Technical

A o
=8
&7
O ©
QO 5
& O
=
=
ﬂra .
9
=
o
0

OlOIOIOOI0[OIOIOI0I0IOIOI0IOIOIOIOIOIOIOIOIOIOIOI0IOOIO
OlO|O|CI0IOIOI0IOI0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
OlOIOIOIO[0IOI0I0I0I0I0I0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
OlO|OI0|OI0I0I0I0]0IOI0IOIOIOIOIOIOIOIOIOIOIOIOIOOIOIOIO
Ol00I0IOI0I0I0IOIOIOI0I0IOIOIOIOI0IOIOIOIOIOIOIOIOIOIVIO
QlOI0IOI0I0IOI0IOIOI0IOIOI0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
OlOI0I0I0I0I0I0IOI0I0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
OlOIOIOI0IOI0[0I0IOIOI0I0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
OlO[O|OI0I0I0I0IOI0IOIOIOIOIOIOICIOIOIOIOIOIOIOIOIOIOIOIO
OlO|O|OI0I0I0I0IQ0]OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
O0I010|0|OI0IO
OlOI0IO0IOOI0I0I0I0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIO|:
OlOI0I0I0I0I0IIOIOIOIOIO[OIOIOIOIOIOIOIOIOIVIOIOIOIOIO]
OIO0I0I0I0I0IO
Ol0I0IOIOIOIOIIO
OIOIOOIOIOIOI0IIOIOIOIOIOIOOIOIOIOIOIOIOIOOIOIIOIOIO
OIOI0IOIOOIOIOOIO
O|0|0I0IOOOIOIOIOIOI0I0I0I0I0IOIOIOIOIIOIOIOIOIOIOIOIO
O1O|0I0I0IOIOIOIOIOIOIOIOI0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIO
Ol0I0|0I0OIOIOOIO
OOI0I0I0IOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIVIOIOIOIO
0)(0,[0)(0)(0)©,©,©,0, 0,000 0,0,0,0,0,0,0,0,0.0,0,0)6)0®®
0)(0)(0)0)©)©)0)0)0)¢ 000,000 ©,0,0,00)© 0,000 0.
O[0]010I0I0I0|0I0IOIOIOIOIOIOIOIOIOIOI0IOOIOIOIOIOIOIOIO
O|0|0101010101010|0|0I0IOIO|0I0I0IOIOIOIOIOIOIOIOIVIOIOIO
O1O|010101010I0I0|0I0I0I0IOI0I0I0IOIOIOIOIOIOIOIOIOIOIOIO
OlOI0I0I0II0I0IOI0IOIOIOIOIOIOIOIOIOIOI0IOIOIOIOIVIOIOIO

Scanned from a physical
document (donated by a
kind former ICL employee)

icL] Technical Number 6594899
Literature Sheet 1
Issue 1

NN
9900

/)
WAS

Order Code

® THIS DOCUMENT IS COMPANY RESTRICTED ®

Issue 1

Des.Auth. PP s

CED L (2
Tech.Lit. |44/ 7

ot \ o
EPG 4473/2/78 © ernational Computers Limited

ICL Technical Number 6594899
Literature . Sheet 2 ;
Issue 1

The policy of International Computers Limited is
one of continuocus development and improvement
of its products and services, and the right is
therefore reserved to alter the information
contained in this document without notice.

ICL makes every endeavour to ensure the
accuracy of the contents of this document

but does not accept liability for any error or
omission. Any equipment or software
performance figures and times stated herein
are those which ICL expects to be achieved in
normal circumstances. Wherever practicable,
ICL is willing to verify upon request the
accuracy of any specific matter contained in
this document.

Issued by Technical Literature Department,
International Computers Limited,

Wenlock Way, West Gorton,

Manchester. M12 5DR.

Printed by Reprographic Services,
West Gorton,
Manchester.

€PG 4473278 (© tnternational Computars Limited

ICL Technical Number 6594899
| Literature Sheet 3
issue l
CONTENTS
Section ’ Sheets

1 INSTRUC TION FORMATS . 1.1 -1.25
2 DESCRIPTOR FORMATS 2.1 -2.5
3 OPERAND ADDRESSING AND ALIGNMENT 3.1 -3.6
4 STACK INSTRUCTIONS 4.1 - 4.10
5 ACCUMULATOR INSTRUCTIONS 5.1 -5.9
6 CONTROL AND JUMP INSTRUCTIONS 6.1 - 6.15
7 B INSTRUCTIONS 7.1 - 7.11
8 DR INSTRUCTIONS 8.1 -8.15
9 COMPUTATIONAL FUNCTIONS 9.1 -9.44

10 STORE TO STORE FUNCTIONS 10.1 - 10.31

11 MISCELLANEOUS FUNCTIONS 11.1 -11.10

12 PROGRAM ERRORS - 12.1 - 12,6

APPENDICES
Appendix 3 Sheets
1) LIST OF INSTRUCTIONS IN MNEMONIC Al.l - Al.4
ALPHABETICAL ORDER

2 FUNCTIONAL GROUPING OF 2900 ORDERS A2.1 - A2.7

Related Documents

6594801 - 2900 Architecture.

International lers Limited
EPG 4473/2/78 © —

ficL] Technical Humber 6594899
(Literature Sheet)]

Issue 1

1. INSTRUCTION FORMATS.

1.1' Hexadecimal Notation.

2900 is based on the use of the 8-bit byte, each byte consisting of

two 4-bit groups which are hexadecimal in character, i.e. they are
capable of holding the range of values 0-1 5. Hexadecimal values

are denoted by a preceding # character, thus #9A denotes the binary
equivalent 1001101 (5, and, as a further example, #FC is equivalent

to the binary value, 11111100.

The following table shows the hexadecimal scale together with binary

and decimal equivalents:

Hexadecimal Binary : Decimal

#0 0000 0
#1 0001 A 1
#2 0010 2
#3 0011 3
24 0100 4
#5 o101 5
#6 0110 6
#7 o111 7
#8 1000 8
#9 1001 9
#A 1010 10
#B 1011 11
#C 1100 12
#D 1101 13
#E 1110 14
#F 1111 15

All diagrams are shown with the store Least Significant Word at the
top of the diagram (this includes the diagrams showing the stack).

© International Computers Limited
EPG «473/2/78

IC Technjcal Number 6594899
; Ljterature Sheet 1,2
Issue 1

1.2

Architectural Mod. Levels

The concept of Architectural Mod'Levels (AML) is introduced to allow
for progressive enhancement to the primitive level interface without

instantaneously impacting the total population of 2900 systems.

The basic AML is AMLO and it is a rule that AMLs are forwards
compatible such that software written for system at AMLO will runon
systems at AMLI1.

The AML of systems can be read from line 16 of Block 0 of the Image
Store.

Summary of Additional Facilities at AMLI1,

Facility
1. Additional format for RRTC

2. Alternative form of VALIDATE instruction

3. System Call count

4. Parameter space check for System Calls

5. Addition of bit string operand form

6. Addition of TEST, CLEAR and SET instructions

7. (B + N) Operand form _

8. Vector Descriptor, type 0, size code 4 (= 16 bits)
9

A Vector descriptor, for signed items.

EPG 4473/2/78

(©) iternanonal Computers Limited

Technical Number 6594899
ICL Literature Shcet 1.3
Issue 1

1.4

Instruction Lengths

2900 makes a use of two distinct instruction lengths, i.e. short
(16-bit) or long (32-bit). In either case the function occupies bits
0-6, the operand occupyjng either bits 7-15 or 7-31 according
to instruction length. (Fig 1).

Fig 1. INSTRUCTION LENGTHS
Short (16-bit)
0 6 g i 15
[Function I Operand J
0 6 7 ' , 31
l Function I . Operand l

Function Decode

From fig 2 it can be seen that the function code bits 0-6 are regarded
as two hexadecimal characters, the L, S. bit of the second character
being impiied zero. The first character denotes the order code group,
the second denctes the function number within the grou.p. The order
code thus contains 16 groups, each group conta.ining up to 8 functions
(since only even-numbered function values can be specified). The
function codes # 00 and # FE are illegal. There are therefore 126
permissible function codes ranging from # 02 to # FC, some of these

being as yet unassigned.

Fig 2. FUNCTION DECODE

01 23 456

[] l l lJ JJ :‘]\ Implicit zero

Group Function

EPG 4473/2/78

© nternanonal Computers Limited

Technical n—
ICY [iterature o «;>524899
Issue l.

1.5

Instruction Types

There are three distinct instruction types, primary, secondary and
tertiary (fig 3), each requiring a different operand field format.

Fig 3 INSTRUCTION TYPES

0 6

| Function l

Secondary Tertiary Primary
Character string Conditional All other functions
‘operations jumps .

Primary instructions use the operand field solely to specify either an
address or a literal value. Secondary instructions are concerned with
character string manipulation and thus require to use the operand
field for specification of values such as a string length, byte mask,
byte filler character etc.

The tertiary instructions are all conditional jumps and thus have to
specify a jump addres_s and also the jump condition. Identification of
the instruction type determines the method of interpreting and
decoding the operand field. The instruction type is re cognised from
the function bit decode as indicated in fig 2.

EPG 447372178

© \nternationnt Computers Limited

Technical Number 65948
ICL Literature Sheet | Z L
Issue l-
1.6 Operand Format of Primary Functions

Functions are provided which perform numerous operations on the
special addressing registers, i.e. LNB, CTB, XNB, DR, SF and the
central computational registers i.e. the accumulator ACC and the
indexing register, B. A simplified summary of the available functions

is shown in fig 4 below.

1. Load LNB, store LNB, raise LNB, load XNB, store XNB,
adjust SF, load CTB, store CTB.,

2. Simple jump functions (unconditional jumps), jump and link,
decrement B and jump.

3. Funcﬁons used to jump into and return from procedures,
i.e. call, exit, escape-exit.

4. Semaphore instructions; increment and test, test and decrement.

5. Simple non-computational'operations (load, store, stack and load),
computational functions (add, multiply, etc) and boolean
operations on the ACC (not equivalence, and, or).

6. Operations on the index register B and the descriptor register
DR.

7. Miscellaneous, e.g. idle, read real time clock.

Fig 4. PRIMARY FUNCTIONS

1.7 K Decode
Fig 5 shows the operand field for primary instructions. Taking a 16-
bit instruction, the 9-bit operand field is decoded into a 2-bit k-field
and a 7-bit n-field.

© international Compulers Limited
EPG 4473/2/78

Technical Number 65948
ICY Literature S:I;,e' 1 Z "
Issue 1
Fig 5. FORMAT OF OPERAND FIELD (PRIMARY
INSTRUCTIONS) - k DECODE
0 6 789 15
lFunction D I n J
k=00 k=01 k=10 k=11
OP=n (L n) (IL n) Further decode
required
k OPERAND

00 Literaln

01 Literalat Ln

10 Literalat ILn

11 Further Decode Required

n must be € 127

If k = 00 (i.e. 0) then n is taken as a literal operand and is interpret-
ed as a signed integer in the range: -64€ n < +63.

If k = 01 (i.e. 1), the operand addressing form is L n, i.e., the contents
of the item at the location LNB + n. In this case, n is interpreted

as an.unsigned integer in the range : 0 € n < 127.

For k = 10 (i.e. 2), the operand addresssing form is IL n, i.e.
indirect access to the final operand via a descriptor which is stored
at the location LNB + n. Again, n is an unsigned integer in the range:
0 £ n <127,

EPG 447372/78

© Internationni Compulers Limited

ictl Technical

Literature

Number 6594899
Sheet 1.7

Issue 1

1.8

k = 3 decode.

If k = 11 (i.e. 3), the hardware has to perform another decode of
two further fields k' and k''. See fig 6.

7 89 10 11 13

beta] 0 | s]

]

'

k' = 0-5 k"=6, 7

32 -bit Instruction ‘ 16-bit Instruction

k'defines whether access is direct or indirect,

If indirect, gives information about descriptor.

El

00 Direct access

01 Indirect access (desc. in DR modified)

10 Indirect access (desc. in store)

11 Indirect access (desc. in store modified)
Fig 6. FORMAT OF OPERAND FIELD (PRIMARY

INSTRUC TIONS) - k' DECODE

The k" - field occupies bits 11-13 and indicates the register by

means of which the operand is accessed. It also determines whether

the instruction length is 16 or 32 bits. Note, that for a 16-bit

instruction the quantity n is written as a lower-case character; for

32-bit instructions, it is specified as an upper-case character N.

