ICL 2900 order code
(System Function Language)



15.1

15.2

FUNCTION $PECIFICATIONS CHAPTER 15

Introduction -

This chapter contains full specifications of all SFL functions.
The specifications are in alphabetical order of ‘function
mnemonic and, with slight variations, are in a stanfiard format
as described below.

Each specification is largely self-contained, but assumes a
basic knowledge of SFL and the 2900 Series. For further
information on any point, the reader should consult other
chapters of this publication by use of the index.

Format of specifications

Each specification is headed by the function mnemonic and
hexadecimal function code.

The specifications are divided into sections as follows.
Standard abbreviations are used as described in section 15.3.

1 TYPE This defines the type of function (primary,
secondary, tertiary or pseudo-tertiary) and the length of
the function (see section 6.1)

2 TERMINAL OPERAND LENGTH This gives, where applicable,
the length in bits of the terminal operand of the function
(see section 6.2)

3 PERMISSIBLE ACS Where the accumulator is involved in
the operation, the permissible value or values of ACS are
given

4 EFFECT ON REGISTERS This section contains a table showing
the state of the registers affected by the successful
execution of the function. This is a useful quick
reference section particularly for functions setting such
registers as CC and OV

5 PROGRAM ERRORS A list of possible object program errors
caused by incorrect execution of the function. Appropriate

sections of Chapter 11 are referenced for further information

SUMMARY = A brief outline description of the function

FORMATS A summary of the possible formats of the function,
including permitted variants and operands

8 DESCRIPTION A full description of the function and its
execution. In the case of simple functions the information
in the summary and format sections is adequate and the
description section is omitted

6413/0 ’ . 15-1



15.3 Standard abbreviations

A number of abbreviations are used in the specifications.

These include the normal abbreviations for registers described
in Chapter 1 (such as ACC for the accumulator). The following
abbreviations are used for function variants:

Abbreviation Meaning

s A simple variant (see section 6.3.2)

c A completing variant (see section 6.3.3)
ep - One of the explicit variants allowed for a

primary function (see section 6.3.4)
Note that the D variant is an exception to
this general format, as it may be used with:

1l No operand

2 With a symbolic operand which may be an
on-stack, local data item or in-code
literal

et One of the explicit variants allowed for a
tertiary function (see section 6.5.2)

15-2 ' 6413/0



3t ACT

(activate)

Type: Primary, length 32 bits

Terminal operand length: 128

Effect on registers

LSTB Overwritten by value in operand

Other registers are loaded with the values in the process dump.

‘Program errors
1l Operand addressing errors
2 Privilege

Note: Masking of program error interrupts is contolled by the
program and interrupt mask bits in PSR and SSR at the start of
execution of ACT. The occurrence of an unmasked program error
during the early stages of execution will prevent loading of
LSTB, SSN and the other processor registers (effectively it is
the old process being interrupted).

Summary

ACT restores a process dumped following a stack-switching
interrupt (see section 11.1) and resumes execution of it. If
bit 31 of word 1 of the operand is set to 1 an event pending
interrupt occurs on resumption of the process.

Formats
ACT oper
ACT.s im
ACT.c
ACT.ep intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

The format of the terminal operand is summarised in the diagram

below.
Y777, 77, &/ Causes
0 LST Limit 13 4%%%%%%%2222@%2&%@73nm EP
7 LL 1 Interrupt

0 3}4 LSTD Address ,29 31
A

0 - 88N 13 14 5

o4l 370 Generates Rase Addreas of (SSN ¢ 1 ) by concatenating SSN bits o.- 12 with the bit puitern 1

100 00 - (Note SSN is always even).



ACT

Description

The first two words of the terminal operand are loaded into
LSTB. Bits O to 13 of the fourth word contain the new stack
segment number; the base address of segment SSN+1 is generated
by concatenating the bit pattern

10...0

with the operand bits. If the segment number is in the range
0 to 8191 the new LSTB is used to translate it and obtain the
real address of the dump. Words O to 15 of the segment (the
process state) are copied to the appropriate registers.

If there is disagreement between the values of SSN specified by
the operand and words O and 4 of the process state the result
is undefined. A system error interrupt may occur if an
attempt is made to load an odd number into S&N.

The restored process is resumed at the instruction specified by
PC, qualified if necessary by the setting of II.

If bit 31 of word 1 of the operand is 1 an event pending interrupt
occurs on resumption of the process unless the EP interrupt mask
is set in the new SSR. The interrupt may occur before the
dumped registers have been completely restored or, if II is set,
it may occur after execution of the incomplete instruction. The
EP bit of SSR (bit 6) is ignored and not cleared.

Notes:
1 Virtual addressing mode is assumed
2 Use of ACT requires privilege (see section

3 PSTB is not altered

2 Chapter 15 . 6413/0Q



20 ADB

(add to B)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

B Contains result

ov Cleared unless B overflow occurs

All other registers unchanged

Program errors
Operand addressing errors

B overflow

Summary

The contents of the operand are added to the contents of B,

both being treated as signed 32 bit integers. The least
significant 32 bits of the sum are left in B, If overflow
occurs (sum <=231 or >231-l) OV is set, otherwise OV is cleared.

Formats
ADB oper
ADB.s im
ADB.cC
ADB.ep intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep ’

641372 Chapter 15 1



8A AND

(logical and)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, &4

Effect on registers

ACC Contains result

ov Cleared

Rll other registers are unchanged

Program errors
Operand addressing errors
ACS = 128

Summary

A logical AND operation is performed between ACC and the
operand. The result is placed in ACC.

The result of the AND operation is determined by the following
table:

Original ACC bit Operand bit Resultant ACC bit

0 0 0
0 1 0
1l 0 0
1l 1 1l
Formats

[AND oper

AND. s im

AND.c

AND.ep [intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' . Chapter 15



82 ANDS

(and strings)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64
Effect on registers

ACC } The descriptors in these registers have the length and
DR address fields updated.

Program errors

Failure of standard checks for store-to-store operations (see
section 6.4.4)

Summary

A descriptor in DR describes a string of bytes (the DR string).
A logical AND operation is performed between each byte of this
string and either

1 The filler byte (32 bit form), or

2 The corresponding byte of a string described by a
descriptor in ACC (16 bit form)

Each byte of the DR string (up to the specified number) is
replaced by the result of the comparison.

Formats

ANDS mask, filler

ANDS .N ulit

ANDS .N ulit, mask, filler
where

mask is unused and must be a literal zero
filler is a one-byte literal (conventionally hexadecimal)

ulit is an integer literal specifying the number of bytes of
the DR string to be operated upon

Description

A string descriptor must be loaded into DR (and, if necessary,
ACC) before ANDS is executed.

In the case of the 16 bit form, the ACC string is used and must
be of adequate length (that is, at least equal in length to the
number of bytes to be compared).

6413/0 ) -Chapter 715



ANDS

In the 32 bit case, the specified number of bytes of the DR
string is compared to the filler byte.

If the number of bytes to be compared is specified as zero, a
null operation is performed and DR and ACC are unchanged.

For each byte compared, the DR (or ACC and DR) descriptors are
updated by incrementing the address field and decrementing the
length field.

2 Chapter 15 6413/0



6E ASF

(adjust stack front)

Type: Primary, lergth 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

SF Points to new stack front

All other registers are unchanged

Program errors

1 Operand addressing errors
2 New SF £ LNB

3 Segment overflow

Summary

The operand, regarded as a signed number of words, is added to
the word address in SF. Any new stack locations created are
not cleared.

Formats
ASF oper
ASF.s im
ASF.c
ASF.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The terminal operand, regarded as a signed integer, is added

to the word address in SF. The stack front is thus conceptually
raised or lowered depending on whether the operand is positive

or negative, If it is raised, the new stack locations created
are not cleared.

If the terminal operand is TOS, SF is decremented as the operand
is accessed before being adjusted.

6413/0 ' . Chaptef 15 . 1



ASF

The following checks are made:

1 That the adjustment would not cause the stack to overflow
into another segment

2 That the new value of SF would be greater than LNB
If either check fails, an error occurs and SF remains unaltered.

If the location specified by the new value in SF lies beyond the
stack segment limit (unpaged segment), or lies in a page not in
main store, a virtual store interrupt occurs as if an attempt
had been made to access the specified location.

2 Chapter 15 6413/0



1E CALL

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

ACC

ACS . .

B Undefined for system call, otherwise unchanged

cc

DR Contains copy of access descriptor.to target procedure

{(descriptor-descriptor if target procedure has a PLT,
otherwise a code descriptor}

LNB Unchanged
PC Contains address of target procedure's code
XNB Undefined for system call, otherwise unchanged

Note: The state of the registers is that on entry to the
target procedure.

Program errors

1 Operand addressing errors for jump functions (save that
code and system call descriptors are permitted)

2 SF € LNB+2

Summary

The CALL function is used within a procedure (the calling
procedure) usually to enter another (the target procedure),
which may be

1 Declared as a PROC, accessible from any module

2 Declared as an LPROC, accessible only from the module in
which it is declared

3 A system or library procedure

However, the destination of a call may be a label, or given by
a descriptor in DR or elsewhere.

Certain standard operations should be performed before the call.
These are termed the precall sequence (see Description).
Execution of CALL stores details of the calling procedure for
return using EXIT,

6413/0 . Chapter 15



CALL

Formats

The most usual form of CALL is

ICALL | procname
where procname is the name of the target procedure.

This form compiles into one of the following, which the
programmer may also use explicitly:

CALL.IX
CALL.IP

PL.TAd
reld

where

PLTd is the displacement within a normal PLT of the
descriptor to the target procedure

reld is the displacement within an in-line PLT relative to the
CALL instruction of the descriptor to the¢ target procedure

The other formats of a primary function may also be used, namely:

CALL sname
CALL.s im
CALL.c

CALL.ep intlit
where
sname 1s a symbolic name
im is a operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The precall seguence must include the following steps if no
parameters are passed:

1 Store the current LNB at TOS (which will be the target
procedures LNB)

2 Adjust SF by 4 words to allow space for the descriptor
stored by CALL, see below

3 Adjust LNB for the target procedure so that it cannot
corrupt the calling procedure's stack

Note: There is a s&stem library macro available to perform the
precall sequence and call, see Developing SFL programs

Execution of CALL has the following effects:

1 The link descriptor pointing to the instruction following
CALL is stored on stack in positions LNB+1 and LNB+2
for eventual return from the target procedure

2 A copy of the access descriptor, to the target procedure
is placed in DR

3 PC is set to the first instruction in the code of the
target procedure

2 Chapter 15 6413/0



Execution of the taraet procedure then beqgins.

The link descriptor is an unbounded code descrijtor (+vye 2),
subtype 33). The second word (at LNB+1l) contains the return
address (the address of the instruction after CALL in the
calling procedure). The first word (at LNB+2) contains the
descriptor details in bits O to 7 and a copy of the calling
procedure's PSR in the remaining bits in the following format.

Bits Contents
8 to 11 ACR

12 D

13 PRIV

14 ov

15 E

16 to 23 program mask
24 to 26 zero

27 I

28 and 29 cc

30 and 31 ACS

If parameters are passed to the target procedure they must be
set up on stack in the pre-call sequnnce. SF should be
adjusted to allow space for them.

If the call is to a system procedure, or to a procedure at a
different ACR level to the calling procedure a system call
interrupt occurs and the system call mechanism is invoked
(see section | ). In this case, the state of ACC, B
and XNB is undefined on entry to the target procedure.

If the terminal operand is an escape descriptor, the escape
mechanism is invoked.

6413/0 " Chapter 15



NE ‘ CBIN

(convert to binary)

Type: Pprimary, length 16 bits, see section 6.3.5
Permissible ACS: 32, 64
Effect on registers

ACS Unchanged unless it was originally 128 when it will be
set to 64

ov Cleared unless fixed point overflow occurs

Program errors

Fixed~-point overflow

Summary

CBIN converts the contents of ACC from packed decimal to fixed-
point binary format. The length of the result can be 32 or 64
bits depending on ACS.

Format

lcBIn |

Description

The contents of the accumulator (assumed to be in packed decimal
format) are converted to fixed-point binary. The setting of
ACS determines the length of the binary number, If ACS = 128
it is set to 64,

If overflow occurs OV is set and a fixed-point overflow interrupt
occurs.

6413/0 . Chaptex 15 ' 1



EE CDEC

(convert to decimal)

Type: Primary, length 16 bits, see section 6.3.5
Permissible ACS: 32, 64
Effect on registers

ACC Converted to decimal
ACS Doubled
oV Cleared )

Program errors
ACS = 128

Summary

The contents of ACC, a signed integer, are converted to decimal
format and left in ACC. ACS is doubled.

Formats

CDEC

6413/0 " Chapter 15 : 1



B4 CHOV

(check overlap)

Type: secondary, length 16 bits, see section 6.4.2
Effect on registers

ACC unchanged

cc 0 No overlap, or length of ACC string zero

1 Overlap on the left (ACC address > DR address)
This is a permissible overlap

2 Overlap on the right (ACC address < DR address).
This overlap may cause corruption during a string
move

DR Unchanged

All other registers are unchanged

Program errors

Failure of either of standard checks 1 and 3 for store-to-store
functions

Summary

CHOV checks whether the strings described by descriptors in ACC
and DR overlap and, if so, whether the overlap is to the left
or the right (for example, before a MOVE function is used).

The result of the test is indicated by the setting of CC as
described above. For a description of the various types of
overlap and their significance, see section

Format

lenov |

6413/0 ' - Chapter 15



BE LOM

{compress)

Type: sSecondary, length 16 bits, see section 6.4.2
Effect on registers

ACC

DR Address and length fields updated

Program errors

1l Failure of any of the standard checks 1, 2 or 3 for store-
to-store functions

2 Address in DR not a multiple of 4

3 Number of bytes to be packed specified as zero or not a
multiple of 4

4 Destination vector too small

Summary

COM converts a string of bytes from unpacked (8~bit.characters)
form to packed (6-bit characters) form, The unpacked source
string is described by a descriptor in DR, the vector to hold
the packed string by a descriptor in ACC.

Formats

COM I
COM.N lulit

where ulit (an unsigned integer literal) is the number of
characters to be packed.

Description

When there is no variant, the number of bytes to be packed is
determined by the descriptor in DR, otherwise by the operand
ulit, The first two bits of each byte of the unpacked string
are ignored. The following conditions must be observed (where
l is the number of bytes to be packed):

1 Both descriptors must be loaded into the registers

2 1>0

3 1l must be a multiple of 4

4 The destination vector must be at least 3/,1 in length
5 The initial address in DR must be a multiple of 4

6413/0 ’ . Chaptgﬁ-ls



The address and length fields of the descriptors are updated
during execution of the function.

If the strings overlap, the correct results will still be
produced provided that the first or last byte of the unpacked
string lies within the packed string (the string lengths are
defined as 1 and 3/41) otherwise the results are undefined.

For a description of packed and unpacked character formats,
see section

2 Chapter 15 6413/0



98 COMA

(compress accumulator)

Type: Primary, length 16 bits, see section 6.3.5
Permissible ACS: 32, 64

Effect on registers

ACC Packed

ov Cleared

All other registers are unchanged

Program error
ACS = 128

Summary

The COMA function converts the contents of the accumulator from
unpacked character form to packed character form. The
accumulator size may be 32 or 64 bits.

Format

lCOMA |

Description

The contents of ACC are converted to packed character form (see
section ). The original contents of the first two bits
of each byte packed are ignored, Zeros are generated in bits
0 to 7 (ACS = 32) or 0 to 15 (ACS = 64).

The process is summarised in the diagrams below.

For ACS 32
0 78 13 14 19 20 25 26 31
acc | 00000000 | L J
i T X A ~ A
COMA( | ? ___j __T
0 12 78 910 15 16 17 18 23 24 2526 31
00 }' 6bits | 00 i 6 bits 00 =L 6 bits oo:n 6 bits
0 1516 21 22 2728 3334 3940 4546 51 52 57 68 63
For ACS 64 r l | I | |
S— ) TJ_T f_l F 7
2|7 1|5 18|23 26 [ 31 34|39 42 |47 so]ss 58 ] 63
ol fof [[ T[] R [ 11
G413/0 Chapter 15




26 CPB

(compare B)

Type: pPrimary, length 16 or 32 bits, see section 6.3.5.
Terminal operand length: 32
Effect on registers
cc 0 Operand = B
1l B < operand

2 B > operand

Program errors

Operand addressing errors

Summary

The contents of B are compared arithmetically with the operand,
both being regarded as signed integers. The result of the
comparison is given.by the setting of CC.

