queues,

Length

1 word

Setting

Where TABs are to be queued by the standard first-in first-out
method, HDRMAQC2 should be set to contain a call to standard
queueing subroutine 1, that is, the instruction

CALL 0 HDRATQ

If, instead, a user written subroutine is to be called at
this point, HDRMAQC2 should be set to contain the instruction

CALL 0 wusername

where username is the cue name/entry point of the subroutine,

Communications monitor TEST constant (HDRCMATES)

HDRCMATES contains the user parameter required by the MPTES
macro within the Test for Exceptions routine. It determines
which console messages will be displayed by the housekeeping.

Data Processing Publications

ICL

title 1900 DRIVER part chapter 4 page 33

Length

1 word

Setting

0 or 1 (See the section The macro MPTES in the appropriate

Chapter of Data Communications and Interrogation (Edition 2
TP 4201).

Additional user entry points - communications monitor PUT
and GET routines (HDRCMAUCLl, HDRCMAUC2, HDRCMAUC3)

These entry points enable user subroutines to be called in
order to analyse reply information after message input and
output (HDRCMAUC1l and HDRCMAUC3 respectively) and manlpulate
control information before output (HDRCMAUC2).

HDRCMAUC1 enables a call to be made to a user-written
subroutine immediately after input by the GET routine

(MPGET macro) . It is thus possible to analyse the contents
of the reply area HMPHR at this point and initiate

recovery from transient errors without sending the program
into exception mode.

HDRCMAVC2 similarly enables the contents of the control area
HMPUC to be manipulated by a user subroutine immediately before
output of a message by the PUT routine (MPPUT macro).

HDRCMAUC3 provides the same facility as HDRCMAUCL, in this
case after output of a message by the PUT routine.

For details of the information held in HMPHR and HMPUC

at these points in the execution of Communications Monitor,
see the description of the MPEET and MPPUT macros in the
appropriate chapter of Data communications and interrogation,

I c Data Processing Publications
L title 1900 DRIVER part chapter A page

34

edition 2 ,TP4201l.
Length
1 word each
Setting
Where a user subroutine is to be called:
CALL 0 username
where username is the cue name/entry point of the subroutine,

Otherwise NULL

Communications Monitor input displacement constant (HDRCMAUID)

This location will be accessed by Communications Monitor
before storing an input message in the Message area of the
TAB currently heading the free TAB queue. The value held
in HDRCMAUID specifies the address (relative to word 0 of
each message area) at which storage of input messages is
to begin.

Length
1 word
Setting

25. (Words 0 to 4 of all Message areas are reserved for Driver
parameters),

I Data Processing Publications
title 1900 DRIVER part chapter 4 page 35

Queue manadement areas - Communications Monitor Wait ues

(HDRCMAWQ)

Where communications input and output is to be performed
using a message buffering system, a 2-word queue management
area is required for each Wait queue (one queue of TABs for
telepmocessor). The areas are specified contiguously to
form the common block HDRCMAWQ.

Length
(2 x number of teleprocessors) + 1 words
Setting

The queue management areas should all be set to zero. The
block should be terminated with a word set negative.

Operator intervention constant (HDRCMO1)

Each time it is entered, Communications Monitor will examine
the contents of word 30 to determine whether operator
intervention has occurred. This is done by performing a
logical AND operation on the contents of word 30 and the
contents of HDRCMO1l.

Length

1 word

Setting

The bits within word 30 that are to be tested must be set in
HDRCMO1. For example, if HDRCMOl is set equal to #5,

Communications Monitor will test bits 21 and 23 of word 30,
If this facility is not required, HDRCMOl shoudl be set to zero.

Data Processing Publications
title £900 DRIVER part chapter 4 page 3¢

Communications Monitor table 1 (HDRCMTABl)

A CALL instruction, held as a one-word entry in this table,
is OBEYed by communications Monitor in order to call the
interface routine appropriate to the type of housekeeping
in use.

Length

7900 housekeeping: 2 words
Multiplexor housekeeping: 3 words

Setting

For 7900 housekeeping:

Word 0 CALL 1 HDRCMA
Word 1 Set negative

For multiplexor housekeeping:
Word 0 Zero

Word 1 CALL 1 HDRSCMB

Word 2 Set negative.

Communications Monitor table 2 (HDRCMTAB2)

A CALL instruction, held as a one-word entry in this table,
is OBEYed by Communications Monitor in order to call the
gueue - selector routine appropriate to the type of
housekeeping in use.

Data Processing Publications

ICL

title 1900 DRIVER part chapter 4 page 37

Length

7900 housekeeping: 2 words
Multiplexor housekeeping: 3 words

Setting

For 7900 housekeeping:

Word 0 CALL 1 HDRCMQSI

Word 1 Set negative

For Multiplexor housekeeping.

Word 0 Zero

Word 1 CALL 1 HDRCMQS2

Word 2 Set negative

Driver count (HDRDCT)

The setting of HDRDCT determines the frequency with which
full scans occur during the operation of the program.

Length

2 words

Setting

Both words should be set to the number of entries to Driver

per full scan. For example, the value 4 in each word will
cause a full scan to occur on every fourth entry to Driver.

I c Data Processing Publications '
i art chapter a e;
L til®o 1900 DRIVER P pter , page o

Dynamic store indicator (HDRDCIND)

This indicator informs Driver whether a fixed or dynamic
store system is in use,

Length
1 word
Setting
0 for a fixed store system

1l for a dynamic store system.

FHR branch table (HDRFHRCALL)

This table contains a branch to each file handling routine,
On receipt of a request for peripheral input or output,
Peripheral Monitor will branch to the required routine by
OBEYing the appropriate instruction.

Length

(number of file handling routines) + 1 woxrds

Setting

As recommended for the single threading Driver. See Chapter 5
page 27,

Data Processing Publications
l title 1900 DRIVER part chapter A page 39

FHR exception mode indicator (HDRFHREMI)

This location will be set by Peripheral Monitor when it
becomes necessary to inform the file handling routines that
the program has entered exception mode.

Length

1 word

Setting

Zero.

FHR error reply indicator (HDRFHRERI)

Whenever a file handling routine detects an error in an input
or output transfer, it will set this indicator with the
appropriate error code before re-entry to Peripheral Monitor.
Peripheral Monitor will set word 0 of the service TAB and
word 8 of the TAB accordingly. The procedure involved is .
similar to that described for the single threading version
of this routine in Chapter 5, page 27.

Length
1 word
Setting

Zero,

l c Data Processing Publications
L title 1900 DRIVER 7 part chapter 4 page 49

Device reply word addresses (HDRFHRREP)

This table contains a l-word entry for each file handling
routine,

Length
(number of file handling routines) + 1 words
Setting

The entries for the file handling routines must be declared
in ascending order of file reference number.

Where file handling is to be performed at PERI level, the
entry for each routine should be set to contain the address
of word 1 of the control area. If a routine uses more than
one control area, its entry should be set to zero.

Where peripheral input and output is to be performed by
housekeeping, the entry for each routine must be set to
contain the address of the user's reply indicator for that
routine (see file handling routines, Chapter 6, page 36).

In either case, the table must be terminated by a word set
negative.

Queue management areas for Peripheral Monitor device queues

(HDRFHRQ)

Under all queueing systems, a twe-word queue management area
is required for each device queue. The areas are set up
contiguously to form the common block HDRFHRQ.

I Data Processing Publications
L title 1900 DRIVER part chapter 4 page 431

Length

(2 x number of device queues) + 1 words
Setting

The queue management areas should all be set to zero. The
block must be terminated by a word set negative.

7900 Housekeeping indi

In programs using 7900 housekeeping, the macro MPLA must be
issued under the common blockname HDRHMPINDS in order to .
establish the housekeeping lower data areas.

Length

(3 X number of teleprocessors) + 24 words

Setting

HDRHMPINDS is set by issuing the macro MPLA.

Qower user common area (HDRLUCDAT)

Set up as for the single threading Driver. See Chapter 4,
page 9.

Qverlay indexes (HDROLIND1, HDROLIND2)

For programs using the standard Driver overlay system (that
is, incorporating Request Analyser 3 and Bead Scheduler 3 or
5) two tables are required, each containing a l-word entry
for each area of overlay up to the highest numbered area in
use.,

Data Processing Publications :
titte 1900 DRIVER part chapter 4 page 42

Length

(Highest area number +2) words per table

Setting

For each overlay area in use, the entry in HDROLINDl1 must
be set to contain the start address of the corresponding
~group of 5-word entries in the overlay area table HDROLTAB
(see below) . Within HDROLIND2, the entry for
each area must specify the number of units in that area.
Since area numbers begin at 1, each table must commence
with a vacant word so that the area numbers can be used as

- modifiers. Both tables must be terminated with a l-word
entry see negative.

For example, a program using 5 overlay areas would require .
the following entries in HDROLIND1 and HDROLIND2,

HDROLINDI HDROLIND2
Word O 0 0
Word 1 0/HDROLTAB a
Word 2 0/HDROLTAB+5a b
Word 3 0/HDROLTAB+S5 (a+b) e
Word 4 0/HDROLTAB+5 (a+b+c) d
Word 5 0/HDROLTAB+5 (a+b+c+d) e
Word 6 -1 -1

where a,b,e,d and e are the number of units in areas 1,2,3,
4 and 5 respectively.

Qverlay area table (HDROLTAB)

This table contains a 5-word entry for each unit of overlay.
Request Analyser and Bead Scheduler use the table to schedule
the overlaying of beads into main store, the entries for eag

l c Data Processing Publications
: L titt 1900 DRIVER part

overlay area being accessed by means of the appropriate link
address in HDROLIND1l and counter/modifier in HDROLIND2
(See above).

chapter 4_page 43

Length

(5 x number of overlay beads) +1 words

Setting

The table must appear under a #UPPER directive. The entries
for the overlay units should all be set to zero and terminated
by a l-word entry set negative.

Qverlay count and exception indicators (HDROLCT, HDROLX)

These are Driver working locations, used only in overlay
programs,

Length
1 word each
Setting

Zero

Highest file reference number constant (HDRPMCONST)

This location is used by Peripheral Monitor to check that
a valid file reference number has been specified in each
request for peripheral input or output,

I c Data Processing Publications ‘
itle art chapter age
L u 1900 DRIVER P pter , page.

Length

4,

1 word
Setting

Highest file reference number +1

Peripheral Monitor user entry point 1 (HDRPMENT1)

The instruction held in this location is OBEYed by

Peripheral Monitor immediately before the point at which
control is to be passed to the standard queue-selector routine.
Length

1 word

Setting

Where a user written queue selectér routine is to be
substituted for a standard version, HDRPMENT1l must be set to
contain the instruction

CALL 0 wusername

where username is the cue name/entry point of the user's
queue selector routine.

Where this facility is not required, HDRPMENT]. should be set
to contain the instruction NULL.

I c Data Processing Publications
L title 1900 DRIVER part chapter s page 45

Peripheral Monitor user entry point 2 (HDRPMENT2)

The instruction held in this location is OBEYed by the
standard Peripheral Monitor queue-selector whenever a TAB

is to be placed in one of the device queues,

Lengtih

1 word

Setting

Where TABs are to be queued by the standard fiEst-in first-out
method, HDRPMENT2 should be set to contain a call to standard
queueing subroutine 1, that is, the instruction

CALL 0 HDRATQ

If, instead, a user-written subroutine is to be called at
this point, HDRPMENT2 should be set to contain the instruction

CALL 0 wusername

where username is the cue name/entry point of the user's
subroutine.

System control first branch table (HDRSCBR1)

This table consists of CALLs to Peripheral Monitor,
Communications Monitor, Bead Scheduler and (if used) Store
Administrator. The instructions are stored in the order
in which the routines are to be entered during a.full scan.

Length

Either 3 or 4 words, depending on whether store Administrator

ICL

Data Processing Publications

titte 1900 DRIVER

part

chapter 4 Page ,¢

is present in

Setting

the program.

The optimum order of entry will depend on the characteristics
of the individual system.

For a fixed store system:

Word 0 CALL

Word 1 CALL

Woxrd 2 CALL

For a dynamic

Word 0 CALL

Word 1 CALL

Word 2 CALL

Word 3 CALL

1 HDRCMCUE
1 HDRPMCUE
1 HDRBSCUE
store system:
1 HDRCMCUE
1 HDRPMCUE
1 HDRSACUE

1 HDRBSCUE

Typical sequences are as follows:

The table must always terminate with the call to Bead

Scheduler, as

System control sec]

shown above,

System control uses this table to branch to the required
Driver routine in response to a specific request (as

appeared to initiating a full scan).

Data Processing Publications
titlte 1900 DRIVER . part chapter 4 page 47

Length

3 or 4 ﬁords, depending on whether Store Administrator is
present in the program

Setting

Word 0 CALL 1 HDRBSCUE
Word 1 CALL 1 HDRPMCUE
Word 2 CALL 1 HDRCMCUE

Word 3 CALL 1 HDRSACUE (dynamic store systems only).

The service TAB (HDRSCST)

Use of HDRSCST by Driver is described in Chapter 2, page 17.
Length

3 words

Setting

Zero

TAB count (HDRTABNO)

If the General Suspension routine detects that the
communication network has been closed down, the number of
TABS on the free tab queue will be compared with the value
in HDRTABNO. If the two values are found to be equal,
indicating that there is no further processing to be done
by the program, the General Suspension routine will

Data Processing Publications
tite -~ 1900 DRIVER part chapter 4 page 48

branch to the users end point (HDREND) is the Master
Routine.

Current TAB's address (HDRTABSTORE)

Use of HDRTABSTORE by Driver and the beads is described in
Chapter 2, page 17.

Length
2 words
Setting

Word O start address of the TAB to be used for initial
entry to Driver, ’

Word 1 Zero.

Enter Exception Mode subroutine user entry point (HDRUENT)

If Driver detects an error whilst the program is already

in exception mode, the Enter exception mode subroutine will
OBEY the instruction held in HDRUENT and then branch to

the multiple error halt in HDRMEHALT (below).

Length

1 word

Setting

A CALL or BRN to a user routine, or NULL if this facility
is not required.

Data Processing Publications
tite 1900 DRIVER . part chapter 4 page 49

Upper user common area (HDRUUCDAT)

Set as for the single threading Driver. See page 9.

USER END POINTS

Two user end points, HDRMEHALT and HDREND, must be included
under a #CUE directive.

Driver will branch to HDRMEHALT following detection of a
multiple error. It will branch to HDREND when the general
suspension subroutine detects that no further processing

is possible. The user coding associated with each end
point may be limited to a single SUSWT instruction, or
alternatively consist of restart or postmortem routines.

ENTRY TO DRIVER

The multithreading Driver is entered in exactly the same
manner as the singlethreading version, that is on the
instruction

BRN HDRRACUE

However, if the Overlay control routine is present in

member 2, it must have previously been activiated by the
instruction

AUTO 2 HDRRPCUE
Similarly, if a user-written file handling routine incorporating

housekeeping is present in member 3, this member must also
have heen previously activated on the instruction

L I CI Data Processing Publications -
title 1900 DRIVER part chapter , page 50

Auto 3 cuename

where cuename is the cuename/entry point of the user's file
handling routine.

ICL

Data Processing Publications
tite 1900 DRIVER part chapter 5 Qage 1

Chapter 5

Single-threading Driver routines

INTRODUCTION

The control element of a single threading program, otherwise
known as the single threading Driver, comprises 1900 Driver
routines supplied by ICL as standard software, together
with further control routines written by the user.
The 1900 Driver Control routines consist of:
Request Analyser
System Control
Bead Scheduler
User written control routines consist of:
Peripheral Monitor (and, optionally, associated file
handling routines). In the unlikely event of no
peripheral input/output being required by the program,
this routine can, of course, be omitted.
Communications monitor

Store Administrator (optional dummy routine)

Any additional control routines written by the user
to meet special requirements.

When a PLAN bead issues a request these routines will normally
be entered in the order indicated below:

ICL

title

Data Processing Publications

1900 DRIVER part chapter 5 page p

Following a bead request:

[

Request Analyser

System Control

Bead Scheduler

Next Bead

Following any other type of request:

ox

or

or

Request Analyser

System Control

Either:

(a)

(b)

(c)

(d)

Peripheral Monitor (following a peripheral request)

Communications Monitor (following a communications
request)

Store Administrator (following a store request)

Any one of any additional control routines supplied
by the user, following the appropriate request

System Control

Bead Schedulerxr

Next bead

A COBOL bead issuing a request exits to Driver using an

entry point provided within Bead Scheduler. The control

Data Processing Publications

ICL

titte 1900 DRIVER part chapter 5 .page 3

routines are then entered in the order given above.

The service TAB

The Service TAB is a 3 word parameter area which is held
starting at the location HDRSCST. In the single threading:
Driver it is manipulated by all those routines which exit
to System Control, namely Request Analyser and all user-
written control routines.

The service TAB is used by these routines in the following
manner:

1 Word 0 is set by Request Analyser and all user-written
control routines before entry to System Control.
This word is subsequently examined by Bead Scheduler
to determine whether servicing of the current request
has been successful. If an error has occurred,
Bead Scheduler will pass control to the Error Recovery
bead instead of the bead specified in the request.
Bead Scheduler also sets this word if it fails to
service a bead request, and hence indicates to itself
that control is to be passed to the Error Recovery
bead.

2 Word 1 is set by Request Analyser only, and is used
by System Control todetermine which control routine
is to be entered to service the current request.

Word 2 of the service TAB is of no significance in a single
threading Driver.

l c Data Processing Publications :
o L title 1900 DRIVER part chapter 5 Page ,

1900 DRIVER CONTROL ROUTINES

Specifications of the three control routines included
in the single threading 1900 Driver package are given
in this section. It is possible that the user may wish
to modify or replace some of these routines to meet
special requirements, and their operation is hence
described in sufficient detail to enable him to do so.

Data Processing Publications

ICL

i art chapter age
e 1900 DRIVER par pter 5 page g

HDRRA
NAME
HDRRA1
TITLE

Request Analyser

ENTRY POINT/CUE NAME

HDRRACUE

DESCRIPTION

Request Analyser initiates servicing of all requests issued
by the beads in the program. PLAN beads branch directly
to the routine: entry from COBOL beads is via Bead
Schedulery¢

The actions of the Request Analyser are described below in
order of execution.

1 STORE ACCUMULATORS

The routine determines the location of the TAB in main store
using the address held in HDRTABSTORE. The contents of
accumulators 4 to 7 and 0 are stored in words 16 to 20 of
the TAB respectively.

If this facility is not required, the user must code his
own Request Analyser in accordance with the standards given

I c Data Processing Publications :
L title 1900 DRIVER part chapter 5 Page .

[

in the section Control below.

2 ANALYSE THE CURRENT REQUEST

The facility code (i.e. the first character of the request
code in word 0 of the TAB) is checked to ensure that it is
less than the facility code constant held in the location
HDRRACONST.

If the code is invalid, the Service TAB HDRSCST is set

thus:

Word O 3
Word 1 0
Word 2 0

Word 8 of the TAB (error reply parameter) is set to zero.

If the code is valid, the required settings of HDRSCST are

Word Q 1
Word 1 f
Word 2 0

where f is the facility code within the request code just
validated, held in decimal form.

Data Processing Publications

titte 1900 DRLVER part chapter 5 page 7

3 BRANCH TO SYSTEM CONTROL

Request Analyser branches to System Control on the
instruction

BRN HDRRSCUE

CONTROL

Entry
Request Analyser is entered from:

1 The Master routine (on initial entry to Driver only)
2 All beads written in PLAN

3 Bead Scheduler (following entry to Bead Scheduler from
a COBOL bead}

Each of the above routines branch to Request Analyser on the
instruction

BRN HDRRACUE

"Exit

The routine branches to System Control on the instruction

BRN HDRSCCUE

I C Data Processing Publications :
L title 1900 DRIVER part chapter 5 Page g

Locations used Notes

HDRTABSTORE Preset in Master routine. See
Request Analyser requirements,

HDRRACONST Chapter 4, page?9,

The TAB Preset for entry from Master

(words 0 and 17 routine (see TAB presets,

to 20 only) Chapter 4, page 9).

Subsequently set by

(a) PLAN beads before branching to
Request Analyser

(b) COBOL beads before EXIT to
Bead Scheduler

See Issuing requests, Chapter 3,
pages 8 to 16.

HDRSCST Settings on entry to Request Analyser
(Sexrvice TAB) are irrelevant.

For settings on exit to System
Control see Deseription, above.

Data Processing Publications

tile 3900 pRIVER part chapter 5 page,

HDRSC1
NAME
HDRSC1)
TITLE

System Control

ENTRY POINT/CUE NAME

HDRSCCUE

DESCRIPTION

System Control is entered from Request Analyser when the
latter routine has completed its contribution to the
servicing of a request. The routine interprets the
parameters set up in the Service TAB by Request Analyser

and accordingly branches to the next control routine required
to service the request.

If Request Analyser has detected an error, or the current
‘{valid) request is for transfer of control to another bead,
System Control branches to Bead Scheduler and makes no
further contribution to the servicing of the request. Other-
wise, System Control branches to any one of the following
control routines, as required

Peripheral Monitor
Communications Monitor

Store Administrator

Data Processing Publications .
title 1900 DRIVER part chapter 5 page 10

On completion of execution, the selected foutine sets the

Service TAB to indicate whether successful or unsuccessful
processing has occurred, and branches back to System Control.
System Control then branches to Bead Scheduler, thus enabling
Bead Scheduler to analyse the parameters set up in the Service
TAB and pass Control to the next bead.

The actions of the routine are described below in order
of execution.

1 LOOK UP MAIN BRANCH TABLE

The routine OBEYS one of 3 instructions held in a 4-word
Main Branch Table (HDRSCMB). The apprbpriate instruction
in HDRSCMB is located and executed using an OBEY instruction
modified by the contents of word 0 of the Service TAB as set
by the entering routine. The possible settings of -this
word on entry to System Control are as follows.

1l On entry from Request Analyser
Service TAB setting

Valid request: Word 0 = 1

Invalid request: Word 0 = 3
2 On entry from any other

routine

Following successful

processing: ‘ Word 0 = 2

Following unsuccessful

processing: Word 0 = 3

The instructions in the Main Branch Table are as
follows:

Word 0 Not applicable to single threading Driver

ICL

Data Processing Publications

title 1900 DRIVER part chapter 5 page 11

Word 1 Modified OBEY on the S.econd Branch Table
' HDRSCBR2 (see below). It follows from the
Service TAB settings given above that this
instruction can only be executed following
entry from Request Analyser.

Word 2 BRN HDRBSCUE (branch to Bead Scheduler follo~
wing successful processing)

Word 3 BRN HDRBSCUE (branch to Bead Scheduler follo-
wing detection of an invalid
request or unsuccessful
processing by the entering
routine).

2 (a) BRANCH TO REQUIRED CONTROL ROUTINE

If System Control has been entered from Request Analyser
and the current request is valid, the routine accesses the
second Branch Table HDRSCBR2 in order to locate and execute
the branch instruction to the required coatrol routine.
This is done by means of the OBEY instriaction in word 1

of the Main Branch Table, which is modified by the value
of the facility code held in word 1 of the Service TAB.

The branch instructions appear in 4 consecutive words of
the Second Branch Table in the following order

wéxd 0 BRN HDRBSCUE (Branch to Bead Scheduler)

Word 1 BRN HDRPMCUE (Branch to Peripheral Monitor)

Word 2 BRN HDRCMCUE (Branch to Communications
Monitor) '

Word 3 BRN HDRSACUE (Branch to Store Administrator

I c Data Processing Publications :
L title 1900 DRIVER part chapter 5 Page 5,

System Control will thus OBEY the branch instruction

appropriate to the current facility code. For example,
if the current code specifies communications input or
output (facility code 2) the branch instruction in word 2
of the table (branch to Communications Monitor) will

be OBEYed.

(b) BRANCH TO BEAD SCHEDULER

Words 2 and 3 of the Main Branch Table both contain the
instruction for a branch to Bead Scheduler, i.e.

BRN HDRBSCUE

Peripheral Monitor, Communications Monitor and Store
Administrator all report successful servicing of a request
by setting word 0 of the service TAB to 2 before

branching to System Controel. The branch instruction

in word 2 of the Main Branch Table is therefore OBEYed

and Bead Scheduler entered to initiate processing by

the next bead.

Request Analyser and all the above control routines report
errors by setting word 0 of the service TAB to 3 before
branching to System Control. The identical branch
instruction in word 3 of the Main Branch Table is thus
OBEYed and Bead Scheduler entered to initiate error
recovery by the appropriate bead.