This, being an 18-bit field, has a greater range than n, which is,

of course 7 bits long.

EPG 4473/2/78

© international Computers Limited

ICL Technical Number 6594899
Literature Sheet 1.8
Issue 1

This manual has been written in terms of SFL formats.

The table given below lists STAPLE equivalents.

Table 1
SFL STAPLE SFL STAPLE
N (signed literal) =~ .C N (CTB+N)
.D N (DR+N) DC N (DR#CTB+N))
.G (Is lécaﬁon N) IC N ((CTB+N))
.GB (IS location B) MIC N ((CTB+N)+B)
.L N (LNB+N) i . ros
DL N (DRH{LNB+N)) .DT (DR+TOS)
IL N ((LNB4N)) IT (TOS)
MIL N ((LNB+N)+B) .MIT (TOS+B)
X N (XNB+N) .B B
.DX N (DRH{XNB+N)) B N (B#N)
IX N ((XNB+N)) D (DR)
MIX N ((XNB#N)+B) .MD (DR +B)
P N (PC#N)
.DP N (DR{PC+N))
IP N ((PC+N))
MIP N ((PC+N)+B)

An SFL instruction takes the form:

MNEM .VAR OP1, OP2, - - - - OPn

where: -

MNEM is the mnemonic of the instruction (1 to 5 letters)
VAR is the optional S‘F L variant

OPl, OP2, - - = - OPn are the operands of the instruction.

EPG 4473/2/78 © International Compulers Limited

iICL] Technical Number 6594899
Literature Sheet 1.9
Issue 1
7 89101112 1314 15 7 89 1011121314 31

lxlw | w o o [k Jw [« N]

(11) | (11) | . N

r ~
x' | DIRECT INDIRECT
0 1 - 3
Desc. in DR Desc. in store | Desc. in store
k" modified modified by B.
*[S location N |*IS location B
0 mn N mn .D N |mn.G N jmn .GB
1 Bit String Handling (Section 1,12)
2 lmn -L N fmn .DL N |mn JL N |lmn MIL N [¢¥
3 mn X N jnmn DX N ilmn .IX N lmn MIX N
4 imn P N mn DP N mn JIP N |mn.MIP N
5 mn ,C N mn -DC N |mn _IC N |jmn MIC N
6 mn T _ mn DT mn JT mn MIT |
7 mn B mn . N¢+|mn -D mn_.MD
; 18 PC contains address of current instruction.

ii, MIX N, MIT, MD indicate items pointed to by descriptors
held in XNB+N, top 2 words of stack, and in DR respectively
The 'M' indicates that the address in each descriptor is to be
modified by B.)

iii, Operand format for k' =1 is as follows
AMLO - Unassigned
AMLI - given in section 1.12

vi. The equivalent STAPLE operand formats are in Table 1.

*Classed as direct address form.
+32 bit format. The format was unassigned at AMLO and is still

provisional.

Fig. 7. FORMAT OF OPERAND FIELD (PRIMARY
INSTRUCTIONS) - k'* DECODE

€PG AT © International Compulers Limited

Technical Number 5948
ICL Literature Sheet) ?0 i
issue 1
1.9 Direct Access Decode - k' = 0

Figure 7 shows the instruction formats in greater detail. Taking a
value of k' = 0, i.e. direct access, let us examine the possible values

of k',

k' = 0 indicates that the operand is, in fact, the literal N, i.e. bits
14-31 of the instruction. N is a signed quantity in the range:

217 = 8 = 2

k" = 1 Bit string handling (See section 1.12)

k' = 2-4 Decode

k" = 2 uses L N, i.e. the contents of the location LNB+N, as the
operand. See fig 8 (a). LNB points, as always to a location within
the stack. In our case N = 5, so the fifth item above LNB is accessed.
The contents of that location are 3, so the operand used is 3. Note

that here N is an unsigned (positive) quantity and access below LNB,

(i.e. LNB-N) is not possible.

k'"=3 uses (X N) i.e. the contents of the location XNB+N, as the
operand. In the éxample shown in fig 8 (b), N = 2 thus operand = 7.
XNB is a hardware register which can point anywhere within the
store. In fig 8 (b). XNB points to a location within the stack.

If XNB points at, say a table of descriptors in store, then operand
access is as shown in fig 8 (c). The quantity N is a word count,

8o the operand form (XNB + 4) will, in fact, access the third descriptor
in the table, i.e. the one at XNB + 4 and XNB + 5. A typical use for
this operand form would be to load a descriptor into DR.

k" = 4 accesses P N, i.e. the contents of the item at PC+N are used.
PC is the Program Counter, which contains the address of the current

instruction, Here, N is a signed guantity.

© Internationnl Compulers Limiled
EPG 4473/2/78 * .

icL] Technical Number 6594899
Literature Sheet 1.11
Issue 1
Stack N=2
LNB —» Stack Store
XNB —o XNB
XNB+2[000 --0111 | J PLT
LNB+ 5 [00- - -011] N=2 —_ B i
(a) LN (b) X N (¢) XN
Operand = 3 Operand = 7 Operand = Desc.
at XNB+4, XNB+5.
Fig. 8 PRIMARY FUNCTIONS - DIRECT OPERAND ACCESS
(a) CN (b) T
Stack
Store
CTB
—a N ;
PLT
TOS
i SF
N=4 -

Fig. 9 DIRECT OPERAND ACCESS

FPG 4473/2/78

@ Internatronal Computers Limiled

icl] TYechnical Number 6594899
Literature) Sheet {12
Issue 1

k" = 5-7 Decode

k' = 5 uses C N (the contents of location CTB+N) as the operand

n

CTB is a hardware register that may point anywhere in store.

Thus, CTB is used in 2 similar way to XNB, CTB will usually be
used to point to a PLT (Procedure Linkage Table) in Store. Fig. 9
(a) shows the operand (C+4) accessing the third descriptor in the PLT,

k" =6 uses T (TOS). This points to the item to be read from the
stack in the case of a read instruction (Load ACC for example). If
a 4-word item is expected at TOS and it is really only two words long
then, on a TOS access, a 4-word item will be picked up.

Conversely, if a single w-o:rd item is expected at TOS and it is 2
words long, a truncated item will be accessed giving incorrect
results. (When writing programs it is important to keep track of
the size of stacked items).

When using this operand format with an instruction which writes the
operand away, the item is written to TOS +1, in the case of a single
word item, or to TOS +1, TOS + 2 in the case of a double word item,
etc., SF points to this next available location on the stack and will
be incremented or decremented by the size of the item added or taken

from the top of stack. See fig. 9 (b).
k'' = 7 Here the actual contents of the B register will be used.
That covers k' = 0 which is DIRECT ACCESS.

In all the accesses shown in fig. 7, N is an unsigned positive quantity

except when it is a literal, or when added to PC.

© Internationnl Compulers Limited
EPQ 447372/78

ICL Technical Number 6594899

Literature Sheet 1,13
- lIssue 1

1.10 Indirect Access Decode
k' =1, 2 and 3 all indicate indirect access format.

1.10.1 k' =1 This indicates indirect access via a descriptor in DR,
k' = 0 Fig. 10 (a) shows DR pointing to a location in store. The
address of the location is modified by the literal N and the item thus
accessed is the operand.
k' = 1 Bit string handling (see 1.12)
k' = 2 Here the address in DR is modified by the contents of the
location LNB+N, Fig, 10 (b) uses N = 4, the contents of LNB+4 are
2, so the operand is to be found in the location pointed to by the
address in DR modified by two.
Similarlx'for k'" = 3, 4 and 5 the address in DR is modified by
(XNB+N), (PC+N) and (CTB#N) respectively to access the operand.
For k' = 6 the address in DR is modified by the item at the top of
stack.
k" = 7 Contents of B modified by N, is used as the operand (the
exception case).

1.10.2 k' 2 2 Moving on to k' = 2, this deals with indirect access via a des-

criptor in store.

We'll ignore k'' = 0 for now and come back to it later (section 1.11)..
k' =1 See sectionl.,12. '

k" =2 Fig, 11 (a) shows a descriptor occupying the locations LNB+4,
LNB+5 on the stack. The address field of the descriptor points to.
an item in store, which is used as the operand.

k' = 3 If XNB points within the stack, then the operand access is
similar to that for IL N, However, if XNB points at say a PLT

then the operand access is as shown in fig. 11 (b). N, which is a
word address, is added to the address of the start of the PLT and the
relevant descriptor is accessed. In the diagram N=6, so the fourth
descriptor which is at XNB+6 and XNB+7 is accessed. The address
field of this descriptor points at the operand.

EPG «m-zms

© wernational Computers Limited

lc T_echnical Number 6594899
Literature Sheet 1,14
Issue 1

Fig. 10. INDIRECT OPERAND ACCESS via Descriptor in DR

(a) DN
STORE
DR | ADDRESS
N=4
0000000
v_
(b) DLN :
STORE
STACK
DR | ADDRESS l,
e 11
T
N=4
S~
INB+ N [0000- - - 010F 2)

EPG 4473/2/78 (©) miternatonal Computers Limited

Technical Number 6594899
IcL Literature Sheet 1.15
Issue 1
Fig. 11 - INDIRECT OPERAND ACCESS VIA A DESCRIPTOR
(a) IL N
Stack"
Store
INB —a r\—-—/\
ned / V//////// 7
| Address _| ‘\L.___*
Descriptor
on Stack
(b) X N
PLT"
XNB —1_ Store
N=6 B 5
- Address '\)
: Descriptor in Store
referenced by XNB
(¢) MIL N
Stack Store
LNB
N=3
LNB4N [Address] B=5
V70 /A
B Register Deecriptor in Stack
000- - -0101} (Address field modified by B)
B=5

EPG 4473/2/78

© International Computers Limited

Technical Number 6594899
ICL Literature sheet 1.16

Issue 1

k" = 4, 5. There is a descriptor in store at PC + N'and CTB + N,
respectively, and it is the address field which points at the operand
to be used.

k' = 6, 7. Indicate that the descriptors at TOS and in DR,

respectively point at the operand.

1.10.3 k'=3 deals with INDIRECT ACCESS via a descriptor in store.
We'll tackle k'' = 0 later (section 1.11)

k" =1 see section 1.12

k' = 2. There is a descriptor on the stackat LNB + Nand LNB + N+ 1
The address field points to an area in store. The address of

this area is modified by the contents of the index register, B to

give th_e operand required. See fig 11 (c).

k" = 3,4,5. Similarly the addresses of the descriptors at (i) XNB+N

and XNB+N+1, (ii) PC + Nand PC + N + 1, (iii) CTB + N and

CTB+N+l, respectively are modified by the contents of the B register

to access the operand.

k't = 6, 7. Indicates that there is a descriptor at TOS or in DR,

respectively. The address field i§ modified by B to give the operand

required.

1.11 Image Store Formats (k" = O for k! = 2 and 3)

These primary formats are 1. S. location N and 1. S, location B - these
are the IMAGE STORE formats. The image store mechanism is a
methad of addressing hardware registers in the system. It provides
a method of performing operations at a hardware level, which for
reasons of privilege, timing or level of contrbl could not be
performed at a software level, it is the image store mechanism

which is used to kick off peripheral transfers. Two options of

image store addressing i.e. I. S. location N and 1. S. location B are
offered. The former allows addressing up to 218 -1, since N is an
18 bit literal (extended with zeros on the left). The latter allows

addressing up to Z32 - 1, since the contents of the B register are used.

€PG 4473/2/78 © Internationnl Computers Limited

ICL) Technical Number 6594899
Literature Sheet 1,17
Issue 1

1.12 Bit String Handling

Facilities for bit string handling are available in machines at
AML 1,

NOTE:- In this section the lower case letter L is shown as 1 to
differentiate it from 1 (the number one).