Formats
.JcpB [oper
CPB.s im
CPB.C
CPB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



2E CFIB

(compare and incremcnt B)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers
L \\Cl‘{rf.é'\.\?,t . ?: ol
cc 0 B = operand
1 B < operand
2 B > operand

ov Normally cleared. Set if fixed-point overflow occurs
as a result of incrementing B.

All other registers are unchanged

Program errors

1 Operand addressing errors
2 Fixed-point overflow
Summary

The contents of B are compared arithmetically with the operand
and B is then incremented by 1. The result of the comparison
is given by the setting of CC.

Formats
CPIB ‘oper
CPIB.s im
CPIB.cC
CPIB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

€413/0 ) Chapter 15



A4 CPS

(compare strings)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64
Effect on registers

ACC The descriptor points to the byte found unequal (CC > 0),
or the end of the string if reached (CC = 0)

cc 0 Strings equal or null operation performed
Inequality: DR string byte > ACC string byte (unmasked
portions)
3 Inequality: DR string byte < ACC string byte (unmasked
portions)
DR The descriptor points to the byte found unequal (CC > 0)
or the byte reached when the ACC string was exhausted
(cc = 0)

Program errors

Failure of standard checks for store-to-store operations, see
section 6.4.4.

Summary

Descriptors in ACC and DR describe byte strings. CPS causes the
strings to be compared, byte by byte, until an unequal pair of
bytes is found or the specified number of bytes have been
compared. CC is set to indicate the result of the comparison.

Formats
CPS
CPS mask, filler
CPS.N ulit
CPS.N ulit, mask, filler
where

mask and filler are one-byte literals (conventionally
hexadecimal)

ulit is an unsigned integer literal specifying the number of
bytes to be compared. ’

6413/0 " Chapter 15 | 1



-
Cs

"

Description

The string descriptors must be loaded into ACC and DR before
the CPS function is executed.

In the case of the 16 bit form of the function, the string
described in ACC must be of adequate length, that is, at least
equal to the number of bytes to be compared.

When the 32 bit form is used, the mask and filler bytes can be
employed as follows:

1 If the mask is present, bits of each byte in the two
strings are only compared when they correspond to zeros
in the mask byte. Otherwise that bit position is ignored

2 If the string described in ACC is too short, it is extended
to the required length with copies of the filler byte
before comparison

The descriptors in ACC and DR are updated during execution of
CPS and will be left pointing to the last bytes compared. These
will be the bytes found unequal, or the point reached when the
end of the ACC string was encountered if no inequality was found.

If the number of bytes to be compared is specified as zero, no
error will result. No comparisons are performed, ACC and DR are
not altered, and CC is set to O.

2 Chapter 15 : 6413/0



34 CPSR

(copy program status register)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

Program errors

1 Operand addressing errors
2 Non~zero bits of stored item truncated
Summary

The contents of the PM, CC and ACS fields of the program status
register are copied to the location specified by the terminal
operand (which must be 32 bits long).

Formats
CPSR oper
CPSR.s im
CPSR.cC
CPSR.ep |intlit
where

oper is the terminal operand (32 bit store location)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified
by the explicit variant ep

Deséription

The contents of PSR are copied to the specified location in the
following format: -

Field Contents

0 to 15 Zeros

l6é to 23 PM

24 to 27 1110 (see note below)

28 and 29 cC
30 and 31 ACS

Note: Subsequent use of the location by MPSR causes the PM and
CC fields to be overwritten, but not the ACS field unless bit 27
is set to 1.

6413/0 Cﬁapter 15 ' ' 1



I cYD

(copy DR)

Type: Primary, length 16 bits, see section 6.3.5
Effect on registers

ACC Contents of DR

ACS 64

ov Cleared

All other registers are unchanged

Program errors

General errors

Summary

ACS is set to 64 and the contents of the descriptor register
are copied into the accumulator.

Format

oo |

6413/0 Chapter 15



Do DAD

(decimal add)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Aacs

Permissible ACS: 32, 64, 128

Effect on registers

ov Cleared unless decimal overflow occurs

All other registers are unchanged

Program errors

1 Operand addressing errors
2 Decimal overflow
Summary

The operand (length determined by ACS setting) is added to the
contents of ACC. If overflow occurs, the result will be
correct (including the sign digit) apart from the digit that
overflowed.

Formats
DAD oper
DAD.s im
DAD,.cC
DaD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' -Chapter "15 . 1



D6 DCP

(decimal compare)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Aacs

Permissible ACS: 32, 64, 128

Effect on registers

S .o 0 ACC = operand

. 1 ACC < operand

2 ACC > operand

All other registers are unchanged

Program errors

Operand addressing errors, see section 11.2.1.

Summary

Each digit of the terminal operand is compared with the
corresponding digit in ACC arithmetically. There is no check
that the digits lie in the range 0 to 9. The result of the
comparision is given by the setting of CC.

Formats
DCP oper
DCP.s im
DCP.C
DCP.,ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ) . Chapter™ 15 1



9A Dpv

(decimal divide)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Aacs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contains result

ov Cleared, even if the zero divide interrupt occurs

All other registers are unchanged

Program errors
1 Operand addressing errors

2 Zero divide (maskable)

Summary

The contents of the accumulator are divided by the terminal
operand and the unrounded quotient left in the accumulator.
If the divisor is zero the result is undefined and the zero
divide interrupt occurs (maskable).

Formats
DDV_ oper
DDV.s im
DDV.c
DDV.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The resuiting quotient value is such as to produce a remainder
which is either zero or of the same sign as the dividend and
numerically less than the divisor.

6413/0 . ' Chapter 15 1



24

DEBJ

(decrement B and jump if not zero)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

B
ov

Decremented by one

Cleared unless overflow occurs

All other registers are unchanged

Program errors

1 Operand addressing errors for a jump function (see
section 11.2.1

2 B overflow (maskable)

Summary

The B register is decremented by one. If the result is not
zero, control is transferred to the location specified by the
terminal operand (label or virtual address) otherwise execution
continues with the next function in sequence.

Formats

where

DEBJ destination
DEBJ.s oper
DEBJ.C

DEBJ.ep |iIntlit

destination is either a label or a one~word LOCAL data item which

oper

intlit

Description

holds the virtual address of the jump destination

is an operand appropriate for indirection or
modification

is an integer literal modifying the register specified
by the explicit variant ep

If B contains -23! before execution of the DEBJ function, OV is
set, the value +231_1 left in B and a B overflow interrupt
occurs (maskable).

6413/0

Chapter 15 1



St MDV

(decimal remainder divide)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs
Permissible ACS: 32, 64, 128
Effect on registers
ACC Contains quotient
cc 0 Remainder = 0 or (remainder >0 and divisor >0)
1 Remainder >0 and divisor <0
2 Remainder <0 and divisor >0
3 Remainder <0 and divisor <0

ov Cleared, even if outcome erroneous

Program errors
1 Operand addressing errors, see section 12.2.1
2 Zero divide (maskable)

Summary

The contents of the accumulator are divided by the operand.
The quotient is left in the accumulator and ‘the remainder is
stacked causing SF to be incremented appropriately (the size
of all the quantities involved is determined by ACS).

Formats
DMDV oper
DMDV.s im
DMDV .C
DMDV.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' -Chapter 15 _ 1



DMDV

Description

The quotient value is such as to produce a remainder which is
either zero or of the same sign as the dividend and numerically
smaller than the divisor. CC is set to indicate the result of
the division,

If the divisor is zero, the quotient, the remainder (which is
still stacked) and the setting of CC are all undefined and the
zero divide interrupt occurs (maskable).

2 Chapter 15 ' 6413/0



DA MY

(decimal multiply)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, e4, 128

Effect on registers

ov Cleared unless decimal overflow occurs

All other registers are unchanged

Program errors

1 Operand addressing errors, see section 11.2.1
2 Decimal overflow (maskable)
Summary

The product of the terminal operand and the accumulator is left
in the accumulator. If the product cannot be accommodated by
ACC, the result is undefined, OV is set and a decimal overflow
interrupt occurs (maskable).

Formats
DMY oper
DMY,.s im
DMY-.C
DMY.ep |Jintlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' Chapter 15



nc DMYD

(decimal multiply double)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

ov Cleared

All other registers are unchanged

Program errors
1l Operand addressing errors, see section 11.2.1

2 ACS = 128

Summary

The contents of the accumulator and the terminal operand are
multiplied, ACS is doubled and the product left in the
accumulator. An original ACS of 128 is not permitted.

Formats
DMYD oper
DMYD.s im
DMYD,.c
DMYD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 : . Chapter 15 . 1



9C DRDV

(decimal reverse divide)

Type: PpPrimary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contains result

ov Cleared, even if the zero divide interrupt occurs

All other registers are unchanged

Program errors

1 Operand addressing errors
2 Zero divide (maskable)
Summary

The contents of the terminal operand are divided by the
accumulator and the unrounded quotient left in the accumulator.
If the divisor is zero the result is undefined and the zero
divide interrupt occurs (maskable).

Formats
DRDV oper
DRDV.s im
DRDV.cC
DRDV.ep intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The resulting quotient value is such as to produce a remainder
which is either zero or of the same sign as the dividend and
numerically less than the divisor,

6413/0 ) . Chapter- 15 1



04 DRSB

(decimal reverse subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contains result

ov Cleared unless overflow occurs

Program errors

1 Operand addressing errors
2 Decimal overflow
Summary

The contents of ACC are subtracted from the terminal operand

and the result left in ACC. If overflow occurs, the result
(including the sign digit) will be correct, apart from the digit
that overflowed.

Formats
DRSB oper
DRSB,s im
DRSB,cC
DRSB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep .

6413/0 ) .Chapter <15 1



D2 DSB

(decimal subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Acs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contains result

ov Cleared unless overflow occurs

All other registers are unchanged

Program errors

1 Operand addressing errors
2 Decimal overflow
Summary

The operand is subtracted from the contents of ACC. If overflow
occurs, the result will be correct (including the sign digit)
apart from the digit that overflowed.

Formats
DSB oper
DSB.s im
DSB.C
DSB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' . Chapter 15 1



D8 DSH

(decimal shift)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 7

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contents shifted as specified by operand

‘ov Set if any 1 bits shifted off the left end of ACC,
otherwise cleared

Program errors

1 Operand addressing errors, see section 11.2.1
2 Decimal overflow (maskable)
Summary

The decimal value in ACC is shifted as specified.by the terminal
operand of the function. The least significant 7 bits of the
operand are used, being interpreted as a signed integer in the
range - 64 to +63 (i).

The contents of ACC are shifted 4. places (to the left if i > 0,
to the right if i < 0).

Formats 7
DSH val
DSH.s im
DSH.c
DSH.ep |intlit
where
val is a literal or store location of any length controlling
the shift
im is an operand appropriate for indirection or modification

intlit is an inieger literal modifying the register specified by
the explicit variant ep

Description

The terminal operand may be of any length. The least
significant 7 bits are interpreted as a signed integer i in the
range —-64 to +63, all other bits being ignored.

6413/0 Chapter 15 1l



DSH

If i > 0 then all but the least significant 4 bits of ACC are
shifted i digits (41 binary places) to the left. The sign
digit is unaltered. A zero bit is inserted in the bit position
next to the sign digit for each place shifted. If any of the
bits shifted off the left end of ACC are ones, OV is set and an
interrupt occurs.

If i < 0 then all but the least significant 4 bits of ACC are
shifted i digits (4i binary places) to the right. The sign
digit is unaltered. Any bits shifted out of the position to the
left of the sign digit are lost, A zero bit is inserted .at the
more significant end of ACC for each place shifted. OV is
cleared.

Chaptexr 15 6413/0



3A ESEX

(escape exit)

Type: Primary, length 16 bits
Effect on registers
PC Overwritten by value at TOS

PSR The D bit is set initially but cleared by the instruction
executed as a result of cbeying ESEX

SF Decremented by 1
All other registers are unchanged.

Program errors
Universal types

Summary

ESEX is used to exit from an escape routine

Normally it results in the instruction that triggered the escape
mechanism being executed.

Format

izsnx [

Description

Bits O to 30 of the word at TOS overwrite PC (bit 31 is ignored)
and SF is decremented by 1. The D bit in PSR is set and a jump
made to the instruction now pointed at by PC (normally the one
which triggered the escape mechanism). If direct access, or
access via DR is specified by the instrxuction, this will be
carried out. If the instruction accesses store indirectly, via
a descriptor in store, the descriptor in DR will be used instead
(it is assumed that the escape routine will have loaded DR).

If the instruction specifies modification, this will be performed,
but on the descriptor in DR rather than the one specified. The
D bit is cleared by execution of the instruction.

6413/0 g Chapter 45 1l



38 EXIT

Type: Primary, length 16 bits (operand must be 7-bit literal)
Terminal operand length: 7

Effect on registers

aACC Unchanged

B Unchangea

DR Not preserved on inward return

LNB Value from calling procedure restored
PC Altered to value in link descriptor

PSR Fields may be changed to values stored in LNB+l
depending on terminal operand (includes ACR, ACS, CC,
D, OV, PM, PRIV)

SF Restored to state before CALL

Program errors

SF & LNB+2

Invalid link descriptor,

New value of PRIV > old

New value of ACR < old

Bits O to 13 of LNB not the same as SSN
-Bits 14 to 29 of LNB 2 new sr

Attempt to set ACS to zero using stored PSR

N O AW e

Summary

EXIT is used within a procedure to terminate execution of that
procedure and return control to the calling procedure using the
link descriptor stored at LNB+1l and INB+2. The terminal
operand (optional) may be used to restore certain registers
fram the PSR values stored with the link descriptor.

Formats

EXIT
EXIT oper

where

oper is a literal operand (of which only bits 25 to 29 are
significant) specifying registers to be restored from

6413/1 Chapter 15



EXIT

the stored PSR

Note: If oper is absent, the compiler uses a default value of
X'ecC'

Description
The effects of EXIT are as follows:

1 SF and LNB have the values they had at the time of the pre-
CALL sequence restored

2 The link descriptor is accessed and PC set to point to the
_ statement following CALL in the calling procedure and
control transferred to this instruction

The fields of PSR (stored at LNB+l) are altered as follows:

1 If the value in bits 8 to 11l is not less than the current
ACR, it is used to overwrite ACR, otherwise an interrupt
occurs

2 If the value in bit 13 is not greater than PRIV it overwrites
PRIV otherwise an interrupt occurs

Other alterations depend on whether bits 25 to 29 of the terminal
operand are set as follows.

Bit set Effect
25 Bits 16 to 23 of LNB+l overwrite PM
26 Bits 28 to 29 of LNB+l overwrite CC
27 Bits 30 to 31 of LNB+l overwrite ACS.
If these bits are zero, an error occurs.
28 Bit 12 of LNB+l overwrites D
29 Bit 14 of LNB+l overwrites OV

(this will not cause an overflow interrupt)

Note: An operand value of X'FF' will cause all the above
registers to be overwritten. If no operand is supplied a
value of X'6C' is assumed (registers PM, CC, D, OV).

2 Chapter 15 6413/1



88 £XPA

(expand accumulator)

Type: Primary, iength 16 bits
Permissible ACS: 32, 64
Effect on registers

ACC Unpacked

ov Cleared _

Other registers are unchanged

Program error
ACS = 128

Summary

EXPA converts the contents of the accumulator from packed form
(6-bit characters) to unpacked form (8-bit characters).

Format

4]EXPA |

Description

The contents of ACC are converted to unpacked character form.
The original contents of bits O to 7 (ACS = 32) or 0 to 15 '
(ACS = 64) are ignored. Zeros are generated in the first two
bits of each byte (0 and 1, 8 and 9, etc.)

The process is summarised in the diagram below.

For ACS 32
° 18 1314 19 20 2526 31
acc | 00000000 | |

0 113 I 78 910 l 1516 1718 l -
! 00 | 6bits Iooi ebis | 00 | ebis ],” | ebus

o i g s R
e [

o 1816 2122 2738 3334 3940 4546 5152 5758 €3

For ACs &4 | L 1 T T 1 I I |

L L.

I Y £ A Y I 6

6413/0 ’ . Chaptef 15



96 EXP

(expand)

Type: sSecondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64 '

Effect on registers

ACC . .
DR } Address and length fields updated during execution

Other registers are unchanged

Program errors

1 Failure of any of the standard checks 1, 2 or 3 for store-
to-store functions (see section 6.4.4)

2 Address in DR not a multiple of 4

3 Number of bytes to be packed specified as zero or not a
multiple of 4

4 Destination vector too small

Summary

EXP converts a string of bytes in packed form (6-bit characters)
to unpacked form (8-bit characters).