Note that in both of the above cases, System Control
takes no action other than branching to Bead Scheduler.
Bead Scheduler will allow further processing or initiate
error recovery according to the setting of word 0 of
the Service TAB, which is not manipulated by System
Control.

I c Data Processing Publications :
II.. i chapte '
ttle 1900 prIvER part PIEl 5 PAge 15

CONTRO%

Entgx

System Control is entered fram

1 Request Analyser

2 Peripheral Monitor

3 Communications Monitor
4 Store Administrator

Each of the above routines completes its execution by
branching to System Control on the instruction

BRN HDRSCCUE

" Bxit

The routine branches to

1 Peripheral Monitor (BRN HDRPMCUE)
2 Communications Monitro (BRN HDRCMCUE)
3 Store Administrator (BRN HDRSACUSZ)
4 Bead Scheduler (BRN HDRBSCUE)

Hote: System Control will also exit to, and be re-entered
from, non-standard user-written control routines if suitable .
modifications are made to the Second Branch Table. See

page 21 and also System Control Réquirements, Chapter 4.

l c Data Processing Publications
L tile 1990 DRIVER

part chapter 5 page 34

Locations wused

HDRSCMB

HDRSCBR2

HDRSCST
(Service TAB)

Notes

Preset within S'ystem
Control

Data Processing Publications :
titte 1900 DRIVER part chapter 5 page 15

HDRBS1
NAME
HDRBS1
TITLE

Bead Scheduler

ENTRY POINT/CUE NAME

HDRBSCUE

DESCRIPTION

Bead Scheduler is the last routine entered in the course

of servicing a request and causes control to be passed to
the next bead required to continue processing of the current
message. The routine works on the following assumptiors,
which will always be true in a single threading program:

1 All beads in the program are free to carry out

processing.
2 Only one TAB is present in the program, and the start

address of the TAB is held in the location HDRTABSTORE.

The routine uses the Bead Storage Table HDRBT2 and Bead
Branch Table HDRBT1 set up by the user in his Master routine.
Depending on the type of entry Bead Scheduler uses the
contents of word 11 or 12 of the TAB as a modifier in order
to access the appropriate item in each of these tables.

ICL

Data Processing Publications

tit 1900 DRIVER

part chapter 5 Page ..

Bead Scheduler determines the type of entry according to the
setting of word 0 of the Service TAB and acts accordingly

as follows:

Service TAB setting

1 Word 0 = 3

2 Word 0 =1

An invalid request code has been
detected; or an error has occurred
during servicing of the current
request by one of the control
routines. Bead Scheduler sets
accumulator 1 to zero and then
carries out an OBEY instruction

on the Bead Branch Table using this
value as a modifier. The first
CALL instruction in the table
(always to the Error Recovery Bead)
is hence OBEYed.

The current request is for tzansfer
of control to another bead only
(i.e. Peripheral Monitor,
Communications Monitor or Store
Administrator have not been
executed) . The only valid request
code in this case is 0000.

The request code is validated, If
it is invalid, word 8 of the TAB
(error reply word) . is set to 0001
and action is taken as in 1 above.
If it is valid, action is taken as
in 3 below.

ICL

Data Processing Publications

title

1900 DRIVER

part chapter 5 page 17

Service TAB setting

Word 0 = 2 The request issued to Driver has
been serwiced and a bead is now to
be entered to continue processing.
This involves either entry to
another bead, or re-entry to the
bead which issued the request.

The subsequent actions taken by Bead Scheduler are described
below in order of execution,

(a) Identify'required bead

Word 10 of the TAB is checked to see if it is zero
Oor non-zero.

If word 10 is zero, this indicates thatcontrel is to
be passed to another bead. The bead number of the
bead to be entered is found in word 12 of the TAB.
This number is subsequently placed in word 11 of the
TAB following validation (see (b).below).

If word 10 is not zero (i.e. contains a bead-generated
re-entry point parameter), the bead which issued

the request is to be re-entered and its bead number

is found in word 11 of the TAB.

(b) Check for valid bead number

The only vet on the identity of the bead to be entered
is that the specified bead number must be less than
the ¥alue specified by the user (in the location

HDRBDCONST) in the Master routine.

If the bead number is found to be invalid, word 8 of

Data Processing Publications
title part chapter page

1900 DRIVER 5 1R

the TAB is set to 0002 and word 0 of the service TAB
is set to 3. Bead Scheduler will then initiate
error recovery as described in 1 above. If the bead
number is valid, processing continues as described
below.

(c) Pass control to required bead

The bead number of the bead to be entered, which by
this stage is always held in word 11 of the TAB, is
used as a modifier in order to access the appropriate
entries in the bead storage and bead branch tables. 7

The contents of the appropriate entry in the bead
storage table are first examined. If this is zero,

it indicates that the required bead is residemt in
main store and that creating is therefore not required.
If the entry contains an area/unit number, this is
used as a parameter in a call to the overlay routine
$EROL and the specified overlay bead is called in:

The contents of accumulators 4 to 7 and 0 are then
restored from words 16 to 20 of the TAB and the
appropriateACALL instruction in the Bead Branch Tabie
is OBEYed, thus causing the required bead to be entered.

The OBEY instruction is followéd by 5 further
instructions to meet the requirements of COBOL beads.
The first ¢ instructions load the following addresses
into accumulator 3

1l Start address of TAB

2 Start address of Message area

3 Start address of Input/Output area (if applicabl

I Data Processing Publications .
L title 1900 DRIVER part chapter 5 page 19

Y

4 Start address of additional core area (if
applicable)

5 Start address of Lower User Common Area

6 Start address of Uffer User Common Area

These are used as parameters by the bead being entered
if it is written in COBOL.

The seventh instruction is the point of return from a

COBOL bead and is thus a branch to Request Analyser,
- that is,

BRN HDRRACUE

CONTROL
Entry
System Control branches to Bead Scheduler on the instruction

BRN HDRBSCUE

BExit

Bead Scheduler branches to the required bead by means of
the appropriate CALL instruction in the user's Bead Branch
Table HDRBT1 (see Chapter 4, page 10).

Egpations used

Notes
HDRTABSTORE Set up in the Master routine -
HDRBDCONST see Bead Scheduler requirements,
HDRBT1 Chapter 4, page 10).

~ HDRBT2

I c Data Processing Publications :
L title 1900 DRIVER part chapter 5 Page 20

Notes

HDRSCST (Service TAB)

The TAB

Data Processing Publications :
_ titte 1900 DRIVER part chapter 5 page 21

USER-WRITTEN CONTROL ROUTINES - INTRODUCTION

User written control routines must conform to the following
standards

1 All routines, with the exception of any file handling
routines, are entered from, and exit to, System Control.
File handling routines are entered from, and exit to,
Peripheral Monitor.

It follows that Peripheral Monitor, Communications
Monitor and Store Administrator must be assigned
standard cue names in order to be entered from
System Control. These are:

HDRPMCUE (Peripheral Monitor)
HDRMMCUE (Communications Monitor)
HDRSACUE (Store Administrator)

Note: If additional user-written control routines are
supplied to interface with System Control, branch
instructions to these routines must be appended, as
additional one-word entries, to the System Control
Second Branch Table (HDRSCBR2). These additional
entries must be set up in the Master routine (see
System Control requirements, Chapter 4, page 10).

2 Each routine, when entered, must access the TAB in
order to

(a) Locate and interpret the request code and
parameters currently held in the TAB

(b) Set the error reply word (word 8 of the TAB)

I Data‘ﬁF&_éés_iﬁg- Publications :
title part chapter page

1900 DRIVER 5 23m

where necessary, issuing an error code which
can be interpreted by the Error Recovery Bead.

(c) Access the Message Area (Communications Monitor)
or Input/Output area (Peripheral Monitor)

The TAB and the appropriate associated area are
accessed using the same method normally employed by
PLAN beads, i.e. using the link addresses in
HDRTABSTORE and word 22 or 23 of the TAB.

3 Before return to System Control, the service TAB
HDRSCST must normally be set to indicate successful
or unsuccessful processing, thus enabling Bead
Scheduler to initiate error recovery when it is
subsequently entered from System Control. However,
if processing has been usuccessful, control may
optionally be passed direct to the Erxor Recovery Bead,
i.e. without re-entry to System Control.

Provided that the user's routines conforth to the above
standards, he may code them as he wishes. However,

if later enhancement to multithreading is likely,

the overall design of these routines should be as
recommended in the relevent sections in the

remainder of this Chapter.

I c I Data Processing Publications .
title 1900 DRIVER part chapter 5 Page 53

PERIPHERAL MONITOR AND ASSOCIATED FILE HANDLING ROUTINES

Entry point/cue name

HDRPMCUE

Description

Peripheral Monitor may be written as a single PLAN segment
which initiates all peripheral transfers required by the
program by issuing the appropriate housekeeping macro or
executing a PERI instruction each time a peripheral request
is received from a bead. Alternatively, file handling

may be carried out by separate routines, Peripheral Monitor
being confined to controlling entry to these routines and
setting the TAB and Service TAB for return to System Control.

Functions

For each peripheral request issued by a bead, Peripheral
Monitor and its::associated file handling routines (if any)
must perform the following functions, in the order given.

1 Using parameters set up in the Request Area of the
TAB by the bead issuing the current request, either:

(a) Set up any necessary control information and
initiate the required transfer by means of the
appropriate housekeeping macro.

or

(b) Set up a control area and initiate the transfer
at PERI level.

I CI Data Processing Publications |
title 1500 DRIVER part chapter 5 Page 5,

2 If the transfer is successful, set word 8 of the TAB

to zero. Otherwise place a code indicating the type
of error in word 8 of the TAB (a list of recommended
error codes is given in Appendix 2). The error
recovery bead may, if required, be CALLed directly

at this point and further processing in respect of
the current request abandoned.

3 Set the service TAB HDRSCST as follows:
If the transfer has been successful:
Word 0 2
Word 1 0
If the transfer has been unsuccessful:

Word O 3

Word 1 0
4 Branch to System Control using the instruction

BRN HDRSCCUE

Recommended routine

SYSTEM CONSIDERATIONS

Many users of single threading systems will initially prefer
to write Peripheral Monitor as a single PLAN segment,
handling all requests for all files by issuing the
appropriate housekeeping macro in each case. In systems
where only a small number of files are to be accessed, this
approach has the advantage that the routine will be very

ICL

Data Processing Publications

title 1900 DRIVER part chapter 5 Page ,.

easy to write. However, where access is required to a
large number of files, and in particular if later enhancement
to multithreading is likely, it is recommended that file
handling is. carried out by separate routines coded at
housekeeping and/or PERI level, as appropriate.

This latter approach has the following main advantages:
1 The program retains its modular characteristics,

allowing for easy enhancement of the program's file
handling capability.

2 The file handling routines will require little if any
modification in order to operate in a multithreading
environment.

Note, however, that if the file handling routines
operate by issuing housekeeping macros, only limited
multithreading will be possible due to the
characteristics of the housekeeping packages concerned
(see Chapter 1, page 11). It is therefowxe

normally recommended that file handling by the
routines is done at PERI level.

Coding
PERIPHERAL MONITOR

If Peripheral Monitor is written as recommended in the
previous section, the routine may be limited to carrying
out three fairly simple actions, namely

1 Determine the file required and branch to the appropriate
file handling routine.

2 On return from the file handling routine, examine the
routine's reply word and set word 8 of the TAB and

I c Data Processing Publications :
L titkt 1900 DRIVER part chapter 5 page 26

word 0 of the service TAB to indicate successful or
unsuccessful processing.

3 Branch to the required file handling routine.

The user is recommended to set up a table of branch
instructions to the file handling routines, either within
Peripheral Monitor or within the Master routine.
Peripheral Monitor may then be coded so that, for each
request, it locates and executes the appropriate branch
instruction in the table by means of a modified OBEY
instruction.

The value used as a modifier will be obtained or calculated
from parameters set up in the Request Area of the TAB by

the bead issuing the current request. The format of the
TAB by the bead issuing the current request. The format of
these parameters, and their location in the Request Area, is
largely decided by the user (see Peripheral requests,
Chapter 3, page 1l1). However, if one file handling routine
is used per direct access file or magnetic tape device/file,
the user is recommended to allocate a file reference number
to each file (and hence, implicitly, to each file handling
routine), the files being numbered in ascending order,
starting at 0. If the branch instructions to the file
handling routines are stored in the appropriate sequence,

a bead issuing a peripheral request will be able to specify
the file required and provide Peripheral Monitor with the
correct modifier by simply inserting the file reference
number of the file to be accessed into a suitable location
within the request area of the TAB.

I cl Data Processing Publications
i cha
title 1900 DRIVER part pter 5 page 27

Example

#LOWER COMMON /FHBRANCH
BEN FHRO [accEss FILE 0
BRN FHR1 RCCESS FILE 1
BRN FHR2 [ACCESS FILE 2
BRN FHR3 [ACCESS FILE 3
BRN ' FHRn EXCCESS.FILE n

Check for input/output error

On re-entry to Peripheral Monitor from a file handling
routine, Peripheral Monitor must chetk the error reply
indicator HDRFHRERI. The contents of HDRFHRER1 must

be transferred to word 8 of the TAB and the Service TAB

HDRSCST then set as follows:

TAB setting Service TAB setting
Word 8 = 0000 Word 0 =

Word 1 =
Word 8 = user's error code Word 0 = 3

(i.e. non-zero) Word 1

I\
o

Data Processing Publications
title 1900 DRIVER part chapter 5 page 28

Branch to System Control

Peripheral Monitor branches to System Control on the
instruction:

BRN HDRSCCUE

FILE HANDLING ROUTINES

A file handling routine is normally written on the
following assumptions:

1 Peripheral transfers are to be initiated at PERI
level.
2 For each transfer, all the information required to set

up the control area is to be obtained from parameters
placed in the Request area of the TAB by the bead
issuing the current request.

The routine should perform the following functions, in the
order given.

1 Set up a control area, using the relevant parameters
in the TAB.

2 Issue a PERI instruction.

3 Set the error reply indicator according to whether the
transfer has been successful or unsuccessful. This is
done by placing the appropriate parameter in the
location HDRFHRERI,

4 Branch to the re-entry point in Peripheral Monitor.

The only mandatory standard to be observed is that HDRFHREF ~

l c Data Processing Publications
L title 1900 DRIVER part chapter- 5 Page 59

must be set to zero following a successful transfer.

A list of recommended error codes is given in Appendix 2,

COMMUNICATIONS MONITOR

Entry point/cue name

HDRCMCUE

" Description -

Communications Monitor is normally written so tha® it
interfaces with one or more of the following standard 1900
housekeeping packages

7900 Communications housekeeping
Multiplexor housekeeping
AVDU housekeeping mark 2

The routine controlsd the operation of all communications
devices used by the program, initiates input and output

of messages, and attempts to recover from any errors
occurring during transmission which cannot be automatically
dealt with by the housekeeping, such as line failure.

It also deallocates the TAB from a message which has been
fully processed and allocates it to the next input message.

A bead issuing a communications request of the recommerided
format (see Communications requests, Chapter 3, page 13)

will set up the parameters required foxr entry to housekeeping
within the Request area of the TAB. Communications Monitor
must be written so that it will place these parameters in

I CI Data Processing Publications
title 1900 DRIVER part chapter 5 Page ,,

the user's housekeeping control area HMPUC and then execute

the appropriate macro or sequence of macros. The macros

required for each housekeeping function, and the required

settings of HMPUC in each case, can be found by consulting
the appropriate Chapter of the manual Data Communications

and Interrogation.

Functions

For each communications request issued by a bead, the
routine must execute the following functions, not necessar:
in the order given.

1 Set HMPUC for entry to housekeeping

2 Initiate output and/or input of a message by means of
the appropriate macro(s).

3 If processing of a message is complete, deallocate
the TAB from the current (output) message and allocate
it to the next input message.

4 . Attempt error recovery where necessary.

5 Set word 8 of the TAB and words 0 and 1 of the
service TAB to indicate successful or unsuccessful
processing-

6 Branch to System Control,

A number of additonal functions may be requested using
standard communications request codes and parameters (see
Appendix 1). It is left to the user to decide whether
his routine is to be capable of interpreting and acting on
these requests.

I CI Data Processing Publications
| title 1900 DRIVER part chapter 5 bPage 35

SET HMPUC

The parameters required for the next entry to housekeeping
are obtained from the TAB and stored in the appropriate
locations within HMPUC. The location within the message
area at which the transfer will begin is calculated by
adding the displacement value in word 3 of the TAB to

the message area start address in word 22. Other
relevant parameters are copied across directly.

OUTPUT AND INPUT

In a single threading environment, a bead is usually limited
to issuing one of the following two main types of request

1l Ouput only (reply message generated in the course
of processing the current input message),

2 Output and deallocation of the TAB (processing of the
current input message is complete).

In the first case Communications Monitor must issue a
suitable housekeeping macro, typically MPPUT, and set the
TAB and Service TAB before branching back to System Control.

Where deallocation of the TAB is .specified by the bead
(i.e. bit 9 of the current request code is set to 1l) this
implies that processing of the current message is complete,
and that the program is therefore ready to accept another
input message.

In this case, Communications Monitor must output the final
reply message, if there is one, and either obtain the next
input message from housekeeping (MPGET macro) or if necessary
suspend until a message is available (MPSUS macro). Once
a message has been input, the TAB must be deallocated from

ICL

Data Processing Publications

title 1900 DRIVER part chapter 5 page 32

the previous message and allocated to the new one. This
is done by loading the input message into the TAB message
area and setting word 12 of the TAB to the bead number (1)
of the Initial bead.

Device tables

If the routine is to be capable of outputting messages to
more than one terminal in the course of servicing an
individual request, the user is recommended to set up a
suitable table of device numbers either within Communicatic
Monitor or within the Master routine. Provided that the
beads issue communications réquests of the recommended
format, the parameters required by communications Monitor
to progress down this list are found in words 6 and 7 of
the TAB.

ERRRR RECOVERY

It is recommended that errors occuxring during transmission
are as far as possible dealt with within Communications
Monitor. For example, re-start procedures should
preferably be included in this routine.

In the event of an error occurring which cannot be dealt
with, control should be passed either to the Master routine
(if a suitable re-entry point has been provided) or to the
Error Recovery bead. In the latter case, word 8 of the
TAB must be set to the appropriate erwor code: control may
then be passed directly to the Error Recovery bead or else
the service TAB set and control transformed in the
conventional manner via System Control and Bead Scheduler.

I c Data Processing Publications B
L title 1900 DRIVER part chapter 5 bage 33

TAB AND SERVICE TAB SETTINGS

Word 8 of the TAB must be set as indicated below before
exit, The service TAB must also be set as shown if
System Control is to be re-entered.

TAB setting Service TAB setting

Following successful Woxrd 8 = 0000 Word 0 = 2
processing:

Word 1 = 0
Following unsuccessful Word 8 = user Word 0 = 3
processing: error code

Word 1 = 0
Following TAB Word 12 = -

deallocation/allocation: Bead number
of Initial
bead = 1

EXIT

Exit from Communications Monitor is normally by means of
a branch to System Control on the instruction

BRN HDRSCCUE
If the routine is written so that it can pass control
directly to the Error Recovery bead, the required instruction
following detection of an error condition is

CALL 1 beadname

where beadname is the name of the Error Recovery bead.

' Data Processing Publications
titte 1900 DRIVER part chapter 5 page 34

)

STORE ADMINISTRATOR

Entry point/cue name

HDRSACUE

Description

The beads in a single threading program may be written so
that they are aapable of obtaining additonal store if the
program is subsequently changed to multithreading with
dynamic store allocation facilities.

If any such beads are present in the user's single threacding
program, a dummy Store Administrator must be provided to
simulate servicing of store requests issued by the beads.

The only actions required of the routine are as follows:

1 Set word 8 of the TAB to zero (0000)

2 Set the Service TAB HDRSCST as follows:
Word 0 2
Word 1 0

3 Branch to System Control on the instruction

BRN HDRSCCUE

ICL

Data Processing Publications

tite 1900 Driver part chapter ¢ page 1

Chapter 6

The multithreading Driver

INTRODUCTION

A complete multithreading Driver may be assembled using the
standard multithreading routines described in this Chapter

in conjunction with User-written file handling routines.

Most of the standard routines are not suitable for replacement
by user written routines and are therefore not described in
detail in this manual. This chapter is mainly concerned
with the other methods available to the user in adapting
Driver to meet the specific requirements of his program.

These methods can be summarised as follows:

1l Choosing from alternative versions of the same standard
routine. The choice of routines for inclusion in the
user's Driver is governed by the following considerations.

(a) Whether overlaying of beads is required (alter-
native versions of Request Analyser and Bead
Scheduler)

(b) The type of communications housekeeping in use

(alternative versions of the ¢nterface and
queue-selector routines within Communications
Monitor)

(c) Whether first-in first-out or bead priority
queueing of TABs is required within Bead Scheduler
(alternative versions of Bead Scheduler).

2 Omitting standard routines not required by the program.
Use of the following routines is optional

L

Data Processing Publications

title 1900 Driver part chapter 6 page 2

(a) Store Administrator is only required by programs
supporting a dynamic store system

(b) Overlay Control and %EROL are only required by
programs supporting an overlay system.

Adding user coding at Standard User entry points

A number of one-word common blocks known as User: entry
points are set by the user when writing the Master
routine. By placing suitable CALL instructions in
these locations, the user can cause his own subroutines
to be entered at various points in the execution of
Communications Monitor, Peripheral Monitor and Bead
Scheduler. The precise nature of these subroutines

is in all cases entirely at the discretion of the

user: however, the entry points are provided to allow
implementation of the following non-standard facilities.

(a) Message priority queueing of TABs

All TAB queues maintained by the standard Driver
routines are first-in first-out: in nearly all
cases TABs are placed on queues by means of the
standard queueing subroutine HDRATQ (Add to

Tail of Queue).

Two words of each TAB (words 25 and 26) are
available so that the Initial bead can assign
processing priorities to messages on input.
The CALLs to HDRATQ at various points within
Driver appear at user entry points and may
hence in each case be replaced by a CALL to a
user wWritten subroutine for analysing these
parameters and accordingly determining the
position at which each TAB is to be inserted
into its required queue. The act of actually

Data Processing Publications
| titte 1900 Driver part chapter ¢ page 3

queueing each TAB may in turn be initiated
from within the users subroutine by calling
the appropriate queueing subroutine: this
may be either HDRATQ, the standard queueing
subroutine HDRAHQ (Add to Head of Queue) or a
user written subroutine for inserting the TAB
in an intermediate position within the queue.
Full details are given on page 3D .

(b) Manipulating housekeeping control and reply
information within Communications Monitor

Three user entry points within Communications
Monitor enable user subroutines to be called
immediately after input and before and after
output. ' ‘

4 Setting Driver constants to the appropriate values.

By specifying suitable constants in standard locations
when writing the Master routine, the user can:

(a) Allow for operator intervention (for example
closedown or major error recovery procedures).

(b) Specify the frequency at which full scans are
to occur,
(c) Control the operation of the communications

housekeeping by providing the usual user-
variable parameters.

Data Proce%é_iﬁé Publications

titte 1900 priver part chapter g page 4

THE STANDARD ROUTINES

Driver structure

System Control, Store Administrator and the alternative
versions of Request Analyser and Bead Scheduler each
consist of a single module, as in the single threading
Driver. However, both Communications Monitor and
Peripheral Monitor consist of a hierarchy of modules:

the modules within each hierarchy interact to perform the
complex scheduling and re-cycling functions required of
these routines.

Each entry to Driver on a request from a bead involves

the execution of a suitable sequence of the main modules.
These consist of the modules provided as Request Analyser,
System Control, Store Administrator and Bead Scheduler,
together with the Communications Monitor Entry/Ex%t routine
and the Peripheral Monitor Entry routine. The latter

two routines each schedule and initiate the servicing of
requests via the appropriate sequence of dependent modules
in their repective hierarchis.

Functions that may be or are required at many different
points in the execution of Driver are performed by common
subroutines. Each main module and certain dependent
modules are allowed entry to a suitable selection of these
subroutines.

The table below illustrates the hierarchical relationship
between standard routines currently available.