Format of Operand Fieldk =3 and k" = 1.
7 8 91011 13 14 1819 23 24 25 - 31

k=3 x|

et | o0» [3 fe] N J

a =
|

| S)
P 2
% Direct Access Indirsct
Access
k" 0 1 2 3

1 LN |BN |X N DN}—‘

Where:
b and 1 define a bit string within a 32 bit word
b = number of most significant bit of the string
1 = one less than the number of bits in the string.
(e.g. b =7, 1=11, defines a 12 bit string occupying
bits 7 to 18 inclusive of the 32 bit word.
For indirect access, the descriptor in DR must be a
word vector ' descriptor type 0, size 5 (32 bits) and
must be scaled i.e. USC not set.
The effect of the operand depends upon the instruction as
follows:)
(a) Operand fetch: The contents of the bit string location
become the least significant 1 '+ 1 bits of the operand.
The other bits of the operand are set as follows:

if 8 = 0, the filler is zero

if 8 = 1, the filler is the most significant bit of the
bit string. '

hvern; ters Lunited
EPG 4473/2/78 " © rnational Computers

ICL Technical Number 6594899
Literature Sheet 1,18

Issue 1

1.12.1

1.12.2

(b) Operand store: The least significant 1 +1 bits of the operand
are stored in the bit string location.
if s = 0, the remainder of the operand is checked to be all zero.
if 8 =1, the remainder of the operand is checked to be the same
as the most significant bit of the' stored bit string.
Note that the 32 bit word containing the bit string is written to
store without hardware interlocks to prevent access from other
units in the system, (except as defined for particular functions -

INCT, TDEC)

There will be a program error interrupt if:

(i) bit string operand is accessed via (DR + N) and descriptor in DR
is not type 0, size 32 bits, USC unset.

(ii) bit string operand has b +1 > 31 i,e. the bit stririg does not lie
within a 32 bit word.

(iii) truncated part of operand not all zeros or all ones as defined

in (b) above.

Functions Prohibited with this format.

Bit string operands are prohibited for the following functions
(i) J, JLK, CALL and DEBJ

(ii) Functions which require literal operands

i.e. ESEX, IDLE, PRCL, RRTC, CDEC and CBIN.,

Example 1: Load B from the location indicated by LNB#.
The instruction in SFL would be:
LB. L4, 2'7,12, 1" ;
V%121 222 l
Store ///////,l”.f,l.,
18 .

7 {

If 8 = 0, filler is zero

Ifs

® B

8
20 31

1, ms bit is propagated to become filler

EPG 447372178

© mlernationol Computers Limited

icL] Technical Number | 6594899
Literature Sheet 1.19
Issue 1
Example 2: Store contents of ACC

The instruction in SFL would be:
ST.

Store W

18 .
Example 3: Clear bits 7 to 18 (inclusive) of a word located

at LNB+4,

The instruction in SFL would be:
CLR,

L4, 2 '7,12, 0'.-
Here k=3 b=7 the first bit number
k'=0 -

k" = 1 =11 which is one less than
the number of bits in
the string

s=0

Example 4:

Test bits 1 and 2 of the word FRED
The instruction in SFL would be:
TEST, FRED, 3 'l, 2, 0'

FPG 4473/2178

© Internstionat Computera Limited

Number 6594899

Technical
CL Literature Sheat],20
Issue 1
1,23 Operand Format of Secondary Functions

There are 16 possible functions in this group, not all of which have

been allocated. They are included in the instruction repertoire

specifically to‘assist commercial data processing establishments,

where the handling of variable length data items is of paramount

importance. All of these instructions are store-to-store functions.

The range of instructions is quite comprehensive and it is possible

to perform the following types of operations: -

1,

Move a string of bytes from one part of store (referred to as

- the SOURCE) to another part of the store (known as the

DESTINATION), carrying out editing or translating during the
transfers.

Checking to determine if a pair of strings of bytes overlap in
store.

Scan a string of bytes, searching for equality with a specified
byte pattern.

Boolean operations between strings. -

Scan a string of bytes, checking a table of check bits,
Translate the contents of a string of bytes, according to a
table of bytes, called a 'translate table’.

Pack and unpack decimal data.

EPG 4473/2/78

© international Compulters Limited

7] Technical Number 65948
ICL Literature Sheet o

1.21
Issue 1
Fig 12 SECONDARY FUNCTIONS (STORE-TO-STORE
OPERATIONS)
0 6 7 8 9 15 16 2324 31
FUNCTION h I q n MASK JLITERAL/FILLER

L &= q = 0,16-bit instruction

q = 1,32-bit instruction

’

h = 0,Number of bytes =n+1 =1L

h = 1, Number of bytes = length of destination string = L.

Number of Bytes involved in a Store-to-Store Operation is referred to

as L.
The secondary functions may be divided into the following 3 classes:-

Class 1 These operations take place between two byte strings.
The SOURCE string is usually specified by a string
descriptor held in the ACCUMUlLATOR - hence this can
be referred to as the (ACC) string - and ‘the '
DESTINATION string is normally specified by another
descriptor, held in DR - generally referred to as the (DR)

string.

EPG 4473/2/78 (©) "ternatonal Computers Limited

ICL)

Technical
Literature

Number 6594899
Sheet 1.22

Issue 1

Class 2

Class 3

ACC is not involved in this clarz. The source string
consists of a series of copies of a single byte - also
called REFERENCE byte. In the case of the 16-bit
instructions, the byte is obtained from the index register
B. In the 32-bit format, the byte is normally obtained
from the field which contains the literal filler byte.

For these functions, the (DR) string interacts directly
with the contents of the ACC itself.

The format of secondary instructions is shown in figure
12. Bits 0-6 contain the function field, bit 7 is the h-field,
bit 8 is the g-field and bits 9-15 contain the n-field. For

a 32-bit instruction, bits 16-23 contain the MASK byte

and bits 24-31 the LITERAL/FILLER byte.

Taking the h-field first - this defines how the number of
bytes(L) involved in a store-to-store operation is to be
spetified. If h = Othen L is defined explicitly as L = n+l
where n is an unsigned integer in the range 0 < n < 127.
Of course, the n-field referred to, is the one in bits
9-15 of the instruction. The alternative way of defining
L is implicitly, as the length field of the (DR) descriptor
4. Here h = 1 and

the n-field of the instruction is classed as reserved.

where L is in the range 0 < L < 22

The q-field indicates the length of the instruction:

q = 0 is used for a 16-bit instruction. The significance
of the mask and literal/filler bytes will be explained

in detail in Chapter 10 which deals with store-to-store

functions.

EPG 4473/2/78

© international Compulers Limited

Technical Number ;
ICL [lterature e 6594899
1.23
issue 1

1.14 Operand Format of Tertiary Functions

Only three functions of this type have so far been assigned - See fig
13. They are all jumps and have the mnemonic codes JAT (jump on
arithmetic true), JAF (jump on atithmetic false) and JCC (jump on
condition code) - they will be described in detail in Chapter 6.

The format of the operand field is also shown in fig 13. Bits 0- 6
contain the function, bits 7-10 the MASK field and bits 11-13 the k'"'
field. For a 16-bit instruction, bits 14 and 15 are both zero, but for

32-bit instructions, bits 14-31 represent N.

Fig 13 TERTIARY FUNCTIONS

JAT Jump on Arithmetic (Condition) True
JAF Jump on Arithmetic (Condition) False
JCC Jump on Condition Code

TERTIARY GROUP FORMATS

6 7 1011121314 1516 31
FUNCTION | MASK | K" I N I N J
k™ OPERAND-
000 N
001 D N
ol0 L N 32 Bit Instruction
011 X N
100 P N
101 C N
110 D)
16 Bit Instruction
111 MD
For 16-bit instruction, bits 14, 15=0
NOTE or

For 32-bit instruction, N = bits 14-31

© wtecnationnl Computers Limited

EPG 4473/2/78

Technical Number 6594899
echnica ‘ -
Literature Sheet 1. 24

IC

-

Issue 1

The k'" - field provides for 8 different operand types. Note that for
"' = 0 or 4 the contents of the N-field are interpreted as a signed

integer, in all other cases N is an unsigned integer. When k' =0,

the contents of the N-field are treated as a number of half-words and

are added to the current contents of the control register PC. In this

case we have a relative jump. An interrupt will occur if the addition
alters the segment number part of PC. Note that k"' = 6, 7 implies a

16-bit instruction.

1.15 Function Mnemonics

When writing programs in SFL, the mnemonic form of an instruction

can be used rather than its hexadecimal representation. See fig 14,

Thus if we wish to load the B register with a value of -19, the hexa-
decimal representation of the instruction would be #7A6D.

However, it is perfectly in order to write LB -19,

When the program is compiled the mnemonic form will be translated
into the hexadecimal equivalent, which will be understood by the

machine.

This mnemonic facility is useful since a program can be written
more easily and far more quickly this way than by working out the
hexadecimal pattern. Also it is much less prone to errors - once the
compiler has been tested and is working it will always decode the
mnemonics correctly, which is more than can be said for each
pProgrammer doing it individually.

Figure 14 shows three examples of the use of mnemonics in writing
programs, and illustrates (in hexadecimal repre sentation) how it

would appear in store.

PG 4
EPG 4473/2/78 (© ernationnl Comouters Limited

Technical Number
ICLY Literature ' s,,:;,e fsg:s%

Issue l

Fig 14 FUNCTION MNEMONICS

Format: function mnemonic operand
Example 1 LB -19 loads B register with -19
This is a Primary Instruction, therefore the
Primary format is used, as shown in figure 5
function # 7A = LB
operand'n = -19 = 1101101 (binary)
k= 00
Thus hex equivalent of LB -19 is # 7A6D:

0 67 89
FUNCTION k n
T I T
o111 10 1o|0110:1101
. N ; S|\ < —
| | i
7 N A I 6 | D
Example 2 LB. L8 loads B register with the contents of

location LNB+8. (k=01) The hex. pattern is
0111/1010/1000/1000 (i.e. # 7A88).

Example 3 LB IL 5 accesses descriptor in LNB+5,
LNB+6. The address field points to an item
in Store. This item is loaded into B. The
hex. pattern is 0111/1010/0000/0101 (ie

7A05). (k=10)

EPG 4473/2/18
© nternationnl Computers Limited

iIcL] Technical Number
Literature s:eel g ??4899

Issue 1

2, DESCRIPTOR FORMATS
All descriptors are 64 bits in length. The less significant 32 bits
always contain a byte address, which may be modified in the course of
accessing the information to which the descriptor refers.

The resultant address points to the left most (lowest addressed) byte

of the information.

Descriptor types are distinguished by their more significant 32 bits.
The different types, and interpretations of the fields are as follows:-

Type 0 - Vector Descriptors .
0 12 4 5 6 7.8 31

m.s|0 o] SIZE | s Jusc]eca] Bound/Length
l.s.) Byte Address

Type 1 - String Descriptors

0 1 2 7 8 31
m.sf0 1] 0 11 0 0 0 | Length

l.8. Byte Address

Type 2 - Descriptor Descriptor

As for type 0 except bits 0, 1 = 10 and only size 64 allowed.

Type 3 - Miscellaneous Descriptors
Bits 2-7 define a subtype number

Subtype 32 - bounded code, first byte = 'E0'
33 - Unbounded code, first byte = 'El"
34 - System Call, first byte = 'E3!
37 - Escape, first byte = 'ES!
40 - Semaphore (bounded), first byte = 'E8'
41 - Semaphore (unbounded), first byte = 'E9'
63 - Null, first byte = 'FF!'

FIG 15 DESCRIPTOR FORMATS

(©) iternationnt Comouters Limited
€PG 447312178

ict] Technical Number 6594899
Literature Sheet 2 2
Issue 1

2.1 Type 0 = Vector Descriptors (fig. 15)

Size The size of the addressed item in store, Permitted sizes, and

uscC

the corresponding size codes, are as follows:-
Size (bits) Code
1 0
8 3
16 4
32 5
64 6
128 7
When the size is 32, 64 or 128 bits, the two least significant
bits of the byte address, after modification, if any, are ignored
-i.e. 1-, 2-, and 4- word items are made to start on word
boundaries. Use of other values will cause program errors
as indicated in Chapter12. Whenthe sizg is 16 bits, the 1,s. bit of
the byte address after modification is ignored. Size code 4 is not
available at AMLO.
Signed. If set tol, then
a) if the operand is read from Store and the addressed item is
smaller than the operand length, it is sign-extended.
b) if the operand is written to Store and the addressed item is
greater than the operand length, the truncated bits are
checked to be equal to the most significant bit of the stored
item.)
The S field is ignore.d at AMLO,
Unscaled. Unless this bit is a 1, when a modifier is added to the
address field it is scaled according to the size field; 1, 2, 3 and
4 places up for 16, 32, 64 and 128 bits, respectively, and 3
places down (logically) for 1 bit, In the latter case the least
significant 3 bits of the shifted-down modifier specify the individual
bit number (0 = most significant) which is to be accessed within the
addressed byte. If the modifier is unscaled the accessed bit-
number is undefined: however if the descriptor is unmodified, bit

0 is accessed.