The packed source string is described by a descriptor in ACC, the
vector to hold the unpacked string by a descriptor in DR.

Formats

EXP
EXP.N ulit

where

ulit is an unsigned integer literal specifying-'the number of
bytes to be unpacked

Description

When there is no variant, the number of bytes to be unpacked is
determined by the descriptor in ACC, otherwise by the operand
ulit. The first two bits of each byte of the unpacked string
are set to zero. The following conditions must be observed
(where 1 is the number of bytes to be unpacked):

1 Both descriptors must be loaded into the registers .
2 1>0

6413/0 ' -Chapter 15 1



EXP

3 l must be a multiple of 4
4 The destination vector must be at least 3/41 in length
5 The initial address in DR must be a multiple of 4

The address and length fields of the descriptors are updated
during execution of the function.

If the strings overlap, the correct results will still be
produced provided that the first or last byte of the unpacked
string lies w1th1n the packed string (the string lengths are
defined as 1 and /41) otherwise the results are undefined.

For a description of packed and unpacked character formats,
see section 1.4.5.

2 Chapter 15 6413/0



B8 FIX

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32, 64
~Effect on registers

ACC As described below

ACS Set to 64 if originally 128, otherwise unchanged
cc 0 No non-zero bits lost

l Only set if ACS originally 128. Lost portion < 0.5
(bit 71 = 0 after negation)

2 Only set if ACS originally 128, Lost portion 2 0.5
(bit 72 = 1 after negation) )

Program errors

1 Operand addressing errors, see section 11.2.1
2 Non-zero bits of stored value truncated, see section 6.6.2
Summary

This function converts a floating point value in ACC (32 or 64
bits) to fixed point format. The exponent is adjusted and
stored in the 32 bit location specified by the terminal operand.
The fractional part is left in ACC as a signed integer.

Formats
FIX locs
FIX.s im
FIX.c
FIX.ep |intlit
where

locs specifies a 32 bit store location to hold the adjusted
exponent’

im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by-
the explicit variant ep

6413/0 ' : . Chapter 15 1



FIX

Description

The floating point value in ACC is separated into two parts:

The equnént
The fraction and sign

The exponent is adjusted and stored as a single length signed
integer in the location specified by the terminal operand of
the function. The fraction and sign are left in ACC as a
signed integer,

ACS may be 32, 64 or 128. If it is 128 it is set to 64 and
the least significant 14 bits of the fraction lost, CC being .’
set to indicate the nature of the lost part.

If all 6, 14 or 28 bits of the fraction are zero the following
events occur:

1 If ACS is 128 it is set to 64
2 ACC and CC are set to zero

3 The location specified by the terminal operand is set to
' zero ‘

If the fraction is not zero, bits 1 to 7 of ACC are stored in a
32 bit intermediate register. The exponent is unbiased by
subtracting 70 (ACS = 32) or 78 (ACS > 32) from the contents

-of the intermediate register. The result is stored in the
terminal operand location. This is summarised in the following
diagram:

f fraction is non-zero o.§. 32 bit ACC

Mﬁl i T Fracie ]

0 25 l 31
mtermed | 000000 = — —= == m o= mmmm— e o= —— e — 00 EXP
. Unbias
0 25 an
Operand [gooooo --------------------------- ool UE"““'

The exponent ia unblased by subtracting {n (ACS=32bits)
78 (ACS = &4, 120 bits)

lm.m quantity in the futermediate register.

I bit 0 of ACC = 0, bits 3-7 ars made seros.

16 b4t O of ACC = 1, fraction is mogated, bite 0-7 of ACC ave made 1's.

The contents of ACC are then tidied up as follows. If the
sign bit (bit O of ACC) is zero then bits 1 to 7 are set to -
zero. If the sign bit is one, then the fraction is negated
and bits 1 to 7 are set to one. If ACS > 32 then CC is set
to zero. .

P : Chapter 15 6413/0



A8 FLT

(float)

Type: Primary,length 16 or 32 bits (see section 6.3.5)
Terminal operand length: 32 bits

Permissible ACS: 32, 64

Effect on registers

ACC See Description

ACS Doubled

ov Normally cleared; set if overflow occurs

All other registers are unchanged

Program errors

1 Operand addressing errors, see section 11.2.1
2 Floating- point overflow (maskable)

3 Floating-point underflow (maskable)

4 ACS = 128

Summary

The FLT function converts a fixed-point number (signed integer)
in the accumulator into floating-point format. The least
significant 8 bits of the terminal operand specify an exponent
to be associated with the integer originally in-the accumulator.

Formats
FLT oper
FLT.s im
FLT.cC
FLT.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ‘ .Chapter -15 1



FLT

Description

If the number in ACC is zero, the operand is ignored, ACS is
doubled and the accumulator extended with zeros.

If the number in ACC is not zero, the following events take
place:

1l ACS is doubled. The original contents of ACC are placed

in the more significant half and the less significant half
set to zero

2 The least significant 8 bits of the terminal operand are
- stored in an intermediate register. This value is then

incremented by 72 (ACS = 64) or 80 (ACS = 128) to form the
intermediate characteristic

3 The contents of ACC are shifted riqg!i® arithmetically by 8
binary places. Bits 8 upwards thon fcrm the intermediate
fraction. If bit 0 of ACC was originally 1 the current
contents are negated to form the modulus of the fraction
and bit 0 (the sign bit) is set to 1

4 The intermediate fraction is normalised by shifting it up
4 bits at a time until bitsg 8 to 1l are not all zeros.
For each shift, 1 is subtracted from the intermediate
characteristic

'5  The least significant 7 bits of the intermediate
characteristic overwrite bits 1 to 7 of ACC

6 If ACS = 128 the following steps take place

~ (a) The least significant 64 bits of ACC are shifted to
the right by 8 places

(b) A copy of the characteristic in bits 1 to 7 is placed
in bits 65 to 71, with 14 being subtrxacted from it
(or 114 added to it if the value is less than 14)

(c) Bit 64 is made the same as bit 0

If the most signizicant bit of the intermediate register is 1,
underflow or overflow has occurred which will cause a maskable
interrupt. If underflow occurs, ACC is set to O.

2 ' Chapter 15 6413/0



EO 1AD

(integer add)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Acs

Permissible ACS: 32, 64

Effect on registers

ACC Contains sum

ov Normally cleared; set if overflow occurs

All other reéisters are unchanged

Program errors .
1 Operand addressing errors, see section 11.2.1
2 Fixed point overflow (maskable)

3 ACS = 128

Summary

The terminal operand is added to the contents of the accumulator
and the result left in the accumulator.

Formats
IAD oper
IAD.s im
IAD.c
IAD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

A fixed point overflow interrupt occurs (maskable) and OV is
set if the result lies outside the range determined by ACS. In
this case the result left in the accumulator is the least
significant 32 or 64 bits of the true sum. overflow can only
occur when adding numbers of like signms.

6413/0 . _ Chaptex 15 1



E6 ICP

(integer compare)

Type: Primary, length 16 or 32 bits 6.3.5
Operand length: acs
Permissible ACS: 32, &4
Effect on registers
cc 0 ACC = operand
1 ACC < operand
2 ACC > operand

Program errors
1 Operand addressing errors (see sectioh 11.2.1)
2 ACS = 128

Summary

The terminal operand is compared arithmetically with the contents
of ACC and CC is set to indicate the result.

Formats
ICP 'oper
ICP.s im
ICP.c
ICP.ep |intlit
where
int is the terminal operand (literal) or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ) Chapter 15



ue IDLE

(idle)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Program errors

Universal types

Summary

IDLE causes execution of the program to cease until an interrupt
of any kind occurs. A literal operand may be supplied. The
value is displayed on hardware indicators and may be used to
provide information to the operator.

Format

[oLe  Juzit

where ulit is an unsigned literal.

6413/0 . Chapter 15



AA IDV

(integer divide)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

OV  Cleared unless overflow occurs (see Description)

Program errors

1 Operand addressing errors, see section 11.2.1
2 Zero divide (maskable)

3 Fixed-point overflow (maskable)

4 ACS = 128

Summary

The contents of ACC are divided by the terminal operand and the
unrounded quotient left in ACC.

Formats
IDV oper
IDV.s im
IDV.c
IDV.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

If the divisor is zero OV is cleared, but a zero divide interrupt
occurs and the contents of ACC are undefined. If an attempt is
made to divide -1 into -23! (acs = 32) or -263 (acs = 64), OV is
set, a fixed-point overflow interrupt occurs and the contents of
ACC are unchanged.

6413/0 ) Chapter 15



AE ‘IMDV

(integer remainder divide)

Type: Primary, length f§ or 3a bits, see section 6.3.5
Terminal operand length: Aacs
Permissible ACS: 32, 64
Effect on registers
ACC Contains result
cc 0 Remainder 0 or remainder > 0 and divisor > O
1 Remaindef > 0 and divisor < O
2 Remainder <.0 and divisor > 0
3 Remainder < 0 and divisor < 0
ov Cleared unless fixed-point overflow occurs

SF Incremented by 1 or 2

Program errors

1 Operand addressing errors, see section 11l.2.1
2 Zero divide interrupt (maskable)

3 Fixed-point overflow {(maskable)

4 ACS =-128

Summary

ACC is divided by the terminal operand, the result left in ACC
and the remainder stacked. )

Formats
IMDV oper
IMDV.s im
IMDV.c
IMDV.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

¢413/0 ’ - Chapter 15



IMDV

Description

The remainder is numerically less than the divisor and, if not
zero, it has the same sign as the dividend.

If the divisor'is zero, OV is cleared, but a zero divide interrupt
occurs and the contents of ACC, the remainder and the setting of
CC are all undefined.

If the divisor is -1 and ACC has the values -23! (acs = 32) or
-2°3 (ACS = 64) OV is set, the contents of ACC are unchanged and
the remainder and the setting of CC are both undefined.

2 Chapter 15 6413/0



EA My

(inteaer multiply)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

ACC Contains result

ov Cleared unless fixed-point overflow occurs

Program errors
1 Operand addressing errors, see section 11.2.1
2 Fixed-point overflow (maskable)

3 ACS = 128

Summary

The contents of ACC are multiplied by the terminal operand and
the least significant 32 or 64 bits of the product (depending on
ACS) are left in ACC. Overflow occurs if the product is too
large.

Formats
IMY oper
IMY.s im
IMY.c
IMY.ep intlit
- where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' . Chapter” 15



EC IMYD

(integer multiply double)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Permissible ACS: 32
Effect on registers
ACC Contains product
cc 0 ACC and operand positive
1 ACC positive, operand negative
2 ACC negative, operand positive
3 ACC and operand negative
ov Cleared

Program errors
1 Operand addressing errors
2 ACS = 64 or 128

Summary

ACS should be 32 before execution of IMDV which sets it to 64.
The 64 bit product of ACC and the terminal operand is left in ACC.

CC is set to indicate the signs of the operand and the original
contents of ACC.

Formats
IMYD oper
IMYD.s im
IMYD.c
IMYD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep |,

6413/0 * . Chapter-15 1



14 INCA .

(increment address)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

DR ‘ Address field updated by éerminal operand

Program errors

Operand adaressing errors, see section 11.2.1

Summary

The terminal operand value is added to bits 32 to 63 of DR
(the address field); bits 0 to 31 are unaltered. Indirect
addressing (I variants) is not permitted.

Formats
INCA oper
INCA.c
INCA.ep |intlit
where
oper is the terminal operand (literal or directly addressed

data item name)

.intlit is an integer literal modifying the register specified
by the explicit variant ep

Note: I and D variants are not permitted.

6413/0 ' Chapter 15



=€ INCT

(increment and test)

Type: Primary,.length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

I
o

cc 0 New value of operand

v
o

1l New value of operand

2 New value of operand < -1

3 New value of operand = -1
ov Unaltered (overflow is ignored)

Other registers are unchanged

Program errors

1l Operand addressing errors, see section 11.2.1
2 Incorrect descriptor type

3 Incorrect operand types

Summary

INCT is a semaphore instruction mainly used to provide interlocks
on the peripheral communications areas in store. One is added

to the terminal operand value and CC is set to indicate the new
value. The original value of the operand is left in ACC.

Between reading the original operand value and replacing it by the
new value, access to the operand location is prevented by hardware.

Formats
INCT oper
INCT.s im
INCT.c
INCT.ep |[intlit
where

oper is the terminal operand (data item name)
im is an operand épprqpriate for indirection or moaification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Note: The terminal operand location must be in store, not a
register. The following variants are not permitted: B, T, P.

6413/2 . Chapter 15 1



INCT

Description

The prime use of this instruction is to implement semaphores,
using semaphore descriptors.

The operand value is normally interpreted as the number of other
processes waiting to use a shared resource. A value of -1
indicates that the resource is available.

The following restrictions apply to operand access:
1 Access is forced by hardware to bypass slave storage

2 If the operand is accessed indirectly, only a vector
descriptor (type 0) with size 32 or a semaphore (type 3,
subtype 40,4l1) descriptor may be used

3 The operand must be located in store rather than a register.
Direct TOS and (PC+N) operand forms are not permitted

If slave storage is used in the processor, it is cleared as
follows:

1 Stack slave store is cleared if the stack segment is
marked as non-slaved in its segment table entry

2 Operand slave store is cleared of items marked non-slaved
in either segment table

2 Chapter 15 6413/2



92 INS

(conditional insert)

Type: secondary, length 16 or 32 bxts, see sect;on 6.4.2
Effect on registers:

DR The descriptor in DR is updated during execution of the
" function

Program errors

Failure of standard checks for store-to-store operations, see
section 6.4.4

Summary

Each byte of the string described by a descriptor in DR is over-
written by the source byte. The location of this byte is
determined by the form of the function and the setting of CC as
follows:

cc 32 bit form 16 bit form
cc=0 Operand literal Bits 24 to 31 of B
cc>0 Operand mask Bits 16 to 23 of B

This function is intended for use with SUPK.

Formats

INS

INS mask, literal

INS.N ulit

INS.N ulit, mask, lzteral
where

mask and literal are one-byte literals (conventionally
hexadecimal)

ulit is an unsigned literal specifying the number of bytes of the
DR string to be overwritten

Description

When the operand ulit is present, it specifies the number of bytes
of the DR string to be overwritten; when it is absent, all bytes
are replaced.

Either the operand mask or literal may be used to overwrite the
DR string depending on the setting of CC. mask is not used for

© 6413/0 Chapter IS , 1



masking as it is with other string functions (such as MVL)
whatever the setting of CC.

If the number of bytes to be overwritten is specified as zero,
no error occurs. A null operation is performed leaving DR-
unaltered. '

2 Chapter 15 - 6413/0



AC IRDV

(integer reverse dividce)

Type: Priﬁary, length 16 or 32, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

ov Cleared unless overflow occurs (see Description)

Program errors

1 Operand addressing errors, see section 11.2.1
2 Zero divide (maskable) ]

3 Fixed-point overflow (maskable)

4 ACS = 128

Summary

The terminal operand is divided by the contents of ACC and the
unrounded quotient left in ACC.

Formats
IRDV ‘ oper
IRDV.s im
IRDV.c
IRDV.ep intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ’ Chapter 15 1



4 IRSE

{(integer reverse subtract)

Type: Primary, length 16 or 32 bits, (see section 6.3.5)
Terminal operand length: acs ’
Permissible ACS: 32, 64

Effect on registers

ACC Contains sum

ov normally cleared; set if overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Fixed-point overflow (maskable)

3 ACs = 12¢

Summary

The contents of the accumulator are subtracted from the terminal
operand and the result left in the accumulator. The terminal
operand is unchanged.

Formats
IRSB oper
IRSB.s im
IRSB.c
IRSB.ep |intlit
where

oper is the terminal operand (literal or data item name)
Iim is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

A fixed-point overflow interrupt occurs (maskable) and OV is set
if the result lies outside the range determined by ACS. In this
case the result left in the accumulator is the least significant
32 or 64 bits of the true result. Overflow can only occur when
subtracting numbers of opposite signs.

6413/0 ’ . Chapter~15 1



E2 ISB

(inteqer subtract)

Type: Primary, length 16 or 32 bits, (see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

‘Effect on registers

ACC Contains result

ov Normally cleared; set if overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Fixed-point overflow (maskable)
3 ACS = 128

Summary

The terminal operand is subtracted from the contents of the
accumulator and the result left in the accumulator.