Driver routine

Main module

Dependent modules

Common subroutines

Request Analyser Request Analyser 2 None Queueing subroutine 1
. {non-overlay
version, Enter Exception Mode
or
Request Analyser 3 Overlay Control
(overlay version) (version 3 only)
System Control System Control 2 None None

Peripheral Monitor

P.M Entry routine

P.M Queue-selector
routine

P.M Cycle routine

File handling routines
(user-written)

P.M Continuation
routine

Exit routine

Queueing subroutines
1,2, and 3

Deallocate TAB

Enter Exception Mode

Return to Normal
Mode

i

1Jed

¢ ebed 9 iardeyo

19l

I9ATIA 0061

suoieoliqnd Buissasoid eyeq

Driver routine

Main module

Dependent modules

Common subroutines

Communications

Monitor

C.M Entry/Exit

routine

C.M Queue-selector 1
(7900 housekeeping)
or

C.M Queue-selector 2
(Multiplexor house-
keeping)

7900 or multiplexor
interface routine,
comprising the
following:

Entry routine

Test for exceptions

routine

Manipulate configur-

ation routine

Close routine

As Peripheral Monitor

a

ISATIA 006T

1ed

9 obed 9 iaxdeyo

Il

suonedlqnd Buissadsoly eieq

Driver routine

Main module .

Dependent modules

Common. subroutines

1/0 cycle routine

PUT routine

GET routine

Final loop and
exit routine

Store Administrator

Store Administralor

None

Queueing subroutines
1,2, and 3

Bead Scheduler 2

Bead Scheduler 2
(non-overlay,
first-in first-
out queueing)

or

Bead Scheduler 3
(overlay, first-
in first-out
queueing)

or

General Suspension
Subroutine 1

(direct response mode)

or
General Suspension
Subroutine 2
(normal suspension
mode)

Queueing subroutines
1,2, and 3.

Enter Exception Mode
Overlay Control

(versions 3 and 5
only).

-~ 19

ISATIA 006T

11ed

L abed 9 saideyo

suoneolqnd Buissasold ejeq

Driver routine

Main module

Dependent modules

Common subroutines

Bead Scheduler 4
(non-overlay,
bead priority
queueing)

or

Bead Scheduler 5
(overlay,

bead priority
gueueing)

apn

I9ATIA 006T

abed 9 isydeyo Jed

8

10l

suoneagqnd Buissadtoid eieq

1
Data Processinp Publications

ICL titte 1900 PRIVER part chapter ¢ page 9
Outline of|operation
GENERAL

Normal mod¢ and Exception mode.

Driver rung

servicing ¢f request.

a standard

in normal mode so long as no errors occur in the
However, when such an error occurs,
common subroutine, known as the Enter Exception

mode routije, is entered and initiates a phased shutdown of

all messag
occurred.

program is
operation

threads other than the one in which the error
Once this closedown has been completed, the
in exception mode. It continues single-threading

ntil the error is cleared, whereupon the Return

to Normal
brought ba

Full scans

As in the s
Driver is ai
facility su
transfer of
However, ea
Driver have
entry will

just these

Full scans
servicing a
the same fa
dealt with
individual

ode subroutine is called and the program is
full multithreading operation.

Engle threading Driver, entry to the Multithreading
ways as a result of a specific request for a

ch as output to a particular peripheral device,
control to a particular bead, and so forth.

£th time that a user-specified number of ent;ies to
been made, a full scan will occur. In this case,

be made to all the main Driver routines and not

s$pecified in the current request.

re necessary because each Driver routine, whilst
request, may accumulate further requests for
ility. Full scans enable such requests to be
ithout waiting for a specific request for the
outine.

L

Data Processing Publications

title 1900 DRIVER part chapter ¢ page 10

REQUEST ANALYSER

Two version of this routine are available to multithreading
users: one for non-overlaid programs (Request Analyser 2)

and one for overlaid programs (Request Analyser 3).

As in the single threading Request Analyser, both versions

of the multithreading Request Analyser validate each request
passed to Driver, store the contents of accumulators 0 and

4 to 7 in the TAB concerned, and set the Service TAB for entry
to System Control. They also perform the following three
functions.

1 When a bead is found to have completed its execution
(that is, word 10 of the relevant TAB is set zero)
Request Analyser updates the relevant free/busy
indicator in the table HPRDT3. This indicator is
subsequently examined by Bead Scheduler, and informs the
routine that control may now be passed to the bead
in respect of another TAB.

2 Request Analyser also initiates full scans within
Driver at user-specified intervals by reducing the value
of word 0 of the Driver count HDRDCT by 1 on each entry
and setting the service TAB for a full scan whenever
the count reaches zero. The count is then reset to

its original value as specified in word 1l of HDRDT.

3 Before exit to System Control, the TAB is placed on the
relevant queue awaiting servicing of its request. The
subsequent progressof TAB through the various Driver
queues. is described in the section The queueing system,
page 2| .

Request Analysor 3 has the additional function of initing
overlay of beads whenever possible. This function is described

in the section The overlay system, page 39 .

ICL

Data Processirig Publications

titte 3900 |prRIVER part chapter 6 Page ;;

SYSTEM COJTROL

The only difference between the single and multithreading
versions System Control is that the latter uses an
additional} branch table(HDRSCBR1) instead of the second
branch tablle (HDRSCBR2) during a fulh scan .

By OBEYing|each of the CALL instructions in HDRSCBR1 in
sequence, $ystem Control enters each of the main modules in
turn in a $equence decided by the user (see Chapter 4, page

'PERIPHERAL |MONITOR

An outline jtiowchart of Peripheral Monitor is shown in figure
The functidns of the standard routines within Peripheral
Monitor are described below: the common subroutines and user-
written fi handling routines are discussed seperatély in
the appropriate sections of this chapter.

Entry routine

Peripheral Monitor is always entered via the P.M. Entry
routine. This routine validates each request, tests the
condition of the program (normal mode or exception mode),

and the type of entry (full scan, specific peripheral request,
or both). It then passes control to the appropriate
dependent routine or common subroutine, if necessary first
calling the queue-selector subroutine to queue the TAB
containing the incoming request and provide parameters for
entry to the appropriate file handling routine.

chapter 6

page 12

Entry
routine

Queue
selector
routine

Cycle
routine

[
[
)]
1!
[
'

User's
file handling
routines

L - -

¥ User's FHR
§ exit routine

- -

N S

Continuation
routine

Enter
exception
mode routine

Queueing
subroutines

System
control

|

-

Deallocate

Exit
routine

TAB routine

Return to
normal mode
routine

System

control

Figure 1 -Pe"riplize'ml Monitor - outline flowchart

ICL

Data Processing Publications

tittt 1900 DRIVER part chapter ¢ page 13

Cycle routine

This routine is only entered in the course of a full scan.

It causes control to be passed to each file handling routine
not currently engaged in a peripheral transfer.

Re-entry after execution of each file handling routine is

via the Continuation routine: after initiating as many
transfers as possible the cycle routine passes control to the
Exit routine.

Continuation routine

This routine determines the subsequent action to be taken
whenever a file handling routine completes its execution.

This includes removing TABS, whose requests have been serviced
from their queues (direct entry to the standard queueing
subroutines) moving TABs from one queue to another (entry

to Queue-selector subroutine) or making entry in the appropriate
cases to one of the standard common subroutines.

Exit routine

This routine sets the Service TAB and exits to System Control.

COMMUNICATIONS MONITOR

An outline flowchart of Communications Monitor incorporating
the 7900 interface routine is shown in figure 2 . The
function of the standard routines are as follows.

chapter 6

page 14

System

control

CM entry
and exit routine

CM queue-selector
routine

¢

Queueing

° subroutines

Enter excepticn
mode routine

A J

System

control

7800 interface
entry routine

Test for
exceptions
routine

O

routine

Deallocate TAB
subroutine

QL
o

Return to
normal mode

subroutine

System
control

1/0 cyc'e Closa
routine routine
2 ! \
Put Final loop Get
routine and exit routine
routine

OO

Figure 2 Communications Monitor - outline flowchart

Data Processing Publications

titte 1900 DRIVER part chapter 6 page 15

C.M. Entry/Exit routine

This routine ch cks incoming requests in the same manner as

the P.M. entry routine. However, provided that the _request

is valid, it calls the queue-selector sub routine to queue

the incoming requests, and then passes control to the
appropriate interface routine. When processing by the interface
routine is complete, the Entry/Exit routine also sets the
service TAB and passes control back to System Control.

7900 interface routine

The functions of the various modules within this routine is
described below. The multiplier version is identical except
that it maintains only one queue each for output requests and
requests referred because of overload.

1 The entry routine checks whether the program is in
exception mode and if so passes control to the routine
which will handle the current request. If closedown of
the communications network is required, it passes control
the the Close routine. If requests for communications
output have been previously rejected because of overload,
the TABs concerned are restored to the appropriate queues
(see Communications Monitor queues, page 2%) and control
passéd to the Test for Exception routine.

2 The Test for Exception routine checks whether there are
any TABs available for processing of error conditions.
If this is not the case, it passes control the input/
output cycle roﬁtine. It also tests for operator inter-
vention by performing a logical AND on the contents of
word 30 and the users constant HDRCMOl: if an operator
message has been recived, a TAB is allocated to that
message and control passed to the Enter Exception Mode
common subroutine. Otherwise, the routine proceeds to

Data Processing Publications
| L title; 900 DRIVER part chapter 6 page 16

test the state of the communications network using the
indicator HMPIF and macro MPTES. If an error condition

is reported, it will set up a TAB containing the
appropriate error code and pass control to the Enter
Exception Mode subroutine.

3 The Manipulate routine services requests to open, or
change the state, the teleprocessors in use. It also
services requests for deallocation of TABs and return
to normal mode by passing control to the appropriate
common subroutine. In appropriate circumstances, it
enters the Close routine to initiate closedown of the
communications network.

4 The Close routine sets indicators to inhibit input and
output, and then closes down the Communications network.

5 If output requests are waiting to be serviced, and the
buffers are free, the Input/Output Cycle routine calls
the PUT routine to initiate output. Subsequently, if a
message is found to be awaiting input and a free TAB is
available for allocation, the GET routine is called to
obtain input.

6 The PUT routine initiates output by means of an MPPUT
macro. According to the reply information received, the
TAB concerned is then either:

(a) Queued to await servicing by Bead Scheduler, or,
if deallocation of the TAB is required, passed to
the Deallocate TAB Common Subroutine.

(b) If overload has occurred, removed to another queue
awaiting the next entry to Communications Monitor.

If the reply to the MPPUT macro indicates that an error
has occurred, the Enter Exception Mode common subroutin

Data Processing Publications
tite 1900 DRIVER part chapter 6 page 17

is entered.

7 The GET routine initiates input by means of an MPGET macro.
If an error occurs in input, the Enter Exception Mode
common subroutine is entered. Otherwise a TAB is allocated
to the incoming message and queued awaiting servicing
by Bead Scheduler.

8 The final loop and exit routine checks that as many
requests as possible have been serviced on the current
entry. It then passes control back to the final loop
and exit routine.

STORE ADMINISTRATOR

Store Administrator allocates cells of store from the users
common pool to TABs. A cell is allocated as the input/output
area of a TAB by Store Administrator placing the start address
of the cell in word 23 of that TAB. Siﬁilarly, a cell allocated
as an Additional Core area has its start address stored in word
24 of the TAB requiring it. The methods employed by Store
Administrator in allocating cells of various sizes to TABs are
described in the section Store Administrator queues, page 2S5 .

BEAD SCHEDULER

Alternative versions of Bead Scheduler are available offering

a choice of TAB gueueing systems (Bead priority or first-in
first-out) and allowing for implementation of bead overlay if
required. These features are described in the section The
queueing system and The overlay system elsewhere in this
chapter. All versions are otherwise basically similar in their
operation to the single-threading Bead Scheduler.

L

Data Processing Publications

titte 1900 DRIVER part chapter ¢ page 1g

SUBROUTINES
Queueing subroutines

Three standard queueing subroutines are provided and are
required in both standard and non-standard queueing systems.
They are:

1 HDRATQ (Add to tail of queue)

2 HDRRFQ (Remove from head of or intermediate position
in queue)

3 HDRAHQ (Add to head of queue)

The subroutines are used to perform queueing of TABs and

store cells.

Deallocate TAB

This subroutine is entered at the end of processing a message
and clears the TAB concerned of all parameters relating to
the completed transaction. In a system employing dynamic
store allocation, it also checks that store cells have been
returned to the common pool and performs this function if
required.

Enter Exception Mode

This subroutine will be entered when any Exception condition
is detected by Driver and will place the system in single
thread working, and set parameters that will cause System
Control to enter Bead Scheduler Bead Scheduler in turn will

enter the user's Error Reéovery Bead. If the system is alread
in Exception

Data Processing Publications

title 1900 DRIVER part chapter ¢ page 39

Mode a user. entry point will be OBEYED,.If return is made
from this point the Program will be halted.

Return to Normal Mode

This routine ié entered to restore the multi-threading
operation of the system when an exception condition has been
cleared. It may be entered in response to a direct request
from a bead (typically the Error Recovery bead).

General Suspension subroutine

This routine will be entered from Bead Scheduler whenever the
latter routine is unable to activiate a bead. It will
perform the following functions.

1 If a full Driver Scan has not just been implemented
it will cause one to take place in order to ensure that
there are no outstanding requests awaiting servicing
by any of the Driver routines.

2 If a full Driver Scan has just been implemented it will
either suspend Member 0, or halt the program. The
latter course will be followed if both of the following
conditions are true.

(a) Indicators have been set showing that all
communications Interface routines have been

finally closed.

(b) All tabs are on the free TAB queue (see page)

ICL

Data Processing Publications

title 1900 DRIVER part chapter ¢ page 20

Two versions of the routine are available, incorporating

two distinct methods of suspending Member 0, Version 1 is

for systems in which either the combination of Trusted

facility and Real Time Clock makes possible a simple suspension
on a SUSIN instruction or all peripheral are in Direct

Response mode, Version 2 is for systems in which neither of
these circumstances occur.

' Data Processing Publications
L title 1900 Driver part chapter ¢ page 21

THE QUEUEING SYSTEM

Communications Monitor, Peripheral Monitor, Store Administrater
and Bead Scheduler all maintain queues of TABs. When a

bead issues a request for a particular Driver facility,

the routine to which the request is passed does not usually
service it immediately, but places the TAB concerned on a

queue of TABs continuing previously issued requests for the
same facility. Under the Standard Driver queueing system,
queued requests are usually serviced in order of arrival:

this is hence known as a first-in first out system.

The organisation of these queues, and the role of each in

the operation of Driver, is described below. The information
given is principally for the benefit of users who may wish

to modify the standard system first-in first-out system in
order to implement their own system of processing by message
priority.

Queue organisation

All TAB queues are organised in the manner shown in figure
3. . The user specifies a 2-word queue management area
(QMA) for each queue when writing the Master routine.

On the initial entry to Driver, all TABs other than the one
used for entry will be held on the Communications Monitor
free TAB queue awaiting allocation to input messages.
Accordingly, word 0 of the user's QMA for this queue is set
in the Master routine to the start address of the first TAB
to be allocated to a message: this TAB is said to be at
the head of the queue. Similarly, word 1 of the QMA is
set to the start address of the TAB that will appear at the
tail of the queue on entry to Driver. The actual queue

is formed by presetting word 21 of each TAB to the start
address of the next TAB in the queue. Word 21 of the TAB

chapter 6

page 213

amA

\ ‘First’ TAB 2

7
! 21
v 21
< 21

‘Last’ TAB

L o

Figure 3 Organization of a TAB queue

Data Processing Publications
i titte 1900 Driver part chapter 6 page 22

at the tail of the queue is set zero.

All other TAB queues will be empty in the initial entry to
Driver, and their QMAs are accordingly set zero in the
Master routine.TABs begin to accumulate on these queues

as soon as the beads begin issuing requests. Driver forms
Queues and moves TABs from one queue to another by updating
the relevant TAB addresses in the QMAs and word 21 of each
queued TAB. The manner in which this is done is described
below.

Queue manipulation

ADDING A TAB TO A QUEUE

Except when carrying out certain specialised functions not
accessible to the user, all Driver routines using the stan-
dard first-in first-out system will gqueue TABs passed to
them for servicing by placing each TAB at the tail of the
appropriate queue.

A TAB is placed at the tail of a queue by passing its start
address and the start address of the appropriate QMA as
parameters in a call to the subroutine HDRATQ. The procedure
is then as follows:

1 If the queue is currently empty, (words 0 and 1 of
QMA = 0) the incoming TAB will form both the head and
tail of the queue. Accordingly, words 0 and 1 of the
QMA are both set to the start address of the TAB.
Word 21 of the TAB is set zero.

2 If one or more TABs are already present on the queue,
the TAB at the tail of the queue is located by means
of the address in word 1 of the QMA. Word 21 of this

Data Processing Publications
title 1900 Driver part chapter & page »a

TAB is set to the start address of the incoming TAB.

Word 21 of the incoming TAB is set zero and its start
address stored in word 1 of the QMA.

The user wishing to implement a message priority queuing
system can substitute calls to his own subroutines for calls
to HDRATQ at the various user entry points within Driver
described in Chapter 4. A recommended approach to writing
the requisite subroutines is given in the section Message

priority queueing, page 3T .

REMOVING A TAB FROM A QUEUE

Under all queueing systems, the TAB currently appearing at

the head of a given queue will have its request servieed
before any other TABs in the same queue. The TAB remains

at the head of the queue whilst its request is serviced.

The Driver routine then calls the standard queueing subroutine
HDRRFQ: this subroutine removes the TAB from the head of the
queue by the following procedure.

1 The start of the next TAB in the queue is found in
word 21 of the outgoing TAB and copied into word 0
of the QMA. If there are no further TABs in the queue,
words 0 and 1 of the QMA are set zero.

2 Word 21 of the outgoing TAB is set zero.
The TAB has now been removed from its queue, and HDRATQ may

be called if necessary to place it at the tail of another
Driver queue.

ICL

Data Processing Publications

titlt 1900 priver part chapter page 24

0peratiod of the Standard queueing system

PERIPHERAL MONITOR QUEUES

Peripheral Monitor usually maintains a seperate device queue
for each file handling routine. Once a TAB has had a
request serviced by a file handling routine, it is placed
on one of the following queues.

1l If a request has been made in respect of several per-
ipheral devices, and not all of these have yet been
accessed, the TAB is placed 6n the next appropriate
device queue

2 If the TAB is to be deallocated, and its request has
otherwise been fully serviced, the Deallocate TAB
subroutine is called to clear the TAB of all variable
parameters relating to the serviced request. The
TAB is then placed on the free TAB gueue awaiting
servicing (that is, allocation to an input message)
by Communications Monitor.

3 If the TAB is to be accessed by another bead, it is
placed on Bead Scheduler's external queue awaiting
further queueing and eventual servicing by Bead
Scheduler.

COMMUNICATIONS MONITOR QUEUES

All TABs containing requests for communications output are
placed on an output queue awaiting servicing by the inter-
face routine in use. Where a multiplexor interface routine
is in use within Communications Monitor, a single output
queue is maintained. The 7900 interface routine, however,
maintains a seperate output queue for each teleprocessor.

Data Processing Publications
tite 1200 DRIVER part chapter & page 25

In both cases, any TABs whose requests involve altering the
configuration or handling of a communications device (for
example, 'Change priority' or closedown requests) are placed

on a separate manipulate queue to cwaik. servicing.

Each output queue has a corresponding wait queue. If the
requests held in a particular output queue cannot be serviced
without overloading the communications processor/multiplexor
stack, the TABs are placed in their existing order in the
corresponding wait queue . This feature is necessary because
Communications Monitor may cycle through its queues several times
in a single pass and may hence cause overload if the TABs ar
not removed from their output queue at the appropriate time.
The TABs will be restored to their output queue on the next
entry to Communications Monitor, being placed in fron of any
TABs that have accumulated on the queue in the meantime.

Deallocation of TABs, when required, is carried out by use
of the Deallocate TAB subroutine, as in Peripheral Monitor.
The resulting free TAB queue is located whenever an input
message is received, the TAB at the head of the queue being
allocated to the incoming message. This TAB is then placed
on the Bead Scheduler external queue to await queuing and
servicing by Bead Scheduler.

All other TABs whose communications requests have been fully
serviced are also placed on the Bead Scheduler external qugue.
STORE ADMINISTRATOR QUEUES

Store Administrator maintains two queues of TABs per block of

store cells set up by the user. One queue, known as the
first bloek queue, holds TABs which have already had one

ICL

Data Processing Publications

titte 1900 Driver part chapter (. page 26

store cell allocated to them and are now awaiting allocation
of a second cell. The other queue, known as the second
block queue, holds TABs whose requests for store have not
yet been serviced at all.

Each time Store Administrator allocates store cells from

a particular block, it will give priority to the TABs held
in the first block queue for that block. This ensures that
the servicing of partially satisfied store requests is
completed as quickly as possible. TABs whose requests for
store have been fully serviced are removed to the Bead
Scheduler external queue.

One as many TABs as possible in the first TAB queue have
had store allocated to them, Store Administrator attempts
to service the requests of the TABs in the second block
queue. Once .a TAB in this queue has had store allocated
to it, either of the following actions will occur.

1l If the TAB required only one store cell, itsservicing
is complete and it is placed on the Bead Scheduler
external queue.

2 If the TAB requires a further store cell, it is placed
on the first block queue for the block containing store
cells of the apprépriate size. For example, suppose
a TAB has just been allocated a 128 word Input/Output
area and now requires a 512 word Additional Core area.
In this case, Store Administrator will remove the TAB
from the second block queue for the block of 128 word
cells, and will place it on the first block queue for
the block of 512 word cells.

It may be noticed in passing that Store Administrator handles
each block of store cells in the common pool as a first-in
first-out queue. The blocks are set up in the Master routine
as chained queues of cells: whenever Store Administrator

B "N B Data Processing Publications
titte 1900 Driver part chapter & page 27

allocates a call to a TAB, it does so by removing a cell of
the required size from the head of the appropriate queue

and placing the Start address of the cell in word 23 or

24 of the TAB, as required. Similarly, on deallocation, each
cell is returned to the tail of the appropriate queue.

Queue manipulation is performed throughout by the standard
queueing subroutines, using QMAs of standard format.

ICL

Data Processing Publications

title 1900 DRIVER part chapter &6 page 28

THE BEAD SCHEDULER EXTERNAL QUEUE
The servicing of a bead's request can terminate in two ways:

1 By deallocation of the TAB concerned following servicing
by Peripheral Monitor or Communications Monitor. This
only occurs following the find entry to Driver at the
end of a message thread.

2 By entry to a bead: either by entry to the next bead in
the thread, or re-entry to the bead issuing the request,
or,following detection of an error, entry to the Erroxr

Recovery bead.

Thus, in the majority of cases, a TAB whose peripheral,
communications or store request has been serviced by the
appropriate routine requires further servicing by Bead
Scheduler. When, in such cases, Peripheral Monitor,
Communications Monitor or Store Administrator completes the
servicing of a request, it places the TAB concerned on the
Bead Scheduler's external queue. If Driver is entered as
a result of a specific request for a bead, a preliminary entry
is made to Bead Scheduler in order to place the relevant
TAB on the same queue. The external gqueue hence contains
all TABs which have been passed to Bead Scheduler for
servicing since the last complete execution of that routine.

BEAD SCHEDULER INTERNAL QUEUES

Each time Bead Scheduler is entered to pass control to a bead
(that is, during a full scan or following the preliminary
entry described above) it transfers the TAB currently held on
the external gueue to one or more internal gqueues, depending

on the type of queueing systems in use.

The alternative queueing systems available within Bead Scheduler

Data Processing Publications
I tittt 1900 DRIVER part chapter & page 29

are described below. Note that all versions of the routine
service requests for the Error Recovery bead immediately.

First-in first-out queueing (Bead Scheduler versions 2 and 4)

A single internal queue is maintained by these versions. On
each entry to Bead Scheduler, the TABs are transferred, in
the order that they were queued, to the tail of the internal
dqueue.

Starting with the TAB at the head of the internal queue,

Bead Scheduler determines the bead requirements of each TAB
in turn. As soon as a TAB is found which requires either
re-entry to a bead or entry to a bead not currently in use,
the TAB is removed from the internal queue and control passed
to the requested bead. The remaining TABs remain on the
internal queue awaiting the next entry to Begd Scheduler.

Bead priority queueing (Bead Scheduler versions 3 and 5)

In a bead priority system, a separate first-in internal
queue is maintained for each bead in the program. On each
entry to Bead Scheduler, each TAB on the external queue '
is individually transferred to the appropriate queue. The
position in which a TAB is placed on an internal queue depends
on the setting of word 10 of that TAB. If word 10 is non-
zero (that is, re-entry to a bead is required), the TAB is
placed at the head of the queue. If word 10 is zero and
thus containing a request for first entry to a bead, the
TAB is placed at the tail of the queue. In each queue,
therefore, requests for re-entry are given priority over
requests for 'first-time' entry.