EPG 447372/78

@ Totreenational Compuires Linuted

Technical Number 6594899
ICLl Literature Sheet 2 3
Issue 1

BCI Bound Check Inhibit. Unless thia bit is 1 any modifier added
to the address is checked (before scaling) to ensure that it is
less than the contents of the Bound field; in this case bits 0-7
of the 32-bit modifier must be all zeros.

Bound/ The contents of this field are unsigned (positive).
Length

When a byte-vector descriptor, i.e. one with Type = 0,

Size code = 3, is used as the operand of a store to store
instruction, this field contains the length of the byte string.

On other occasions when vector descriptors with any permitted
size code are used, this field is spare if BCI =1; if BCI=0
its contents should be 1 greater than the largest permitted

modifier.

2.2 Typel = String Descriptors (fig. 15)

Size Should be set to 011 - this is checked by store-to-store
instructions; at any other times it is ignored (reserved).

S This bit is reserved for use within the I/O sub-system and is
ignored by the OCP,

USC} These fields are ignored (reserved) and should be set to
BCI

00. Modifications are not scaled or checked.
Length The length field contains the length, in bytes, of the string
whose first byte is addressed by the contents of the address

field (modified if the instruction specified)modification).

2.3 Type 2 = Descriptor Descriptors
Size and S fields i.e. bits 2-5, are ignored (reserved) and
should be set to 1100, These function _ just like type 0 descrip-
tors with size code 64 bits, and are interchangeable with the

latter.

2.4 Type 3 = Miscellaneous Descriptors (fig. 15)
Bits 2 - 7 define a subtype number.

1{ 1]] t Li ted
€EPG 4473/2/78 (© nternational Computers Lt

Number 6594899
=) s
Issue)

Subtypes (numbered decimally):

32, 33 Code (Bounded, Unbounded)
Code descriptors may be used to point to the destination.
instructions of Jump, Call and Exit instructions only. Bits 32-63
contain the byte address of the first byte of the instruction -
bit 63 is ignored as instructions are halfword aligned.
.Any modifier added to the address is multiplied by 2
before addition.. If subtype 32, bits 8-31 contain a bound
which is used to check the modifier, if any, in exactly the
same way as for type 0 and type 2 descriptors. If subtype
33, bits 8-31 may contain the identity of a mic roc ode subroutine
which may be entered after PC is set. If the microcode
subroutine does not exist or if an error is encountered
within the routines a jump is made to the instruction
addressed by PC.

35 System Call
Bits 8-31 usually contain an entry displacement to index a
System Call Index Table. Bits 32-63 usually contain an A
entry displacement to index the System Call Table indicated
by the descriptor accessed from the Systefn Call Index
Table. System Call descriptors are only used by the Call
and Exit instructions - in the latter case as a 'link descriptor .

37 Escape
Escape descriptors are used to by-pass normal instruction
sequencing rules. Whenever a descriptor in DR, which is
being modified by MODD, or used to access information
indirectly is found to be an Escape descriptor, a branch out
of sequence occurs. Bits 32-63 contain the address of a
word whose contents will be transferred to PC as part of the
escape action. Bits 62, 63 are ignored so the address is
word-aligned. Escape descriptors are not modified. Bits
8-31 are ignored (reserved).

40,41 Semaphores (Bounded, Unbounded)
These descriptors are used to point to semaphore locations

in store. The format is similar to a type 0, size code 5

EPG 4473/2/78 @ International Computers Limiled

Technical
el Literature

Number 6594899
Sheet 2,5
Issue 1

63

descriptor and modification rules are the same.

The descriptor.is restricted to use with INCT and TDEC
instructions., The effect of use with other instructions is
undefined, The descriptor must not be used to access the
stack segment.

Access to the word pointed at by the descriptor is forced by
hardware to bypass slave storage and is implemented by a
Read Hold, Write Hold combination so as to prevent access
to the store location while the word is beins miodified.

If slave storage is present, use of this descriptor

clears the operand slave store of items from segments

marked non-slaved (NS).

Null

A null descriptor is used to provide the NIL option when
a descriptor is used as an optional parameter for a pro-
cedure. It is detected by the VALIDATE instruction and
is invalid with all other instructions. '

This facility is available at AMLI1,

FI'G 447372178

© Internalional Comouters Lunited

icL] Yechnical Number 0594899
Literature Sheet 3.1

Issue

3.1

OPERAND ADDRESSING AND ALIGNMENT

Operand Length (Primary and Tertiary Formats)

By 'operand length' is meant the number of bits in the addressed

quantity on which an instruction actually operates. In the case of an

. instruction operating on ACC, this is usually determined by ACS, but

not always - for instance in a Floating Divide Double instruction the
operand length is £ ACS, for a Scale instruction the operand length is
32 bits regardless of ACS. The operand length is not necessarily the
same as the length of the addressed item in store. Whenthelatteris
specified by a descriptor - e.g., a 5-byte string addressed by a
string descriptor, or a single bit or byte addressed by a vector
descriptor with the appropriate size indication- itmaybeusedinan
instruction for which the operand length is 64 bits. The rule is that
when an operand is read from store or a register, the length oZ the
addressed item must not exceed the operand length. However, if the
length of the addressed item is smaller, after the it_em has been read

it is extended with left hand zeroes to the required length.

When an operand is written into a store location or register of

different length:

(a) If the stored item is addressed by a string (type 1) descrip-
tor, its length must not exceed the operand length. In other
cases, if the operand length is smaller, the operand is

extended with left hand zeros to fill the store space.

(b) If the operand lengfh is greater, the operand is truncated on

the left until it fits the store space.

If the source or destination stored item is addressed by a string
(type 1) descriptor and its length is zero or exceeds the operand
length, a non-maskable program error (descriptor) interrupt occurs.

If the length of an item read from the store other than via a string

EPG 4473r2/78

© tnternationa! Computers Limited

icy Technical Number 6594899
Literature Sheet 3,2
Issue 1

3.2

3.3

descriptor exceeds the operand length, or if non-zero bits are
truncated from an operand being written to the store or to B, the
operation is suppressed and a Size interrupt occurs, unless the
interrupt condition is masked. If the condition is masked the
operation is not suppressed; the leftmost portion of the item taken
from the store is ignored in the first case, and the non-zero bits

truncated are treated as zeros in the second.

The exception to this rule occurs in the case of Jump-type instruc-
tions, where the operand, which overwrites PC, is conceptually 32
bits long: however when the operand is specified indirectly via a
descriptor its length in store is permitted to be 32 or 64 bits, and

1;.n the latter case the least significant 32 bits overwrite PC, the more
significant 32 bits being ignored.

Type l-descriptors are not permitted. When accessing image store
locations, the operand length must be 32 bits; otherwise, the action
is undefined. The operand length required by each instruction is
listed with the instruction description. The operand lengths for
store-to-store instructions are specified in the secondary instruction

format (see section 1,13).

Addressing Rule

The address of an item in the store is the address of its left-most
(lowest numbered) byte. Where individual bits are addressed by
modified vector descriptors, the b{t number, from 0 (left-most bit)

to 7, is concatenated to the address of the byte.

Word Alignment
Operands directly addressed in the store (i.e. using the operand
forms)

T, Ln LN, PN, XN, CNand BN.

EPG 4473/2/78

@ Internationnl Computors Limited

G i e

Sheet 3.3
Issue 1

3.4

as well as modifiers and descriptors used in the corresponding
indirect forms, start on word boundaries - i.e. their byte addresses

are multiples of 4. This is ensured automatically thus:-

T, Ln LN, XN, : SF, LNB, XNB and CTB contain word

CN aligned addresses.
PN ’ : the least significant bit of the sum is ignored.
BN

) : the 2 1.s. bits of the sum are ignored.

Note that 64 and 128-bit items are not constrained to be on double
or quadruple-word boundaries in store. Therefore such items are
liable to cross page boundaries, or violate segment limits, even
when the addresses of their first words have been checked and found

'legitimate' - the final address must be checked too.

Justification in Registers . .

In general quantities transferred from store, or as literals from the
instruction format, to registers, and vice-versa, are right-justified
in both registers and store locations. Sign extensions or zero filling
on the left takes place according to rules stated elsewhere., Thus, in
calculating the value of 'PC+N', N is assumed to be in the same units
as the contents of PC, i.e. halfwords, and signed; while in
calculating 'LNB + N', N is considered to be 2 number of words, and
is unsigned, i,e. positive. An exception to this rule occurs when a
stored quantity represents a virtual address, in which case itis a
byte address; this particularly applies to the items transferred to .
PC by jump instructions. Thus for 'Load LNB! the operand is a byte

number whose least significant 2 bits are ignored, rather thana word

number.

EPG 447272118

(©) mrernatonal Computers Limited

Number 6 594899

icy] Technical Sheet 3.4

Literature
Issue 1

3.5 Primary and Tertiary Format Operands
Literals
The operand forms n and N cause the operand to be generated by
extending the quantities n (7 bits) or N (18 bits) on the left with
copies. of their most significant bits, to the required operand length.
A signed literal specified as the operand for a jump instruction will
be added to, rather than overwrite, PC. Interrupt occurs if this

alters the segment number in PC. |

Image Store
The operand forms G and GB cause the 32-bit image store location

indicated by N, or by the contents of the B register to be accessed.

Top of Stack
The operand T causes the item at the top of the stack (of length =

operand length) to be used as operand, and SF to be decremented by
the operand length in words. Program error interrupt occurs if

this causes SF to become < LNB,

For Store-type instructions the result is stored as a new top-of-stack
item causing SF to be incremented. If storing the result violates the

stack segment limit a virtual store interrupt occurs.

B

Causes the 32-bit contents of B to be read (extended with zeros if

necessary) or overwritten.

Directly-Accessed Items in Store
For the operand forms I,n, LN, X N, P N, CNand B N,

the address of the operand is formed by adding N (or n) to the appro-

priate pointer location, to form a byte address which is a multiple of 4.

EPG 4473/2/78 (©) 1ernationnt Computers Limited

ICL I?‘chnlcal Numoer 6594899
erature Sne2: 3.5

Issue l

gth of item accessed = operand length. The rules for checking

this addition vary from one form to another, as shown below:-

Lon, LN ! n extended with zeros; m.s. 2 bits of N must be zeros.
No carry out of LNB permitted.

XN, CN : No check
N extended with zeros.

PN : Nis regarded as a signed half-word displacement.
Bits 1-17 of N are added to bits 14-30 of PC. Carry out
of bit 14 of PC is checked equal to bit 0 of N, and is not
added to bit 13, i.e. segment overflow is forbidden. The |

least significant bit of the sum is ignored. The operand

must be wholly in the current code segment.
BN

No check - N is extended with zeros and is regarded as
a word displacement. The 2 1.s. bits of B are ignored.

Failure of any check causes an interrupt.

Indirectly - Accessed Items in Store

The operand is accessed via a descriptor at the specified location.

There are two cases: in one case the descriptor is accessed like a
directly accessed operand (i.e. as described above but of length = 64
bits) - the descriptor may be modified by the contents of B 3 and in the
other case the descriptor is already in DR and may be modified by a
directly accessed quantity. In both cases the descriptor is left in DR
unmodified, after use, Unless otherwise stated, the desclx-iptor‘ may be
of types 0, 1, 2 or Escape for any primary instructions. '

For jump instructions (including Cail) the same rules apply except that
type 1 descriptors are not allowed, and the sizecoﬁe in a typs 0-descriptar
may only be 32 or 64 bits, For a 'Call’ instruction 'Code' or ‘System
Call' types are also permitted. If the descriptor is of Escape type a

jump out of sequence occurs.

© Internaional Compulers Limited
EPG 447372178

6594899

Technical Number
iGL Literature Sheet 3.6
Issue l

Modifiers, whether obtained as directly accessed quantities or from

B, are 32 bit quantities. When N is used as a modifier it is
extended with zeros on the left. The modifier is added to the contents

of the address field - other fields are unaffected.

When the modifier is added, a full 32-bit addition is performed,
overflow due to scaling or to the addition being ignored. When bound
checking is required (BCI not set) the most significant 8 bits of the
modifier before scaling must be 0's and it must be less than the

contents of the bound field, otherwise bound check interrupt occurs.