Formats
ISB oper
ISB.s im
ISB.c
ISB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register speclfied by
the explicit variant ep

Description

A fixed-point overflow interrupt occurs (maskable) and OV is set
if the result lies outside the range determined by ACS. In this
case the result left in the accumulator is the least significant.
32 or 64 bits of the true result. Overflow can only occur when
subtracting numbers of opposite signs.

6413/0 ' . Chapter~15



E8 ISH

(integer shift)

Type: Primary, length 16 or 32 bits, see section 6.3.5

Terminal operand length: 32 '

Permissible ACS: 32, 64

Effect on registers

ACC shifted as specified by operand

cC 0: operand < 0, all bits shifted off right zeros
1: operand < 0, some ones shifted off right but last bit 0
2: operand < 0, last bit shifted off right a 1
3: operand € 0, left shift or zero shift

ov Normally cleared. Set if overflow occurs

Program errors
1 Operand addressing errors
2 Fixed-point overflow (maskable)

3 ACS = 128

Summary

The contents of ACC are shifted as specified by the terminal
operand. The least significant 7 bits of the operand are )
interpreted as a signed integer in the range -64 to +63 (i), the
other bits are ignored.

The contents of ACC are shifted i places, to the left if i>0, to
the right if i<O.

Formats
ISH oper
ISH.s im
ISH.c
ISH.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ) Chapter 15



ISH

Description

In a leftward shift (i>0) zeros are inserted at the less
significant end of ACC. If the contents of bit 0 of ACC change
at any time during the shift, OV is set and a fixed-point over-

flow interrupt occurs (maskable). If bit 0 does not change OV
is cleared.

In a rightward shift the sign bit is propagated by leaving bit O
unchanged. Bits shifted off the right of ACC are lost, but CC
is set to show what was lost. OV is always cleared.

.

2 ‘ Chapter 15 6413/0



1A ‘ J

(jump)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

J causes unconditional transfer of control to a location
specified by the terminal operand, which may be a program label
or a virtual address.

Formats
J oper
J.s im
J.Cc
J.ep intlit
where

oper is the terminal operand
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 : . _Chapter 45



06 JAF

(jump on arithmetic false)

Type: Tertiary, length 16 or 32 bits, see section 6.5.4
Terminal operand length: 32

Permissible ACS: 32, 64, 128

Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

This function tests the state of one of the registers ACC, B, DR
or OV. Both register and state are specified by the value of
the mask operand as shown in the table below. If the test
fails (that is, the condition is false) control is transferred
to the specified location.

Mask (hex) Condition

ACC =0
ACC >'0 Floating-point mode
ACC < O

Undefined

ACC =0
ACC > 0 Fixed-point mode
ACC < O

Undefined

ACC =0
ACC > 0
ACC < 0

DR length (bits 8 to 31) = 0
B=20
B> 0
B<O
OV set

Decimal mode

H MO O W PO W 00t W MO

Formats

JAF location, mask
JAF.et |intlit, mask
JAF.MD |mask

where

location is either a label or a LOCAL data item which holds the
virtual address of the jump destination

6413/0 ' Chapter 15



JAF

mask is a one-byte literal (conventionally hexadecimal)
intlit is a literal modifying the register specified b'y ep
et is one.of the variants D, L, X, P or S

Note: When the D variant is used, intlit may be omitted.

2 Chapter 15 6413/0



04 | JAT

(jump on arithmetic true)

Type: Tertiary, length 16 or 32 bits, see section 6.5.4
Terminal operand length: 32

Permissible ACS: 32, 64, 128

Program errors

f?g;i?d addressing errors for jump instructions, see section
Summary

This function tests the state of one of the registers ACC, B, DR
or OV. Both register and state are specified by the value of
the mask operand as shown in the table below. If the test
succeeds (that is, the condition is true) control is transferred
to the specified location.

Mask (hex) Condition

ACC 0
ACC > O Floating-point mode
ACC < O

Undefined

ACC 0
ACC 0 Fixed-point mode
ACC o

Undefined

ACC o

ACC > O Decimal mode
ACC < O

DR length (bits 8 to 31) =0
B=20

A VI v ol

B>0
B< O

H M O 0O WP W O N OO W NHO

OV set

Formats

JAT location, mask
JAT.et intlit, mask
JAT.MD mask

where

6413/0 . Chapter-15 4 1



JAT

location is either a labei or a LOCAL data item which holds the
virtual address of the jump destination

mask is a one-byte literal (conventionally hexadecimal)
intlit is a literal modifying the register specified by et
et is one of the variants D, L, X, P or § '

Note: When the D variant is used, intlit may be omitted.

2 - Chapter. 15 6413/0



02 JCC

(jump on condition code)

Type: Tertiary, length 16 or 32 bits, see section 6.5.4
Terminal operand length: 32

Effect on registers

PC Set to address of jump destination

All other registers are unchanged

Program errors

Operand addressing errors for jump funczions

Summary

The CC register is tested against-a mask supplied as an operand
of the function., If the test is successful, control is
transferred to a location specified either as a label or ‘as a
virtual address.

Formats
JCC location, mask
JCC.et |literal
JCC.MD mask

where

Jlocation is a program label or the name of a 32 bit local data
item containing the virtual address of the jump

destination
et is onie of the variants D, L, X, P or S
literal is an arithmetic literal (see section 7 ) which

is used in conjunction with the register specified by
the variant to access the location holding the v1rtua1
address of the jump destination

Note: The D variant may be used with or without an operand.

Description

The value or values of CC to be tested are selected by means of
the mask, the four bits of which correspond to the four settings
of CC. If the bits of the mask are mg, m;, my and m3 then
transfer of control will occur if mj is set to one and CC = i,
Thus if bit 0 of the mask is set (X"8') the jump will occur if
cc = 0.

6413 ) .Chapter~15 1



JCC

Two or more mask bits may be set to jump on several values of

cC., The jump will occur if CC has any of the selected values.
Thus, a mask of X'C' (binary 1100) will cause a jump if CC is 0
or 1.

If the setting of CC is not one of those selected, execution
continues with the next function insequence.

Chapter 15 641370



[02] JE

(jump if equal)

Type

A pseudo-tertiary function which generates a JCC function
with the appropriate mask.

Terminal operand length: 32
Program errors

‘Operand addressing errors for jump functions, see section 11.2.1

Summary

JE causes a transfer of control to a specified location
{program label or virtual address) if CC = 0. It is used to
test the result of algebraic comparisons such as ICP and UCP
that set CC to 0 to indicate equality.

Formats
JE location
JE.et literal
JE.MD

where

locatlon is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 Chapter.15



[02] J6

{jump if greater)

Type

A pseudo-tertiary function which generates a JCC function
with the appropriate mask.

Terminal operand length: 32
Program errors

" Operand addressing errors for jump functions, see section 11.2.1

Summary

JE causes a transfer of control to a specified location
(program label or virtual address) if CC = 2, It is used to
test the result of algebraic comparisons such as ICP and UCP
that set CC.

Formats
JG location
JG.et literal
JG.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) whtich ]
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 .Chapter 15



[nz] JGE

(jump if greater than or equal to)

Type: a pseudo-tertiary function which generates a JCC function
with the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JGE causes a transfer of control to a specified location (program
label or virtual address) if CC is zero or 2. It is used to
test the result of algebraic comparisons such as ICP that set CC.

For example, a jump will occur if JGE is used after ICP when ACC 2
terminal operand.

Formats
|ace location
JGE.et literal
JGE.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, P or §

literal is an arithmetic literal (see Chrapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

¢413/0 : _ Chapter- 15 1



[02] JL

(jump if less)

Type: A pseudo-tertiary function which generates a JCC function
with the appropriate mask.

Terminal operand length: 32
Program errors ’

Operand addressing errors for jump functions, see section 11.2.1

Summary

JL causes a transfer of control to a specified location (program
label or virtual address) if CC = 1. It is used to test the
result of algebraic comparisons such as ICP that set CC.

Formats
JL location
JL.et |literal
JL.MD

where

lJocationis a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (sée Chapter 5) which is
used in conjunction with the register specified by the
variant to access the location holdinag the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 L _Chapter-15



[02] JLE

(Jump if less than or equal to)

Type: A pseudo-tertiary function which generates a JCC function
with the appropriate mask.

Terminal operand length: 32
- Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

.JLE causes a transfer of control to a specified location
(program label or virtual address) if CC is 0 or 1. It is used
to test the result of algebraic comparisons such as ICP set CC.

Formats
JLE location
JLE.et literal
JLE.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or S

. literal is an arithmetic literal (see Chapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 Chapte? 15



1C JLK

(jump and 1link)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

SF Incremented by 1

Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

The address of the function following JLK is stacked as a 32-bit,
byte address. Control is then transferred unconditionally to
the location specified by the terminal operand which may be

1 A subroutine name or a label within a procedure

2 A virtual address. The top-of-stack item may be used
(that is, T variants are permitted)

"Formats
JLK oper
JLK.s im
JLK.c
JLP.ep |intlit
where

oper is the terminal operand
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ) . Chapter 15 1



[ 0] N

(jump if negative)

Type

A pseudo-tertiary function which generates a JAT function with
the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64
 Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JN causes a transfer of control to a specified location (program
" label or virtual address) if the integer number in ACC is
negative.

Formats
JN location
JN.et literal
JN.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or §

literal is ar. arithmetic literal (see <hapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 . ~ Chapter 15 1



[ o4] | JNB

(jump if necative, B)

Type

A pseudo-tertiary function which generates a JAT function with
the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functicns, see section 11.2.1

Summary

JNB causes a transfer of control to a specified location
(program label or virtual address) if the value in the B register
is negative.

Formats
JINR location
JNB.et literal
JNB.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, Por S

. literal is an arithmetic literal (see Thajiar ©) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

- 6413/0 ' : Chapter 15 1



[ ou] JND

(jump if negative, decimal)

Type

A pseudo-tertiary function which generates a JAT function with
the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JND causes a transfer of control to a specified location
(program label or virtual address) if the decimal number in ACC
is negative. )

Formats
JND location
JND.et literal
JND.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, Por §

literal is an arithmetic literal (see Chapter 5 ) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 : ] Chapter 15 1



[02] INE

(jump if not equal)

Type

A pseudo-tertiary function which generates a JCC function with
- the appropriate mask.

Terminal operand length: 32
Program errors

Cperand addressing errors for jump functions, see section 11.2.1

Summary

JNE causes a transfer of control to a specified location
(program label or virtual address) if CC is 1 or 2. It is used

to test the result of algebraic comparisons such as ICP that set
CcC.

Formats
JNE location
JNE.et literal
JNE.MD

where

location is a program label or the name of a 32 bit local
data item containing the virtual address of the jump
destination. : '

et is one of the variants ., L, X, P or S

literal is an arithmetic literal (see Chapter 5) which is
used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 . Chapter 15

p-d



[ 06] NN

(jump if not neqative)

Type

A pseudo-tertiary function which generates a JAF function with
the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors '

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNN causes a transfer of control to a specified location
(program label or virtual address) if the integer number in ACC
is positive or zero.

Formats
[onN location
JNN.et literal
JNN.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et in one of the variants D, L, X, Por §

literal is an arithmetic literal (see Chaptcr 5) which .o
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

.6413/0 Chapter 15



{.06] JNNR

(jump if not negative, R)

Type

A pseudo-tertiary function which generates a JAF function with
the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNNB causes a transfer of control to a specified location
(program label or virtual address) if the value in B is positive
or zero.

Formats
JNNB [Zocation
JNNB.et |literal
JNNB.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 ) - Chapter 15 .



[ 0€] o

(jump if not negative, decimal)

Type

A pseudo-tertiary function which generates a JAF function with
the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNND causes a transfer of control to a specified location
(program label or virtual address) if the decimal number in ACC
is positive or zero. )

Formats
JNND location
JNND.et literal
JNND.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, Por S

literal is an arithmetic literal -(see Chapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 '~ - Chapter 15



| 06] JNNR

(jump if not negative, real)

Type

A pseudo-tertiary function which generates a JAF function with
the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

" Summary

JNNR causes a transfer of control to a specified location
(program label or virtual address) if the real number in ACC
is positive or zero

Formats
JNNR location
JNNR.et literal
JNNR.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chairter 5) whicl is
used in conjunction with the register specified by the
variant to access the location holding the virtual add
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 * Chapter 15 _ 1



[06] JNOV

(jump if not overflow)

Type

A pseudo-tertiary function which generates a JAF function with
the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNOV causes a transfer of control to a specified location
(program label or virtual address) if OV is not set.

Formats
JNOV location
JNOV et literal
JNOV.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

©413/0 - " Chapter 15



[ 06) | JNP

(jump if not positive)

Type’

A pseudo-tertiary function which generates a JAF function with
‘the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNP causes a transfer of control to a specified location
(program label or virtual address) if the integer number in ACC
is negative or zero.

Formats
JNP location
JNP.et literal
JNP .MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination.

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chapter 5) which is
used in conjunction with the register specified by the-
variant to access the location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 - Chapter~15



[ 06] | JNPB

(jump if not positive, B)

Type:

A pseudo-tertiary function which generates.a JAF function with
the appropriate mask.

" Terminal operand length: 32
Program errors
Operand addressing errors for jump functions, see section 11.2.1

Summary

JNPB causes a transfer of control to a specified location
(program label or virtual address) if the value in B is
negative or zero.

Formats
JNPB location
JNPB.et ~ |literal
JNPB.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por s

literal 4is an arithmetic literal (see Chapt:r'5) which is
used in conjunction with the register specified by the
variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ) .Chapter “15



[ 0€] . JNPD

(Jump if not positive, decimal)

Type

A pseudo-tertiary function which generates a JAF function
‘with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNPD causes a transfer of control to a specified location
(program label or virtual address) if the decimal number in
ACC is negative or zero.

Formats
JNPD location
JNPD,et literal
JNPD ,MD

where

location is a program label or the name of a 32 bit local data .
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified
by the variant to access the location holding the
virtual address of the jump destination

Note: The D variant may be used with or without an operand, -

6413/0 ) . Chaptet® 15 . 1



[oe] JNPR

(jump if not positive, real)

Type

A pseudo-tertiary function which generates a JAF function
with the' appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNPR causes a transfer of control to a specified location
(program label or virtual address) if the real number in
ACC is negative or zero. '

Formats

[INPR
JINPR.et
JNPR.MD

location is a program label or the name'of a 32 bit local data
item containing the virtual address of the jump
destination

location
literal

where

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the.location holding the virtual
address of the jump destination.

Note: The D variant may be used with or without an operand.

6413/0 ) . Chaptef 15



[ ou] JNR

(jump if negative, real)

Type

A pseudo-tertiary function which generates a JAT functzon
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNR causes a transfer of control to a specified location
(program label or virtual address) if the real number 1n
ACC is negative.

JNR
JNR.et
JNR.MD

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

Formats

location
literal

where

et is one of the variants D, L, X, Por §

literal 4is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ) . Chapter~15



[06] INZ

(jump if not zero)

Type

A pseuo-tertiary function which generates a JAF function
with the appropriate mask.,

Terminal operand length: 32
Permissible ACS: 132, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNZ causes a transfer of control to a specified location
(program label or virtual address) if the integer number in
ACC is not zero.

Formats
JINZ location
JINZ.et literal
JNZ .MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump .
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand,

. 6413/0 Chaptér 15 ) 1



[06] JNZB

(jump if not zero, B)

Type

A pseudo-tertiary function which generates a JAF function
with the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNZB causes a transfer of control to a specified location
(program label or virtual address) if the value in B is not
zero.

Formats

[INzB location
JNZB,et literal
JNZB.MD

where

- location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 " . Chapter 15



[o€] oNZD

(jump if not zero, decimal)

Type

A pseudo-tertiary function which generates a JAF function
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, e4, 128
Program errors

Operand addressing errors for jump functions, see sectién 11.2.1

Summary

JNZD causes a transfer of control to a specified location
(program label or virtual address) if the decimal number in
ACC is not zero. '

Formats
JNZD location
JNZD,.et literal
JNZD .MD

vwhere

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination ’

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ) Chapter IS



[ 06] JNZDL

(jump if not zero, descriptor length)

Type

A pseudo-tertiary function which generates a JAF fhnction
with the appropriate mask,

Terminal operand length: 32
_Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNZDL causes a transfer of control to a specified location
(program label or virtual address) if the length field in DR
is not zero.