Bead Scheduler determines whether any TABs are available

for entry or re-entry by scanning down the free/busy indicAaeor

- Data Processing Publications

ICL

title 1900 DRIVER part chapter 6 page30

table HDRBT3. As soon as a bead is found to be free, and
provided that one or more TABs are present on the corresponding
queue, the TAB holding that queue is removed and Bead
Scheduler exits to the bead. Since the entries in HDRBT3

are both ﬁeld and scanned in ascending order of bead number,

it follows that low-numbered beads automatically take
precedence oﬁer higher numbered beads.

' Message priority queueing

It can be seen from the foregoing description that the
standard routines effer the user two choices of queueing
system

1 First-in first-out queueing throughout.

2 First-in first-out queueing with bead priority queueing
in Bead Scheduler.

As a further option, the user may implement a message priority
system allowing for especially fast processing of selected
message-types. A suggested procedure for doing this is
described below. Since the £fac¢tor involved in choosing
between the three queueing systems are somewhat complex and
vary between different applications, no general guidance

can be given as to which should be selected.

ASSIGNING MESSAGE PRIORITIES

The initial bead is coded so that, on input of a message, it
assigns a permanent priority and a temporary priority to the
message by placing the same priority number in both word 25
and word 26 of the TAB allocated to the message. Priority
numbers are assigned in ascending order of message priority:
in a typical case the message with the lowest priority would

Data Processing Publications - :
tittt 1900 DRIVER part chapter 6 page 5;

be assigned priority 0 and that with the highest priority

assigned priority 5. The criteria used to determine the
priority of each message are of course decided by the user.

QUEUE MANIPULATION

General

The user must write a subroutine to initiate queueing of:TABs
according to their relative message priorities. This
subroutine is called instead of the standard queueing subrout
HDRATQ at some or all of the appropriate user entry points;
the chosen éntry points are set in the Master routine to
contain a call to the user's subroutine instead of a call

to HDRATQ.

The subroutine works on the following two basic principles

1 The position at which an incoming TAB is to be placed on
a TAB queue is determined by comparing its permanent
priority (in word 25 of the TAB) with the temporary
priority in word 26 of each TAB currently held on the
queue. When a TAB is encountered whose temporary
priority is lower than the incoming TABs permanent
priority, the incoming TAB is inserted immediately in front
of it.

2 The temporary priority of each TAB currently held on the
queue is increased by 1 immediately before each of the
above comparisons is made. Thus the longer a TAB remains
on the queue, the less is the chance of an incoming TAB
taking precedence over it. This prevents messages with
a nominally low priority from being permanently locked out
of the program.

Data Processing Publications ' |
title 1900 DRIVER part chapter § page 32

Message priority queueing may be initiated in Peripheral_MQnitér,
Communications Monitor and Bead Scheduler 4 by a single _
common subroutine. An additional subroutine will be required
if Bead Scheduler 2 is in use-and priority queueing is i
required within this reutine. Message priority queueing

may not be implemented within Bead Scheduler 3 or 5 (bead

priority versions).

Procedure

The parameters passed to the users subroutine are those
intended for HDRATQ. The parameters are held in the
following accumulators

X0 Link accumulator

X2 Start address of incoming TAB
X3 Start address of relevant QMA
X4 Zero

The contents of these accumulators must be restored if the
user's subroutine subsequently calls HDRATQ or any of the
standard queueing subroutines.

on entry to the user's subroutine, the temporary priority

in word 26 of the incoming TAB must be set equal to the _
permanant priority in word 25 of that TAB. The action taken
will then depend on the state of the QMA. The recommended
procedures for the various possible settings are as follows:

1 Queue empty (QMA word 0 = QMA word 1 = 0)
In this case, no action need to be taken other than
calling the standard queueing subroutine HDRATQ on the

instruction

CALL 0 HDRATQ

Data Processing Publications | i
I L title part chapter £ page 3 3

1900 DRIVER

2 One or more TABs present on the queue (QMA word 0 = QMA
word 1 = 0 , or QMA word 0 #¥ QMA word 1)

The start address of the first TAB is found in word 0
of the QMA and the temporary priority in word 26 of the
TAB increased by 1. The start address of the incoming
TAB is found in accumulator 2.

If the permanent priority of the incoming TAB is greater
than the temporary priority of the TAB heading the queue,
the subroutine HDRAHQ is entered on the instruction

CALL 0 HDRAHQ
and places the incoming TAB at the head of the queue.

Otherwise, word 21 of the TAB at the head of the Queue
is checked. If it is zero, indicating tail-of-queue,
HDRATQ is called to place the incoming TAB on the queue.
If it is not zero, the start address of the queued TAB
is stored in a user-reserved location: the address in
word 21 of this TAB is then used to locate the next TAB
in the queue. The procedure below is then followed for
each queued TAB in turn until the point at which the
incoming TAB is to be inserted is found.

a) The temporary priority of the queued TAB is increased
by 1 and compared with the permanent priority of the
incoming TAB.

b) If the permanent priority of the incoming TAB is less
than or equal to the temporary priority of the TAB
word 21 of thw queued TAB is examined. If this word
is zero, indicating tail-of-queue, HDRATQ is called
to queue the incoming TAB. If word 21 is not zero,
the user's location containing the start address of
the last queued TAB examined is overwritten with the

ICL

Data Processing Publications

title art chapter ge 34
1900 DRIVER P pter & pag

start address of the queued TAB currently under
examination. The address in word 21 of the latter
is then used to locate the next TAB down the queue
and the procedure is repeated from a) abowe.

c) If the permanent priority of the incoming TAB is
_greater than the temporary priority of the queued
TAB under examination, word 21 of the incoming TAB
is set to contain the start address of the queued
TAB. The start address of the queued TAB which
was previously examined is then found in the user's
reserved location: word 21 of this TAB is set to
the start address of the incoming TAB, which is
thereby inserted into the queue.

The remaining TABs in the queue are then scanned using
the address in word 21 of each TAB to proceed from one
to another. On finding word 21 of a TAB set zero, the
user's subroutine exists on the chosen link accumulator.

An additional procedure is required if the user's subroutine
is called from Bead Scheduler 2 (user entry point HDRBSUE).

In this case, the user's subroutine is required to transfer
all the TABs currently held on the Bead Scheduler external
queue to their appropriate priority positions on the internal
queue. Thus instead of only having to deal with only one
incoming TAB per entry, the user's subroutine will have to
repeat the priority queueing procedure described above for eac
each TAB in the external queue.

In this case, the start address of the first/next TAB to

be removed from the external queue is found in word 0 of

the queue management area, HDRBSEXTQ. The standard queueing
subroutine HDRRFQ is called on the instruction

CALL 0 HDRRFQ

Data Processing Publications ' ;
I title part chapter & page 35

1900 DRIVER

with accumulators 2, 3 and 4 set as follows:

X2 Start address of TAB
X3 0/HDRBSEXTQ
X4 0

On return from the routine, priority queueing of the TAB on
the internal queue is performed in the normal manner, the
QMA for the internal queue being HDRBSINTQ. If word 0 of
HDRBSEXTQ is then found to be set zero, the user's
subroutine exits on the chosen link accumulator. If it

is not, it contains the start address of the next TAB to

be removed from the external queue, and the entire procedure
described above is repeated.

Data Processing Publications

tite 1900 DRIVER part chapter ¢ page36

FILE HANDLING ROUTINES

In many cases, these are the only User-written routines
required for the multithreading Driver. A typical file
handling routine is shown in fig. & .

File handling should normally be performed at PERI level

for the reasons given in Chapter 1, Each time .

a file handling routine is entered, the following parameters -
will be supplied in the location indicated to enable the routine
to carry out a transfer.

1 The parameters required to set up the control area for- -
the PERI instruction are held in suitable locations, as :
decided by the User, within the request area of the TAB
and its associated Input/Output area. The file reference
number used by the bead issuing the request to reference
the file handling routine is held in word 1 of the TAB.

2 The queue management area of the TAB queue for the
routine is held as an entry in the table HDRFHRQ. The
first word of the Management Area for any given file
handling routine is held in the location HDRFHRQ#(2 x frn)
where frn is the file reference number of the file handling
routine. When the routine is to service a request, the
start address of the TAB to be serviced is found in
word 0 of this QMA.

The following indicators must be used in the manner described
to maintain the interface with Peripheral Monitor.

1 A free/busy indicator must be examined following entry
to the ruling and set on exit. The indicator for any
given file handling routine is held in the location
HDRFHRFBl. The settings of this indicator have the
following significance:

chapteré6

page36A

Yes (=1)

Sateror Service
codein (for
indicator extract record)
Unsat
froaft More Yes
indlcator todo

No
Unset
frea/busy
indicator

Exit to PM.

continuation

routine

Exitto P.M.
continuation
routine

8
Yes {=1)

sussy

froe/busy
indicator

Exit to P.M.
continuation
routine

SussY

{for example,

extract record)
Unset
free/busy
indicator
d
More
to do
No
Exit to P.M,
Unset continuation
free/busy routine
indicator
Exit to P.M,
routine

Figufe 4 Dpicél file ;landling routine

Data Processing Publications

ICL

title 1900 DRIVER part chapter & page 37

(a) On entry:

HDRFHRB1 = 0 The servicing of a request was
completed on the last entry and
the routine is now free to
perform another peripheral
transfer.

HDRFHRB1 = 1 The routine initiated a transfer
on the last entry to the file
handling routine. A check must
be made to see if the transfer
is now complete.

(b) On exit:

HDRFHRB1 = 0 Servicing of a request is now
complete and the routine is
free to service another request
on the next entry.

HDRFHRB1 = 1 A transfer is in progress and
the routine is therefore not
free to service any further
request.

2 On completion of a peripheral transfer, and re-entry to
Peripheral Monitor, Peripheral Monitor will examine
the device reply word (word 1 of the control area).
Peripheral Monitor locates this word by finding its address
in the location HDRFHRREP < frn where frn is the file
reference number of the file handling routine. If only
one' control area is used by the file handling routine,
this address is preset and no action is required on the
part of the file handling routine. However, if more than
one control area is used by the file handling routine,
it must set this address dynamically according to which

Data Processing Publications
tite 1900 DRIVER part chapter { page 38

control area was used in the latest transfer.

3 In detection of an error, the appropriate error code
must be placed in the location HDRFHERI.' Peripheral
Monitor will subsequently place this code in word 8
of the TAB in use before causing control to be passed
to the Error Recovery bead.

Control is passed back to Peripheral Monitor by branching to
the Continuation routine on the instruction:

BRN HDRPMCONT

File handling by housekeeping

A user wishing to use direct access housekeeping, but anxious
to obtain a degree or multithreading, may do so by using Member
3 of his program to house a file handling routine incorporating
the housekeeping.

The following limitations will apply.

1) It will only be possible to process one transaction through
the housekeeping at a time (except when using physical
level processing: in this context however we are dealing
with users who require logical level processing).

2) Requests for several files accessed via the housekeeping
will have to be placed on one TAB gueue with a
consequent "bottle neck" effect.

Additionally, Driver will impose the following standards.
1) Only one request at at time will be available for servicing

in Member 3, namely the request held in the TAB at the
head of the queue; all handling of the queue will be

IC

Data Processing Publications
tite 1900 DRIVER part chapter & page 39

controlled in Member 0,

2) The user will write a further file handling routine
in addition to those held in Member 0, and when writing
the Master routine will set entries in the F.H.R. tables
(HDRHRFB1, HDRFHRCALL and HDDFHRREP) in the same way as
for a normal file handling routine. The only exception
is that the Address of the device reply word for file
handling routine will in this case be the address of
an indicator set negative when member 3 is activated, and
returned to zero by member 3 when it has finished the
processing. This will maintain the interface with the
Queue Selector Cycle Routines within Peripheral Monitor.
Member 3 will be able to use the negative setting of
this indicator to guard against "spurious desuspension”
which could otherwise lead to very unpredictable results.

The overlay system

The following routines are required to implement the Driver
overlay system: '

1l Request Analyser 3

2 Bead Scheduler 3 or 5

3 Overlay control

4 The standard overlay subroutiné SEROL.

To allow overlay to Qe performed with the minimum intefiuption
to the remainder of the program, Overlay Control and SEROL

generate autonomously in member 2 of the program.

Both Request Analyser and Bead Scheduler jointly maintain

‘ Data Processing Publications
tite 1900 DRIVER part chapter 4 page 40

a number of indicators for each overlay bead, using the
overlay tables HDROLINDL and HDROLIND2. Overlay control
continuously scans these indicators, initiating overlay
by %EROL whenever this found to be necessary.'

The main feature distinguishing the multithreading overlay
system from that of the single threading Driver is that
Request Analyser can in some cases anticipate Bead Schedulers
requirements for overlay beads and ensure that these beads
are present in main store by the time Bead Scheduler is ready
to pass control to any one of them. Similarly, Bead
Scheduler can initiate overlay in respect of request progress
through its internal queue(s). As a result, a request for an
overlay bead that is serviced within Bead Scheduler need not
have its servicing delayed whilst the required bead is brought
into main store. The procedure involved falls into two main
steps, and can be summarised as follows.

1 Whenever Bead Scheduler transfers a TAB from its external
queue, it will check each request to determine whether
an overlay bead is required. Whenever this is the case,
it will then check whether the required bead is already
present in main store. If it is, the routine proceeds
to the next TAB down the queue. If it is not, the routiji
will do one of the following:

(a) If, in scanning down the queue no previous (and
hence higher priority) request has been found for a
bead in the same overlay area, an indicator for the
next bead required in that area is set to initiate
overlay.

(b) If a previous request for a bead in the same overlay
area has been found, an indicator for the bead is
set to indicate that the bead is 'wanted' but cannot
yet be overlaid. This may happen several times in
each entry to Bead Scheduler: accordingly indicator:

I c Data Processing Publications ' ‘
L titlt 1900 DRIVER part chapter & page 41

for the beads in each overlay area are set to e
specify the order in which the beads wanted by requgsts
currently held on the internal queue(s) are "to be
overlaid. '

2 Whenever Request Analyser is entered from an.oveilay
bead, and finds that the bead has completed its execution,
it checks the overlay area. If the bead that has jus:.
completed its execution is also found to be the next '
'wnated' bead, no action is taken and the bead hence
remains in main store. Otherwise, Request Analyser sets-
the appropriate inidcators for the next 'wanted’ bead in-
the area: overlay of the bead is initiated as soon as
Overlay Control scans these indicators.

Data Processing Publications '
tittt 1900 DRIVER , part chaptery page 1

Chapter 7

Program testing

1900 DRIVER TESTING AIDS

Testing Aids consist of a set of programs and routines which:
enablesreal time program beads written to 1900 Driver stan-
dards to be tested individually, or linked together. The ‘
beads may be tested without using the files or communications
terminals required by the real time program. '

The following Testing Aids are available:

Trial Data Set Up (#XJBA and #XJBB)
General Bead Tester (subroutine groups SDAT and SDAD)
Selective Print (#XJBC and #XJBD)

Full details of these programs and routines will be found
in Chapter 8 of this manual. A general description of
their use is given in Chapter 4 of the manual Introduction
to 1900 Driver.

TESTING BEADS

A bead should initially be tested independently, using the
1900 Driver testing aids, preferably by the Programmer who
wrote the bead. Then, still using the testing aids, beads
may be tested linked together, leading to a linked test of
all the beads required in the processing thread for one
message type. If required, this technique may be extended
to linked testing of the complete processing element.

Careful planning of the trial data for the initial testing
of individual beads should allow the same data to be used

Data Processing Publications
tite 1900 DRIVER part chapter 7 page 2

for later linked testing. Ultimately the trial data
prepared for testing of the Initial bead may be used, in the
final stages of bead testing, to test the complete linked
processing element. ’

Where enhancements to the program require the writing and .
testing of new beads, there beads should first be tested
individually ﬁsing the Driver Testing Aids. Later testing
will involve linking of these beads with one another and
with fully tested beads already in use is the 1livé on-line
program. Again the final stage of testing may be a test
of the entire enhanced processing element.

TESTING OTHER USER WRITTEN ROUTINES

User written control routines may be tested independantly

using a technique similar to that employed by General Bead
Tester. A suiﬁable user written test routine is required
which will simulate the appropriate interface, read from a

card reader or paper tape reader the data to be input to the
routine under test, and record, on a line printer, the data
output by the routine. For example, to test a Peripheral
Monitor routine for a single-threading program, the test routine
should be written to carry out the following sequence of
functions.

1 Read data from cards, set up a TAB and associated areas,
and the Service TAB HDRSCST.

2 Optionally, record the initial state of these areas on
the line printer.

3 Pass control to the user's Peripheral Monitor routine,
by branching to HDRPMCUE. Peripheral Monitor will
hence be able to service the request set up in the TAB,
and access suitable test files where necessary. It will

ICL

Data Processing Publications
title 1900 DRIVER part chapter 7 page 3

return control to the test routine by branching to
HDRSCCUE.

4 On each entry from Peripheral Monitor, record the State
of the TAB, associated areas, Service TAB and any other
relevant_areas.

5 Return to step 1 to initiate a further test.

Test routines such as that described could incorporate such
features as off-lining of test output to disc for input to
Selective Print, and other facilities similar to those
offered by General Bead Tester.

A further testing routine might be written to test the
completed Driver program without using communications terminals.
Such a routine would replace the communications handling
routines, and would access a card reader, line printer or
files on backing storage in place of the communications
terminals. In response to an MPPUT macro, for example,
this communications simulator routine might output data to a
line printer. Simularly, trial data could be read in from
a card reader in response to an MPGET macro. Other macros
could be largely dealt with by updating the housekeeping
reply words with suitable parameters - also read in from the
card reader.

A routine of this type could additionally be used to independ-
ently test a user written communications monitor routine before
link-testing the complete Driver program.

Data Processing Publications
titte 1900 DRIVER part chapter 8 page 1

' Chapter 8

Driver Testing Aids

Data Processing Publications |
I L title 1900 DRIVER part chapter 8 page 2

#XJIBA
#XJBB

" NAME

#XJBA (magnetic tape)
#XJBB (direct access)

" VERSTION
Mark 1

" TITLE

Trial Data Set Up (TDSU)

" HARDWARE REQUIREMEN

6720 words of main store (#XJBA)

7488 words of main store (#XJBB)

1 card reader or 1 paper tape reader

1 line printer (120 chs. minimum)

1 or more more magnetic tape decks (#XJBA)

1l or more direct access storage units (#XJBB)

" EXECUTIVE PRIORITY

50

" DESCRIPTION

" General

TDSU sets up or amends a file held on magnetic tape (#XJBA)

or on a direct access device (#XJBB). Parameters submitted
by the user on cards or paper tape control the run and specify
the data to be written to the file. The file created may
have any required file identifier and records may be set up

ICL

Data Processing Publications

tile 1900 BRIVER part chapter g page 3

in any format provided that their length does not exceed 1000
words.

When used as part of the Testing Aids suite, the purpose of
TDSU is to Create trial data records for input to General
Bead Tester. 1In this case the length of each record set
up must not exceed 510 words. There is no reason, however,
why the program should not be used independently to create
or amend other types of file, in which case the 1000 word
limit on output record length applies.

Two modes of operation are available to the user: set up mode
and amendment mode.

SET UP MODE

A complete direct access or magnetic tape trial data file

is set up according to the parameters submitted to the
program. These parameters consist of control parameters,
defining the run mode required and the characteristics of the
file to be set up, followed by <nput data parameters containing
the data to be written to the file.

AMENDMENT MODE

An existing trial data file of like characteristics to the
file to be produced (i.e.same device type, bucket/block sizes,
record sizes etc.) can be amended. The unit of amendment is
a record. The old file is copied to the new file, stopping
at each point where records are to be inserted, deleted or
replaced.

The data required for the amendment is submitted on cards
or paper tape and consists of control parameters (as
described above, but also defining the characteristics of

Data Processing Publications

title 1900 DRIVER - - part chapter8 page |,

the 0l1d file) together with <nput amendment parameters
specifying the alterations to be made to the file. Input
data parameters are also submitted at each point where new
data is to be generated for the file.

Input

Input to the program for a set up run consists of control
parameters and input data parameters.

Input for an amendment run consists of a magnetic tape or
direct access storage unit holding the old trial data file to
be amended, together with control parameters as above, any
input data parameters required and input amendment parameters.

' Qutput -

Main output consists of a trial data file for submission to
General Bead Tester. The contents of this file are

described in the section The Trial Data file on page 32.

The program will also output a line printer listing of the
parameters submitted to it, any error in an individual
parameter being indicated by an error code accompanying

the parameter image. This listing is described in the section
Line printer output on page 42.

" 'CONTROL PARAMETERS

Each control parameter is punched as a separate card or paper
tape record, starting at column 1. The parameters are
described below in the order in which they must be submitted.

ICL

Data Processing Publications

title part chapter g bpageg

1900 DRIVER

Run description parameter

The run description parameter specifies the type of run
required (set up or amendment). and the characteristics of
the trial data file to be created.

FORMAT

Set up run

The format of the run description parameter for a set up
run is

TSDU,Vzzzx,yyyy
or
TBSU,Fzxxx,yyyy
where
TDSU indicates that a set up run is required
\'4 indicates that variable length trial data records
are to be created
F indicates that fixed length trial data records
are to be created
TrTL is the maximum bucket/block size of the trial data

file to be created.

For a magnetic tape trial data file the size
specified must be < 1024 words

For a direct access trial data file, the size
specified may be 128, 256, 512 or 1024 words.
Values less than four characters in length must
be augmented by zeroes on the left hand side e.gq.
0256, 0512. '

Data Processing Publications
titte 1900 DRIVER part chapter g page

yyyy is the maximum output record size in words.

For a magnetic tape trial data file this must be
< 510 words. For a direct access trial data file
the size must be

< (xxex - 2)
or
510 words

whichever is the smaller.

Note: Where a direct access trial data file is to be
created, it is important that the maximum bucket
size xxxx agrees with the bucket size of the output
file to be opened. The file's bucket size will
have been defined previously using the file allocator
program #XPJC. A description of this program
can be found in the 1900 UniZfied Direct Access
Standards Utilities Manual, Chapter 2.

Amendment run

The format of the run description parameter for an amendment
run is

TDAM ,Vxxxx, yyyy
or
TDAM,Fxxxx, yyyy

where TDAM indicates that an amendment run is required,
and all other parameter fields are as described above.

IN

—

This parameter is only required for an amendment run, in which
case its use is mandatory. The parameter provides the

Data Processing Publications

information required by the program in order to open a
trial data file which is to be amended.

BASIC FORMAT

In its basic form, an IN parameter will simply specify the
name of the file to be amended, thus:

IN(oldfile)

whereoldfile is the name of theold trial data file to be
amended.

EXTENDED FORMATS

If required, for example where several generations of a’
trial data file have been previously created, the user can
specify the file to be amended in more detail. The full
format is as follows:

For a file held on magnetic tape:

INV(oldfile(fgn/rsn) , tsn)

where

fgn is the generation number of the file.

rsn . is the reel sequence number

tsn is the tape serial number, in octal. The number

may be punched with or without a preceding % or .

For a direct access trial data file:

INV(oldfile(fgn),csn)

where

Data Processing Publications
titte 1900 DRIVER part chapter 8 page 8

fgn is the file generation number of the file.

esn is the cartridge serial number, in octal. The
number may be punched with or without a preceding
* or #.

The user may either include all these additional parameter
fields, as shown above, or he may punch any one or any
combination of them, for example:

IN(oldfile(/rsn),tsn)
IN(oldfile,tsn)
IN(oldfile(fgn))

- OUT

This parameter provides the information required by the
program to open the output file.

BASIC FORMAT

In its basic form, an OUT parameter will simply specify the
name of the file to be opened, thus:

OUT (newfile)

where newfile is the name of the output file to be opened.

It will hence also be the name of the trial data file created
"in the course of the run unless a REName parameter is used
(page 10).

EXTENDED FORMAT
If the file to be opened is held on magnetic tape, the user may

additionally specify its file generation number fgn, reel
sequence number rsz and tape serial number tsn as described £

I c Data Processing Publications |
L title 1900 DRIVER part chapter g bage 4

the IN parameter (page 7). The full format of an OUT
parameter for a magnetic tape file will thus be:

OUT (newfile(fgn/ren),ten)

As inthe case of the IN parameter, the user may punch any
one or any combination of these additional fields.

The full format of an OUT parameter to open a direct access
file is as follows:

OUT (newfile (fgnl ; fgn2) ,csn)

where
fgn1 is the existing file generation number of the file.

fgn2 is the new generation number to be given to the file
when it is opened. Permitted range is 0 to 4095

inclusive. S

Note: If fgnl is omitted, the highest generation of the
file will be opened and its generation number
altered to that specified in fgna2.