The checks for the directly-accessed items in store apply when any
of these items is used as a descriptor or modifier. The rules for
accessing and aligning operands are given in 3.1, Modifiers or
descriptors taken from the top of the stack (using the forms given
by k" = 6) cause SF to be decremented by 1 or 2 words,

respectively,

An instruction may overwrite store locations which contained parts
of the descriptor or descriptor modifier that it used to address its
operand. This includes cases where the descriptor or modifier was
the top-of-stack item and the instruction (e.g. Remainder Divide, or
Stack-and-Load types) causes something to be stacked, though the
operand itself is not on the stack,

3.6 Secondary Format Operands

The seco'ndary. format is only used by store-to-store- functions'.' AccC
may contain a spurce descriptor and DR contains the destination - ,)
string descriptor (an Escape descriptor may be used in place of the
latter). .

EPG 4473/2/78 ; (©) wernationnl Computers Limited

Technical
ICL Literature Sheet 4.1

Number 6594899

Issue 1

4.1

STACK INSTRUCTIONS

Accessing the Stack
This chapter deals with the instructions which access the stack.

Figure 16 should remind you of what the stack looks like - it is a
last-in, first-out storage area which is 32 bits wide, i.e. it expands
and contracts in steps of 32 bits (one word). The stack can be

addressed by means of 2 number of hardware registers:-

SF - STACK FRONT (16 bits) may be regarded as a pointer, relative

to the base of the stack, to the first unoccupied word in the stack.
The instruction code allows for the removal of the top item from the
stack, or the addition of a new item to the top of the stack - these
operations automatically cause the contents of SF to be decremented,
or incremented, by the appropriate number of words. SF may also
be altered by an instruction which allows a specified number of
locations to be added to, or deleted from, the stack. Since SF is

only a relative pointer it ceases to have significance in another stack.

LNB - LOCAL NAME BASE (16 bits) contains the word address,

relative to the base of the stack, of the first location in the local
name space of a procedure. Again it does not have any significance
outside its own stack., The quantity in. LNB is always less than that
in SF, The order code provides facilities for addressing items in

the local name space relative to LNB,

There is an additional register XNB - EXTRA NAME BASE (30 bits)

which may point to a word within the stack: however, since the length
of XNB is 30 bits, it is not restricted to pointing within the stack-

it may also be used for directly addressed off-stack areas. The

- order code allows for the addressing of items relative to XNB,’

The TOP OF STACK (TOS) item may be 1, 2 or 4 words long - it is

the programmer’ responsibility to keep track of the data items used

EPG 4473/2/78

© tnternationni Computers Limited

Technical
ICL Literature

Number 6594899
Sheet 4,2
tssue]

and to ensure that the correct operand length be used in all

operations.

For stack instructions the following restrictions apply:-

1. SF must always be greater than LNB,
2, Addressing below LNB i.e. (LNB - n) is not possible.

3. SF is not permitted to overflow into another segment.

Thus we note that we cannot unstack below LNB and cannot obtain

access to another local name space.

Now we are going to tackle each instruction in the order code in tusn,

For each instruction, there is a mnemonic code assigned, which is

shown in brackets and this is followed by the function code in hexa-

decimal representation. The full instruction set is shown in

(see fig17)

Appendix 1.

4.2 Load LNB (LLN) #7C
Operand length :
Description :

CC :

Program errors :

32 bits
Bits 14-29 of the operand are loaded to LNB,

Bits 30, 31 are ignored. Bits 0-13 are checked
equal to SSN, The new value of LNB is checked
to be less than SF, LNB is unaltered if these
checks are not satisfied.

Unaltered

Operand address errors. Bits 0-13 not equal
to SSN (see 12.4/8.2).

Bits 14-29 > SF (see 12.4/8.3)

EPG 447312/78

© Intesnational Compulers Lumiled

iICL] Technical Nu
Literature Sh::e’ 2524899
Issue l ’
Fig 16 THE STACK
—
SSN Hardware Registers
SSN = Stack Segment Number (14 bits)
XNB LNB = Local Name Basc (16 bits)
SF = Stack Front (16 bits)
LNB , :
X¥XMB = Extra Name Base (30 bits)
Only XNB can point outside as well
- TOS within the Stack, the rest can only
point within the Stack.
TOS = Top Of Stack (item).
<— 32 bits™™
Fig17 LNB - LOAD AND STORE INSTRUCTIONS
LOAD LNB (LLN)
0 13 14 29 30 31
Operand | | . J
Check for ﬁ 14 ‘¢ 29
Equality f ~] LNB
0 i 13
SSN [1
If OPO 13 # SSN then program error interrupt occurs.

If LNB » SF then program error interrupt occurs.

EPG 447372178

© tnlernauonal Computers Limited

Technical
Icy Literature

Number 6594899
Sheet 4.4
Issue |

4.3

Store LNB (STLN) #5C (see fig 18)

Operand length

Description :

CC 3

Program errors

32 bits

The contents of LNB, expanded to a 32-bit
byte address by concatenating the contents of
SSN on the left and 2 zero bits on the right, is

stored. This instruction will uéually be used to

'stack' the contents of LNB prior to a

. procedure call.

Unaltered
Operand addressing errors
Literal operand (see 12.8/12.1)

Non-zero bits of stored item truncated. (see

12.3/6.0)

Raise LNB (RALN) #6C (see fig 19)

Operand length

Description s

CcC

Program errors

32 bits
LNB is set equal to the value of SF minus the

operand. The operand is regarded as a number
of words, which must be less than the word
address in SF (so operand bits 0-15 must be
zero), and the new value of LNB must not be
less than the old. LNB is unaltered if these
checks are not satisfied.

Unaltered

Operand addressing errors.

Operand € 0 (see 12.4/8.4)

Operand” SF - LNB (see 12.4/8.5)

Load XNB (LXN) # 7E (see fig 20)

Operand length

Description z

CcC 3

Program errors

32 bits ;
Bits 0-29 of the operand are loaded to XNB.

Bits 30,31 are ignored.
Unaltered ’

Operand addressing errors

EPG 4473/2/78

@ (nternationnl Computers Limitad

icL] Technical

Number 6594899

Literature —— 4.5
Issue 1
Fig 18 STORE LNB (STLN)
0 14 29
| L |LnB
Item stored 2 \ 14 / 29 30 31
[ssN LNB [o0] -

in operand

location

Literal operands not permitted.

Fig 19 RAISE LNB (RALN) RALN. 5 sets LNB equal to the value of

LNB!

operand = 5

SF

SF minus 5.

722222

Fig 20 LOAD XNB (LXN)

0

29 30 31

Operand l

[Il

Ignore bits
30, 31
29

0
XNB I—

]

EPG 4473/2/78

(©) imternatinnal Computers Limited

6594899

Technical e o
CY Literature Seel 4.6
Issue l
Store XNB (STXN) # 4C
Operand length 32 bits
Description : The contents of XNB, expanded to a 32-bit

byte address by concatenating two zero bits on
the right, is stored.

cc : Unaltered

Program errors Operand addressing errors, Literal operand
(see 12.8/12.1). Non-zero bits of stored item

truncated.

4.6 Adjust SF (ASF) # 6E (see fig 21)

Operand length : 32 bits

Description : The operand, regarded asa signed number (of
words), is added to the word address in SF.
Bits 0-15 of the operand must be all the same
and must equal the carry out of th;a most
significant bit of SF when performing the sum,
i.e. segment overflow is not permitted. The
result must be greater than LNB, SF is not
adjusted if these checks are not satisfied,
New stack locations are not cleared.
If the operand involves TOS, SF is decremen-
ted before being adjusted. If the location
pointed at by SF, after adjustment lies beyond
the stack segment limit, or lies in a page
which is not available in main store, a virtual
store condition occurs, as if that location had
been accessed. In this case SF is not adjusted
but the adjusted address must be left in the
VSI parameter. Bits 25 and 26 of the VSI
parameter may indicate that either a read or
write access was attempted.

CcC s Unaltered

EPG 447372/78 (©) ternatonnt Computers Limited

ict] Technical Number 6594899

Literature Sheet 4.7
Issue 1
Fig 21
ADJUST STACK FRONT (ASF)
e.g. ASF 4
LNB ~
LNB—+

SF

SF —»

Stack before operation Stack after operation

New SFE LNB causes Program error interrupt
Operand too large (segment overflow) causes Program Error

interrupt

Fig 22
STORE STACK FRONT (STSF)

0 13 14

29
ssn | | K

Item stored 0 13 14 29 30 31
SSN | . SF | 00

in operand

location

© International Computers Limied
EPG 447372178 &

Technical
ICy Literature

Number 6594899
Sheet 4.8
issve 1

Program errors Operand addressing errors
New SF < LNB (see 12.4/8.6)

Operand too large (segment overflow) (see 12.

/8.7)

4

Store SF (STSF) #5SE (see fig 22)
Operand length 32 bits
Description : The contents of SF, expanded to a 32-bit byte

address by concatenating the contents of SSN
on the left and 2 zero bits c;n the right, is
stored. In all cases, including those where the
operand form involves the top of stack, the
value of SF as it was at the beginning of the
instruction is stored.

CcC : Unaltered

Program errors : Operand addressing errors. Literal operand
(see 12.8/12.1). Non-zero bits of stored item

truncated (see 12, 3/6.0).

Pre-Call (PRCL) #18

Operand length : 32 bits

Description 3 a) The operand is fetched, The operand must
be a 7-bit literal.
b) If SF is even (bit 15=0), SF is incremented
byl. :
c) The contents of LNB are expanded to a 32-bit
byte address by concatenating the contents of
SSN on the left and 2 zero bits on the right. Bit
31 is then set to 1 if SF was incremented in b)
and the result is stacked. (SF is incremented
by 1). Bit 31 of LNB as stacked is tested by the
EXIT instruction, to control collapse of stack.
d) The action of Adjust SF (ASF) is now

followed as described in 4.6. The operand is

EPG 447372178

© nternstionn] Compulers timited

iIcL] Technical Number ©594899
Literature Shiel 4.9
Issue 1
added to SF
cc ¢ Unaltered.

Program errors:

preparation for the CALL instruction (see Section 6.8).

8.7).

literal) (see 12.8/12.2).

Operand addressing errors.
(see 12.4/8.6).

New SF < LNB
Operand too large (see 12.4/

Incorrect operand type (must be 7 bit

The Precall instruction may be used to set up the stack in

SSN+LNB are

stored at TOS and a new name space created for the Link descriptor,

parameters and for procedure linkage table descriptors by adjusting

Stack Front by a required amount as specified by the operand.

fig. 23,

Fig. 23

PRECALL

THE STACK

SSN —=|

OLD LNB —e=|

OLD SF —»

30 31

NEW LNB —

SSN+LNB| 0 I *

AFTER RALN

SPACE FOR
LINK

SPACE FOR
PLT DESC.

SPACE FOR
PARAMETERS

NEW SF —»

*

4

See

QLD NAME SPACE

NEW NAME SPACE

NOTE:#* 1. For efficiency of Stack accesses on larger 2900 OCP's,

if original SF is even, SF is first incrememnted by 1, and

bit 31 of stored LNB is set to 1.

This is to ensure that

the items in the new name space will be aligned to an

€PG 4473/2178

© Internalionnl Compulers Limited

icy] Technical Number 6594899
Literature Sheet 4.10
Issue 1

even-word boundary after stacking SSN+LNB at TOS,

2. LNB must be raised to point to TOS by use of RALN
instruction before the CALL instruction. (See section

4.4).

© International Camputars Limited
EPG 447372178 R

Technical
ICL Literature

Number 6594899
Sheet 5.1

Issue 1°

5 ACCUMULATOR INSTRUCTIONS

This chapter deals
involve the ACC.

5.1 Load (L) #60
Operand length ¢
Description s
CC :

Program errors @

with the non-computational instructions which

ACs

The operand is loaded to ACC. UV ig cleared.
Unaltered

Operand addressing errors.

5.2 Set ACS 32 & load (1SS) #62

Set ACS 64 & Load (LSD) #64

Set ACS 128 & Load (LSQ) # 66

Operand length

Description :

CC

Program errors @

5.3 Store (ST) #48
Operand length :

Description

CC

Program errors :

New value of ACS

A new value is loaded to ACS, and the operand
(whose length is determined by the new value of
ACS) is loaded to ACC. OV ig cleared. .

There are three versions of the instruction,
corresponding to the three possible values of
ACS.