Formats
JNZDL location
JNZDL.et literal
JNZDL .MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 - . Chaptex 15



.

[ 6] INZR

(jump if not zero, real)

Type

A pseudo=-tertiary function which generates a JAF function
with the appropriate mask.

Terminal operand Tength: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JNZR causes a transfer of control to a specified location
(program label or virtual address) if the real number in ACC
is not zero.

Formats
[aNzZR [1ocation
JNZR.et literal
JNZR.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal 4is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 . Chapter_15



| [ o] JOV

(Jump if overflow)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JOV causes a transfer of control to a specified location
(program label or virtual address) if OV is set.

Formats
7J0V location
JOV.et literal
JOV .MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal .(see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 . ) Chapter. 15



[oy] o

(jump if positive)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask,

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

' Summary

JP causes a transfer of control to a specified location
(program label or virtual address) if the integer number in
ACC is greater than zero,

Formats
JP location
JP.et literal
JP,MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ' . Chapter 15



|04] | JPB

(jump if positive, B)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JPB causes a transfer of control to a specified location
(program label or virtual address) if B > O,

Formats
JPB location
JPB.et literal
JPB.MD

where

location is a program label or the name of a 32 bit local data
' item containing the virtual address of the jump
destination

et . is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ' . Chaptef 15



[ o4] JPR

‘(jump if positive, real)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JPR causes a transfer of control to a specified location
(program label or virtual address) if the real number in ACC
is greater than zero. '

Formats
JPR location
JPR,.et literal
JPR.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump.
destination

et is one of the variants D, L, X, Por §

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register seecified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 . ) Chapter 15



[ 04] | Jz

(jump if zero)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11l.2.1

Summary

JZ causes a transfer of control to a specified location

(program label or virtual address) if the integer number in
ACC is zero. :

Formats
JZ location
JZ.et literal
Jz.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump -
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the v;rtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 ' . Chaptef 15



[ 04] JZB

(jump if zero, B)

Type

A pseudo-tertiary function which generates a JAT function with.
the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JZB causes a transfer of control to a spépified location
" - {(program label or virtual address) if B is zero.

JZB
JZB.et
JZB.MD

location is a program label or the name of a 32 bit local data
item. containing the virtual address of the jump
destination

Formats

location
literal

where

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which
" is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 . .. Chaptex 15



[ou] | JI

(jump if zero, decimal)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JZD causes a transfer of control to a specified location
(program label or virtual address) if the decimal number in
ACC is zero.

Formats
JzD location
JZD.et literal
JZD.MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, P or S

literal is an arithmetic literal (see Chapter 5) which
is used in conjunction with the register specified by
the variant to access the location holding the vi.rtual
address of the jump destmaticm

Note: The D variant may be used with or with:ut an operand.

6413/0 Chapter 15



[ 04] JInL

(jump if zero, descriptor lenqgth)

Type:

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JZDL causes a transfer of control to a specified location

(program label or virtual address) if the length field of DR
is zero,

Formats
JZDL location
JZDL.et literal
JZDL .MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chanter S) which
is used in conjunction with the register speclfled by
the address of the jump destination

Notes:

1l The D variant may be used with or without an operand
2 There is a possibility of a bound check error when jumping

via DR. For example, use of the D or MD variants will
cause an execution error if the jump occurs unless BCI is
set (see section 1.4.6)

6413/0 Chapter 15



[ou] JIR

(jump if zerc, real)

Type

A pseudo-tertiary function which generates a JAT function
with the appropriate mask.

Terminal operand length: 32
Permissible ACS: 32, 64, 128
Program errors

Operand addressing errors for jump functions, see section 11.2.1

Summary

JZR causes a transfer of control to a specified location
(program label or virtual address) if the real number in ACC
is zero.

Formats
[JZR location
JZR.et literal
JZR MD

where

location is a program label or the name of a 32 bit local data
item containing the virtual address of the jump )
destination

et is one of the variants D, L, X, Por S

literal is an arithmetic literal (see Chapter 5) which -
is used in conjunction with the register specified by
the variant to access the location holding the virtual
address of the jump destination

Note: The D variant may be used with or without an operand.

6413/0 . ) Chapter 15



60 L

(load accumulator)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Contains new value

ov Cleared

Program errors
1 Operand addressing errors, see section 11.2.1

2 Non-zero bits of operand truncated (that is, ACS too small)

Summary

The value of the terminal operand is loaded into ACC. If

operand length > ACS and non-zero bits are lost, a size interrupt
occurs.

Formats
L Oper
L.s im
L.c
L.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand approrpiate for indirection or modification

intlit is an integer literal modifying the registei specified by
the explicit variant

6413/0 " Chapter 15 : 1



7A LB

(load R)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

B Overwritten with new value

ov Cleared

Program errors

Operand addressing erroré, see section 11.2.1

Summary

The value of the terminal operand is loaded into B. The
previous contents of B may be used as a modifier to access the
terminal operand (that is, the M variant may be used).

Formats
LB oper
LB.s im
LB.c
LB.ep |intlit
where

oper is the temrinal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 * Chapter 15



30 LCT

(locad CTB)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effects on registers

None apart from CTB.

Program errors

Operand addressing errors (see section 11.2.1)

Summary

Bits 0 to 29 of the terminal operand are loaded into CTB.
Bits 30 and 31 are ignored.

Formats
7LCT Voper
LCT.s im
ICT.cC
LCT.ep intlit
where

oper is the terminal operand (literal or data item name) .
im is an operand appropriate for indirection or modification.

initlit is an integer literal modifying the register specified
by the explicit variant ep.

6413/1 Chapter 15



/8 LD

(load DR)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64
‘Effect on registers

ccC Indicates the type of descriptor loaded (for example,
CC = 0 means a type 0 descriptor)

Program errors

Operand addressing errors, see section 11.2.1

~Summary

The value of the terminal operand is loaded into DR, overwriting
it. A descriptor in DR may be used to access the operand.

Formats
LD oper
LD.s im
LD.c .
LD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter” 15



72 LDA

(load address)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

DR  See Summary

Program errors

Operand addressing errors, see section 11.2.1

Summary

The value of the terminal operand is loaded into the address
field of DR (the less significant 32 bits). . The remainder
of DR is unchanged unless DR is used implicitly to access the
terminal operand. '

Formats
LDA oper
LDA.s im
LDA.c
LDA.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ’ . Chaptér 15



7€ LNB

(load bound)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Program errors

Operand addressing errors, see section 11.2.1

Summary

The least significant 24 bits of the terminal operand are copied
to bits 8 to 31 of DR. The other bits of DR are unaltered unless
indirect addressing is used (I variants), in which case they are
overwritten by the corresponding bits of the descriptor used to
access the terminal operand (address field unmodified). Bits

0 to 7 of the operand are ignored.

Formats
LDB oper
LDB.s im
LDB.c
LDB.ep |intlit
where
oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' - Chapter 15 1



70 LDRL

(load relative)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64
Effect on registers

cc Set to indicate the type of descriptor loaded.’
A value of n indicates a descriptor of type n; n= 0 to 3

Program errors

1 Operand addressing errors, see section 11.2.1
2 Invalid address forms
Summary

The terminal operand value is transferred to DR with the least
significant 32 bits (the address field) augmented by the value

. of its own byte address. Carry out of.the address fleld resulting
from the addition is ignored.

A literal or register as terminal operand is not allowed.

Indirect access causes the operand rather than the descrlptor used
to access it to be left in DR.

Formats
LDRL oper
LDRL.s . |im
LDRL.cC )
LDRL.ep |intlit
where

oper . is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' - Chapter 15 _ 1



[74] LDTB

(load type and bound)

Type: Primary, length 16 or 32 bits, see section 6,3.5
Terminal operand length: 32
Program errors

Operand addressing errors, see section 11.2.1

Summary

The terminal operand value is copied to the more significant
32 bits of DR. The less significant 32 bits are unaltered
unless indirect addressing is used to access the terminal
operand (I variants) in which case they are replaced by the
address field (unmodified) of the descriptor used.

Formats
LDTB oper
LDTB.s im
LDTB.c
LDTB.ep |intlit
where
oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15 1



7C LLN

(load LNB)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

None other than LNB affected.

Program errors

1 Operand addressing errors, see section 11.2.1
2 Bits O to 13 of operand not equal to SSN

3 Bits 14 to 29 of operand 2 SF

Summary

LLN loads bits 14 to 29 of the terminal operand into LNB as
follows:

1 Bits 0 to 13 of the operand are checked to see if they are
equal to SSN

2 The value of bits 14 to 29 of the operand is checked to
see if it is < SF

3 If the above checks are successful, LNB is loaded with the
new value

Bits 30 and 31 of the operand are ignored.

Formats
LLN oper
LLN.s im
LIN.c
LLN.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operénd appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



bl LSD

(load and set double)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64
Effect on registers

ACC Overwritten with new value
ACS 64
ov Cleared

Program errors

Operand addressing errors, see section 11.2.1

Summary

ACS is set to 64 and the value of the terminal operané loaded
into ACC. .

If necessary, a literal operand is extended on the left to 64
bits, with sign regeneration, before loading.

Formats
[LsSD 7oper
LSD.s im
LSD.c
LSD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im ' is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapteér 15



66 LSQ

(load and set quadruple)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 128
Effect on registers

ACC Overwritten with new value
ACS 128
ov Cleared

Program errors

Operand addressing errors

Summary

ACS is set to 128 and the value of the terminal operand loaded
into AcCC.

If necessary, a literal operand is extended on the left -to 128
bits, with sign bit regeneration, before loading.

_Formats
LSQ oper
LSQ.s im
LSQ.c
Q.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ’ -Chapter "15



62 LSS

(load and set single)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

ACC Overwritten with new value
ACS 32
ov Cleared

Program errors

Operand addressing errors

Summary

ACS is set to 32 and the value of the terminal operand loaded
into ACC.

Formats
LSS oper
LSS.s im
LSS.c
LSS.ep |intlit
where

oper 1is the terminal operand (literal or data item name)
im "is an operand appropriate for indirection or modification

intlit is an -integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



EA LUH

(load upper half)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Aacs

Permissible ACS: 32, 64

Program errors

1l Operand addressing errors, see section 11.2.1
2 ACS = 128
Summary

ACS is doubled and the terminal operand value is loaded into

the upper (newly created) half of AcCC. The lower half of ACC
is unchanged.

Formats
" ILUH oper

LUH.s im

LUH.c

LUH.ep |intlit
where
oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit - is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15 1



7t LXN

(load XNB)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32 '
Effect on registers

None apart from XNB

Program errors

Operand addressing errors

Summary

Bits 0 to 29 of the terminal operand are loaded into XNB.
Bits 30 and 31 are ignored.

Formats
LXN oper
LXN.s im
LXN.c
LXN.ep j(intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by ‘
the explicit variant ep

6413/0 . - Chapte? 15



16 MODD

(modify DR)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers

DR Modified as éescribed below

Program errors

Operand addressing errors, see section 11.2.1

2 Bound significant and s terminal operand.
3 System call descriptor in DR

4 Invalid descriptor in DR

5 Indirect addressing

Summary

In general, the terminal operand is added.to the address field
of DR and subtracted from the bound/length field. - Carry out
of the address field is ignored and bits O to 7 of DR are
unaltered. The precise effect of the function depends on the
type of descriptor in DR, see Description.

Formats
MODD oper
MODD.s im
MODD.c
MODD.ep |intlit
where

oper 1is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or medification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Note: Indirect addressing is not permitted.

Description

The function executes as described above if DR contains a valid
vector, string, descriptor or code descriptor, that is:

1 Type 0 with valid size code
2 Type 1 or 2

6413/1 Chapter 15



MODD

3 Type 3, subtype 32 or 33

If DR contains an escape descriptor, the escape mechanism is
invoked and the required descriptor substituted in DR by an
escape procedure before being modified.

A program error interrupt occurs if the descriptor in DR is
one of the following:

1 Type O with an invalid size code
2 System call
3 ‘Type 3 with an undefined subtype number

If the descriptor is of type O or 2 and the USC bit is not set,
or of type 3, subtype 32 or 33, the terminal operand is scaled
appropriately before addition to the address field. If the
descriptor is type O with size code 0, the least significant

3 bits of the terminal operand are ignored as a result of the
scaling operation.

If the terminal operand (regarded as unsigned, hence positive)
is not less than the original contents of the bound/length
field, only the least significant 24 bits of the difference are
left in the bound/length field. In such cases, if the
descriptor is type O or 2 with the BCI bit not set, or type 3,
subtype 32, a maskable bound check error interrupt occurs.

This does not apply to string descriptors.

2 - Chapter 15 6413/1



32 | MPSR

(modify program status register)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

ACS

cc Modified as specified by terminal operand
PM

Program errors

1 Operand addressing errors, see section 11.2.1

2 Attempting to set ACS to O

Summary

The least significant 16 bits of the terminal operand are used
to alter the program mask (PM), condition code (CC) and
accumulator size (ACS) registers as follows:

Register affected Operand flag bit Operand value bits

ACS 27 30 and 31

cc 26 28 and 29

PM 24 16 to 23 (ones used)
PM 25 16 to 23 (zeros used)

Bits O to 15 of the terminal operand are ignored and may take
any value.

Formats
[MPSR oper
MPSR.s im
MPSR.c
MPSR.ep |intlit
. where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



MPSR

Description

The bits described as flag bits in the table above specify the
registers to be altered. The new value for the register is
.contained in the bits described as operand value bits.

The effects may be further described as follows:

1

Note:

ACS If bit 27 is 1, bits 30 and 31 are used to overwrite
ACS. An error occurs if bits 30 and 31 are zero.

If bit 27 is 0, ACS is unaltered and bits 30 and 31 ignored

CC If bit 26 is 1, CC is set to the value in bits 28 and
29, Otherwise CC is unaltered and bits 28 and 29 may take
any value

PM Two flag bits are used. If bit 24 is 1, bits of the
program mask that correspond to ones in operand bits 16 to
23 are set to one, otherwise PM is unaltered.

If bit 25 is 1, bits of the program mask that correspond to
zeros in operand bits 16 to 23 are set to zero, otherwise
PM is unaltered

ACS and CC may be set using a 7-bit unsigned literal

operand, thus generating the 16-bit form of the function.

Chapter 15 6413/0



B2 . MV

{(move bytes)

Type: Secondary, length 16 or 32 bits (see section 6.4.2
Permissiple ACS: 64
Effect on registers

ACC} The descriptors in these registers have their length
DR and address fields updated as described below

Program errors

Failure of standard checks for store-to-store operations (see
section 6.4.4

Summary

MV is a store-to-store function which moves a string of bytes
from one location in store to another. Optional operands may
be used to specify mask and filler bytes.

Formats

MV .

MV mask, filler

MV.N ulit

MV.N ulit, mask, filler
where

mask and filler are one-byte constants (conventionally
hexadecimal

ulit is an unsigned integer literal specifying the
number of bytes to be moved

Description

The MV function causes a string of bytes to be copied from one
store location to another. The string to be copied (the

source string) is specified by a descriptor in ACC and the store
location to receive the string (the destination string) is
specified by a descriptor in DR. Both descriptors must be
loaded into the registers before the MV function is executed.
They may be either byte vector or string descriptors.

The source string is copied to the destination string, overwriting
any data already present (unless the mask operand form is used,
see below). The source string is unchanged. The number of
bytes copied is determined by the operand ulit if present,
othexwise by the length of the destination vector (DR).

6413/0 ' . Chaptef 15 _ 1



MV

. The mask enables bits to be masked in the course of the move.
Each bit of each byte of the destination string is compared to
the corresponding bit of the mask byte. Only those bits of

the destination byte which correspond to zeros in the mask bhyte
are altered to the corresponding bits in the source byte (or

the filler byte if the source string has been completely copied).

If the length of the source string is less than the number of
‘bytes to be moved, the filler is used to fill the remaining
bytes of the destination string until the count is satisfied.

. For each byte moved the address field in each descriptor is
increased by one and the length field is decreased by one.

If the number of bytes to be moved is specified as zero no error
will result. No data will be moved and ACC end DR are not
altered.

If the 16 bit form of the function is used, the number of bytes
to be moved must be equal to or greater than the length of the
destination string otherwise an error occurs.

The destination string must not overlap the source string on the
right, see section 6.4.3. If it does the result of the move is
undefined.

Otherwise, the fields may overlap in any way and the correct"
result is obtained.