If fgn2 is omitted, the file generation number
specified as fgnl will remain unchanged.

If both fgnl and fgn2 are omitted, the file will be
given file generation number 4095.

ecsn is the cartridge serial number, in octal. The
number may be punched with or without a preceding *
or # and must be in the range #0 to #777777

As in the case of the IN parameter, the user may either
include all these fields, or any one or any combination of
them, for example:

ICL

Data Processing Publications

i chapter e
nﬂelgoo DRIVER) part p 8 pag

10

OUT (newfile,csn)
OUT (rewfile(=fgn2),csn)
" OUT (newfile(fgnl))

REName

This parameter may optionally be included in order to rename
the file newfile specified in the OUT parameter.

BASIC FORMAT

In its basic form, a REName parameter will simply specify

the new name to be given to the output file when it is
opened, thus:

REN (newname)
where newname is the new name to be given to the file (up to

12 alphanumeric characters, hypen or spaces, starting with
an alphabetic character).

EXTENDED FORMAT
As with the previous control parameters, the user may give
further details if these are required. The full format of

the REName parameter is as follows:

For a file held on magnetic tape:

REN (newname (fgn/rsn) ,retn)
where

fgn is the file generation number to be given to the

renamed file. Permitted range is 0 to 4095: if this

ICL

Data Processing Publications

titlt 1900 DRIVER : part chapter g page 1)

rsn

rein

field is omitted, 0 is assumed.

is the reel sequence number to be given to the renamed
file. Permitted range is 0 to 4095: if this field
is omitted, 0 is assumed.

is the retention period in days to be allocated to
the tape on which the file is held. Permitted range
is 0 to 4095: if this field is omitted, 4095 is
assumed.

For a direct access file:

where

Fgn

wn

REN (newname, fgn/vn)

is the file generation number to be given to the
renamed file. Permitted range is 0 to 4095: if
omitted, 0 is assumed.

is the version number to be given to the renamed file.
Permitted range is 0 to 4095: if omitted, 0 is
assumed.

As implied above, the user may specify any one or any

combination of these additional fields, provided that the

fields specified are relevant to the type of file (magnetic

tape or direct access) in use. For example:

REN (newname, retn)
REN (newname (/vn))

REN (newname (fgn) yretn)

ICL

Data Processing Publications

titte 1900 DRIVER part chapter 8 page 12

This‘parameter signifies the end of the control parameters.

FORMAT
PEND

INPUT DATA PARAMETERS

" Introduction

The input data parameters submitted to TDSU specify trial
data to be written to the output file. In a set up run,
all the data to be written to the output file is included
in these parameters. In an amendment run, they may be
used in conjunction with input amendment parameters (page
29) in order to insert new records into an existing trial
data file.

The TDSU output file produced from these parameters will

be used as input to General Bead Tester (GBT). To avoid
possible confusion this file will normally be referred to

as the trial data file. Where necessary, it will be called
the 'new' trial data file in order to distinguish it from

the 'o0ld' trial data file input to TDSU during an amendment :
run.)

The trial data file created in a TDSU run will contain the
data required by GBT to set up one or more TABs (one per bead
or logical sequence of beads to be tested) and simulate
Driver services.. The input data parameters submitted to
TDSU must therefore specify the contents of each TAB to be
set up by GBT, together with the data to be inserted into

the associated areas of these TABs in order to simulate
Driver services.

Data Processing Publications

title 1900 DRIVER part chapter g page ;3

A number of data definitions and directives, collectively
known as items, are available for the user to create a trial
data file according to his precise requirements. The
remainder of this section describes how these items are
used to gené}ate and output different types of data to the
trial data file. The purpose, format and sequence of the -
individual trial data records to be assembled from this
‘data is described in the section The trial data file on
page 32.

' ‘General Description -

An input data parameter consists of a single.card or paper
tape record and its maximum length is therefore 80 characters.
The data required to generate a trial data record is

punched as a series of contiguous fields within one or more
parameters. Each of these fields is one item, and is
distinguished from the preceding and succeeding items in

the parameter by the type of data it contains. The user
preparing input data parameters must start a new item each
time that the type of data to be written to the trial data
file changes.

An item may contain any one of the following types of data

Record header

Alphanumeric character(s)
Decimal value(s)

Octal value(s)

Sterling value(s)

Start new bucket/block indicator
End~-of-input indicator

The first item required to create a trial data record is a
record header item. When read in, this item indicates to
the program that the previous trial data record (if any)

ICL

Data Processing Publications

title 1900 DRIVER part chapter 8 page 14

assembled in main store is now to be written to the trial
data file, and that creation of a new trial data record

is to begin. Thereafter, the subsequent items in the
parameters are dealt with in the order that they appear,
generating the required data in consecutive locations of
main store until the complete output record has been .
assembled. On detection of the next record header item the
record is written to the trial data file and the process is
then repeated for each trial data record required until a
complete trial data file has been set up.

Each of the input data parameters required to create a
particular trial data record may comprise one or more items,
the only restriction being that an item must not run on from
one parameter to the next. The maximum length of an item

is thus 80 characters. If space permits, the last item in
each parameter should be terminated by a space character v.
The user is free to use any character positions to the right
of the terminating space characters for his own comment:

this will be output on the line printer listing together with
the parameter image and will provide a useful reference

when examining the listing.

The full format of an input data parameter may thus be given

as
Column 1 _ Column 80
item=1 1tem=2 ..cvceeess ttem-nVuser comment
Items

OVERALL FORMAT

An item is made up of several subfields, which are punched
contiguously in the following order.

ICL

Data Processing Publications

15

1 Repetition factor (optional)
2 Data type

3 Implied length of data expression (optional)

4 Beginning of data expression indicator
5 Data expression
6 End of data expression indicator

Repetition factor

Use of the repetition factor relieves the user of the
tedious and error-prone task of writing out and punching
repetitive sets of like type data in full. If present, it
will cause the subsequent data expression to be repeatedly
inserted into consecutive locations within the output record
currently being created. The maximum number of repetitions
that can be specified is 9: if the data is only to be .

~generated once the repetition factor is omitted.

Data type

This subfield is used to hold a directive indicating the type

of data to be generated. Since items are classified.

according to the type of data they contain, the directive also

indicates item type.

Direective Item/data type
R Record header
H Characters

Octal data

ICL

Data Processing Publications

tite 1900 DRIVER _part chapter g page 16
Direetive Item/data type
D Decimal data.
£ Sterling data
NEWV Start new bucket/block
ENDV End of input data

Each item type is further described below (page 17 onwards).

Implied length

Use of this subfield is optional. If present, it consists
of a three digit value (permitted range 002 to 999) which
specifies the length in words of the output field to be

_generated from the subsequent data expression.

If the data expression is smaller than the implied length
of the output field, the program will generate sufficient
space characters (in the case of character items) or zeroes
(all other items) to increase the length of the data
expression to the implied length. This process is known
as padding: the spaces or zeroes will appear in the output
field to the right of the data expression.

Padding is particularly useful in cases where user data to be
inserted is much shorter than the length of the field to

be set up. For example, the user specifying the contents

of name and address fields need not include the non-significant
spaces or zeroes needed to bring each field up to its required
length: these will be automatically inserted by the program.

If the data expression is longer than its implied length (for
example, due to a data preparation error) the excess characters
at the right hand side of the data expression will be

ignored.

Data Processing Publications |
titte 1900 DRIVER part chapter 8 page 17

Note that any padding or truncation of individual data
expressions will occur without any warning message being
output on the line printer.

Beginning and end of data expression indicators
A data expression must always be enclosed in apostrophes, thus:

'‘data expression’

Data expression

A data expression comprises data to be written to the trial
data file. Its format is dependent on the type of item
in which it appears.

Within a character item the data expression consists of an
uninterrupted string of characters to be written to the

trial data file. The program will insert these characters,
four at a time, into consecutive words of the trial data .
record currently being created. Within other items, the
data to be written to the trial data file is punched one
word at a time, each word being seperated by-a comma.

Item types

RECORD HEADER ITEM

This indicates to the program that all succeeding items up
to the next record header item are to be used to generate
a complete trial data record.

There are two types of record header item, one for fixed
length records and one for variable length records. The
difference between them is that for fixed length files the

ICL

Data Processing Publications

titte 1900 DRIVER . part chapter g page 1g

user does not specify the trial data record length, the
program using the information provided in the Run Description
parameter (page 5).

The format of a record header item is as follows:
If a fixed length trial data record is to be formed:
R
For a variable length record:
R'zzxx'

where zxxx is a data expression specifying the length of
the record to be created in words. The value given must
be punched to the right of the data expression, any unused
character positions being left as leading spaces or filled
with zeroes. For example, a 256 word trial data record
would be specified as follows:

Either:
R'V256"'

or:
R'0256"
The record header item will'always be the first item in the

first parameter to create a trial data record, and the
character R must always appear in column 1 of this parameter.

Character items
A character item is declared as a string of up to 77 characters

(the data expression) enclosed by two apostrophes and
preceded by the directive i#. Any of the 64 characters of

ICL

Data Processing Publications

tite 1900 DRIVER part chapter g page 19

the internal machine code set may be specified in the data
expression, the only proviso being that an apostrophe
character (') to be written to the trial data file must
be represented by two adjacent apostrophes (") within the
string. '

The characters within the data expression will be inserted,
four characters at a time, into consecutive words of the
trial data record. Any unfilled character posgitions in
the last word of trial data created will be spacefilled
automatically.

An alphanumeric character item may be punched in any of
the following formats

rHnnn'string’
rH'string’
Hnnn'string'

H'string'
where
r is the repetition factor (permitted range 2 to 9)
H indicates data type (characters)
nnn is the implied length (permitted range 002 to 999)

string is a data expression comprising a string of characters
to be inserted into the output record. Up to 77
characters may be specified, the limitation being
the size of the parameter within which the item is
held (maximum length 80 characters).

Padding with space characters or truncation to satisfy
implied length requirements takes place at the right hand side
of the data expression before any repetition occurs.

Data Processing Publications]
titte 1900 DRIVER part chapter g page ;o

Examples

Starting at a word n of the trial data record currently
being formed

Item Trial data generated

Word n n+l |[#n+2 in+3 n+4 n+5

H'EXAMPLEV ' EXAM| PLEV

H'EXAMPLE' EXAM| PLEV

H004'EXAMPLE ' EXAM|PLEV | VVVV| VVVV

4H'BUZZ' BUZZ | BUZZ| BUZZ | BUZZ

3H'OFF" OFFV | OFFV | OFFV

2H' JONES' JONE | SVVV|JONE [SYVV
2H003'JONES' JONE | SVvV|vVVV|JONE | Svvv | vuvy
H' THISVISVANVAPOST

ROPHEV"' 'V' THIS|VISV|ANVA|POST | ROPH | EV'V
H' THISVISVANVAPOST

ROPHEV' "' THIS|VISV|ANVA|POST | ROPH | EV'V
H004 ' THISVIAVANVA

POSTROPHEV' ' ! THIS | VISV|ANVA|POST

mooz'llllllvlllllllll ll!v 1918

2H003'llllllvlllllll
19101 lllv [I] lvvv lllv Tty lvvv

H006'PAD" PADV|VVVV|VVVV|VVVV | VVVV | VVVV
H002' TRUNCATEVTHIS' TRUN | CATE |

6H'V' VVVV |VVVV|VVVV|VVVV | VVVV | VVVV

DECIMAL ITEM

The data expression within a decimal item consists of a signed
or unsigned decimal value for each word of decimal data to be

Data Processing Publications
titte 1900 DRIVER part chapter 8 page 21

_generated by the item. [Each decimal value is seperated from
the next by a comma; the complete set of values forming

the data expression is enclosed in apostrophes and

preceded by the directive D.

The decimal values are stored as binary numbers in
consecutive words of the output record. Unsigned values

are taken to be positive and any significant space characters:
are taken to be zeroes.

A decimal item may be punched in any of the following
formats. '

annn'dl,dz, -ooooodn'
Dnnn'dl,dz, oo..ooodn'
rD'dl,dZ' LI N Y Y dn'

D'dl; dz, oo s o0 dn'

where

r is the repetition factor (permitted range 2 to 9)

D indicates the data type (decimal)

nnn is the implied length of the data expreésion
(permitted range 002 to 999)

dl,dz,...dn is the data expression a#d consists of the

decimal values, seperated by commas, to be
inserted into the next » words of the trial
data record. Each decimal value specified
must be an integer within the range £ 223

Up to 39 decimal values may be specified, the
limitation being the size of the parameter
within which the item is held (maximum length

ICL

Data Processing Publications

titte 1900 DRIVER part chapter g page 22

80 characters). If only one decimal value
is specified, it must not be followed by a
comma.

Padding with zeroes or truncation to satisfy implied length
requirements takes place at the right hand side of the
expression before any repetition occurs.

Examples

Starting at a word n of the trial data record currently
being formed:

Item Trial data generated

v Word| n ?n+l: n+2 n+3 n+a 'n+5 ’n+6 n+7
|

D'1' -+l ;

D'4,5,6' | +4 45 | +6

D'+1' i +l s : '

pr-1 -1

D'+4,5,+6" i +4 | +5 % +6 |

ID004'1,-2,3" +1 =2 | +3 0

4D'6,-3" ' +6 5-3 +6 =3 +6 i =3 | +6 | -3

2D004'+1,+2,+3" é +1 §+2 +3 0 +1 L +2 |43 0

8D'0° é 0 i 0 o o o} o} of o

8D'-1" f TN P IO DRI SR B N N

4D002'5,6,7,8" +5 |+6 | +5 |+6 45 | +6 | +5 | +6

2D002'-5761,43" -5761|+43 |-5761| +43

3D'-2,+4" -2 |+4 | -2 +4 | -2 | +4

D008'16" +16| 0 0 0| 0 0 0 0

D008'16,15,-2" +16|+15 | -2 o 0l 0 0 0

I C| Data Processing Publications
tite 31900 DRIVER part chapter g page 23

Item Trial data generated

Word n n+l n+2 {n+3 (| n+d | n+5 | nt6 |n+7
D'v,16,VV14" 0 | +16 | +14
D008'V' 0 0 0 0 0 0 0 0
8D'vVv! 0 0 0 0 0 0 o| O
OCTAL ITEM

The data expression within an octal item contains a string

of up to eight octal digits for each word of octal data to

be generated. Each string of octal digits is seperated

from the next by a comma: thé complete set of octal strings
forming the data expression is enclosed by two apostrophes and
is preceded by the directive #. .

Each consecutive pair of octal digits occupies one
character position in the trial data record being created.
The data is stored right justified within a word. If a
string contains an odd number of digits, the program

- automatically inserts 'a zero before the first digit. 1If
generation of octal data stops in the middle of a word of
the trial data record, the remainder of the word is

) automatically filled with 2zeros. Leading space characters

within a string, or complete strings of space characters,
are all taken to be zeroes.

‘An octal item may be punched in any of the following formats

ri#nnn’string-1,8tring=2,.....8tring-n'
r#'’string=1,8tring=2,......8tring-n'
$nnn'string=1,8tring=2,......8tring-n'

#'string-1,string-2,...8tring-n'

I c Data Processing Publications :
L. title 1900 DRIVER part chapter 8 page 24

where

r is the repetition factor (permitted range 2 to
9)

indicates the data type (octal)

nnn is the implied length of the data expression
(permitted range 002 to 999)

string-1, is the data expression, and consists of the

string-2,... strings of octal digits, seperated by commas,

«eo8tring-n to be inserted into the next n words of the
trial data record. Up to 39 words of octal
data may be specified, the limitation being
the size of the parameter within which the
item is held (maximum length 80 characters).
If only one octal string is specified, it must
not be followed by a comma.

Examples

Starting at a word »n of the trial data currently being

_ formed:
Item Trial data generated

g

, Word . n n+l . n+2 . n+3
i S R ; |

| $'1234567' .01 23 45 67 |
124'01234567" 101 23 45 67 |01 23 45 67 §

| $10123" l 0o 00 01 23 |
1#v012 | 00 00 00 12 | ‘

t

$002 '6" 00 00 00 06 00 00 00 00 ;

- - /

ICL

Data Processing Publications

tittt 1900 DRIVER

part chapter 8 page 25

Item Trial data generated
f T

Word n n+l f n+2 n+3
2#002 '345! , 00 00 03 45| 00 00 00 00 00 00 03 45 | 00 00 00 00
#002 '012345 01 23 45 67 | 01 23 45 67
67, 01234567, ~
01234560'
2#002 '1212 12 12 34 34| 00 04 56 07 {12 12 34 34 | 00 04 56 07
3434, 45607,
123"
3#'012° 00 00 00 12 | 00 00 00 12 {00 00 00 12
24#'14621467, 14 62 14 67 | 00 00 00 00 {14 62 14 67 | 00 00 00 00
Ol
44'0"' 0 0 0 0
#'v! 0
'vvvvl234! 00 00 12 34
44'v! 0 0 0 0
#004 '012345 01 23 45 67 0 § 2 0
67, Vs VV2 ‘
#' ! 0
a%' ! 0 0 0 0
',,777" 0 0 {00 00 07 77 0

STERLING ITEM

The data expression within a sterling item contains a

signed or unsigned value in pounds and pence for each word

of sterling data to be generated.
from the next by a comma: the complete set of sterling values

forming the data expression is

and preceded by the directive £.

Each value is seperated

enclosed by two apostrophes

Each sterling value is converted to new pence and is then
stored in the trial data record in exactly the same way as

ICL

Data Processing Publications

titte 1900 DRIVER

part chapter 8 page 26

a decimal value.

Unsigned values are taken to be positive.

Significant space characters are taken as zeroes unless

the value is signed: in the latter case at least one digit,

0 if necessary, must be used to specify the pounds part of
the value and must precede the full stop (see below).

A sterling item may be punched in any of the following

formats

ré€nnn'pounds.pence-1,pounds.pence-2,......pounds.pence-n'

rg€ 'pounds.pence-1,pounds.pence=2,.....pounds.pence n'

gnnn'pounds.pence-1,pounds.pence=2,......pounds.pence-n'

€ 'pounds.pence~1,pounds.pence-2,...pounds.pence-n'

where

nnn

pounds.pence-1,
pounds.pence-2,
eeese.pounds.

pence-n

is the repetition factor (permitted range
2 to 9)

indicates data type (sterling)

is the implied length (permitted range 002
to 999).

is the data expression and consists of
sterling values, seperated by commas, to be
inserted into the next n words of the output
record. For each value, pounds must be
specified as one or more decimal digits.
Pence must always consist of two decimal
digits; %p cannot be specified.

Up to 39 sterling values may be specified,
the limitation being the size of the
parameter within which the item is held

ICL

Data Processing Publications

title 1900 DRIVER part chapter g page 27

(maximum length 80 characters). If only
one sterling value is specified, it must not
be followed by a comma.

Padding with zeroes or truncation to satisfy implied length
requirements takes place at the right hand side of the data
expression before any repetition occurs.

Note: A sterling value will be stored in a trial data record
as a binary integer representing the decimal number of

new pence: the full stop separating pounds and pence is
omitted in the trial data record. If convenient, the user
may therefore specify any sterling value as a decimal value
within a decimal data expression.

For example:
£'356.06'
and

D'35606"

will both cause the decimal value 35606 to be inserted into
a word of the trial data record as a binary value.

Examples

Starting at a word n of the trial data record currently

being formed:

Item Trial data generated
Word | n n+l n+2 n+3
£'10.16" +1016
£'-10.16"' -1016
£'VVv10.16 +1016

ICL

Data Processing Publications

title 1900 DRIVER part chapterg page28

Item Trial data generated

o T T T 1
Wordg n ntl n+2 n+3 |

£'+16.10,4.19, -

=2.36,100.00" +1610 +419 236 +10000

£003'100.00° +10000 0 0

2£002'100.00" 410000 0 +10000 0

NEW ITEMS

The user may wish to arrange his trial data file so that,
for ease of access, certain records are each stored in the
first position of a bucket or block.

A NEW item is punched in a seperate input data parameter

and causes the next output record specified in the subsequent
parameters to be stored in the first position of the next
available bucket/block.

A NEW item must be punched in columns 1 to 4 of the input
data parameter in which it appears, and always has the format

NEWV
The parameter must not contain any other item.

The next parameter(s) will normally consist of an R item
followed by whatever other items are required to generate
the first record for the new bucket/block. However, if
required, further NEW items, one per parameter, may be
punched after the initial NEW item, causing the equivalent
number of buckets/blocks to be skipped in the trial data
file. A NEW item may also precede an END item (see below)
or any of the input amendment parameters (page 29).

ICL

Data Processing Publications

tittt 1900 DRIVER part chapter g8 page 29

END ITEM

This item indicates that there is no more input data for the
file currently being set up or amended. If applicable,

the last trial data record created is written to the output
file. If, in an amendment run, the end of the old trial
data file has not been reacted, its remaining records'ére
copied to the output file. Statistical information is then
output to the line printer. All files are closed and the
program is deleted.

The END item must be punched in columns 1lto 4 of the input
data parameter in which it appears, and always has the format

ENDV

Input amendment parameters enable the user to edit records
input from the old trial data file to be amended. Each
parameter is submitted as a seperate card or paper tape record.

The unit of amendment is one trial data record. Each record
within the old trial data file is uniquely identified by an
8-digit number of the format

aaaabbbb

where

aaaa is the bucket/block number of the record,
starting at 0001 for the first bucket/block
on the file,

bbbb is the record sequence number, starting at

0001 for the first record in each bucket/block.

ICL

Data Processing Publications

titte 1900 DRIVER

part chapter g page ,’30

Any trial data records not specified in the input amendment
parameters are copied directly to the output file.

DELETE

The DELETE parameter can be used to delete one record, a
sequence of records, or from a specified record to the end

of the old trial data file.
case are as follows:

Format

DELETEVaaaabbbb

DELETEVaaaabbbb,,aaaasbbbb,

DELETEVaaaabbbb ,ENDV

INSERT

The formats required in each

Result

Record aaaabbbb is not copied to
the new trial data file.

Records aaaabbbb; to aaaaybbbb,
inclusive are not copied to
the new trial data file.

Record aaaabbbb and all subsequent
records in the old trial data

file are not copied to the

new trial data file.

An INSERT parameter is always followed by one or more input
data parameters. Copyin;; of the old trial data file is
temporarily halted at record specified in the INSERT
parameter; one or more new records are then generated from

the input data parameters and are copied to the new trial

data file in the normal way.

Copying of theold trial data

file then proceeds, starting with the record specified in the

INSERT parameter.

I Data Processing Publications
titte 1900 DRIVER part chapter 8 page 31

An INSERT parameter thus specifies a record in the oid trial
data file before which one or more new records are to be
inserted. It may also be used to insert records at the

end of the file. The alternative formats are as follows.

Format Result

INSERTVaaaabbbb -The new output records specified
in the subsequent input data
parameters are inserted before
record aaaabbbb.

INSERTVENDYV Any remaining records on the
old trial data file are copied .
to the outputifile. The new
trial data records specified
in the input data parameters
following INSERTVENDV are added
to the end of the file.

REPLACEMENTS , _

If a DELETE parameter (page 30) is followed by input data
parameters, the trial data records generated from the latter
will be inserted in the new trial data file starting at the
location that would have been occupied by the first deleted
record. A record may thus be replaced by submitting a
DELETE parameter followed by the input .data parameter(s)

to generate a new trial data record. :

" PARAMETER TERMINATOR RECORDS

The user may set up or amend several trial data files in a
single run by submitting several sets of input parameters.
The END parameter for each set must be separated from the

I c Data Processing Publications
: L title 1900 DRIVER ' part chapter g bage 35

control parameters of the next set by two parameter terminator
records. These records will cause the program to suspend

at the end of a run and output a console message indicating
"that it is ready to be restarted.

The two terminator records are punched as follows

Column 1
First record: hkkk
Second record: Blank

THE TRIAL DATA FILE

The trial data file created by TDSU contains all the trial
data required for one GBT run. In order to set up one file,
the user must submit a set of control parameters (page 4)
followed by the input data parameters to create the following
trial data records, in sequence.

1 A File Header record

2 For each bead test path (i.e. one test on a bead or
a logical sequence of beads):

(a) A TAB Header record, followed if necessary by
one or more TAB Continuation records

(b) One or more Request Header records, in each case
followed by one or.more Request Continuation
records 1if necessary.

3 An end-of-file record.

The purpose and format of these records is described below.

ICL

Data Processing Publications

titltt 1900 DRIVER part chapterg page 53

" File header record

DESCRIPTION

This record indicates beginning-of-file.