Unaltered

Operand addressing errors.

ACS '

The contents of ACC are transferred to the
operand location. If the length of the latter is
less than ACS, and any of the truncat.ed more
gignificant bits of the former are non-zero, an
interrupt occurs, ACC is unaltered.

Unaltered

Operand address errors. Literal operand (see
12.8/12.1) Significant.part of operand
truncated, (see 12.3/6.0).

EPG 447312178

(©) international Computers Lumuted _

iC] [fSrattrs il - o
Issue 1
5.4 Load Upper Half (LUH) # 6A
Operand length ACS
Description ACS is doubled and the operand is loaded to
the upper half of ACC. The lower half of
AGC is unaltered. OV is cleared. ACS=
128 bits is not permitted.
CcC Unaltered.
Program errors Operand addressing errors.
ACS = 128 bits (see 12.9/13.4)
5.5 Store Upper Half (STUH) # 4A
Operand length Half ACS
Description The contents of the more significant half of
ACC are stored’in the operand location.
ACS is halved. The lower half of ACC is
unaltered.
ACS = 32 bits is not permitted.
cC Unaltered.
Program errors Operand addressing errors. Literal operand
(see 12.8/12.1) ACS = 32 bits (see 12.9/13. 4)
Significant part of operand truncated (see A
12.3/6.0).
5.6 Copy DR (CYD) #12

Operand length

Description

CC

Program errors

Not applicable. Literal must be specified.
The contents of DR are copied to ACC. ACS
is set to 64 bits. OV is cleared. DR is
unaltered.

Unaltered.

Only universal types listed in section 12. 10.

EPG 447372178

© tnternationnl Computers Limited

ICL] Technical

Literature

Number 6594899
Sheet 5.3
Issue 1

5.7

Read Real Time Clock (RRTC) # 68

Operand length

Description

CcC

Program errors

Notes:

1 bit. Literal must be specified.

ACS is set to 64 bits and the value of the

hardware real-time clock is loaded to ACC.

as follows:

(i)

For OCPs at AMLO.

The X register is loaded into bits 0-31 .
of ACC.

The Y register is loaded into bits 32-63
of ACC.

(ii) For OCPs at AMLI.
a) if the operand value = 0, ACC is
loaded as above.
b) if the operand value = 1, bits 0-62 of
ACC are set to the true binary value of
the Real Time Clock such that bit 62 of
ACC is equivalent to 2 1 sec of real time.
The algorithm is: ‘
ACC = 2. (x0-3l+ (x31 + yo)) + 2. Y1.31
Unaltered.

Only universal types listed in section 12. 10.

1. There are two 32 bit registers RTCX and RTCY.

2. In this instruction the operand iz meaningless and a literal

must be specified.

RTCX is maintained by software and can be considered as a

continuation of RTCY, which is a hardware binary counter.

Resolution at bit 31 of RTCY is 2 microseconds. By convention

RTCX is a continuation of RTCY with bit 31 of RTCX duplicating

bit 0 of RTCY. Whenever a carry from bit 1 of RTCY occurs an

EXTERNAL interrupt is generated.

EPG 4473/2/78

© International Computers Limited

ici] TYechnical

Literature

Number 6594899
Sheel 5.4
Issue 1

5.8

Stack and Load (SL) # 40 (see fig 24)

Operand length

Description

CcC

Program errors

ACS

The contents of ACC are copied to an inter-
mediate register. The operand is loaded to
ACC, and the contents of the intermediate
register are stacked, causing SF to be
incremented by ACS.

The intermediate register ensures that the
operand forms T, DT, IT and MIT are
valid. OV is cleared.

Unaltered.

Operand addressing errors.

NOTE:- If the operand is the top of stack item, i.e. SL/T then the

contents of ACC are interchanged with the*item at the top

of stack. OV is cleared. The operand length equals ACS

for this instruction.

EPG 447372178

© Intetnational Computers Limited

iICL] Technical Nygioer: 6
Literature . S:;"e'e 5.5 24899
Issue 1

Fig 24. STACK AND LOAD (SL)

| I Operand

2
i
SF —» TOS IACC
SF' __
1
Intermediate
Register

Sequence of operation: -

1. Contents of ACC are loaded to an intermediate register.

2, Operand is loaded into ACC.

3. Contents of intermediate register put on top of stack. Thus stack
is incremented by the original contents of the ACC.

If the operand is T, i.e. SL T, then SF is decremented as the operand

is accessed and incremented as the original contents of ACC are

put at TOS. Thus SL. T swops the contents of ACC with the TOS item.

STACK, SET ACS 32 & LOAD (SLSS) This is as STACK &
ACS
STACK, SET ACS 64 & LOAD (SLSD) LD exeept that L0
is set to the appropriate
STACK, SET ACS 128 & LOAD (SLSQ) size prior to loading the
ACC.

© Internationol Campuiters Limitad
EPG 4473/2178

ict] Technical Number 6594899
Literature Sheet 5.6
1ssue 1
5.9 Stack, Set ACS 32 & Load (SLSS) # 42

Stack, Set ACS 64 & Load (SLSD) # 44

Stack, Set ACS 128 & Load (SLSQ) # 46

Operand length s New value of ACS

Description The contents of ACC (length determined by
the original value of ACS) are copied to an
intermediate register. ACSis setina way
depending on which of three versions of the
instructions are used. The operand, of
length determined by the new value of ACS,
ig loaded to ACC; ar;d the contents of the
intermediate register are stacked (causing
SF to be incremented by the old value of
ACS).
The intermediate register ensures that the
operand forms T, DT, IT and MIT are valid.

- OV is cleared.
CccC Unaltered.
Program errors Gperand addressing errors.
5.10 Modify PSR (MPSR) # 32 (see fig 25)

PSR is the Program Status Register and controls fields such as over-

flow, Condition Code, ACS and Access Control Register.

Operand length

32 bits.

EPG 4473/2/78

© lernatanal Computers | imitad

".‘BL Technical Number 6594899

Literature Sheet 5.7
Issue 1
Fig 25 MODIFY PSR (MPSR)
16 23 24 27 28 29 30 31
’ Control bits
P
rogram Mask for MPSR CC | ACs

PSR (Program Status Register)

Only the 1. 8. 16 bits of operand are used.
If bit 27 = 1, bits 30, 31 overwrite ACS.
If bit 26

If bit 25 = 1, bits of program mask which correspond to zeros in

1, bits 28, 29 overwrite CC.

operand bits 16 - 23 are made zeros.

If bit 24 = 1, bits of program mask which correspond to ones in
operand bits 16-23 are made ones.

e.g. MPSR, # 20

In this example is:-

24 . 27 28 293031
ro 0 1 0 Io olo ol.
CC AcCS

Thus bit 26 is set to 2 one and CC is set to zero.

(© wiernatonal Computers Limited

PG 447372178

Technical
Icy Literature

Number 6594899
Sheel 5.8
Issue 1

Description

CC

Programerrors

The least significant 16 bits of the operand
are used to alter the setting of the Program
Mask, Condition Code, and ACS registers,
as follows:

if bit 27 is 1, bits 30 and 31 overwrite ACS.
(Program error if attempt is made to set
ACS = 0).

if bit 27 is 0, ACS is unaltered and bits 30
and 31 may take any value.

if bit 26 is 1, CC is set to the value in bits
28 and 29. Otherwise, CC is unaltered and
bits 28 and 29 may take any value.

if bit 24 is 1, bits of the Program Mask which
correspond to 1's in operand bits 16-23 are
made 1's; otherwise they are unaltered.

if bit 25 is 1, bits of the Program Mask
which correspond to 0's in operand bits
16-23 are made 0's; otherwise they are
unaltered.

bits 0-15 of the operand are ignored and
may take any value.

Unaltered if opt-erand bit 26 = 0. Otherwise
CC takes value specified in operand bits
28, 29.

(Note: ACS and/or CC may be set using a
7-bit positive literal operand).

Operand addressing errors.

Attempt to set ACS = 0 (see 12.9/13.7)

Example:- Taking an example MPSR # 20. Here bit 26 is set to

a one, which enables CC to be overwritten by the value

of bits 28 and 29 - these are both zeros. Thus the net

result is that CC is set to zero.

EPG 4473/2/78

© International Compulers Limited

) I Technical
CL Literature

Number 6594899
Sheet 5.9
Issue 1

Copy PSR (CPSR) # 34

Operand Length
Description

CcC

Program errors

Note:

32 bits
The contents of the PM, CC and ACS fields

of PSR are stored in the operand location,

in the following 32-bit format:

Bits 0-15 0's

Bits 16-23 PM

Bits 24-27 1110 (see note below)
Bits 28, 29 cC

Bits 30, 31 ACsS

Subsequent use of this operand by 'Modify
PSR' (5.10) causes PM and CC to be
overwritten, but not ACS, unless bit 27 is
made 1.

Unaltered.

Operand addressing errors. Literal operand
(see 12.8/12.1).

Significant part of operand truncated (see

12.3/6.0)

\G 447312178

© ilernational Computers Limited

ICL Technical . Number 6594899

Literature Sheet 6.1
’ issue 1
6 CONTROL AND JUMP INSTRUCTIONS -

6.1 Jump (J)## 1A (see fig 26) ’ e
) Operand length ¢ 32 bits (see note below)
Description : The operand increments or overwrites PC
causing a jump to occur.
CC 2 Unaltered
Program errors : Operand addressing errors for jump instruct-

ion. (see 12.6/10.0)

NOTE:- PC, the program counter. holds the address of the current
instruction and it is incremented for each ir;struction. When a jump
instruction is encountered in a program, PC is overwritten with the
operand, which is the jump address. Fig 26. demonstrates a use of

this instruction. The stack is unaltered by the jump.

The operand length should be 32 bits. If the operiand is addressed
indirectly via a type 0 or type 2 descripter, the addressed item in
store may be 32 or 64 bits long. In either case it is treated simply
as an instruction address and not as a descriptor - if it is 64 bits

long, then the most significant 32 bits are ignored.

© international Computers Limited
EPG 4473/2178

6594899

o her
ict] TYechnical R 5
Literature Sheet 6.
fssue 1
Fig 26 JUMP (J)
ssn — S Y U]
PC During S/R 1 \
(incremented [or
each Instruciivn)
INBi —#| poein
Name
Space o
SF —o Subroutine 2
I —— '-‘T;'Ec/m‘..
Stack Unaltered PC at End of Jump
(loaded with the atart Subroutine 2
address of subroutine 2)
A
.
Flg 27 JUMP AND LINK (JLK)
PC During Program 1 Program 1
(lncremen!ed for
exch {nstruction) \
PC at Execution of JLK) e (New value ot PC)
(loeded with start addreas
of subroutine A) Subroutine 'A*
SN — | e
Stack old value of PC [———=
LNB ——ef 1,031 Unstack old valueof PC [T T T T 7
Name | / - ~_ [T T
Space —— T T
O PC__ |-
SF ——oi \‘nemrn address of Program 1

EPG 44737278

© minatonat Gommuters Lumitad

ict] Technical Number 6594899
Literature - Sheet 6.3
Issue 1

6.2

Juinp and Link (JLK) # 1C_ (see fig 27)

Opcrand length ; 32 hits. The note under (6. 1) applies
Description § The updated contents of PC are stacked as
a 32 bit byte address (i.e. with a zero bit
concatenated); SF is incremented by 1.
The operand increments or overwrites PC
causing a jump to occur,
If the operand is the top-of-stack item, the

updated PC and the operand are effectively

swopped.
CcC : Unaltered.
Program errors 2 Operand addressing errors for jump instruct-

ion (see 12.6/10.0).
This instruction can be used to access a subroutine (Fig 27). The
address of the jump is stored at TOS and provides the link back to
the original program.When we have finished with the subroutine the
link is removed from TOS and overwrites PC. This provides the

return to the original program.

Jump on Condition Code (JCC) # 02

Operand length : 32 bits. The note under 6.1 applies.

Description : If the bits of the mask field M are MO' Ml' MZ
& M3 and if the current condition code set-
ting is i, then operate as for the Jump
instruction if, and only if, Mi = Xy
otherwise proceed to the next instruction in
sequence. Alternative condition code settings
may be tested by making more than one bit
of M non-zerc.

CcC : Unaltered.

Program errors § Operand addressing errors for jump
instruction (see 12.6/10.0).