The CHOV function may be used to check for overlap before using
MV.

2 Chapter 15 ) 6413/0



BO MVL

(move literal)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Effect on registers

DR The descriptor in DR is updated during execution of the
function

Program errors

Failure of standard checks for store-to-store operations, see -
section 6.4.4

Summary

Each byte of the string described by a descriptor in DR is
overwritten by the source byte which is either

1 A literal operand (32 bit form) or
2 Bits 24 to 31 of the B register (16 bit form)

A mask byte may be provided either as an operand (32 bit form)
or in bits 16 to ;2 of the B register (16 bit form).

1S
SN

Formats

MVL

MVL mask, literal

MVL.N ulit

MVL.N |ulit, mask, literal
where

mask and literal are one-byte literals (conventionally
hexadecimal)

ulit is an unsigned literal specifying the number of bytes of
the DR string to be overwritten

Description

When the operand ulit is present, it specifies the number of
bytes of the DR string to be overwritten; when it is absent, all
bytes are replaced.

The mask enables bits to be masked in the course of the move.
Each bit of each byte of the DR string is compared to the
corresponding bit of the mask byte. Only those bits of the DR
byte which correspond to zeros in the mask byte are altered to
the corresponding bits of the source byte.

6413/0 " Chapter 15



MVL

If the number of bytes to be overwritten is specified as zero,

no error OoCccurs. A null operation is performed leaving DR
unaltered.

Chaptex 1§ . 6413/0



2A MYB

(multiply B)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Effect on registers
B Contains result
ov Cleared unless B overflow occurs

All other registers unchanged

Program errors
Operand addressing errors

B overflow

Summary

The contents of the operand are multiplied by the contents of
B, both being treated as signed 32 bit integers. = The least
significant 32 bits of the product are left in B. If overflow
occurs {product <-2 3lor >23l.1) ov is set, otherwise OV is
cleared.

Formats
MYB oper
MYB.s im
MYB.cC
MYB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit ep

6413/0 Chapter 15 1



8t NEQ

(logical not equivalent)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

ACC Contains result

ov Cleared

All other registers are unchanged

Program errors
Operand addressing errors
ACS = 128

Summary

A logical not'equivalent operation is performed between ACC and
the operand. The result is placed in ACC.

The result of the operation is determined by the following table:

Original ACC bit Operand bit Resultant ACC bit

0 0 0
0 1 1
1l 0 1
1l l -0
Formats

NEQ oper

NEQ.s im

NEQ.cC

NEQ.ep |lintlit
where '

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



86 NEQS

(neq strings)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64
Effect on registers

ACC The descriptors in these registers have been the length
DR and address fields updated.

Program errors

Failure of standard checks for store-to~store operations (see
section 6.4.4

Summary

A descriptor in DR describes a string of bytes (the DR string).
A logical NEQ operation is performed between each byte of this
string and either

1 The filler byte (32 bit form), or

2 The corresponding byte of a string described by a
descriptor in ACC (16 bit form)

Each byte of the DR string (up to the specified number) is
replaced by the result of the comparison.

Formats
NEQS mask, filler
EQS.N Julit
EQS.N |ulit, mask, filler
vhere

mask is unused and must be a literal zero
filler is a one-byte literal (conventionally hexadecimal)

ulit is an integer literal specifying the number of bytes of
the DR string to be operated upon

Description

A string descriptor must be loaded into DR (and, if necessary,
ACC) before NEQS is executed.

In the case of the 16 bit form, the ACC string is used and must
be of adequate length (that is, at least equal in length to the
npmber of bytes to be compared).

6413/0 Chaptefr 15



NEQS

In the 32 bit case, the specified number of bytes of the DR
string is compared to the filler byte.

If the number of bytes to be compared is specified as zero, a
null operation is performed and DR and ACC are unchanged.

For each byte compared, the DR (or ACC and DR) descriptors are
updated by incrementing the address field and decrementing the

length field.

2 Chapter 15 ) 6413/0



8C OR

(logical or)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64

Effect on registers

ACC Contains result

ov Cleared

All other registers are unchanged

Program errors
Operand addressing errors
ACS = 128

Summary

A logical OR operation is performed between ACC and the
operand., The result is placed in ACC.

The result of the OR operation is determined by the following
table:

Original ACC bit Operand bit Resultant ACC bit

0 0 0
0 1 1
b 0 1l
1l 1l 1
Formats

OR per

OR.S im

OR.C

OR.ep Jintlit
where ’

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 . Chaptey 15 1



8l ORS

(or strings)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64

Effect on registers

ACC The descriptors in these registers have the length and
DR address fields updated.

Program errors

-Failure of standard checks for store-to—store operations (see
section 6.4.4 .

Summary

A descriptor in DR describes a string of bytes (the DR string).

A logical OR operation is performed between each byte of this
string and either

1 The filler byte (32 bit form), or

2 The corresponding byte of a string described by a
descriptor in ACC (16 bit form)

Each byte of the DR string (up to the specified number) is
replaced by the result of the comparison.

Formats
" |ORS mask, filler
ORS .N ulit
RS.N Julit, mask, filler
where

mask is unused and must be a literal zero
filler is a one-byte literal (conventionally hexadecimal)

ulit 1is an integer literal specifying the number of bytes
of the DR string to be operated upon

Description

A string descriptor must be loaded into DR (and, if necessary,
ACC) before ORS is executed.

In the case of the 16 bit form, the ACC string is used and must
be of adequate length (that is, at least equal in length to the
number of bytes to be compared).

6413/0 ~ _ Chaptex 15 1



ORS

In the 32 bit case, the specified number of bytes of the DR
string is compared to the filler byte.

If the number of bytes to be compared is specified as zero, a
null operation is performed and DR and ACC are unchanged.

For each byte compared, the DR (or ACC and DR) descriptors are
updated by incrementing the address field and decrementing the
length field.

2 Chapter-15 6413/0



3C ouT

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Program errors

Operand addressing errors, see section 11.2.1

Summary

OUT causes a class 9 (out) interrupt to occur.
This is a stack switching interrupt. The value of the terminal
operand is stored on the new stack as the interrupt parameter.

Formats
ouT oper
OUT.s im
OUT.c
OUT.ep |intlit

where
oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



90 PK

(pack)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 32, 64, 128

Effect on registers

ACC See below

ov Cleared unless overflow occurs out of ACC

Program errors

1 Failure of standard checks for store-to-store operations,
see section 6.4.4

2 Decimal overflow (maskable)

Summary

This function converts zone/numeric format into packed decimal
format leaving the result in ACC. DR should contain a
descriptor to a string of bytes (the DR string) containing the
unpacked numbers. For each byte of the DR string, the contents
of ACC are shifted left by one decimal place and the least .
significant 4 bits of the DR string byte inserted in the space
thereby created next to the sign digit in ACC.

Formats

PK
PK.N

ulit
where

ulit is the number of DK string bytes to be packed (< 128)

Description

If ulit is absent, the number of bytes to be packed is
specified by the length field of DR. The result is undefined
if the number specified is > 128.

If any non-zero bits are shifted out of ACC, OV is set and a
maskable decimal overflow interrupt occurs. The sign digit in
ACC is unaltered in all cases.

If the number of bytes to be packed is specified as zero, no
error occurs, a null operation is performed and ACC and DR are
not altered.

6413/0 Chapter 15



18 . PRCL

(pre-call)

Type: Primary, length 16 (operand must be 7-bit literal)
Terminal operand length: 7

Effect on registers

SF points to new stack front.

Program errors
1 Incorrect operand type (must be 7-bit literal)
2 New SF € LNB

3 Seagment overflow

Summary

The stack is aligned to an odé-word boundary, the contents of LNB
are stacked, and the operand is added to SF.

Formats

lPRCL Ilit?

where 1it7 is a 7-bit literal,

Description

1 If the address of stack front is an even number of words
then SF is incremented by 1 '

2 The contents of LNB are expanded to form a 32~bit byte
address (by concatenating the contents of SSN on the left
with two zero bits on the right). Bit 31 is then set to
1l if SF was incremented (as in note 1) and the result
stacked (note 3).

3 The action of adjust SF (ASF) is now followed as described
earlier in'this chapter (the operand is added to SF)

The effect of the PRCL function is:
1 To shorten the standard pre-call sequence:

PRCL, 4 replaces  STLN.T
ASF 4

2 To align the programmer's local name space predicatbly,
LNB+5 will always be on a long-word boundary if PRCL is
used by the calling procedure.’ With this knowledge the

6413/1 Chapter 15 1



PRCL

programmer can arrange his on-stack data so that double-
word items are located on long-word boundaries and hence
decrease the access time ’

2 .Chapter 15 6413/1



FO RAD

(real add)

Type: Primary, length 16 or 32 bits, see section 6.3.5
-Terminal operand length: acs

Permissible ACS: 32, 64,128

Effect on registers

ov Cleared unless floating-point overflow'occurs.

Program errors

1 Operand addressing errors, see section 11.2.1
2 Floating-point overflow (maskable)

3 Floating-point underflow (maskable)

Summary

The value of the terminal operand is added to the contents of
ACC and the normalised result left in ACC. The result is
truncated (rounded towards zero).

Formats 7
RAD oper
RAD.s im
RAD.cC
RAD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

Floating-point underflow occurs if the result cannot be expressed
in normalised form with a true exponent greater than -65, The
result is made true zero and an interrupt occurs.

Floating-point overflow occurs when the normalised result requires
a true exponent greater than 63. OV is set and an interrupt
occurs. The result then has a normalised fraction and a
characteristic 128 less than it should be.

The addition procedds as follows:

G413/0 ’ Chapter 15 ) 1



N

The fractional part of the number with the smaller
characteristic is shifted down logically by the number of
hexadecimal places which is the difference of the
characteristics. The digit left in the position
immediately to the right of that originally occupied by

the least significant digit of the fraction is retained as
guard digit (and the unshifted fraction is extended with a
zero in the corresponding position). All the other digits
shifted off are lost (effectively treated as zeros).

If the characteristics were equal, both fractions are
extended with zero guard digits.

The above procedure is still carried out even if the number
with the larger characteristic has a zero fraction (this
will not occur with normalised operands)

The two signed fractions, includir, it.ei: guard digits,
are added algebraically to form an irtermediate sum in
sign-and-modulus form, The intermediate sum has an
associated sign bit, a possible carry bit and, including
the guard digit, 7, 15 or 29 hexadecimal digits

The intermediate sum is normalised to generate the final
result. The characteristic initially associated with the
intermediate sum is the larger of the two original
characteristics. Normalisation proceeds as follows:

(a) If all digits and the carry bit of the intermediate
sum are zero, a true zero result is generated.

(b) If the carry bhit is non-zero, the intermediate sum
is shifted one hexadecimal place to the right
{(generating a 1 in the most significant hexadecimal
digit position), and its carry bit and guard digit
are removed to form the fractional part of the result.
1 is added to the characteristic (this may cause
overflow to form the result characteristic. The
sign bit of the result is that associated with the
intermediate sum.

(c) If the carry bit is zero, but one or more digits of
the intermediate sum are non-zero, the latter is
shifted left until the most significant hexadecimal
digit is non-zero. Following each hexadecimal shift,
zero is inserted in the guard digit position and 1 is
subtracted from the characteristic. Should this cause
the characteristic to become negative, underflow occurs
and a true zero result is generated. If the
characteristic does not become negative, the result
comprises the sign bit associated with the intermediate
sum, the final characteristic and the normalised
intermediate sum with the carry bit and guard digit
removed.

(d) If ACS = 128, bits 64 to 71 of the result are generated
as described in section 1,4.4.

Chapter 15 6413/0



6C RALN

(raise LNB)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

‘None affected apart from LNB.

Program errors

1 Operand addressing errors, see section 11.2.1
2 Operand £ 0

3 Operand > (SF-LNB)

Summary

LNB is changed to the value of (SF-terminal operand). The
operand is regarded as a number of words which must be less than
the current value of SF (so operand bits O ‘to 15 must be zero).
The potential new value of LNB must not be less than the old.

If either check fails, LNB is unchanged.

Formats
RALN oper
RALN.S im
RALN.c .
RALN.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



F6 RCP

(real compare)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128
Effect on registers

ACC Unchanged

cC 0 ACC

operand
1 ACC < operand
2 ACC > operand

Program errors

Operand addressing errors

Summary

The terminal operand is compared algebraically with ACC and CC
set to indicate the outcome.

Formats
RCP oper
RCP.s im
RCP.C
RCP.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' . Chapter”15



BA RDV

(real divide)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ov Cleared unless floating-point overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Zero divide

3 Floating-point underflow,

4

Floating-point overflow

Summary

The contents of ACC are divided by the terminal operand and the
normalised quotient left in ACC. If the divisor fraction is
zero the result in ACC is undefined and a zero divide interrupt
occurs (although OV is cleared).

Underflow or overflow may occur (see RAD) unless the dividend
fraction is zero in which case no interrupt occurs and the result
is a true zero.

Formats
RDV oper
RDV.s im
RDV.c
RDV.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413 Chapter 15 ’ 1l



BE . RNV

{real divide double)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Half acs

Permissible ACS: 64, 128

Effect on registers

ACS  Halved

ov Cleared unless floating-point overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Zero divide (maskable)

3 Floating-point underflow (maskable)

4 Floating-point overflow (maskable) -

5 ACS = 32

Summary

The contents of ACC are divided by the terminal operand. ACS is
halved and the normalised quotient, the size of which is the same
as the new value of ACS, is left:in ACC. The operation is
otherwise the same as RDV.

Underflow or overflow may occur {(see RAD) unless the dividend
fraction is zero in which case no interrupt occurs and the
result is a true zero.

Formats
[RDVD oper
RDVD.s im
RDVD.c
RDVD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



FA RMY

(real multiply)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64 or 128

Effect on registers

ov Cleared unless overflow occurs

Program errors
1l Operand addressing errors, see section 11.2.1
2 Floating-point underflow (maskable)

3 Floating-point overflow {(maskable)

Summary

The normalised product of the terminal operand and the contents
of ACC are left in ACC. ’

Overflow and underflow can occur as described for RAD but only
if the final characteristic exceeds 127 or is negative, In
the latter case a true zero result is generated.

Formats
RMY [oper
RMY.s im
RMY .c
RMY.ep |(intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an intecer literal modifying the register specified by
the explicit variant ep

Description

If the fractional part of either the multiplier or the multiplicand
is zero, a true zero result is obtained and neither overflow nor
underflow occurs. If neither of the fractional parts is zero the
fractional part of the result is that which would be produced as
follows:

1 Forming the true, 64-bit product of the fractions

6413/0 Chapter 15 .o 1



FC , RMYD

(real multiply double)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32 or 64

Effect on registers

ACS Doubled

ov Cleared unless overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Floating-point underflow (maskable)

3 Floating-point overflow (maskable)

4 ACS = 128

Summary

The normalised, double-length product of the terminal operand
and the contents of ACC are left in ACC. ACS is doubled.

Overflow and underflow can occur as described for RAD but only
if the final characteristic exceeds 127 or is negative. In
the latter case a true zero result is generated.

Except that the true product of the fractional part is not
truncated and the result is thereby exact, this operation is
otherwise identical to RMY.

Formats
RMYD oper
RMYD.s im
RMYD.c
RMYD.ep |intlit
where

oper is the terminal operand (literal or data item name)

I}

im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



CA ROT

Rotate)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32, 64

Effect on registers

ACC  shifted as described below

Program errors
‘1 Operand addressing errors, see section 11.2.1
2 ACS = 128

Summary

ROT causes a circular, left shift of the contents of ACC. The
value of the terminal operand specifies the number of places to
be shifted. ’

Formats
ROT oper
ROT.s im
ROT.c
ROT.ep |intlit
where

oper 1is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The shift is circular and each bit shifted off bit 0 of ACC is
re-inserted at the least significant end.

When ACS = 32, bits 0 to 26 of the terminal operand do not affect
the result but may influence the time taken to execute the
function. It is thus recommended that operand bits 25 and 26
should be the same as bit 27. Similarly when ACS = 64 bits 0
to 25 do not affect the result and bit 25 should be the same as
bit 26.

6413/0 Chapter 15



BC RRNV

{real reverse divide)

Type: Primary, length 16 or 32 bits, see section f.3.5
Terminal operand length: acs '
Permissible ACS: 32, 64, 128

Effect on registers

ov Cleared unless floating-point overflow occurs

Program errors

1l Operand addressing errors, see section 11.2.1
2 Zexro divide (maskable)

3 Floating-point underflow (maskable)

4

Floating-point overflow (maskable)

Summary

The contents of the terminal operand are divided by ACC and the
normalised quotient left in ACC. If the divisor fraction is
zero the result in ACC is undefined and a zero divide interrupt
occurs (although OV is cleared).