LAYOUT

Word 0 Record length in words (always 5)
Word 1 Record identification (HVVV)
Words 2 to 4 Filler data (all zeroes)

" TAB Header record

DESCRIPTION

A TAB Header record, together with TAB Continuation records,
if required, defines the contents of a TAB and its associated
areas, with the exception of the TAB's request area. The
TAB areas set up by GBT from this data will be used for one
bead test path: since all manipulation of these areas will

be carried out by GBT and the beads in the test path it is
only necessary to specify the contents of the areas once.
Thus only one TAB Header record is required for each test path.
As the maximum size of a trial data record is 510 words, any
data in excess of this length which is required to define a
TAB must be set up in one or more TAB Continuation records
following the TAB Header record.

LAYOUT

Woxrd O Record length (<510)

Word 1 Record idenpification (TVvVvV)

ICL

Data Processing Publications

titte 1900 DRIVER part chapter g pagey,

Word 2

Word 3

Word 4

Words 5
to 9

Word 10

Word 11
onwards

Message identification. This consists of a
4-character identifier allocated by the user to
the bead test path. The identifier may be used
for selecting records for printing during a run
of Selective Print and may consist
of any four characters except ENDV.

Contents of logical terminal number field of
the TAB.

Bead number of first bead to be entered in the
bead test path.

The values to which accumulators 4 to 7 and 0
respectively are to be set on entry to the first
bead in the bead test path.

- Contents of the permanent priority field of

the TAB.

1 Associated store cell definitions (for
GBT dynamic store simulation only).

There are parameters for associating one
Input/Output and/or one Additional Core
area with the TAB for initial entry to
the bead test path. -

A two-word .entry is required in each case,
as follows:

Word 0 Area Type:

TOVA indicates store cell used as
Input/Output area

ACAV indicates store cell used as
Additional Core area

ICL

Data Processing Publications

title

1900 DRIVER

L4

part chapter 8 page 35

Word 1 The block number of the
imaginary block from which
simulated allocation of this
cell will take place under GBT.
This number is known as the
Chain link number: for further
details see the section
Dynamic store simulation in
the GBT specification, ‘

Area data definitions

The remainder of the record consists of
these definitions, which specify the-
data to be held in the Input/Output,
Message, and Additional Core areas
associated with the. TAB on entry to the ™
bead test path. |

Each area data definition is set up as
follows

Word 0 Area type:

MAVD indicates Message area

IOAD indicates Input/Output
area

ACAD indicates Additional
Core’ area C

Word 1 The displacement in words from
the beginning of the specified
area to the first word of user
data. This must be >4 as the
first four words of the area will

ICL

Data Processing Publications

titte 1900 DRIVER part chapter ¢ page 34

be reserved to conform with
Driver standards.

Word 2 The length of the data submitted
for insertion in the area, in

words.

Word 3 Data to be held in the area.
onwards

TAB Continuation records

DESCRIPTION

If the area data definition for a TAB and associated areas
cannot all be contained in one TAB Header record, excess

data follows in one or more TAB Continuation records. Note
that neither TAB Header nor TAB Continuation records need

be filled to capacity and thus the contents of different

areas can be defined as separate records in the trial data

file. This method of file organization is extremely convenient
if it later becomes necessary to amend the file.

LAYOUT

Word 0 Record length (25, <510)

Word 1 Record identification (TCVV)

Word 2 Data continuing from where it was left off in
onwards the previous record. Data may be continued from

one record to another at any point.

ICL

Data Processing Publications

title 1900 DRIVER part chapter 8 page 37

Request Header records

DESCRIPTION

The Request Header records specify the various requests
expected from the beads in the bead test path, in the order
that these requests are expected to be issued. Each record
specifies one expected request, and indicates to which bead,
if any, control is to be passed following that request.

If a peripheral input request is expected, it also holds
further data which GBT will insert into the Input/Output area
of the TAB to simulate servicing of the request.

The maximum length of a Request Header record is 510 words.
If this is not sufficient to hold all the data required .
(that is, a relatively large peripheral input transfer is to
be simulated) the data is continued on one or more Request
Continuation records.

LAYOUT

Woxd 0 Record length (25, <510),

Word 1 Record identification (RVVV),

Word 2 Request code expected to be issued by a bead at the
point in the bead test path for which the record
is submitted.

Word 3 Identity of the next bead to be entered, or four
space characters vvvv if the bead test path is
to be terminated.

Word 4 If peripheral input is not to be simulated, four

zexroes 0000,

ICL

Data Processing Publications

titte 1900 DRIVER part chapter g page 38

If peripheral input is to be simulated, the length
of the data held in Word 5 onwards.

Word 5 Data to be placed in the Input/Output area of the
onwards TAB to service the expected peripheral input
request.

DESCRIPTION

If the data required to service a peripheral input request
cannot all be held on the appropriate Request Header record,
it is continued on one or more Request Continuation records.
‘Neither Request Header or Request Continuation records need
be filled to capacity before continuing data on the next
record.

LAYOUT

Wordlo Record lenéth, in words (25, <510)
Word 1 Record identifier (RCVV)

Word 2 Further data

onwards

" End-of-=file record

DESCRIPTION

The End-of-file record concludes the trial data file.

Data Processing Publications .
l L tite 1900 DRIVER part chapter g page 34

LAYOUT
Word 0 Record length (always 5 words)

Word 1 Record identifier (ENDV)

Words 2 to 4 Filler data (all zerxroes)

- OPERATING INSTRUCTIONS

In the following narrative, #XJBn signifies either #XJBA

or #XJBB, depending on which version of the program is being.
used.

Narrative Console Message

1l Load #XJBn

2 | Load the required magnetic tape decks
(#XJBA) or direct access storage_
units (#XJIBB)

3 To activate the program:
(a) for-'parameters on paper tap;,
inputi_ GO#XJBn 20 -
(b) for parameters on cards, input: GO#XJBn 21

4 (a) If the run has been successful,
the program will output the
message ' HALTED:- OK

If a further run is required,
continue from stage 2 above.

(b) If the run has been .unsuccessful
due to an error in the control
parameters, the program will

Data Processing Publications
I tittt 1900 DRIVER part chapter g Page ,,

Narrative Console Message
output the message HALTED:- PROGRAM
TERMINATED

If a further run is required,
input: GO#XJBn 23

(c) If it becomes necessary to
abandon the current run for one
of the reasons listed under
Exceptions conditions page 41,
either of the following actions
may be taken:

1 If no further rumsare required
abandon the program,

2 If the program is to be
restarted for another run,
input: GO#XJBn 23

(d) If the run has been unsuccessful
for any other reasons, a post
mortem of the run may be
obtained by inputting GO#XJBn 24

On completion of the post
mortem, the program will output
the message HALTED:- PM

The program .may then be
abandoned or restarted as in
(c) above.

5 If the program has been restarted by
GO#XJBn 23, it will indicate that it
is ready to commence the next run by
outputting message HALTED:- NE

Continue from stage 2 above.

ICL

Data Processing Publications

tite 1900 DRIVER part chapter g page 43
Exception conditions
Message Reason Action

DISPLAY :- NEW
FILE EXTENDED

HALTED:- BS

HALTED:- CE

HALTED:- ED

HALTED:- HKnn

HALTED:- LE

HALTED:- LOAD
EDS*nnnnnn

New trial data file has been
extended by 80 blocks

Bucket size of new trial data
file does not equal that
described in the Run
Descriptor control parameter
(XJBB only)

Card reader error

File not successfully
renamed (XJBB only)

Housekeeping exception
condition: nn_éives the
contents of word 11,
character 0.

Line printer error

File opened in wrong
cartridge (#XJBB only)

None required

GO #XJBB or .
abandon current
run

GO #XJBn or -
abandon current
run

Abandon current
run

GO #XJBn or
abamdon current
run

GO #XJBn or
abandon current
run

Put correct
cartridge
#nnnnnn lowest
on line and
GO#XJBB

ICL

Data Processing Publications

title 1900 DRIVER part chapter g Page 4,
Message Reason Action
HALTED:- LOAD File opened on wrong tape Put correct
TSN*nnnnnnnn (#XJBA only) tape #nnnnnnnn

lowest on line

and GO#XJBA
HALTED:- MT Failure to open specified ' Abandon current
file (#XJBA only) run
HALTED:- TE Tape reader error GO #XJBn

or abandon
current run

' LINE PRINTER OUTPUT -

The printed output from Trial Data Set Up is basically a v
listing of all the input data and input amendment parameters
submitted to the program together with any program generated
reports concerning the input.
The line

TRIAL DATA SET UP dd/mm/yy

is output at the beginning of the run, dd/mm/yy being the
date of the run.

If the control parameters are valid, the different types of
information given in these pafameters (run type, file names
etc.) are output against the appropriate headings as one or
more lines of print. - If a control parameter contains an
ertor, two lines are output to the printer:

1 The image of the parameter in error

2 The appropriate error code (see page 46)

Data Processing Publications

title 1900 DRIVER . part chapter 8 page 43

Two lines are then output to act as heading lines for the
listing of the input parameters, thus:

RECORD INPUT RECORD IMAGE REPORT
NUMBER CH.1 ' ITEM CODE

The significance of these headings for each parameter listed
is as follows.

RECORD NUMBER is the sequence number of the parameter as
it occurs within the raw data input (one
parameter per record).

CH.1l/INPUT Each parameter/record image is printed out
RECORD IMAGE under the INPUT RECORD IMAGE heading, '
starting immediately below the CH.l heading

Nothing will be printed out under the remaining headings
unless the parameter listed contains an error. In this case, —
the headings have the following significance

[ITEM The number printed out. under this heading is
in effect the sequence number of the item

in error within the parameter, reading from
left to right. For example, if a parameter
image is followed by the figure 3 in the
ITEM column, this indicates that the third
REPORT 4 item from the left is the item in error.

CODE An error code is printed out under this
heading, and indicates the type of error which
has occurred. A full list of error codes

L is given on.page 46.

Note: Vetting of a parameter stops as soon as an error is
encountered. Each parameter containing an error should
therefore be carefully checked for subsequent errors before.

I CI Data Processing Publications

L

being re-submitted.

Warning lines: output record padded or truncated

TSDU always sets up trial data records of the size specified
by the user in the Run Descriptor parameter (files with fixed
length records) or Record Header items (files with

variable length records). If the total length of the data
submitted to form a trial data record (including data
expressions individually padded by the program) is greater
or less than the specified length of the record, the record
will be padded or truncated accordingly before being written
to the trial data file.

If a trial data record has been padded the listing of the
parameters to set up that record will be immediately followed
by the line

OUTPUT RECORD PADDED **#*

If the record has been truncated, the line
OUTPUT RECORD TRUNCATED *#%**

is output.

CLOSEDOWN FORCED error message

If, during an amendment run, input amendment parameters are
submitted in the wrong order, the program will ignore all
parameters submitted for the current amendment after the
first misplaced parameter.

Closedown is initiated when the program encounters an input
amendment parameter specifying a trial data record which has
already been deleted or copied to the new trial data file.

The parameter causing the error is listed, followed by the y 'a.g

Data Processing Publications
title 1900 DRIVER part chapter 8 page 45

CLOSEDOWN FORCED BECAUSE OF AN ERROR IN ABOVE RECORD
and

FOLLOWING PARAMETERS IGNORED

The remaining parameters for the file are then listed,
followed by the end reports for the run (see below).

End reports

Four statistical reports are output at the end of each run,
as follows:

1 Number of card or paper tape records read in, includiﬁg
‘the END record.

2 Number of valid records output to the new trial data
file. In an amendment run, this includes records

~ copied across from the old file.

- 3 Number of buckets or blocks output to the new trial
data file (includes end-of-file bucket).

4 Number of card or paper tape records containing errors.

Post Mortems

The operator can obtain a post mortem of an unsuccessful

run at the point of failure, using entry point 24 (see
Operating Instructions, page 40). The program will output
the following information on the line printer.

1 State of accumulators

2 All lower data areas

Data Processing Publications

titte 1900 DRIVER part chapter 8 page46

3 The program area

4 Contents of housekeeping buffers

5 Contents of output buffer for new trial data file.

Error codes

ERRORS IN CONTROL PARAMETERS

Invalid Run Description parameter

Error code Reason

A First card or paper tape record is not a Run
Description parameter

B Characters 5 or 11 not comma (,)

C Character 6 not F ox V

D | Characters 7 to 10 not numeric

E ' Specified block size exceeds 1024 words (#XJBA)'

Specified buqket length not 128, 256, 512 or
1024 words (#XJBB)

F Characters 12 to 15 not numeric
G Invalid block size (#XJBA)
Invalid record length (#XJBB)

H Character 16 not space (V)

Data Processing Publications

tite 1900 DRIVER part chapter g page 4

Other control parameter errors

Error code Reason
J IN parameter not found when expected
K ouT paraﬁ;ter not found when expected]
L REName or PEND parameter not found when expected
M Invalid filename
N Invalid file generation number

or

Invalid Eape serial number (#XJBA)
or

Invalid cartridge serial number (#XJBB) e

o Tape serial number not octal (#XJBA)
or

Cartridge serial number not octal (#XJBB)

P - Tape serial number exceeds #37777777 (#XJBa)

Cartridge serial number exceeds #777777 (#XJBB)

Q Separator character not comma(,)

Invalid input data/input amendment parameters
Error code Reason
01 Invalid item type

02 Repetition factor outside permitted range (2 to 9)

Data Processing Publications
I title 1900 DRIVER part chapter 8 page 48

Error code Reason

03 Implied length outside permitted range (002 to
999)

04 Beginning of data expression indicator (') not
found

05 End of data expression indicator (') not found

06 Non-numeric characters found in numeric data
expression

07 Invalid sign (i.e. not + or =)

08 Separator within data expression not comma (,)

09 Input parameters do not terminate with an END
item

10 First item in an input data parameter is invalid

because the preceding parameter is INSERT or
DELETE or consists of a NEW item. A Record
Header item is required.

20 Record length specified in a Record Header item
exceeds maximum record size specified in the
Run Descriptor control parameter

40 Octal string is more than 8 characters in length
41 Octal digit outside range 0 to 7
43 Pounds field not 1 to 5 characters in length

44 Pence field less than 2 characters in length

ICL

Data Processing Publications

tite 1900 DRIVER part chapter g page.,q

Error code

50

63

80

81

83

84

85

Reason
Decimal value not within range + 223

Sterling value outside range - £83886.08 to
+ £83886.07

Bucket/block and record number specified in an
input amendment parameter is invalid

Second bucket/block and record number specified
in a DELETE parameter is invalid °

Bucket/block and record number specified in
an input amendment parameter is out of
sequence

Second bucket/block and record number specified
in a DELETE parameter is out of sequence

Insertion of data suppressed because of error
in INSERT parameter

\ Data Processing Publications !
title 1900 DRIVER part chapter 8 page 50

SDAD

SDAT

SUBROUTINE GROUP NAME
SDAD (direct access)

SDAT (magnetic tape)

VERSION

Mark 1

" TITLE

General Bead Tester (GBT)

COMPONENT ROUTINES

HDRGBTINTM (SDAT) HDRGBTINTD (SDAD)
HDRGBTTSU

HDRGBTBS

HDRGBTRA

HDRGBTCDOWN

HDRGBTPMTM

GCOREPRINT

ICL

Data Processing Publications
tite 1900 DRIVER part chapter 8 page 51

HARDWARE REQUIREMENT

5K words of main store (not including store occupied by beads
under test, GBT Master routine, and user defined constants and
tables).

1 or more direct access storage units (SDAD)

2 magnetic tape decks (SDAT)

1 card reader or paper tape reader

DESCRIPTION

General

General Bead Tester is a set of routines which enables beads
to be tested individually or.in groups within a batch
Eyocessing environment, Beads can be tested yithout the_need.
to amend any of their constituent instructions or statements,
and without any of the files or communication devices required
for real time operation being on-line.

Bead testing is carried out by running the beads to be tested
under GBT instead of Driver. A bead testing program
incorporating GBT is assembled by consolidating the GBT routines
with the beads to be tested, the GBT Master routine, and
magnetic tape or direct access housekeeping, as appropriate.

The GBT Master routine is a simplified version of the single-
threading Driver Master routine and is described in the section
G eneral Bead Tester Standards, page 55.

The unit of testing under- GBT is a bead test path consisting
of a bead or logical sequence of beads to be tested. During
the operation of the test program GBT initiates and monitors '

I CI Data Processing Publications
title 1900 DRIVER part chapter g Page g 2

the execution of one test path at a time. In each case,

parameters and data for processing by the beads in the path
are initially set up in a TAB and the appropriate associated
area(s) respectively, using trial data input from a file
previously set up in a TDSU run. GBT then causes the first
bead in the path to be entered: thereafter it passes control
between the beads in the path in exactly the same manner as
Driver and simulates all other Driver services requested by
them. The reaction of the beads to the trial data is
recorded by writing the contents of the TAB and associated
areas to an output file on each entry to and exit from a bead
This file may subsequently be edited and printed out for
analysis by the programmer using the Selective Print program.

Method of operation

As explained in the description of TDSU (page 32) the trial
data submitted to GBT for each bead test path to be executed
in a particular run consists of a TAB Header record and
Request Header records, each record being followed by
continuation records where necessary.)

GBT uses each TAB Header record to perform the Driver
simulation required for initial entry to a bead test path.
Input of a TAB Header record first causes GBT to write a
Bead Test Path Entry record to the output file: this record
gives the bead test path's message identification as defined
in the TAB Header record, and hence provides a convenient
point of reference when the file is subsequently printed out.
GBT then uses the remaining trial data contained in the TAB
Header record to set the TAB and associated areas for entry
to the first bead in the ‘test path. The TAB is thus set to
request entry to the appropriate bead, whilst the associated
areas are set to contain data of the type that will be presented
to the bead during its operation in the live on-line program.
Before passing control to the specified bead, GBT writes the

I c Data Processing Publications
L titte 1900 DRIVER part chapter g page 53

current contents of the TAB and associated areas to the
output file in the form of first TAB input record for the
path. A further TAB input record is thereafter generated

and output each time a bead is entered or re-entered during
the subsequent execution of the test path.

Each time a bead issues a request, a Request Header record

is read in from the trial data file. The expected request
from the bead, as specified in the Request Header record,

is compared with the request actually issued by the bead.
Provided that the actual and expected requests are the same,

the contents of the TAB and associated areas on exit from

the bead are written to the output file in the form of a

TAB output record.

The main information provided by GBT during successful execution
of a bead test path hence consists of alternate TAB input

and TAB output records. If an error occurs, for example

a mismatch between actual and expected requests, execution

of the bead test path is terminated and a Bead Test Path Exit
record is output giving the reason for termination. This

is followed by a 'Record ignored' record for each record read

in from the trial data file until a new TAB Header record

is encountered. If no error occurs, a Bead Test Path Exit
record indicating successful termination of the test path is -
output.

Before and/or during the execution of each test path, GBT
simulates Driver servicing in the following four ways.

1l Communications input is simulated by setting up the Message
area of the TAB before entry to the test path according
to data contained in the TAB Header record submitted for
the path.

2 Peripheral input is simulated by either:

Data Processing Publications

IC

filt 1900 DRIVER part chapter g page 54

(a) Setting up the Input/Output area in the same manner
as the Message Area before entry to the bead test
path.

(b) Using trial data held in the Request Header and any
Request Continuation records submitted for each |
print in the run where peripheral input requests
are expected. The trial data held in the record (s)
submitted for each peripheral input request is read
into the Input/Output area of the TAB. "

3 GBT reacts to requests for peripheral. or communications
output by outputting the current contents of the TAB
and associated areas (i.e. generating a TAB output
record in the normal manner) and passing_control to the
next bead. Output requests are thus in effect ignored.
However, since entry to any bead other than the Error
Recovery bead implies that the preceding request has been
successfully serviced, the execution of the beads in
the test path is uneffected.

A request for TAB deallocation always causes termination
of the current bead test path, even if, due to a
programming error, the request also specifies transfer
of control to another bead.-

4 Dynamic store allocation and deallocation may be simulated
under GBT, although GBT only supports single threading
operation and hence uses a fixed store system. Where
store requests are issued in a bead test path, the Input/
Output and Additional Core areas allocated in the Master
routine are used by the beads instead of the requested
cells,

Although GBT does not allocate or deallocate store, it
does carry out a number of validity checks on store
requests. Full details are given in the section

ICL

Data ﬁfocessihgj Publications

title 1900 DRIVER part chapter8 page s5g

Dynamic store simulation, on page 57 .

Ingut

Main input to GBT consists of a magnetic tape (SDAT) or direct
access (SDAD) trial data file previously set up in a TDSU run.’
Parameters submitted on cards or paper tape control the GBT run.

Outgut

Output consists of a GBT output file on magnetic tape (SDAT)
or disc (SDAD)} ready for input to Selective Print.

GENERAL BEAD TESTER STANDARDS

Store organization

The following standards apply:

1 As in all versions of Driver, a Message area of the
maximum size required must be permanently allocated to the
TAB,)

2 Since GBT works in single threading mode, the Input/Output
and Additional Core areas, if required, must also be
permanently allocated to the TAB and must be of the
maximum size required during the run.

3 Where dynamic store allocation is to be simulated, Driver
standards must be followed in that:

(a) Store requests for allocation of two cells of
store must request these cells in ascending order

Data Processing Publications
titte 1900 DRIVER part chapter g page g¢

of block number

(b) A maximum of one Input/Output area and one
Additional Core area may be requested during
the processing of a message.

GBT Master routine

A GBT Master Routine is essentially a simplified version of
the Master routine required by the single threading Driver.
An additional table is required if dynamic store allocation
is to be simulated. The program name and priority of the

complete program will be as defined by the user in this routine.

DEFINING THE TAB AND ASSOCIATED AREAS

Within a GBT Master routine, the TAB and associated areas
are defined under the following common blocknames.

Area Location
TAB HDRGBTTAB
Message area ' HDRGBTMA
Input/Output area HDRGBTIOA
Additional Core area - HDRGBTACA

Words 22 and 23 of the TAB must be preset as follows:

Fixed store operation ; Simulated dynamie
only store allocation
Word 22 Start address of Input/Output area -1

Word 23 Start address of Additional Core area -1

Data Processing Publications

title 1900 DRIVER part chapter 8 page 57

Word 0 of the Message, Input/Output and Additional Core areas
must in each case be set to contain the length in words of
the area.

USER - DEFINED CONSTANTS AND TABLES

All programs

The following constants and tables must be defined as described
for the single-threading Driver Master routine in Chapter 4.

1 Highest bead number constant (HDRBDCONST)
2 Bead branch table (HDRBT1)

3 Facility code constant (HDRRACONST)

Dynamic store simulation

In order to carry out simulated store allocation and deallocation,
and vet beads requests for these services, the only information
required by GBT is the size of the cells that will be set up

in each block of the common pool for the operational Driver
program.

This requirement is met by setting up a table of one word
entries, one entry per block, under the common area blockname
HDRSAQ. The entry for each block gives the length in words

of each cell that will be defined within that block when the
common pool is set up. The entries must be defined in
ascending order of block number: for example, to simulate

the presence of the common pool described in Chapter 2 (page 22).
the locations HDRSAQ to HDRSAQ+3 would be set as follows

ICL

Data Processing Publications

tite 1900 DRIVER part chapter g page &g
Location Contents
HDRSAQ 256 (Block 0)
HDRSAQ+1 500 (Block 1)
HDRSAQ+2 64 (Block 2)
HDRSAQ+3 100 (Block 3)

As mentioned in the section Store requests, Chapter 3, a bead
requesting allocation of a store cell by Driver does not
explicitly specify the length of cells required, but instead
gives the number of the block comprising cells of the required
size. This block number, otherwise known as the chain link
number, is used by GBT as a modifier in order to access the
appropriate entry in the table and hence determine the size

of cell requested.

Request codes

The following request codes cause action to be taken by GBT
in addition to its normal functions.

TAB DEALLOCATION

If TAB deallocation (bit 10 = 1) is specified, the bead test
path is terminated.

PERIPHERAL INPUT

If the request code is found to have the facility code 1, and
the Request Header and any Request Continuation records
submitted for the request contain trial data for processing

Data Processing Publications

ICL

titte 1900 DRIVER part chapter g page 59

the data is placed in the Input/Output area of the TAB
starting at the location specified by the displacement value
in word 3 of the TAB.

STORE REQUESTS

Request codes 3010 and 3020 (allocate and deallocate store
respectively) cause GBT to initially check whether the program
has been set up to perform dynamic store simulation. GBT
will then check to ensure that requests for store allocation
and deallocation conform to the following standards.

Allocation requests

1l Allocation of a store cell or cells must not have been
previously requested during the execution of the bead
test path.