This instruction uses the CC (Condition Code) Register which is set

as a result of tests carried out on operands or registers. The

EFG 447372/78

© International Computers Lunited

6594899

Technical Number
L Literature sheet 6.4
Issue 1

tertiary format is used for the instructlion:-

JCC location, mask

where location is the destination of the jump. The mask field consists

of 4 bits (MO' Ml' MZ' M3) which occupy bits 7-10 of the instruction
(see Fig. 13) representing the four possible values of GC.

If MO is set to a one and CC = 0 then the instruction will cause a
jump to the operand location.
Similarly

1f M1 is set to a one and CGC = 1 again a jump will occur.

for M2 and M3 5

JCC can be used in conjunction with orders such as CPB (compare B).
CPB is used to set CC as follows:-
If B = operand, CC =0
B < operand, CC =1
B > operand, CC =2
so by using the instructions together:-
e.g. CPB FRED
JCC JIM, # C (mask field expressed in hexadecimal C = 1100
i.e. M_=1, M1=l, M, =0, M

0 2 3
ifCC=00or CC=1i.e. if Bs€ FRED,

<«
= 0) a jump to location will result

Certain mnemonics can be used in the mask:-
E (equal to) = 8 (1000)
L (less than) = 4 (0100)
G (greater than) = 2 (0010)
Thus JCC TOM, E will produce a jump to TOM if CC = 0.

P
EPG 4473/2/78 © wiernational Campiters Limited

Technical
ICL Literature

Number 6594899

Sheet 6.5
Issue 1

6.5

Jump on Arithmetic True (JAT) # 04

Jump on Arithmetic False (JAF) # 06

These instructions use the tertiary format described in chapter 1.

Operard Iength :

Description :

CccC

Program errors :

32 bits. The note under (6.1) appliee.

These instructions test the contents of ACC,
regarded as a floating-point, fixed point or
decimal number, of DR, or of B, for one of
the conditions specified by the mask field M,
and a jump occurs (operand increments or
overwrites PC) if the specified condition is
true (first version) or untrue (second version).
Otherwise the hext instruction in sequence is
obeyed,)

ACC, DR, B and OV are unaltered.

Unaltered

Operand addressing errors for jump instruct-

ion (see 12.6/10.0).

The table of mask conditions is shown in fig 28.

e.g. JAT ALAN, # 4

will produce a jump to location ALAN if the ACC regarded as a fixed

point number is zero. Note that JAF ALAN,# 4 will jump to ALAN

if ACC #o0.

JAT and JAF do not use the CC register {unlike JCC),

Decrement B and Jump if Non Zero (DEBJ) # 24

Operand length

Description :

32 bits. The note under (6.1) applies.

1 is subtracted from B. If the result is non-
zero a jump is made, the operand incrementing
or overwriting PC, If the result is zero no
jump occurs and the next iastruction in
sequence is obeyed. In either case the
decremented value is left in B. If B originally

1
contained - 231 OV is set, 23 -1 is left in B,

EPG 4473278

© Internationnl Computers Limited

6591899

Technical Number
L Literature Sheet 6.6

ssue 1

Fig 28 JUMP ON ARITHMETIC TRUE (JAT) (# 04)
JUMP ON ARITHMETIC FALSE (JAF) (# 06)

MASK
0 ACC =0
1 ACC >0 } Floating Point Mode
2 Acc <o
8 Undefined
4 ACC=0
ACC>0 ¢ Fixed Point Mode
6 ACC <0 | (Undefined if ACS = 3)
7 Undefined
.
8 ACC=0
9 ACC>0 ¢ Decimal Mode
A AcC <o |
B DR Length (bits 8-31) = 0
C -B=190 -
D B> 0
E B< O
F OV Set-

JAT ALAN,# 4 ~will produce a jump to location ALAN if the ACC
(regarded as a fixed point quantity) = 0.

JAF ALAN,# 4 will jump to ALAN if ACC % 0.

Note JAT, JAF do not use CONDITION CODE.

P
EPG 447372178 . (©) miernationnl Camputees | wnited

icL] Technical Number 6594899

Literature Sheet 6,7
Issue 1

and interrupt occurs unless the condition is
masked; otherwise OV is cleared.
If the operand form uses B, the jump location
is undefined.

CC : Unaltered

Program errors ! Operand addressing errors for jump instruction
B overflow {unless masked) (see 12.1).

6.6 Out (OUT 3C

Operand length 32 bits.

Description i This instruction causes a class 9 interrupt to
occur., The operand is left as the 32 bit
interrupt parameter on the new stack. ACC, B,
and (unless operand access is indirect) DR are
unaltered.

CcC : ¢ (Dumped value) unaltered.

Program errors : Operand a.dd.ressing errors.

6.7 Idle (IDLE) # 4E)
Operand length : Not applicable. Literal must be specified.
Description : This instruction causes instruction sequencing

to be suspended until an interrupt (of any class)
occurs.
The value of PC dumped on interrupt points to
the next instruction in sequence. The instruc-
tion makes no reference to store or registers '
if the operand is a literal.

CC : Unaltered

Program errors : Only universal types listed in section 12.10..

— (©) Wernanonnl Computers Lunited
ENG 4473/

6594899

Number
ict] Technical
Literature Sheet 6.8
ssue 1
Fig 29 CALL (CALL) (# 1E)
0 7 8 11 12 13 14 16 16 23 2427 2829 303!
CALL
: type 3/33 | ACR| D F 3 £ | prog. mask [ooot| cc |Acs| Lumi
v
Create Link - T
Descriptor at Dyte Address of Next Instruction
(LNB+1,2)
1s Descriptor Y
Y Is g:l. Dilru:t N 0ora? __————'opc"'d
T ¥ Overwrites FC
. Code Type Y
nd 3/323/337
';-“:i N' n'm"c:‘:“l'e .l :: gt[-‘c?n " Address [rom DRt
¥ N *"*" Qverwrites PC
Escape Type Y
B i N Do Escape Jump
System Call Y
/352 Do System call
‘ N Interrupt
Program
Error
6.8 Call (CALL)# lE (see fig 29)

Operand length

32 bits.
Note: If the operand is addressed indirectly
via a type 0 or type 2 descriptor, the
addressed item in store may be 32 or 64 bits
long. In either case it is treated simply as
an instruction address, not a descriplor (so
neither Call nor Escape mechanisms can be
invoked) and, if 64 bits long, its more
significant bits are ignored. If tke operand is
addressed indirectly via a code descriptor,
the address in bits 32-63 of the code descrip-
tor is the operand. If the code descriptor is
unbounded a microcode routine may be

entered when the jump is made.

EPG 447372178

© Internationnl Compulers Limited

icL] Technical Number 6594899

Literature Sheet 6,9
Issue 1
Description : This instruction is used to enter procedures,

A link descriptor specifying the location to
return to on exit is generated and loaded into
(LNB+1) and (LNB+2). The operand increments
or overwrites PC causing a jump to occur.
If SF < LNB + 2, the link descriptor is not

" gtored and the instruction terminates with

- a program error interrupt.

The link-descriptor is of unbounded Code
Type and consists of:-

In (LNB + 2);

The byte address of the next instruction (i. e.
the length of the Call instruction added to
the contents of PC, w.th a zero bit

concatenated at the less significant end).

In (LNB + 1);

Bits 0 - 7 : 11100001 (Type 3, sub-
type 33)

Bits 8 - 11 : ACR

Bit 12 : D

Bit 13 : PRIV

Bit 14 : OV

Bit 15 : E

Bits 16-23 : Program mask

Bits 24-26 : Zero

Bit 27 .

Bits 28, 29 : CC

Bits 30, 31 : ACS

© internationnl Computers Limitad
EPG 4473/2/18

Number 6 594 8 99
I I?‘ce';g'tfjgé Sheel 6.10

Issue 1

If the address form is indirect the descriptor,

which is left in DR, may be one of the
following types:
a) 0 or 2

b) Code

no special action

the address in the

descriptor itself,

possibly modified,
overwrites PC.

c) System Call . Aninterruptis
performed. If the
descriptor is mod-
ified, the modifier is
accessed but no
modification takes place
(eg, if the modifier is
TOS, SF will be dec-
remented).

d) Escape . An escape action is .

performed (LNB+1,

+2) will be undefined.

If the operand is accessed directly from (LNB
+2) or via a descriptor in (LNB+1) the result
is undefined. If the operand is accessed in-
directly, system software may intervene to
decode a system call descriptor and in this
case the contents of ACC, B and XNB must be
regarded as undefined.

CcC 3 Unaltered.

Program errors 2 Operand addressing errors for Call instruction.
(see 12.6/10.2)
SF < LNB +2 (see 12.8/12. 5).

NOTE: See section 4.8 for description of Precall Instruction.

- 7
EPG 447372/78 (© trernationn Computers Limited

Technical.
cL Literature

Number 6 5 948 99
Sheet 6.11

b
Issue o)

6.9

Exit (EXIT) # 38

Operand length

Description

(see fig 30)

32 bits_

This instruction is used to return from proce-
dures and after non-stack-switching interr-
upts. The stack is returned to its status quo
and a jump is made as specified by the link
descriptor. Fields of the link descriptor may
be used to overwrite parts of PSR as specified
by bits in the ope rand.

The link descriptor is extracted from (LNB+
1, LNB+2). It may only be of types Code,
System Call, or Escape, If SF £ LNB + 2,

or the descriptor is not one of these types, the
instruction terminates with a program error
interrupt. If the link descriptor is System Call,
PSR and PC are copied into DR, in the form of
a link descriptor, and the system call interrupt
exception condition routine is entered.

If the link descriptor is Code, DR is not al-
tered but various fields in PSR are altered as
follows:

- if the value of bits 8-11 of (LNB+1) is not
less than ACR, bits 8-11 of (LNB+1) overwrite
ACR; else program error interrupt.

- if the value of bit 13 of (LNB + 1) is not
greater than PRIV, bit 13 of (LNB+1) over-
writes PRIV; else program error interrupt.
-if operand bit 25 = 1, bits 16-23 of (LNB+1)
overwrite PM.

-if operand bit 26 = 1, bits 28-29 of (LNB+1)
overwrite CC.

-if operand bit 27 = 1, bits 30-31 of (LNB+i}
overwrite ACS (program error interrupt if

attempt is made to set ACS = 1),

EPG 4473/2/78

(©) mternational Computers Limited

Technicat
ICL Literature

Number 6594899
Sheel 6.12
Issue 1

6.9
contd.

CC

- if operand bit 28 = 1, bit 12 of (LNB + 1)

overwrites D.

- if operand bit 29 = 1, bit 14 of (LNB +1)
overwrites OV (this does not cause an overflow
interrupt).

- bit 15 of (LNB +1) overwrites E

Other operand bits gre ignored (reserved). The

operand may only be a 7-bit literal. To restore
the stack status quo, the contents of the LNB
register are transferred to SF, and provided

that bits 0-13 = SSN and bits 14-29 <SF, bits
14-29 of the contents of the locations now pointed
at by SF are transferred to LNB. If these
conditions are not satisfied LNB is unaltered.
The add;-ess from the code descriptor (ex-

(LNB + 2)) overwrites PC.

Finally bit 31 of LNB as stacked (i.e. SF) is
tested to Control the 'collapse' of stack, and if
the bit 31 is one, a2 jump is made to the address
in PC.

In emulating machines, if E=]1 and EM has a
locally valid value, emulate alien code.

If the new ACR is larger than the previous value,
and the EP bit is set in SSR, an EP interrupt will

occur, the next instruction is executed, unless

" masked.

When EXIT is used to return from procedures,
system software may intervene to decode a system
call descriptor and in this case the contents of DR
and XNB must be regarded as undefined.

Unaltered if operand bit 26 = 0. If operand bit

26 =1, and the link descriptor is of Code type,

EPG 4473/2/78

() mirsrasinnal Cosvidnis Liaisd

ICL]

Technical
Literature

Number 6594899
Sheet 6.13

Issue l

Fig 30 Exit (EXIT) # 38

EXIT Operand
¥y

Azolils 0.7 of

{LND1) cqqual to

CODE descriptor?
v
Are bits B-11 of (1.NB+1)

> ACR or s bit 13 of N
(LNB+1) < PRIV?

v
Overwrite PSR as
specified by operand

Sct SF=LNB and set
LNDB=(SF) (SF not altercd)
PC'=(old LND+2)

leACR'>ACR? —N —
Y
N

Is Event ding bit set?