Underflow or overflow may occur (see RAD) unless the dividend
fraction is zero in which case no interrupt occurs and the
result is a true zero.

Formats
RRLCV oper
RRDV.s im
RRDV.c
RRDV.ep |intlit
where

oper 1is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



F& ' RRSR

(real reverse subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ov Cleared unless floating-point overflow occuré

Program errors
1 Operand addressing errors, see section 11.2.1
2 Floating-point overflow (maskable),

3  Floating-point underflow (maskable)

Summary

The value of ACC is subtracted from the terminal operand and the
normalised result left in ACC. The result is truncated.

Formats
RRSB oper
RRSB.s im
RRSB.c
RRSB.ep |intlit
where

oper is the terminal operand (literal or data itcm name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

Overflow and underflow can occur as described for RAD. The
subtraction is performed by inverting the sign of the contents
of ACC and adding (see RAD).

6413/0 Chapter 15



€8 RRTC

(read real time clock)

Type: Primary, length 16 bits
Permissible ACS: 32, 64, 128
Effect on registers

ACS 64
ACC Contains real time clock value
ov Cleared

Program errors

Universal types

Summary

ACS is set to 64 and the real time clock registers (see section
1.1.2.10) are copied to ACC. RTCX is copied to the most

significant half of ACC and RTCY into’ the least significant half.

Format

|[RRTC |

6413/0 ' . Bapter”15



F2 RSB

(real subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

"Permissible ACS: 32, 64, 128

Effect on registers

ov Cleared unless floating~-point overflow occurs

Program errors

1 . Operand addressing errors, see section 11.2.1
2 Floating-point overflow (maskable)

3' Floating-point underflow (maskable)

Summary

The value of the terminal operand is subtracted from the contents
of ACC and the normalised result ‘left in ACC. The result is
truncated.

Formats
[rRsB Aoper
RSB, s im
RSB.C
RSB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an opérand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Description

The subtraction is performed by inverting the sign bit of the
terminal operand and following the rules for floating-point
addition (see RAD).

6413/0 . -Chapter 1%



F8 RSC

(real scale)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32, 64 or 128

Effect on registers

ov Cleared unless overflow occurs

Program errors

1 Operand addressing errors, see section 11.2.1
2 Floating-point overflow (maskable)

3 Floating-point underflow (maskable)

Summary

The least significant 8 bits of the terminal operand, treated as
a signed integer (i), are added to the characteristic of the
floating-point number in ACC, which is then normalised.

The contents of ACC are thus effectively multiplied by 16t.
RSC may be used with a zero terminal operand to normalise any
floating-point number.

Formats
RSC roper
RSC.s im
RSC.c
RSC.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the. explicit variant ep

Description

If the fractional part of the number in ACC is zero, a true zero
result is generated. If the fraction is not zero and, after
adding i and normalising, the characteristic exceeds 127, overflow
occurs. Similarly, if the characteristic becomes negative,
underflow occurs and the result is true zero.

6413/0 Chapter 15 1



22 SBR

(subtract from B)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32 -

Effect on registers

TS Contains result

OV Cleared unless B overflow occurs

All other registers unchanged

Program errors
Operand addressing errors

B overflow

Summary

The contents of the operand are subtracted from the contents
of B, both being treated as signed 32 bit integers. The least
significant 32 bits of the difference are left in B. 1f
overflow occurs (difference <-231 or >231-1) OV is set,
otherwise OV is cleared.

Formats
SBB oper
SBB.s im
SBB.C
SBB.ep lintlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

' 6413/0 Chapter 15



CC SHS

(single-length shift)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand Tength: 32

Permissible ACS: 32, 64

Effect on registers

ov Cleared

Program errors

1 Operand addressing errors, see section 11.2.1
2 ACS = 128

Summary

The seven least significant bits of the terminal operand are
interpreted as a signed integer, i. The least significant
32 bits of ACC are shifted logically I bits to the left (i»>0)
or right (i«<0).

If AcCs
If ACS

32, the function has the same effect as USH.

64, the more significant half of ACC is unaltered.

Zeros are inserted in the least or most significant bit position
of the 32 bits shifted during the shift.

Formats
[sHS oper
SHE.s im
SHS.c
SHS.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

¢413/0 ‘Chapter 1%



CE SHZ

(shift while zero)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32, 64

Effect on registers

ACC Contents shifted as described below

ov Cleared

Program errors
1 Operand addressing errors, see section 11.2.1
2 Non-zero bits of stored item truncated

3 ACS = 128

Summary

The contents of ACC, if not zero, are shifted logically leftwards
until bit O is one. The number of places shifted is stored in
the terminal operand location (if ACC is zero then zero is stored).

Formats
SHZ oper
SHZ.s im
SHZ.c
HZ.ep |intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ‘Chapter 15 - 1



28 S1G

(start significance)

Type: pPrimary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64
Effect on registers

cc 1l CC originally O and descriptoxr stored or
CC originally 1 .

CC originally 2
CC originally 3

Program errors

1 Operand addressing errors, see section 11.2.1
2 Non-zero bits of stored item truncated.

3 Indirect addressing

Summary

This function is for use with SUPK., *

If CC = 0, a descriptor is created and stored in the terminal
operand location and CC is set to 1l. If CC is not zero, the
function has no effect. The descriptor created has the
following form: .

Bits : Value
0, 1 (type) 1
2 to 7 011000
8 to 31 (length) 1
32 to 63 (address) (contents of address field in DR-1l)
Formats
[sIG oper
SIG..c

SIG. ep [inlit

where

oper is the terminal operand (data item name). .
inlit is an inteder literal modifying the register specified by
the explicit variant ep.

Note that indriect addressing is not permitted.

6413/1 Chapter 15



40 ' St

w L.

{(stack and load)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs

Permissible ACS: 32, 64, 128

Effect on registers

ACC Loaded with operand

bV Cleared

SF Incremented by ACS

Program errors

Operand addressing errors, see section 11.2.1

Summary

The contents of ACC are copied to an intermediate register.
The terminal operand is loaded into ACC and the contents of
the intermediate register stacked, causing SF to be
incremented by ACS.

Formats
SL oper
SL.s im
SL.c
SL.ep \|intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the. explicit variant ep

Notes:

1 TOS may be ‘used to access the terminal operand. Thus T,
IT and MIT variants are permitted

2 SL.T results in the contents of ACC and TOS being
interchanged

6413/0 " Chapter 15



52 SLB

(stack and load R)

Type: Primary, length 16 or 32 bits, see section €.3.%
Terminal operand length: 32
Effects on registers

B Loaded with operand
ov Cleared
SF Incremented by 1

Program errors

Operand addressing errors, see section 11.2.1

Summary

The contents of B are copied to an intermediate register and the
terminal operand is loaded into B. The contents of the
intermediate register are stacked and SF incremented by 1.

Formats
' SLB oper
SLB.s im
SLB.c
SLB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an oprerand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Notes:

1 The original contents of B may be used as a modifier to
access the terminal operand (M variants)

2 Variants T, IT, MIT may be used

6413/0 Chapter 15



50 SLD

(stack and load PR)

Type: Primary, 16 or 32 bits, see section £.3.5
Terminal operand length: 64
Effect on registers

cC Set to indicate type of descriptor loaded
(CC = n means descriptor type n; n = 0 to 3)

Program errors

Operand addressing errors, see section 11.2.1

Summary

The contents of DR are copied to an intermediate register.

The operand is loaded into DR and.the contents of the
intermediate register are stacked, causing SF to be incremented
by 2.

Formats
SLD oper
SLD.s im
SLD.c
SLD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the reqister specified by
the explicit variant ep

Notes:

1 DR may be used to access the terminal operand (the
variants involving D)

2 The variants T, IT, MIT, DT may be used

€4173/0 Chapter 15



4 SLSD

{(stack, sct ACS double and load)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64

Permissible ACS: 32, 64, 128
Effect on registers

ACC Loaded with operand
ACS Set to 64

ov Cleared

SF Incremented according to old value of ACS

Program errors

Operand addressing errors, see section 11.2.1

Summary

"The contents of ACC are copied to an intermediate register.
ACS is set to 64 and the terminal operand loaded into ACC.
The contents of the intermediate register are then stacked
causing SF to be incremented by the old value of ACS.

Formats
SLSD oper
SLSD.s im
SLSD.c
SLSD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep :

Notes:

1 TOS may be used to access the terminal operand. Thus the
T, IT and MIT variants are permitted-

2 SLSD.T results in the contents of ACC and TOS being
interchanged

641370 . - Chapter~15



&b SLSA

(stack, set ACS quadruple and load)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 128

Permissible ACS: 32, 64, 128

Effect on registers

ACC  Loaded with operand

ACS Set to 128

ov Cleared

SF Incremented according to old value of ACS

Program errors

Operand addressing errors, see section 11.2.1

Summary

The contents of ACC are copied to an intermediate register.
ACS is set to 128 and the terminal operand loaded into ACC.
The contents of the intermediate register are then stacked
causing SF to be incremented by the old value of ACS.

Formats
SLSQ oper
SLSQ.s im
SLSQ.cC
SLSQ.ep |intlit
where

oper is the terminal operand (literal or data item name) -
im is an operand appropriate for indirection or'modification

intlit is an integer literal modifying the reglster specified by
the exp11c1t variant ep

llotes:

1 TOS may be used tc access tiie terminal operand. Thus the
T, IT and MIT variants are permitted

8]

SLSO.T results in the contents of ACC and TOS being
interchanged

(413/0 Chaptexy 15



42 oLSS

(stack, set ACS sinale and load)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32, 64, 128

Effect on registers

ACC Loaded with operand

ACS Set to 32

ov Cleared

SF Incremented according to old value of ACS

Program errors

Operand addressing errors, see section 11.2.1

Summary

The contents of ACC are copied to an intermediate register.
ACS is set to 32 and the terminal operand loaded into ACC.
The contents of the intermediate register are then stacked
causing SF to be incremented by the old value of ACS.

Formats
SLSS oper
SLSS.s im
SLSS.c
SLSS.ep |intlit
" where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification.

intlit is an integer literal modifying the register specified by
the explicit variant ep

Notes:

1 TOS may be used to access the terminal operand. Thus the
T, IT and MIT variants are permitted

2 SLSS.T results in the contents of ACC and TOS being
interchanged

G413/0 ) . Chapter-15



48 Si

{(store accumulat:r.

Type: Primary, length 16 or 32 bits, see section ©.3.5
Terminal operand length: acs ‘
Permissible ACS: 32, 64, 128

Effect on registers

None

Program errors

1 Operand addressing errors, see sectic:: 11.2.1
2 Non-zero bits of stored item truncate:
Summary

The contents of ACC are stored in the terminal operand location.
If the operand location is shorter than ACS and any more
significant, non-zero bits are truncated then an interrupt occurs.

Formats
ST oper
ST.s im
ST.c
ST.ep |intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modifiucaticn

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 . * Chapter 15 1



5A STB

(Store R)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

. None

Program errors

1 Operand addressing errors, see saction 11.2.1
2 Non-zero bits of stored item truncate”
Summary

The contents of B are stored in the terminal operand location;
they may be used as a modifier in accessing the operand.

Formats
. STB oper
STB.s im
STB.c
STB.ep |}intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Note: The M variants may be used to access the terminal operand.

6413/0 "Chapter 15 : _ 1



36 STCT

(store CTB)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

None

Program errors
1 Operand addressing errors (see section 11.2.1)

2 Non-zero bits of stored item truncated

Summary

The contents of CTB are expanded to form a 32 kit byte address
(by concatenating two zero bits on the right) and stored in the
terminal operand location. A literal operand is not permitted.

Formats
STCT : oper
STCT.s im
STCT.c
STCT.ep intlit

where
oper is the terminal operand (data item name).
im is the operand appropriate for indirection or modification.

intlit is an integer literal modifying the register specified
by the explicit variant ep.

6413/1 Chapter 15 1



58 STh

(store DR)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 64 '
Effect on registers

None

Program errors

1 Operand addressing errors, see section 11.2.1
2 Non-zero bits of stored item truncated
Summary

The contents of DR are stored in the terminal operand location.
A literal operand and indirect addressing are not permitted.

Formats
STD oper
STD.s im
STD.c
STD.ep |intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifyirg the register specified by
the explicit variant ep

Note: I variants are not permitted.

6413/0 ' - Chapter 15



5C . STLN

(store LNR)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

None

Program errors

1 Operand addressing errors, see scction 11.2.1
2 Non-zero bits of stored item truncated
Summary

The contents of LNB are expanded to form a 32-bit byte address (by
concatenating the contents of SSN on the left with two zero bits
on the right)and stored in the terminal operand location. A
literal operand is not permitted.

Formats
[STLN oper
STLN.s im
STLN.c
STILN.ep |intlit
yhere

oper is the terminal operand (data item name)
im is the operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15 R |



& STSF

(store SF)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

Mone

Program errors

1 Operand addressing errors, see secticn il.2.1
2 Non-zero bits of stored item truncated
Summary

The contents of SF are expanded to form a 32-bit byte address (by
concatenating the contents of SSN on the left and two zero bits on
the right) and stored in the terminal operand location. A literal
operand is not permitted. All variants (including T variants)

may be. used.

Formats
STSF oper
STSF.s im
STSF.c
STSF.ep intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15 ’ 1



4A - STUH

(store upper half)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: Half acs

Permissible ACS: 64, 128

. Effect on registers

~ACS Halved

Program errors
1 Operand addressing errors
2 ACS = 32

2 Non-zero bits of stored items truncated

Summary

The contents of the more significant half of ACC are stored in
the terminal operand location. ACS is halved. A literal
operand is not permitted.

Formats
STUH oper
STUH.s im
STUH.c
STUH.ep [intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ‘Chapter 15



4c STXN

(store XNB)

Type: Primary, length 16 or 32 bits, see section'6.3.5
Terminal operand length: 32 '

Effect on registers

None

Program errors
1 Operand addressing errors (see section 11.2.1)
2 Non-zero bits of stored item truncated

Summary

The contents of XNB are expanded to form a 32 bit byte address
(by concatenating two zero bits on the right) and stored in the
terminal operand location. A literal operand is not permitted.

Formats

STXN oper

STXN.s im

STXN.c

STXN.ep intlit
where

oper is the terminal operand (data item name).
im is the operand appropriate for indirection or modification.

intlit is an integer literal modifying the register specified by
explicit variant ep.

6413/1 : . Chapter 15 1



94 SUPK

(suppress and unpack)

Type: secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 32, 64, 128
Effect on registers
ACC Contents unpacked and shifted (see below)
ACS . Unchanged
cC 0 CC was 0 and all unpacked digits were zeros
1 CC was 1 and all unpacked digits were zeros

2 CC was 2 or some non-zero dicits unpacked.
Sign positive

3 CC was 3 or some non-zero digits unpacked.
Sign negative
ov Cleared
SF May be incremented by 2 (see Description)

Other registers are unchanged

Summary

SUPK converts a packed decimal number in ACC to zone/numeric
format, each digit generating one byte, and inserts the resulting
bytes into a string described by a descriptor in DR,

If CC was set to zero before execution of SUPK, non-significant
zeros are replaced by a specified literal byte (usually a space
character). If this substitution is not required, CC should be
set to 1, No sign digit is inserted in the unpacked string,
but CC is set to indicate the sign of the packed value.

Formats
SUPK.
SUPK mask, literal
SUPK.N ulit
SUPK.N ulit, mask, literal
where

literal is a one-byte literal used to repalce non-signficant

zZeros
mask is unused by the function and must be a zero literal
ulit is an unsigned integer literal specifying the number

of digits to be unpacked (<128)

€413/0 Chapter 15 -1



SUPK

Description

Before using SUPX, a string descriptor should be loaded into
DR and CC should be set to zero or one.

If the 16 bit form of the function is used, a substitute .
character should be loaded into bits 24 to 31 of the B register.