2 The size of cell requested for use as a particular area
type (i.e. as an Input/Output or an Additional Core area)
must not exceed the maximum length defined for that area
in the GBT Master routine.

3 The destination addresses specified in the request must
be 23 or 24.

Double allocation requests

1 Where two cells are requested for allocation, the cells
must be requested in ascending order of block number.
In other words the block number for the first cell
requested (word 1 of the TAB) must be less than the
block number of the second cell requested (word 3 of the
TAB) .

Data Processing Publications :
I L titte 1900 DRIVER part chapter g page ¢

2 The destination address in word 2 of the TAB must be
different from that in word 4 of the TAB.

The destination address(es) of the cell(s) to be
deallocated must be 23 or 24.

Deallocation requests

As (2) above.

Overlay

No overlay facilities exist within General Bead Tester and
hence all the beads under test must be store resident at run
time.

Entry to General Bead Tester

The magnetic tape version of GBT (subroutine group SDAT)
is entered from the GBT Master routine on one of the following
instructions.

If the input parameters are on paper tape:

BRN HDRGBTINTIM

If the input parameters are on cards:

BRN HDRGBTINTIM+1

Similarly, the direct access version (subroutine group SDAD)
is entered as follows:

Input parameters on paper tape:

BRN HDRGBTINTD

ICL

Data Processing Publications

Input parameters on cards:

BRN HDRGBTINTD+1

CONTROL PARAMETERS

Up to four control parameters are required for each GBT
program run, Each parameter is punched as a seperate card
or paper tape record, starting at column 1. The parameters
are described below in the order in which they must be
submitted.

IN

This parameter provides the information required by the
program in order to open the input (trial data) file.

BASIC FORMAT

In its basic form, an IN parameter will simply specify the
name of the input file thus:

IN(filename)

where filename is the name of the input file

EXTENDED FORMATS

If required, for example where several generations of trial
data file have been previously created, the user can specify
the file in more detail. The full format is as follows:

Data Processing Publications |
title part chapter 8 page -

1900 DRIVER 62

For an input file held on magnetic tape:
IN(filename (fgn/ren) ,tsn) .

where

fgn is the generation number of the file.

rsn is the real sequence number

ten 1is the tape serial number, in octal. The number may
be punched with or without a preceding * or #.

For a direct access input file:
IN(filename (fgn) ,csn)

where

~

fgn is the file generation number of the file,

esn is the cartridge serial number, in octal. The number
may be punched with or without a preceding * or #.

The user may either include all these additional parameter
fields, as shown above, or he may punch any one or any
combination of them, for example:

IN(fzZ lename(/tsn) ,tsn)

IN(fZ lename ,tsn)

IN(filename ,fgn))

I c Data Processing Publications :
L title 1900 DRIVER part chapter g bage (3

OouT

This parameter provides the information required by the
program to open the output file.

BASIC FORMAT -

In its basic form, an OUT parameter will simply specify the
name of the output file to be opened, thus:

OUT (newfile)

where newfile is the name of the file to be opened. It wili
hence also be the name of the GBT output file created in the
course of the run unless a REName parameter is used (page 64).

EXTENDED FORMAT

If the file to be opened is held on magnetic tape, the user
may additionally specify its file generation number fgn, reel
sequence number rsn and tape serial number tsn as described
for the IN parameter (page 61/62), The full format of an
OUT parameter for a magnetic tape file will thus be:

OUT (newfile (fgn/ren) ,tsn)

As in the case of the IN parameter, the user'may punch any one
or any combination of these additional fields.

The format of an OUT parameter to open a direct access file
is as follows:

OUT (newfile (fgnl=fgn2) ,csn)

ICL

Data Processing Publications

title 1900 DRIVER part chapter g Page o,
where
fgn1l is the existing file generation number of the file.
fgn2 is the new generation number to be given to the file
-when it is opened. Permitted range is 0 to 4095
inclusive.
Note:- 1If fgnl is omitted, the highest generation
of the file will be opened and its generation
number altered to that specified in fgn2
If fgn2 is omitted, the file generation
number specified as fgnl will remain unchanged
If both fgnl and fgn2 are omitted, the file
will be given file generation number 4095.
esn is the cartridge serial number, in octal. The

number may be punched with or without a preceding
* or # and must be in the range #0 to #777777.

As in the case of the IN parameter, the user may either
include all these fields, or any one or any combination of
them, for example:

OUT (newfile,csn)

OUT (newfile (=fgn2) ,csn)

OUT (newfile (fgnl))

REName

This parameter may optionally be included in order to rename
the file newfile specified in the OUT parameter.

Data Processing Publications
tite 1900 DRIVER part chapter 8 page 65

BASIC FORMAT

In its basic form, a REName parameter will simply specify
the new name to be given to the output file when it is opened,
thus:

REN (newname)
where newname is the new name to be given to the file (up to
12 alphanumeric characters, hyphen or spaces, starting with
an alphabetic character).
EXTENDED FORMAT
As with the previous control parameters, the user may give
further details if these are required. The full format of
the REName parameter is as follows:

For a file held on magnetic tape:

REN (newname (fgn/rsn) ,retn)

where

. fgn is the file generation number to be given to the
renamed file, Permitted range is 0 to 4095: if
this field is omitted, 0 is assumed.

rsn is the reel sequence number to be given to the
renamed file. Permitted range is 0 to 4095: if
this field is omitted, 0 is assumed.

retn is the retention period in days to be allocated to

the tape on which the file is held. Permitted range
is 0 to 4095: if this field is omitted, 4095 is
assumed.

Data Processing Publications

title 1900 DRIVER part chapter g page g¢¢

For a direct access file:

REN (newname , (fgn/vn))

where

fgn is the file generation number to be given to the
renamed file. Permitted range is 0 to 4095: if
omitted, 0 is assumed.

vn is the version number to be given to the renamed

file. Permitted range is 0 to 4095: if omitted,
0 is assumed.

As implied above, the user may specify any one or any
combination of these additional fields, provided that the
fields specified are relevant to the type of file (magnetic
tape or direct access) in use - for example:

REN (rnewname ,retn)

REN (newname (/vn))

REN (newname (fgn) ,retn)

PEND

This parameter signifies the end of the control parameters.

FORMAT

PEND

ICL

Data Processing Publications

title

1900 DRIVER

part chapter g Page 67

OPERATING INSTRUCTIONS

Narrative

Load the program

Load the required magnetic tape
decks or direct access storage
units

To activate the program, input:
where program name is the name
of the test program and znn is

the chosen entry point,

The program will output:

where nnnn is the mark number

- of the GBT subroutine group

and type is either TAPE or
DISC depending on whether
group SDAT or SDAD is present
within the program.

(a) If the run has been successful,
the program will output the message:

If a further run is required,
continue from stage 2 above.

(b) If the run has been
unsuccessful due to an error
detected by GBT, the program will
output:

Console Message

GO program name nn

DISPLAY:- GENERAL
BEAD TESTER MK nnnn

type

HALTED:-0OK

DISPLAY:-error message
HALTED:~-27%

I CI Data Processing Publications
title 1900 DRIVER part chapter 8 page 68

Narrative Console M essage

The action to be taken is described
in the section Exzception conditions
below.

5 If a post-mortem of the run is
required, input: GOprogram-name25

The program will output the message: HALTED:-PM
and abandon the run.

6 To abandon the run without taking
a post-mortem, input: GOprogram-name24

The program will halt with
the message: HALTED: -OK

Exception conditions

M essage Reason Aetion

DISPLAY:-GENERAL BEAD Word 1 of first record Abandon the run

TESTER-WRONG INPUT of input file is not

FILE HVVY,i.e. first record

HALTED:-Z%22 of .the file is not a
valid file header
record

DISPLAY:-OUTPUT FILE Output file has been None required
EXTENDED extended by 80 blocks
(SDAD only)

ICL

Data Processing Publications

tite 1900 DRIVER

part

chapter g page ¢gg

Message

HALTED:-LOAD
EDS*nnnnnnnn

HALTED: -LOAD
TSN*nnnnnnnn

Reason

File opened on wrong
cartridge (SDAD only)

File opened on wrong
tape (SDAT only)

Action

Put correct
cartridge
fnnnnnnnn lowest
on line and .
GO program name

Put correct
tape #nnnnnnnn
lowest on line
and

GO program name

Data Processing Publications
tite 1900 DRIVER part chapter g page 70

#XIBC

$#XJIBD

NAME
#XJBC (magnetic tape)

#XJIBD (direct access)

VERSION

Mark 1

TITLE

Selective Print

HARDWARE REQUIREMENT

5248 words of main store (#XJBC)
5056 words of main store (#XJBD)

1 card reader or 1 paper tape'reader
1 line printer (120 chs. minimum)

1l or 2 magnetic tape decks (#XJBC)

1 or 2 direct access storage units (#XJBD)

Data Processing Publications
title 1900 DRIVER ‘ part chapter g page 73

'EXECUTIVE PRIORITY

#XJBC: 70

#XJIBD: 50

DESCRIPTION

General

‘The function of the program is to edit and print the output
produced by General Bead Tester. Parameters submitted by
-the user on cards or paper tape specify which records and
fields within records are to be printed from a GBT output
file on magnetic tape (#XJBC) or disc (#XJBD).

Two modes of operation are available: select mode and compare
mode.

SELECT MODE

Select mode enables complete records and individual fields
within records to be selected for printing from a GBT _
output file. Parameters specifying the records whose contents
are to be printed out are submitted in the order that these
records appear within the file.

COMPARE MODE

If one or more beads in a bead test path are amended following
the initial run under GBT, it will often be necessary to re-
submit the same input data to the test path to determine
whether amendments to an individual bead or beads within the
path have been successful. A second and possibly further GBT

ICL

Data Processing Publications

titte 1900 DRIVER part chapter g bPage -,

runs using the same input data may thus be required. Use of
the compare mode of Selective Print reduces the time required
to check the results of each run against those of the
previous one.

In- compare mode, the latest file produced by GBT in respect
of a particular series of bead test paths is compared with
that produced in a previous run. Differences in file header
records are ignored, since these always differ between one
run and another. However, data following the file header
record is compared on a record for record basis. As soon as
a discrepancy is detected, compare mode ceases and the
program goes into select mode. The remainder of the latest
GBT output file is printed out selectively or in full, as
directed by the input parameters.

Input

Input to the program for a select run consists of the GBT
output file to be printed together with parameters held on
cards or paper tape. The parameters consist of a set of

Header records which describe the run, followed by sets of
Select and Edit records and concluding with an end record.

For a compare run, input is as above with the addition of a
further GBT output file produced during a previous test.
This file is known as the compare file.

Output

Output consists of a line printer listing of the data
selected from the GBT output file, together with reports on
any errors detected during the GBT run and during input to
Selective Print.

Data Processing Publications '
titte 1900 DRIVER ‘part chapter 8 page 73

HEADER RECORDS

Input data submitted to the program on cards or paper tape
begins with two or three header records, depending on the
type of run. The records each centain a control parameter,
and are describéa below in the order that they are submitted.
AIT records are punched starting at Column 1.

Run description

Either:
SELECT (for a select run)
or: COMPARE (for a compare run)
INA
For #XJBC:
INA (newfile (fgn) ,tsn)
For #XJBD:
INA (newfile (fgn) ,cen)
where
newfile is the name of the GBT output file.
fgn is the generation number of the file.

It may be omitted, in which case the
brackets enclosing it must also be
omitted.

Data Processing Publications
titte 1900 DRIVER part chapter g page 74

tsn is the tape serial number of the file.
It may be omitted, in which case the

preceding comma must be omitted.

esn is the cartridge serial number of the

- file. It may be omitted, in which case

the preceding comma must also be
omitted.

INB (Compare run only)

For #XJBC:
INB(oldfile(fgn) ,tsn)

For #XJBD:
INB(oldfile (fgn) ,csn)

where oldfile is the name of the compare file and all other

parameters are as described for INA.

SELECT AND EDIT RECORDS

The header records submitted to Selective Print are
immediately followed by the first Select record and its
associated Edit records. Each Select record submitted to
the program can select GBT output records for printing in
one of three ways.

1 Select all records
2 Select records by message identification

3 Select records by record type

Data Processing Publications

titte 1900 DRIVER ~-: part chapter 8 page 75

In each case, editing of the specified records is carried
out according to the Edit records following the Select
record.

Select records

The format and use of the records required to carry out the
three types of selection mentioned above are described below.

SELECT ALL RECORDS
Format

SELECTVALL
Use
The. GBT output file is printed from its current position;
each GBT output record being edited where required according
to the Edit records following the Select record. Note that
no further sets of Select and Edit records can be submitted
in this case, because Selective Print reads the file
serially. '

SELECT RECORDS BY MESSAGE IDENTIFICATION

Record format

Either: SELECTVMSG = aaaa
or SELECTVMSG = aaaa,bbbb
or SELECTVMSG = aaaa, END

where aaaa and bbbb are message identifications.

Data Processing Publications
tite 1900 DRIVER part chapter 8 page 76

a

Use

The User will have assigned a 4-character message identification
to each bead test path executed by GBT. The identification

for each test path is set up in the course of generating the
TAB Header record for the path durihng a TDSU run (see TDSU
specification, page 34).

On reading in a Select record in one of the above formats,

Selective Print skips through the GBT output file until the

Bead Test Path Entry record containing the specified message

identification is found. According to the format of the

submitted select record, Selective Print will then either

1 Select all GBT output records produced by execution of
bead test path aaaa.

2 Select all GBT output records produced by execution of
all bead test paths from aaaa up to and including the
Bead Test Path Entry record for bead test path bbbb.

3 Select all records in the file starting at the Bead
Test Path Entry record for bead test path aaaa.

In each case, the GBT output file is printed the specified pos

ition according to the Edit records following the Select
record.

SELECT RECORDS BY RECORD TYPE

Format
Either:- SELECTVREC=xxxx
or:- SELECTVREC=ZXZXL] g o s o ¢ « TTTX

n

Data Processing Publications
titte 1900 DRIVER part chapter 8 page 77

where zxxx is the record identification which was generated

by GBT when producing the output record(s) selected for .
printing. Up to 4 types of GBT output record may be selected
using the second format shown above. The identifiers for the
various types of record are as follows.

Record type Record identification
Bead Test Path Entry reco:x Svvv
TAB input records : Tivv
TAB output records TOVY
Bead Test Path Exit records EVVV
'Record ignored records IVVY

Use °

Selective Print skips through the GBT output filé until a record
of the specified type is found. This record, and all other
records of the required type(s) are printed out according to the
Edit records currently controlling prinﬁout until the file is
exhausted. Note that no further sets of Select and Edit .
records can be submitted in this case, because Selective Print
reads serially through the file.

Edit records

Edit records specify which fields of the selected GBT output
records are to be printed. Since each set of input parameters
{one Select record plus any required Edit records) are dealt
with as a unit, the order in which Edit records occur within
each set is of no importance. '

ICL

Data Processing Publications

tite 1900 DRIVER part chapter 8 page 78

For editing purposes, the fields within GBT output records
are classified into the following six types:

1 Request area of TAB (words 0 to 8)

2 Remainder of TAB (words 9 to 27)
Fields within TAB
input and TAB
output records

omm—

3 Message area

4 Input/Output area

s N i’ s s il it nt P Nt sl Nt st

5 Additional Core area

6 All other fields (All fields within
Bead Test Path Entry,
Bead Test Path Exit,
and Record Ignored
records)

An Edit record which is submitted to control the printing of a
particular GBT output record or set of records can specify any
one of the following three print options. '

1 Print data in full. In this case, all records specified
by the preceding Select record will be printed in full.

[

2 Contracted printing. In this case, the printing action
taken depends on the type of field being edited, as
follows. .

Type of field Aetion

Request area of TAB -
Printed in full
Remainder of TAB

Data Processing Publications .
titte 1900 DRIVER part chapter g page 79

Type of field Action

Message area Only words 0 to 23 of the

specified field are printed
out. Any further data is

)

)

Input/Output area ;
' ; ignored.

Additional Core area
All other fields Not printed.
The main benefit of this option is that it considerably
-reduces printing time by avoiding the need to print out the
full contents of the message, Input/Output and Additional
Core area fields in each TAB input and TAB output record
selected.
3 No printing. Where some fields within the selected
records are not required for analysis, the Edit records
submitted for them may specify that these fields are

not to be printed.
The format and use of the records required to edit the various
types of GBT qutput record are described below.
EDIT ALL SELECTED RECORDS
Format
Either:- EDITVALL

for full printing of all records specified in the preceding
Select record,

or:- EDITVALL (CON)

for contracted printing of all selected record.

1C

Data Processing Publications
tite 1900 DRIVER

part chapter 8 page 80

Use

The record specifies the action to be taken on all GBT output
records selected by the preceding Select record.

EDIT TAB INPUT RECORDS

Format

EDITVT1VFIELD = field-1(qualifier-1),field-2(qualifier-2),...
ceefield-n(qualifier-n)

where:-

field-1, field-2,,.,., field-n

qualifier-l, qualifier-2

qualifier-n

are each 2-character area
mnemonics specifying which
fields of the selected TAB
input records are to be
printed. The mnemonics for
each type of field are as
follows. '

RA Request area

TF Remainder of TAB

MA Message area

IO Input/Output area
AC Additional Core area

are statements specifying the
print option required in each
case. These statements may be

either:

Data Processing Publications
I L tite 1900 DRIVER - part chapter 8 page 81

CON (for contracted
printing of the

or

NO (for no printing

of the field).
Note that:

1 If no area mnemonic is supplied for a particular type -
of field, the field will not be printed.

2 If only one type of field is specified the comma is
omitted from the end of the fieldVqualifier expression.
Use
An Edit record of this type must be submitted when selection
of TAB input records is specified by Select record. This
must be done irrespective of whether selection is implicit :
(i.e. by message identification) or explicit (by record type) .
EDIT TAB OUTPUT RECORDS

Format

EDITVTOVFIELD = fZeld-1(qualifier-1),field-2(qualifier-2),
«eeofield-2(qualifier-n)V

ICL

Data Processing Publications

titte 1900 DRIVER 5 ' part chapter g page g2

where the supplied parameters are as described in the previous
section.

Use

As for TAB input records (see previeus section).

EDIT REST OF DATA

Format

Either:-
EDITVREST
for full printing of the selected records
or:-
EDITVREST (NO)

where printing of the records is not required

Use

An Edit record of this type must be submitted when selection
of any type of record other than TAB input and TAB output
records is specified by a Select record either implicitly or
explicitly. All Bead Test Path entry, Bead Test Path exit,
and Record Ignored'records selected by the preceding Select
record will be printed in full or ignored, as required.

ICL

Data Processing Publications
titte 1900 DRIVER ~ part chapter g page g3

END RECORD
Format

END

Use

This record is the last input parameter submitted for the run.
It must be followed by the standard end records i.e. one record
with four asterisks (****) in columns 1 to 4 followed by
either a blank card (input on cards) or two newline characters

_(input on paper tape).

OPERATING INSTRUCTIONS

In the following narrative, #XJBx signifies either #XJBC or
#XJBD, depending on which version of the program is in use.

Narrative Console Message'
1 Load #XJBx
2 Load the required magnetic

tape deck(s) (#XJBC) or

direct access storage

unit(s) (#XJIBD)

3 To activate the program:

(a) For parameters on paper
tape, input: GO#XJBx 20

(b) For parameters on cards,
input: GO#XJBx 21

Data Processing Publications

ICL

titte 1900 DRIVER part chapter g8 page 84

Narrative : Congole Message

4 (a) If the run has been success-
ful, the program will
output the message: HALTED:-HH

If a further run is

required, input: GO#XJBx 25
The program will indicate

that it is ready to re-

start by outputting the

message: HALTED:-HH

(b)Y If the run has been
unsuccessful, the program
will output DISPLAY:- error message
HALTED:- 22

Either abandon the run

immediately or first

initiate a post-mortem

by inputting: GO#XJBx 27

The completion of the

post-mortem is indicated

by the message: HALTED:- SP
The program cannot be

restarted in this case.

Exception conditions

Message Reason Action

DISPLAY:- PARAMETER Errpr in input Abandon run.
ERROR n header record,

Data Processing Publications '
l L title 1900 DRIVER } part chapter 8 page 85

Message : Reason Action

as defined by the
error code n (see
Error codes page

86) .
DISPLAY:-SELECTIVE First 8 characters Abandon run
PRINT - WRONG DATA of first input
HALTED:-Z32 - ' Header record are
not SELECTVV
or COMPAREV
DISPLAY:-SELECTIVE Word 1 of first Abandon run
PRINT - WRONG COMPARE record in compare
FILE file is not HVVY
HALTED:-22
DISPLAY:-SELECTIVE Word 1 of first Abandon run
PRINT -~ WRONG SELECT record in GBT
FILE output file is
not HVVYV
HALTED:- CE Card reader error GO#XBJx or
abandon run
HALTED:- HKinn Housekeeping excep- GO#XJBx or abandon
tion condition: run

#nn gives the error
code. For details,
see the section
Exception Conditions
of the manual Direct
Access, page 129, or
Table 11, page 108

of the Manual Magnrnetie
Tape, as appropriate.

ICL

Data Processing Publications
titte 1900 DRIVER

part

chapter g page - g¢

Message

HALTED:- LOAD EDS
*nnnnnn

HALTED;~LOAD TSN
Innunannn

HALTED:-LP

HALTED:~PL

HALTED:~TE

HALTED:-TF

ERROR CODES

Reason

File opened on
wrong direct access
storage unit (#XJBB
only) .

File opened on wrong
tape (#XJBC .only)

Line printer not

'available

Paper low condition
on line printer

Tape reader error

Line printer error

Aection

Put correct storage
unit $#nnnnnn
lowest on line and
GP#XJBB)

Put correct tape
fnnnnnnnn lowest
on line and GO#XJBC.

Make line printe.-
available and
GO#XJBzx

Load more paper
and GO#XJBx

GO#XJBx or abandon
run

GO#XJBx or abandon
run

On detection of an error in an input header record, the

program displays the message PARAMETER ERROR n where n is an

error code and halts ZiZ.

The error codes are as follows:

Error Code

A

Meaning

No INA record when expected

Data Processing Publications
I L titte 1900 DRIVER

part chapter g page g7

Error Code

LINE PRINTER OUTPUT

Meaning
No INB record when expected
Invalid filename

Generation number fgn > 4095
(#XJBC)

or

Reel Serial Number rsn > 511
W#XJIBD)

Non octal character in
cartridge serial number csn
(#XJBC)

or

Non octal character in tape
serial number tsn (#XJBD)

esn > $#7777777 (#XJIBC)
or
tsn > #37777777 (#XJIBD)

Invalid or missing seperator
character

Line printer output consists of run heading lines, followed

by an edited listing of the selected GBT output records, together

Data Processing Publications

title 1900 DRIVER part chapter 8 page 88

with error messages where necessary.

Run heading lines

Printed output from Selective Print begins with a line giving
the program name (XJBC or XJBD) its version number and the
date of the run. This is followed by the line:

SELECTIVE PRINT OF THE OUTPUT FROM THE RUN OF GENERAL BEAD
TESTER DATED dd/mm/yy

where dd/mm/yy is the date of the GBT run.

In a S.elect mode run, printing of the selected GBT output
data now commences.

For a run in compare mode, the line

COMPARE MODE
is printed at this point. No printing of GBT output data
occurs unless a discrepancy is detected between the GBT
output and Compare files, whereupon the program prints the
line
DISCREPANCY FOUND:-RECORD TYPE zxzxx MESSAGE IDENTITY aaaa
where

zxxx is the record identification (4 characters or spaces)

aaaa is the relevant message identification (4 characters or

spaces)

Printing then continues in =select mode.

Data Processing Publications ’
I L title 1900 DRIVER part. chapter g page 89

Printing of GBT output records

BEAD TEST PATH ENTRY RECORDS

if this type of record is selected for printing, the line

BEAD TEST PATH - MESSAGE IDENTIFICATION xxxx

is printed each time such a record is found, xzzxx being the
message identification for the bead test path in each case.

TAB INPUT AND TAB OUTPUT RECORDS

If any fields in either of these types of record are to be
printed, the appropriate subheading line is first output on
selection of each record, i.e.