The operation of the function is as follows:

If CC was set to zero, non-significant zeros are replaced by

the specified literal, otherwise all zeros are treated as
significant. Significant digits are prefixed by the appropriate
zone codes. The resulting byte is stored in the address pointed
to by the descriptor in DR. The contents of ACC are shifted

up one decimal place (except for the sign digit). DR is updated
to point to the next byte of the string and the process is:
repeated until

1 The DR string is filled, or
2 ulit digits have been unpacked

The literal value used to replace non-significant xeros is
~either

1l Contained in bits 24 to 31 of the B register (16 bit form),
or : :

2 The operand literal (32 bit form)

The zone code used is determined by the mode bit 6f the system
status register (SSR).

If the mode bit is one, the ISO code 3 is used; if it is zero,
the EBCDIC code F is used.

If substitution of the literal value for zeros takes place and
the number contains any significant digits, a descriptor is
stacked pointing to the last literal value stored.

The operation of SUPK is summariseq_iq the diagram_gglow.

1112 1516 1920 2324 2728 31

Accro]o]ololn|o[3|ds-.na.gn

T!Sl ACC0-3
N
=07
lv cc ]o ? N
N
cc=07? Path Y
for first Path tor
1 Iesertdigit non-zere & degits
Poth.: |+ zone v 1 Imertdigit
"3 ] lie. ! &zone
&  signiticom v
zero Path v
©o dmsent ) 2 < SetCC 2
literal 1 Path [ S Path stack
lupully 4 dgnd | 4 descrpior
space * 20ne * poning 10
character) Iast space
Non- charac
sgnificant
2er0 / SF -9 -
[ Adkdresy
or[__ ] ] N " v
l s | . |
L < LNEBD
sp sr]svlsvlnlsolf&] J
WVirtual Store —_" | s



AQ SWEQ

{(sean while eaquald

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Effect on registers

cc 0 Specified number of bytes compared without finding
inequality, or no scan performed

2 DR string byte > reference byte
3 DR string byte < reference byte
DR Left pointing to last byte checked

Program errors

Failure of standard checks for store-to-store operations, see
section 6.4.4

Suwnmary

DR should be loaded with a descriptor pointing to a string of

. bytes. The string is scanned left to right comparing each byte
with a reference byte until either the end of the string is
reached or a byte is found which is not identical to the
reference byte. The reference byte can be

1 An operand (32 bit form)
2 Bits 24 to 31 of the B register {16 bit form)

A mask may be used.

Formats
SWE()
SWEQ mask, literal
SWEQ .N ulit
SWEQ.N julit, mask, literal
where
mask is a one-byte literal (conventionally hexadecimal)

literal is a one byte literal (the reference byte)

ulit is an unsigned integer literal specifying the number of
bytes to be scanned

Description

when the operand ulit is present it specifies the number of DR
string bytes to be checked; otherwise the length field in DR is
used. .

6413/0 ' Chapter. 15



SWEQ

DR is updated after each byte is compared; when an inequality
is found execution terminates leaving DR pointing to the first
unequal byte.

If the mask is. present, only those bits of each DR string byte
that correspond to zeros in the mask byte are checked against the
reference byte. When the 16 bit form is used, the mask should
be loaded in bits 16 to 23 of B.

If the number of bytes to be scanned is specified as zero, no
error occurs, a null operation is performed leaving DR unaltered
and setting CC to O.

2 Chapter 15 ©413/0



A2 SHINE

(scan while not equal)

Type: Seéondary, length 16 or 32 bits, see section 6.4.2
Effect on registers:

cc 0 Specified number of bytes compared without finding
equality, or no scan performed

1 DR string byte equal to reference byte found
DR Left pointing to last byte checked

Program errors

Failure of standard checks for store-to-store operations, see
section €.4.4 ’ '

Summary

DR should be loaded with a descriptor pointing to a string.of
bytes. The string i6 scanned left to right comparing each byte
with a reference byte until either the end of the string is
reached or a byte is found which is identical to the reference
byte. The reference byte can be :

1l An operand (32 bit form)
2 Bits 24 to 31 of the B register (16 bit form)
A mask may be used.

Formats
SVWNE
SUNE. mask, literal
SWNE.N ulit
SWNE.N |ulit, mask, literal
where
" mask is a one-byte literal (conventionally hexadecimal)

literal is a one-byte literal (the reference byte)

‘ulit ‘is an ﬁnsigned integer literal specifying the number of
bytes to be scanned

Description

When the operand ulit is present it specifies the number of DR
string bytes to be checked; otherwise the length field in DR is
used., '

6413/0 ChapteéYx 15



SWNE

DR is updated after each byte is compared; if a byte is found
which is identical to the reference byte, execution terminates
leaving DR pointing to that byte.

If the mask is present, only those bits of each DR string byte
that correspond to zeros in the mask byte are checked against
the reference byte. When the 16 bit form is used, the mask
should be loaded in bits 16 to 32 of B.

If the number of bytes to be scanned is specified as zexo, no
exror occurs, a null operation is performed leaving DR unaltered
and setting CC to 0.

2 * Chapter 15 6413/0



30 TCH

(table check)

Type: Secondary, iength 16 or 32 bits, see section 6.4.2
Permissible ACS: 64
Effect on registers

cc 0 sSpecified number of characters in DR string checked
and found valid, or nho characters checked

1l An invalid character found

‘DR Updated during execution of function

- Program errors

1 Failure of standard checks for store-to-store functlons,
see section 6.4.4
2 DR string bound 2 bound field of ACC descriptor
. Summary

ACC should contain a vector descriptor with size code 0 pointing
to the start of a table of check bits. DR should contain a
string or byte vector descriptor pointing to a string of
characters (the DR string). The specified number of bytes of
the DR string are checked against the bit table to ascertain if
they contain valid characters.

Formats

TCH
TCH.N

ulit
where

ulit is an unsigned integer literal specifying the number of
bytes of ‘the DR string to be checked.

Description

If the operand ulit is present it specifies the number of bytes
to be checked, otherwise the length field of the descriptor in
DR is used.

The most significant 5 bits of the DR string byte are used to
modify the address in the ACC descriptor to access a byte in the
check=bit table. The 3 least significant bits of the byte are
used to locate one of the bits (numbered O to 7) in that byte.

6413/0 ' . Chapter 15



TCH

A bound check interrupt occurs if the value used as modifier
is not less than the bound field of the ACC descriptor.

Checking of the DR string continues until either the specified
number of bytes have been checked (CC set to 0) or a byte is
found whose check bit is 1 (CC set to 1). The DR descriptor
is left pointing to the last byte checked.

The ACC descriptor and the DR string are unaltered.

If the number of bytes to be checked is specified -as zexo, no
error occurs, a null operation is performed leaving ACC and DR
unaltered, -and@ CC is set to 0.

2 ' Chapter 15 ' 6413/0



—
£
—_

TNEC

(test and decrement)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers

1]
o

cc 0 Original value of operand
1 Original value of operand > O

2 Original value of operand < -1

3 Original value of operand = -1
ov Unaltered (overflow is ignored)
Other registers are unchanged
Program errors
1 Operand addressing errors, see section 11.2.1
2 Incorrect descriptor type
3 Incorrect operand types
" Summary

TDEC is a semaphore instruction used to provide interlocks on
the peripheral communications areas in store. Between reading
the original operand value and replacing it by the new value,
access to the operand location is prevented by hardware.

CC is set to indicate the original value of the terminal
operand and 1 is then subtracted from the operand. The original
value of the operand is left in ACC.

Formats
TDEC oper
TDEC.s im
TDEC.c
TDEC.ep |intlit
where

oper is the terminal operand (data item name)
im is an operand appropriate for indirection or modification
intlit is an integer literal modifying the register specified by

the explicit variant ep

Note that the terminal operand location must be in store, not a
register. The variants B, T, and P are not permitted.

6413/2 . Chapter 15



TDEC

Description

The prime use of this instruction is to implement semaphores,
using semaphore descriptors.

The operand value is normally interpreted as the number of other
Processes waiting to use a shared resource. A value of -1
indicates that the resource is available.

The following restrictions apply to operand access:
1 Access is forced by hardware to bypass slave storage

2 If the operand is accessed indirectly, only a vector
descriptor (type 0) with size 32 or a semaphore (type 3,
subtype 40,41) descriptor

3 The operand must be located in store rather than a
register. Direct TOS and (PC+N) operand forms are not
permitted

If slave storage is used in the processor, it is cleared as
follows: '

1 Stack slave store is cleared if the stack segment is
marked as non-slaved in its segment table entry

2 Operand slave store is cleared of items marked non-slaved
in either segment table

2 Chapter 15 6413/2



[ A6] | TR

(table translate)

Type: Secondary, length 16 or 32 bits, see section 6.4.2
Permissible ACS: 64
Effect on registers

DR Contains a descriptor which is updated during
execution of the function

.Program errors

1 Failure of standard checks for store-~-to-store functions,
see section 6.4.4

2 Value of DR string byte > bound field of ACC descriptor.

Summary

TTR is useful for code conversion.. ACC should contain a vector
descriptor (type 0, size code 8) pointing to a translation table.
The string to be translated is pointed to by a descriptor in DR.
Each byte in the DR string is replaced by a translation table
byte using the value of the DR byte as a modifier to index the
table.

Formats

TTR
TrR.N {ulit

where

ulit is an unsigned inteéer literal specifying the number of
bytes of the DR string to be translated.

Description

If the operand ulit is present, it specifies the number of bytes
to be translated. If it is absent, all the bytes of the DR
string are translated.

ACC is unaltered. If the number of bytes to be translated is
2ero, no error occurs, a null operation is performed and DR
is unaltered.

To illustrate the execution of the function, if the byte address
in ACC is a and the value of the DR string byte to be translated
is n, the DR string byte is replaced by the contents of byte

6413/1 - Chapter 15



TTR

location a + n.

A bound check interrupt occurs if the value of any DR string
byte is not less than the bound field of the ACC descriptor.

2 Chapter 15 6413/1



co [IAD

(logical add)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32

Effect on registers

CC ~ 0 No carry
1l Carry
OV Cleared

Program errors

1 Operand addressing errors, see section 11.2.1
2 ACS = 64 or 128

Summary

The terminal operand and the contents of ACC are added and the
sum left in ACC. CC is set to indicate whether or not carry
occurred out of ACC bit O,

Formats
UAD oper
UAD.s im
UAD.c
UAD.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

Intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ' - Chapter” 15



c6 1cp

(logical compare)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: acs
Permissible ACS: 32 or 64
Effect on registers
cc 0 ACC = operand
1 ACC < operand
2 BACC > operand

Program errors
1 Operand addressing errors, see section 11.2.1
2 ACS = 128

Summary

The terminal operand is compared with the contents of ACC and CC
set to indicate the result,

Formats
ucp oper
UCP.s im
UCP.c
UCP.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 Chapter 15



C4 LIRSB

{logical reverse subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32

Effect on registers

cc 0 No carry (indicates borrow into bit 0)

1 CcCarry (indicates no borrow, including the case where
complementing causes carry, that is the value of ACC
is zero.

Program errors
1 Operand addressing errors, see section 11.2.1
2 ACS = 64 or 128

Summary

The terminal operand and the contents of ACC are regarded as
signed integers. The twos complement of the contents of ACC
are added to the terminal operand and the result left in ACC.

Formats
URSB oper
URSB.s im
- JURSB.C
URSB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modificatio

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ’ .Chapter ~15



C2 I'SB

(logical subtract)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32

Permissible ACS: 32

Effect on registers

cc 0 No carry (indicates borrow into bit 0)

1 Carry (indicates no borrow, including the case where
complementing causes carry, that is the operand value
is zero)

Program errors
1 Operand addressing errors, see section 11.2.1
2 ACS = 64 or 128

Summary

. The terminal operand and the contents of ACC are regarded as
signed integers. The twos complement of the operand is added to
ACC and the result left in ACC. ’

Formats
[use oper
USB.s im
"|usB.c
USB.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 ) - . Chapter 15



C8 USH

(loaical shift)

Type: Priﬁary, length 16 or 32 bits, see section €.3.5
Terminal operand length: 32
Permissible ACS: 32, 64
Effect on registers
oV Cleared

Program errors

1 Operand addressing errors, see section 11.2.1
2 ACS = 128

Summary

The seven least significant bits of the terminal operand are
interpreted as a signed integer, i. The contents of ACC are
shifted i bits to the left (i>0) or right (i<0). Zeros are
" inserted in the least or most significant end of ACC (as
appropriate) during the shift.

Formats
USH oper
USH.s im
USH.c
USH.ep intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

6413/0 : ~ Chapter 15 1



10 VAL

(validate address)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
Effect on registers
CcC 0 Read and write access permitted at specified level
1 Read access permitted, write access inhibhited
2 Write access permitted, read access inhibited
3 Descriptor invalid, or
Field crosses segment boundary, or

Neither read not write access permitted (may mean
segment number invalid)

Program errors

Operand addressing errors, see section 11.2.1

Summary

The VAL function is used to check whether a descriptor supplied

to a procedure (invoked by CALL) is valid at the ACR level of the
calling process. CC is set to indicate the result of the check.
The descriptor should be loaded into DR for validation. Bits H to
11 of the operand gives the ACR of the caller.

Formats

VAL Joper

VAL.s im

VAL.c

VAL.ep |intlit
where

oper is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modification

intlit is an integer literal modifying the register specified by
the explicit variant ep

Note: Indirect addressing using I variants is not permitted.

Description

The descriptor is assumed to be type 0, 1 or 2. A type O or 2
descriptor. is assumed to be bounded.

If the descriptor is invalid, CC is set to 3 and execution
terminates. An invalid descriptor is:

6413/0 ) . Chaptér 15

-t



VAL

1 Type 0 or 2 with BCI set

2 Type 3

3 Type O with invalid sizecode

4 Type O, 1 or 2 with zero bound/length

If the descriptor is valid, the address of the last word or byte
in the field described is calculated, without altering DR, from
the address of the first byte as follows: °

1l TYPE O:
(a) Add (bound-1), scaled if USC = 0
(b) If size = 64 add 4 bytes
(c) If size = 128 add 12 bytes (word alignment assumed)
2 TYPE 1 Add (length-1)
3 TYPE 2 As type 0 with size 64 bits
CC is set to 3 if the calculated address:
1 Has a different segment number to the initial address

2 Has the same segment number but lies beyond the upper limit
of that segment

3 Has the same segment number as SSN but is not less than
SSN+LNB

In case 3, if the address is less than SSN+LNB and the initial
address is also in the stack segment, CC is set to O.

Note: The second word of the segment table entry is ignored.

2 . Chapter 15 6413/0



2C VMY

(dope vector multiply)

Type: Primary, length 16 or 32 bits, see section 6.3.5
Terminal operand length: 32
‘Effect on registers:

B Contains calculated modifier
DR Descriptor updated as described below
ov Cleared

Program errors

1 Operand addressing errors

2 Incorrect type and size code of descriptor
3 Maskable bound check interrupt

Summary

This function calculates the modifier required to access an
element of an array from the subscript supplied as the terminal
operand and leaves it in the B register.

DR should contain a type 0 descriptor with a size code of 32
bits with the address field pointing to the first word of the
dope vector for the array (or of the dimension currently being
accessed if the array is multi-dimensional).

Formats
VMY oper
VMY, s im
VMY.c
VMY.ep |intlit
where

oper 1is the terminal operand (literal or data item name)
im is an operand appropriate for indirection or modificgtion

intlit is an integer literal modifying the register specified by
the explicit variant ep

Note: I variants are not permitted,

6413/0 ' . Chapter~-15 1



VMY

Description
The modifier is evaluated using the expression
(i-x)y
where
i is the subscript being accessed (supplied as the

terminal operand of the function)

x and y are the first two words of the dope vector (x = lower
bound of current dimension, y = number of elements in
- previous dimensions)

The modifier is checked to be <z, the third value of the dope
vector (the number of elements up to the end of the dimension,
including previous dimensions). The least significant 32 bits
of the result are left in B, '

As each of x, y and z are accessed the address in DR is
incremented by 4 and the bound decreased by 1 (this may cause a
bound check interrupt). Thus after execution of the function
the address will be increased by 12 and the bound decreased by 3.

The modifier for a multi-dimensional array is calculated by
evaluating the sum of the modifier for each dimension. Thus
for an n dimensional array the modifier is

(.il"xl’y + (iz-xz)y +aoe (in"xn)gn

A maskable bound check interrupt occurs:

1 If bound checks on x, y or 2z fail

2 If one of the following conditions is true:
(a) i<x
(b) i-xz231
(¢) y<o
(d) =2<0

(e) (i-x)yzz
(£) (i-x)y3z23!

Bound check interrupts are described in section 1l.1l.

2 Chapter 15 6413/0 -