TAB INPUT
or

TAB OUTPUT
Request area fields
If the request area fields of TAB Input and/or TAB Output
records are to be printed, each field will be printed out
in the following format.
Line 1:- REQUEST AREA WORD 0 1 2 3 456 7 8
Line 2:- The contents of each word as their character represent-

ation, in each case printed below the appropriate
number.

chapter g8 page 90

part

Data Processing Publications
title 1900 DRIVER

L

Remainder of TAB fields

If required, each of these fields is printed out over four

00000000+ 00000000+ 00000000 00000000 00000000 00000000
AITHOIYAE dWIL ALIYOINAd WdEd VEIV YMOM VEMY O/I VIV FOVSSEW MNIT FNAND

00000000 00000000 ©0000000

L 9 S
m
m 00000000 XTXXLXLLXLXXLLL UUUUUUUU+ UUUUUUUUS+ UUUUUUUUS 0%
. S¥YOIV1In qIYdS davdd IXEN av¥dd SIHLI "Id XMINT ON WJIIL]\ 6
/)]
9 -Wnobv
.
-

N s e s Nl P st

ouLg

2ulT

Data Processing Publications
I tite 1900 DRIVER part chapter g page 91

Where xxaxx is the contents of theA appropriate word printed -

as their character representation-

+nnnnnnnn is the contents of the appropriate word printed as
a signed decimal integer

oooooooo is the contents of the appropriate~word printed in
octal

Message area fields

If Selective Print prints out either the first four words of
each message area field required (contracted printing) or

the entire contents of each field (full printing). Each field
is printed in the following format.

chapter g page 92

part

Data Processing Publications
title 1900° DRIVER

ICL

(fAruo
2uzad

111f)
8pavaUO

‘ourr x2d spaom oz 3e po3jurid ‘PTSTF OYI JO ISPUTRWSI BYF JO SIUSIUOD -:g 2ULT
(€Z 03 p Spiom) ejep eoxe 9bessaW -:8 U]
SPTOTF €V JO 350y JXOJ POqIIOSSOp Se It XXXy pue UUUUUUUUL SISUYM

UUUUUUUU+ = HIONTT °*OSW rxxx/rrrr/reer/uuuuu :g-0 SQIOM :VIIV IOYSSHAW -:1 m:vn

Data Processing Publications
title 1900 DRIVER part chapter g8 page 93

Input/Output area fields

Fields of this type are each printed out in the following
format

Line 1:-I0 AREA: WORDS 0-3: nnnnn/zzxx/xxze/rcxx

where nnnnn and xxxx are as described for Rest of
TAB fields

Line 23-Contents of words 4 to 23 of Input/Output area field.
Line 3:-Contents of the remainder of the field, printed at
onwards 20 words per line

(full

print

only)

Additional core area fields

Fields of this type are printed out in the same format as

Input/Output area fields, with the difference that Line 1
begins with the title ADDITIONAL CORE AREA.

BEAD TEST PATH EXIT RECORDS
Where this type of record is selected, the line

BEAD TEST PATH - EXIT BECAUSE reason

will be printed following selection of each such record. The
reason given will be

SUCCESSFUL END OF TEST PATH

Data Processing Publications
tite 1900 DRIVER part chapter g page 94

if the record was output by GBT following execution of a
complete test path. Otherwise the reason given will take
the form of one of the error messages described in the section

Line printer error messages on page 95,

'RECORD IGNORED 'RECORDS

When an error in trial data records input to GBT has caused
Record Ignored' records to be written to the GBT output file,
the latter type of record can be selected for printing as
described on page 77. 'Record Ignored'records are printed
out one per line in the format

RECORD IGNORED:- MESSAGEaaaaRECORDxxxxREQUESTrnnnn

aaaa is the message identification (word 2 of the record)
xxxx is the record identification (word 3 of the record)

nnnn is the request code of the ignored record (word 4)

Each of the above are printed as four characters.

End of run

At the end of the run, the line
END OF SELECTIVE PRINT RUN

is output.

Data Processing Publications
I title 1900 DRIVER

part chapter g page 95

Line printer error messages

Message

@1 BEAD TEST PATH-EXIT
BECAUSE

(a)

(b)

(c)

(d)

BEAD NOT 1IN
SYSTEM-END TEST

BRANCH TO BEAD
IS INVALID

CONTROL INFORM-
ATION MUTILITATED

INVALID INPUT
DATA

Reason and/or action

CALL instruction for next bead to be
entered not present in bead table
HDRBT1l. Amend the GBT Master routine
accordingly.

Request for entry to another bead
also specifies deallocation of TAB
and is therefore invalid. Amend
the offending bead accordingly.

Words 0 to 3 of the Message, Input/
Output or Additional Core area have
changed between entry to and exit
from a particular bead, and have
therefore been corrupted by the bead.

An error has been found in a TAB
Header or Request Header record input
to GBT during execution of a bead test
path. The error may have occurred for
one of several reasons, depending
on the type of record.

Tab Header records

(i) Store cell definition submitted
for fixed store run.

I c Data Processing Publications
L title 1900 DRIVER part chapter 8 page 96

Message Reason and/or action

(ii) More than one store cell defin-
ition has been submitted for a
particular type of area (i.e;
more than one cell defined
for use as an Input/Output area-
or as an Additional Core area).

(iii) An inconsistency in store cell
or area data definitions has
resulted in GBT failing to
identify an item in a TAB Header
record.

(iv) Data submitted for insertion into
a particular store cell exceeds
maximum length of the cell as
specified in the Input/Output
or Additional Core area definit-
ions in the GBT Master routine.

(v) An area data definition has
set up user data in words 0 t 3
of the area.

(vi) In an area data definition, the
length of the data set up exceeds
the specified length of the area.

Note that items (ii) and(iv) above
apply only to GBT runs performing
simulated dynamic store allocation.

Data Processing Publications
I L titte 1900 DRIVER

part chapter 8 page 97

Message

INVALID REQUEST

Reason and/or action

Request records

(i)

(ii)

Length of submitted data
exceeds specified record length.

Length of submitted data less
than specified record length.

The required format for both the above
types of record is described in the
TDSU specification, pages 33 to 36. .

This condition arises when either:

(i)

(ii)

(iii)

(iv)

A store allocation or de-
allocation request is issued
by a bead when GBT is being run
using a fixed store system.

Servicing of a peripheral input
request by GBT causes any or all
of words 0 to 3 of the Input/
Output area to be overwritten
(i.e. invalid displacement).

An attempt is made to allocate
the same type of area to a TAB
more than once (for ekample,

two attempts are made to allocate
a store cell to a TAB for use as
an Input/Output area).

An error has occurred in a store
allocation request due to:

Data Processing Publications

ICL

titte 1900 DRIVER

part chapter 8 page’ %8

. Message Reason and/or action

(a) A bead requesting access

(b)

(c)

to store cell blocks in
the wrong order (see Chapter
2, page 23).

Incorrect destination
address (i.e. not binary
23 or 24 - see GBT specif-
ication page 59).

Specified length of a cell
requested from an imaginary
block is greater than the
length specified for Input/
Output or Additional Core
areas in GBT Master routine,
depending on the purpose for
which the cell is requested.

(v) An error has occurred in a si ‘e

deallocation request because

either

(a) The source address is not

binary 23 or 24,

(b) A store cell requested for

deallocation is not allocated
to the TAB.

Data Processing Publications

ICL

titte 1900 DRIVER

part chapter 8 page 99

Message
(£) MISMATCH
(h) MUTILATION OF

DRIVER

MUTILATION OF TAB
CONTROL INFORM-
ATION

(3)

2 GBT OUTPUT FILE
EXHAUSTED

Reason and/or action
This indicates either:
(i) Request header record not
input when expected during
GBT run.
(1i1) The request code in the request
record does not agree with the
request code issued by a bead

at the point in the GBT run for
which the record was submitted.

The contents of HDRTABSTORE have
changed between entry to, and exit
This
location has therefore been corrupted
by the bead.

from a particular bead.

Contents of words 22 to 24 of the TAB
(Message, Input/Output and Additional
Core area link addresses) have changed
between entry to, and exit from, a
particular bead. They have therefore
been corrupted by the bead, which must
Note that these three

words are the only part of the TAB

be amended.

checked by GBT for corruption.

The END
file has been found before it was

record on the GBT output

expected. This may happen if either

(1) During a run in compare mode,
the GBT output and Compare files
are found to be identical.

I c Data Processing Publications
L tittt 1900 DRIVER

part chapter g page 1o

Message

3 INVALID EDIT REC
record image

4 INVALID SELECT REC
record image

Reason and/or action

(ii) Selection of records by message
identification has been specif-
ied, and no records with the
required identification are
present on the GBT output file.

An Edit record submitted to Selective
Print contains an error. The 80
character image of the record in er r
is printed as part of the message.

Invalid Select records are listed in
the same format as invalid Edit records

Data Processing Publications

ICL

tittt 1900 priver part chapter », page ;

Appendix 1

Request Codes and parameters

The tables which follow Bhow the format of all requests for
which fully specified Driver standards currently exist.

The various codes and parameters are shown as they appear
in the request area (words 0 to 8) of the TAB.

Data Processing Publications
titte 1900 Driver part chapter a1 page 2

FUNCTION

Transfer control to another Bead

Relevant additive options: Bit 9 No
Bit 10 No
Bit 11 No

Word O Ch.0
Request Ch.1 =
Code Ch.2 =

Ch.3

|
© o o o

I

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Word 8 Reserved for error reply parameter

I C Data Processing Publications
Il.. i hapt age
tile 1900 DRIVER part chapter ,, page ,

FUNCTION
Free a Bead for use by another Tab

Relevant additive options: Bit 9 No

Bit 10 No
Bit 11 No

Word O Ch.0 =0

Request Cch.1 =0

Code Ch.2 =0

Ch.3 =1

Woxrd 1 Bead Number

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8 Reserved for error reply parameter

ICL

Data Processing Publications

titlt 1900 DRIVER part chapter o7 page 4
FUNCTION
Output a message (Message Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word 0 Ch.0 = 2

Request Ch.l:- Bits 6 to 8 = 001;

Code Bits 9 to 11, additive options
Ch.2 =1
Ch.3 =0

Word 1 Device No. (Zero if output is to more than one
device.)

Word 2 length of message in characters

Word 3 Displacement by which to locate message is

message area

Word 4 Required setting of HMPUC wd 6 (see Data
Communications and Interrogation page 206.14)

Word 5 TP number or CCU number
Word 6 Modifier to progress down list in word 7
Word 7 Start address of device list (if output is to

more than one device)

Word 8 Resexrved for error reply parameter

I CI Data Processing Publications
title 1900 DRIVER part chapter a1 Page g

FUNCTION
Output a message (Scanner only systems)

Relevant additive options: Bit 9 Yes

Bit 10 VYes
Bit 11 Yes -
Word 0 Ch.0 = 2
Request Ch.1l:- Bits 6 to 8 = 010
Code Bits 9 to 11, additive options
Ch.2 =1 '
ch.3 =0
Word 1 Required setting of HMPUC Word 0, i.e. line

terminal number. See Data Communications and
Interrogation manual, Chapter 8 page 155

Word 2 Required setting of HMPUC + 1 i.e. 7020 details
and length of message in characters. Bit 0 of
HMPUC + 1 will be set to 1 by Driver

Word 3 Displacement by which to locate message:in
message area

Word 4

Word 5

Word 6 Modifier to progress down list in Word 7
Word 7 Start address of device list (if output is to

more than one device)

Word 8 Reserved for error reply parameter

Data Processing Publications
tilte 31900 Driver part chapter »q page ¢

FUNCTION

Open a TP or CCU (Message Buffering System)

Relevant additive options: Bit 9 Yes

Bit 10 Yes
Bit 11 Yes
Word O Cch.0 = 2
Request Ch.l:~ Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 2
Ch.3 =0
Word 1 TP or CCU number. (Zero if more than one is
to be opened.)
Word 2
Worxrd 3
Word 4
Word 5
Word 6 Modifier to progress down list in word 7
Woxrd 7 Start address of device list if more than one

TP/CCU is to be opened

Word 8 Reserved for error reply parameter

I CI Data Processing Publications
i chapter age
title 1900 Driver part P Al pag 7

FUNCTION
Close a TP or CCU (Message Buffering System)

Relevant additive options: Bit 9 Yes

Bit 10 Yes
Bit 11 VYes
Word 0 Cch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Cch.2 = 3
ch.3 =0
Word 1 TP or CCU number. (Zexro if more than one is
to be closed.)
Word 2
Word 3
Word 4
Woxrd 5
Word 6 Modifier to progress down list in word 7
Woxrd 7 Start address of device list (if more than one

TP/CCU is to be opened)

Word 8 Reserved for error reply parameter

ICL

Data Process_ii:xg"ﬁublications

title 1900 Driver part Chapter Al pagea

FUNCTION

Close a device, discarding stored data (Message Buffering
System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word O Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 =0
Word 1 Device identifier. (Zero if more than one is

to be closed.)

Word 2

Word 3

Word 4

Word 5

Word 6 Modifier to progress down the table in word 7

Word 7 Start address of device list (if more than one
device is to be closed)

Word 8 Reserved for error reply parameter

ICL

Data Processing Publications

title 1900 Driver part

chapter a1 Page 9

FUNCTION
Open a device (Message Buffering System)
Relevant additive options: Bit 9 Yes

Bit 10 Yes
Bit 11 VYes

Word 0 ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 =1
Word 1 Device identifier. (Zero if more than one is

to be opened.)

Word 2

Worxrd 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7

Word 7 Start address of the device list (if more than

one device is to be opened)

Word 8 Reserved for error reply parameter

ICL

Data Processin‘g—Publications

part chapter page

title 1900 priver al 10

FUNCTION

Open a device - start for input (Message Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word 0 Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 2
Word 1 Device identifier. (Zero if more than one

device is to be opened.)
Word 2
Word 3
Word 4
Word 5
Word 6 Modifier to progress §own the list in word 7

Word 7 Start address of device list (if more than one
device is to be opened)

Word 8 Reserved for error reply parameter

l c Data Processing Publications :
L title 1900 Driver part chapter a1 Page ;3

FUNCTION

Open a device - start for input of one Message Section (Message
Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes

Bit 11 Yes
Woxd 0 ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
ch.2 = 4
Cch.3 = 3
Word 1 Device identifier. (Zero if more than one

device is to be opened.)
Word 2
Word 3
Word 4
Word 5
Word 6 Modifier to progress down the list in word 7

Word 7 Start address of device list (if more than one
device is to be opened)

Word 8 Reserved for error reply parameter

ICL

Data Processing Publications

tittt 1900 DRIVER part chapter ,, page ,,

FUNCTION

Close a device - after clearing stored data (Message
Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word O Ch.0 5 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 4
Word 1 Device identifier. (Zero if more than one

device is to be closed.)
Word 2
Word 3
Word 4
Word 5
Word 6 Modifier to progress down the list in word 7

Word 7 Start address of device list (if more than one
device is to be closed)

Word 8 Reserved for error reply parameter

I c Data Processing Publications
L i art chapter page
tite 1900 Driver P P Al g 13

FUNCTION

Set a device which is "open and started" to be open only
(Message Buffering System)

Relevant additive options: Bit 9 - Yes

Bit 10 Yes
Bit 11 VYes
Word O Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
ch.3 =5
Word 1 Device identifier. (Zero if more than one

device is to be affected.)
Word 2
Worci 3
Word 4
Word 5
Word 6 Modifier to progress down the list in word 7

Word 7 Start address of device list (if more than one
device is to be affected

Word 8 Reserved for error reply parameter

I c Data Processing Publications R
L tittt 1900 priver part chapter al page; 14

FUNCTION

Change the priority of a device (Message Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word 0 Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 6
Word 1 Device identifier. (Zero if more than one

device is to be affected.)

Word 2 New priority

Word 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7
Word 7 Start address of device list (if more than one

device is to be affected)

Word 8 Reserved for error reply parameter

ICL

Data ‘l"rocééfs'iﬁr{g“ Publications

titte 1900 Driver part chapter A1 page 15
FUNCTION

Change the mode and/or message size of a device (Message
Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes

Bit 11 Yes
Word 0 Ch.0 = 2
Request Ch.1l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 =7 .
Word 1 Device identifier. (Zero if more than one

device is to be affected.)

Word 2 New Mode/Message size (in count/modifier format)
Wor& 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7
Word 7 Start address of device list (if more than one

device is to be affected)

Word 8 Reserved for error reply parameter

| Data Processing Publications

titlt 1900 Driver part chapter aj page 16

FUNCTION

Cause the Housekeeping to cease specifying Restart Points

(Message Buffering System)

Relevant additive options: Bit 9 Yes

Word O
Request
Code

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

Bit 10 Yes
Bit 11 Yes

Ch.0 2
Ch.1l:- Bits 6 to 8 = 001;
Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 8

I

Identifier of the device for which the house-
keeping is to cease performing this function.
(Zero if more than one device is to be affected.)

Modifier to progress down the list in word 7

Start address of device list (if more than one
device is to be affected)

Reserved for error reply parameter

lCl Data Processing Publications |
| art chapter aqe
title 1900 Driver o - ~ . ;

FUNCTION

Cause the Housekeeping to commence specifying Restart Points
(Message Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes

Bit 11 Yes
Word O Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 =9
Word 1 Identifier of the device for which the house-

keeping is to commence performing this function.
(Zero if more than one device is to be affected.)

Word 2
Word 3
Word 4
Word 5
Word 6 Modifier to progress down the list in word 7

Word 7 Start address of device list (if more than one
identifier is tc be affected)

Word 8 Reserved for error reply parameter

I c Data Processing Publications
L title 1900 Driver part chapter Ay Page

FUNCTION

18

Test availability of a (bulk) device (Message Buffering System)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word O Ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 001;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 10
Word 1 Device identifier. (Zero if more than one

device affected)
Word 2
Word 3
Word 4
Word 5
Word 6 Modifier to progress down the list in word 7

Word 7 Start address of device list (if more than one
device is affected)

Word 8 Reserved for error reply parameter

Data Processing Publications :
titt 1900 Driver part chapter »; page 19

FUNCTION

Open a line (Scanner Only Systems)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word 0 Ch.0 = 2
Request Ch.1l:- Bits 6 to 8 = 010;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 =1
Word 1 Line number. (Zero if more than one line is

to be affected.)

Word 2 0

Word 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7
Word 7 Start address of device list (if more than one

line is to be affected)

Word 8 Reserved for error reply parameter

B "N B Data Processing Publications |
titte 1900 Driver part chapter Al page 20

FUNCTION

Close a line (Scanner Only Systems)

Relevant additive options: Bit 9 Yes
Bit 10 Yes
Bit 11 Yes

Word 0 ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 010;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 10
Word 1 Line number. (Zero if more than one line is

to be affected.)

Word 2 0

Word 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7
Word 7 Start address of device list (if more than one

line is to be affected)

Word 8 Reserved for error reply parameter

Data Processing Publications -
~ title 1900 Driver part chapter Al page 21

FUNCTION

Give number of transmissions and transmission errors
(Character Buffering System)

Relevant additive options: Bit 9 Yes

Bit 10 Yes
Bit 11 Yes
Word 0 ch.0 = 2
Request Ch.l:- Bits 6 to 8 = 010;
Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 4
Word 1 Line number. (Zero if more than one line is

to be affected.)

Word 2 0

Worﬁ 3

Word 4

Word 5

Word 6 Modifier to progress down the list in word 7
Word 7 Start address of the device list (if more than

one line is to be affected)

Word 8 Reserved for error reply parameter

I c Data Processing Publications
Il.. i | hapt age
title 1900 Driver part chapter Al pag 22

FUNCTION)

Multiplexor - Close Request

Relevant additive options: Bit 9 No
Bit 10 Yes
Bit 11 Yes

Word 0 Ch.0 = 2

Request Ch.l:- Bits 6 to 8 = 010;

Code Bits 9 to 11, additive options
Ch.2 = 3
Ch.3 =0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8 Reserved for error reply parameter

Data Processing Publications : .
| titte 31900 Driver part chapter 57 page 23"

FUNCTION

Form a link (Scanner Only Systems)

Relevant additive options: Bit 9 No
Bit 10 Yes
Bit 11 VYes

Word 0 Ch.0 = 2

Request Ch.1l:- Bits 6 to 8 = 010;

Code Bits 9 to 11, additive options
Ch.2 = 4
Ch.3 = 3

Word 1 Line number

Word 2 Channel number

Woxrd 3

Word 4

Word 5

Word 6

Word 7

Word 8 Reserved for error reply parameter

I CI Data Processing Publications
title 1900 Driver part chapter Al pagel 24

FUNCTION

Swap Links (Scanner Only Systems)

Relevant additive options: Bit 9 - No
Bit 10 Yes
Bit 11 Yes

Word O ch.0 = 2

Request Ch.l:- Bits 6 to 8 = 010;

Code | Bits 9 to 11, additive options
Ch.2 = 4 '
Cch.3 = 2

Word 1 First link

Word 2 Second link

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8 Reserved for error reply parameter

ICL

Data Processing Publications

titlt 1900 priver . e part chaptery' D

FUNCTION

Allocate store to a TAB

Relevant additive options: Bit 9 No

Bit 10 No
Bit 11 No
Word 0 Ch.0 = 2
Request Ch.1 =0
Code Cch.2 =1
Ch.3 =0
Word 1 Block number of block containing cells of the
i required size
Word 2 Destination address of cell (23 or 24)
Word 3 Not used if the request is for one cell; if

for two cells, as word 1. Block number in
word 3 must be » block number in word 1

Word 4. Not used if the request is for one cell; if for
two cells, as word 2. The destination address
in this word must not be the same as that in
word 2.

Word 5

Word 6

Worxrd 7

Word 8 Reserved for error reply parameter

I c Data Processing Publications
; L titte 1900 Driver part chapter 51 page 26

FUNCTION

Deallocate store from a TAR

Rele#anthadditive options: Bit 9 No

Bit 10 No
Bit 11 No
Word 0O Cch.0 = 3
Reguest Ch.1 =0
Code ch.2 = 2
Ch.3 =0
Word 1 Block number of block from which the cell to be

released was obtained

Word 2 Destination address of cell (23 or 24 as
appropriate)
Word 3 Not used if the request is for a single cell;

if for two cells, as word 1

Word 4 Not used if the request is for a single cell;
if for two cells, as for word 2. The
destination address in this word must not be
the same as that in word 2.

Word 5

Word 6

Woxrd 7

Word 8 Reserved for error reply parameter

ICL

Data Process'ir“{g Publications

titte 1900 Driver part chapter a2 page 1

Appendix 2

Driver error codes

On detection of an error during servicing of a requestlthe
multithreading Driver will issue one of the followiﬁg
4-character codes in the form of the error reply parameter
placed in word 8 of the TAB.

In each case, the first character (character 0) of the code

has the following significance:

Character 0 = 0 Error detected by Request Analyser
or Bead Scheduler -

Character 0 = 1 Error detected by Peripheral Monitor

Character 0 = 2 Error detected by Communications

Monitor

If Character 0 = 2, Character 1 is also significant and
contains the package number of the communications house-
keeping package in use at the point where the error occurred.

”,

Error codes 0000, and 0001 and 0002, are also issued by the single
threading versions of Request Analyser and Bead Scheduler

respectively. Error codes issued by user written Peripheral
Monitor and Communications Monitor routines should where
applicable be the same as those issued by the multithreading
versions of these routines.

Error code Significance

0000 Invalid request code [character 0 of word 0
of request code > contents of HDRRACONST]

0001 Bead scheduler request with word 0 of request
invalid

I Data Processing Publications
CL titte 1900 Driver , part chapter a2 page 2

Error code Signi ficance

0002 As above, but system in Exception Mode

0003 Invalid bead number [Bead number > contents of
HDRBDCONST]

0004 Driver error

0005 Invalid request to store administrator

1006 Invalid file reference number (file reference

number > contents of HDRPMCONST) detected on
entry to Peripheral Monitor (i.e. within PM
Entry routine HDRPMENTRY)

1007 As 1006, but detected in PM Continuation
routine HDRPMCONT (i.e. during multiple input
or output)

2008 Invalid request. Package number = 0 and
bits 10 and 11 of request = 0

2009 Invalid request. Package number non-zero
and no corresponding entry in table HDRCMTABL
(CALL instructions to Communications Monitor
interface routines)

200: Invalid request. Character 2 not in range
1-4

200; Operator intervention

200< Invalid MPCRL parameters

200= Unanticipated systems conditions

I c l Data Processing Publications
title 1900 Driver part chapter ap Page 3

Error code Significance

200> Failure of output request. Transfer completed
but number of words as given in word 2 of the
tab does not correspond with the number given
in word 0 of HMPHR

2007 Failure of output request. Transfer not
completed for a reason other than overload
(i.e. invalid parameters)

200V Failure on attempting to obtain input.
Bits 1, 4 or 5 of word 0 of HMPHR are set
after issue of the MPGET macro

200! Failure on attempting to obtain input. Word
2 of HMPHR is negative after issue of the
MPGET macro