Y

—!

ESCAPE

N Facape jump

SYSTEM CALL?

System Call Interrupt
Program error

Is E.P. mask set?
Y

Exccute instructlen at PC

Fig 31 Escape Exit (ESEX) #3A

Event Pending Interrupt

Bits 0-30 of TOS overwrite PC

Sct D bit in PSR

Jump to Instruction

* pointed at by PC *

What is opcrand
format of this
instruction?

{gnore STORE

D bit. uvsedesc. (nDR
access . to access
operand. operand.

n— / 4 IN\‘ T

IN DR
fgnore D bit.
usedesc. In
DR to access
operand.

EPG 4473/2/78

@ International Computers Limited

Technical
cy Literature

Number 6594899
Sheet 6.14

Issue 1

6.9

contd,

Program errors

CC takes value specified in bits 28, 29 of

(LNB +1).

Incorrect operand type (must be 7-bi
(see 12.8/12.2).

SF< LNB + 2 (see 12.8/12.5)

Link descriptor not Code, System Call or
Escape (see 12.6/10.3)

New PRIV old PRIV] (see 12.5/9.5)

New ACR < old ACR

Bits 0-13 of (LNB) # SSN (see 12.4/8.2)

Bits 14-29 of (LNB) » new SF (see 12.4/8.3)
Attempt to set ACS = 0 (see 12.9/13.7)
(Emulating machines; PEI 14) New E =1 and

t literal)

EM = 0 or invalid value

6.10 Escape Exit (ESEX) # 3A (see fig 31)

Operand length

Description

.

Not applicable. Literal must be specified.

The operand field is ignored. Bits 0-30 of the
word at the top of the stack overwrite PC; bit
31 is ignored. SF is decremented by 1 word.
The 'D' bit is set in PSR, and a jump is made
to the instruction pointed at by PC. If that
instruction accesses the store indirectly, via a
descriptor located in the store, the effect of
the D bit will be to prevent that descriptor
from being used; instead the descriptor already
in DR (assumed to have becn placed there by
the escape routine) will be used. If the instruc-
tion specifies modification it will take place.
E.g. if the operand format is MIT, it will be
interpreted as MD, If indirect access via DR,
or direct access, is specified, the D bit of
PSR is ignored. E.g. if the operand format is
DT it will be interpreted literally., The D bit

EPG 4473r2/78

© Internationn! Computers Limited

ic] Technical

Literature

Number 6594899
Sheel 6.15

Issue 1

6.10

contd.

CccC

Program errors

of PSR is cleared by the instruction so that its
effect is limited to the first instruction after
Escape Exit, That instruction will usually be
the one which originally triggercd the escape
mechianism, re-executed; note that in the first
example above, TOS will have been accessed
(to obtain the Escape descriptor) before the
escape action, in the second example TOS is
not accessed until after Escape exit since
Escape descriptors are unmodified.

Unaltéred

Only universal types listed in section 12,10.

EPG 4473/2/78

=t Computers Limited

iICL] Technical . Number 6594899

Literature

Sheet 7.1
Issue 1

7.2

B INSTRUCTIONS

This chapter deals with instructions which affect the B register.

This is a 32 bit register, thus all instructions must have a 32-bit

operand.

Load B (LB) # 7A

Operand length 32 bits
Description ¢ The operand is loaded to B. OV is cleared.
The previous contents of B may be used as a

modifier in fetchin'g the operand.
CC

Unaltered

Program errors ! Operand addressing errors

Stack and Load B (SLB) # 52

Operand length : 32 bits

Description : The contents of B are copied to an intermediate
register, and the operand is loaded to B, OV
is cleared. The contents of the intermediate
register are stacked, causing SF to be
incremented by 1 word. ’
The intermediate register ensures that the
operand forms T, DT, IT and MIT are valid.
The previous contents of B may be used as a
modifier in fetching this operand.

CC : Unaltered;

Program errors : Operand addressing errors.

Store B (STB) # 5A

Operand length : 32 bits
Description 3 The contents of B are stored in the operand
location; they may be used as a modifier in

accessing the latter. B is unaltered.

EPG 4473/2/78

© Intecnationnt Computers Limned

Number 6594899

Program errors

NOTE: The effect on OV if B is the operand of STB i

Add to B (ADB) #20

icy Technical
Literature Sheet 7.2
Issue 1
CcC Unaltered.

Operand addressing errors
Literal operand (see 12. g/12.1)

Non zero bits of stored item truncated (see

12.3/6.0).
s undefined.

Subtract from B (SBB)#22

Multiply B (MYB)#2A

Operand length

Description

CcC L

Program errors @

32 bits

The arithmetic operation indicated is

performed between the operand and the contents
of B (which may be used as a modifier in
accessing the operand). Both are treated as
signed 32-bit integers. The'least significant

32 bits of the resulting sum, difference or
product is left in B,

If overflow occurs, i.e. the sum, difference or
product is less than -231 or greater than Z32 -1,
OV is set; otherwise OV is cleared. Overflow
will also cause interrupt to occur if not masked.
Unaltered.

Operand addressing errors. B overflow

(unless masked) (see 12.1).

Compare B (CPB)#26

Operand length $

Description 2

32 bits

The contents of B are compared with the oper- .
and, both being regarded as signed integers.
The result of the comparison is indicated in

CC. B and OV are unaltered.

Comparisons are performed exactly as for 32-

EPG 4473/72/78

© Intlernationat Compulers Limited

icL] Technical Number 6594899
Literature) Sheet 7.3
Issue 1
bit fixed point compare (9.14).
The contents of B may be used as a modifier in
accessing the operand.
CccC ¢

7.6

Program errors

0 B = operand
1 B¢ operand
2 B) operand
3 Not used

Operand addressing errors.

Compare and Increment B (CPIB) # 2E

Operand length

Description $

CC

Program errors

Dope Vectors

32 bits

The action of the instruction is identical to that
of Compare B (7.5), with the addition that after
the comparison 1 is added to the contents of B.
OV is set if this causes B to overflow (i.e. if

31);

interrupt will occur if this condition is not

the contents of B go from 231 -1 to -2

masked. OV is cleared if overflow does not
occur.

The original contents of B may be used as a
modifier in accessing the operand.

0, B (original contents) = operand

1, B (original contents) < operand

2, B (original contents) > operand

3, Not Used

Operand addressing errors. B overflow (unless

masked) (see 12.1).

2

The final instruction in this chapter is DOPE VECTOR MULTIPLY.

However, before this is tackled, it would be opportune to discuss

arrays. Imagine we have a series of locations, say JOE (0-9) and

wish to operate on them successively then the B register instructions

are ideal. The register can act as a modifier for accessing these

EPG 4473/2/78

© ternahonnl Computers Limited

6594899

Technical Number
e Literature Sheet T+ 4
Issua 1

. . i i 5
locations., For a single dimensional array as In fig 32, this is ea y

enough. To access ED]l we use a modifier of one, etc.

For two-dimensional arrays the value of the modifier is obtained by

adding the first subscript to the product of the second subscript and

the number of elements in the first dimension.

- So for F12 in the array F (0 : 3, 0 : 2), the modifier required is 1 +
(2 x 4) = 9. Checking fig 32 you will see that a modifier of 9 will

enable us to access F12,

7.8 3D Arrays

The process becomes more complicated for 3-D arrays. Fig 32 also
d.emonstrates the principles involved. A worked example is shown,
.using the formula given in the diagram - the modifier needed to
access element 1211 is 18, If you check the array you will find that

this is quite correct.

The formula given becomes more complicated to use when there are
arrays whose lower bounds are not zero. Dope vectors considerably

simplify the calculation of modifiers in this situation.

Consider the array Z (5-9) which is shown in fig 33.. For each
dimension of the array, there is a dope vector -this is a set of 3
words, i.e. three 32-bit fields x,y,z, which give information about
the array. There will be a descriptor pointing to the start of the
array - calculation of the modifier will enable the correct element

to be accessed.

EPG 447372178 © Inlernationnt Gomputers Linited

ic] Technical : Number 6594899
Literature Sheet 7.5
Issue 3

SINGLE DIMENSIONAL ARRAY

ED (0:4)

{evo | Eor | ep2 | Epa | ED4 |

TWO DIMENSIONAL ARRAY

F (0:3, 0:2)

Second Dlmeulo‘n/ 1st Subscript

First F00 | Fo1 | FO24——2nd Subseript
Dimension F10 | F1 | F12
F20 | F21 | F22
Number of . F10 | F31 | F32
=

lFWIHOIHO!FSOlFOIIE“HIFZILFGI‘FMIFﬂlPZZIFJZI

Modifier vnlue M = first subscript + (second subscript x number of elements in first dimension)
For F12: M=1+ (2x4) =9,

THREE DIMENSIONAL ARRAY
1(0:3, 0:2, 0:2)

1002 1012 1022
1102 1112 1122
1202 1212 1222
02 ~1312 1322

1001 011 1021
J101 1111 1121 G E™
201 1211 [I221

l [1000 1010 1020 o 1301 1311 1321 i /
First 1100 1110 1120 . o Dimension

Dimension [1200 1210 1220 T

‘ 1300 1310 1320

P —
Second Dimenslon

1000}1109 lzooll:mo 1010(1110{1210{13L ‘I 1 320 mullllﬂl 1201 lamIlﬂllllllllﬂll‘lﬂllllwlI

narfz21 lﬂlelDO?. 1102jt 1012 mzlmz 131210 -l22[ﬂ

M = flrat subscript + (second subscript x of el ts in (irst di + (third subscript

x number of el ts In second di lon x number of el in first di Llon)

Forl211 M=2+(1x4)+ (1 x3x4)=2+4+12=18,

FIG 32 ARRAYS

© mlernational Computers Lemited
EPG 447312118

Technical
ICU Literature

Number 59489 9
Sheet 7.6
Issue 1

7.8

Cont,

7.9

. ; o ber of
x is the lower subscript limit for that dimension. y 18 the num

elements in the previous dimensions. Note that for a gingle dimens -
ional array or for the first dimension of a multi-dimensional array,
y =1, z is the number of elements up to the end of that dimension,
including previous dimensions.

Incidentally for a multi-dimensional array the value of z for a

particular dimension is of course, the same as the valué of y for the

next dimension.

Dope Vector Multiply (VMY)# 2C (see fig 34)
Operand length @ 32 bits

Description ¢ DR must contain a type 0 descriptor, with size
code 32 bits and USC and BCI = 0 (or an
interrupt occurs). -

The contents of the word pointed at by this
descriptor and of the next two words are
referred to below as x, y and z.

The action of the instruction is to evaluate the
expression (i-x)y, where (i = operand) whose
l.s. 32 bits are left in B. As each of x, y and
z are accessed the address in DR is incremen-
ted by 4 bytes and the bound decreased by 1
(Bound Check interrupt occurs if this changes
the bound field contents from 0 to all 1's). Thus
at the end of the instruction the address will
have been increased by 12 bytes and the bound
decreased by 3. Indirect addressing forms are
not permitted. Interrupts occur if any of the
following conditions are not satisfied (unless

Bound Check is masked).

3 k)
04 (i-x)<2” (iandx signed integers)
04(i-x)y<z
OV is cleared.

EPG 44r3r2/18

@ ntrenationnl Comnulers Limited

icL] Technical Number 6594899

Literature Sheet 7,7
Issue 1
Fig 33 DOPE VECTORS

zs | z6 |27] 28|29 |

A

— Decscriptor —]

DOPE VECTORS are sets of three words which hold information

about ARRAYS,
x = lower subscript limit for that dimension.

y = number of elements in previous dimensions (for a 1-D array or
the first dimension of a multi-dimensional array, y =1).
z = number of elements up to the end of that dimension (including

previous dimensions).

In the above example, x=5
y=1
z=5

Fig 34 DOPE VECTOR MULTIPLY (VMY)

The operation of this instruction is to calculate (i-x)jand check that

the result is less than z, where x,y,z are the Dope vectors. The

result is left in the B register.

To calculate the modifier required for Z8 in Fig 33, use the format:-
VMY 8

where i = operand = 8.

The Dope Vectors are x=5, y=1, and z=5.

Therefore (i-x)y = (8-5). 1=3.

This is the result left in the B register.

The result = 3 is less than z which is equal to 5.

DR x

!

|___ Address —

(©) 1ernavional Computers Lumwted
EPG 4473/2/78

Number 6 594899

Technical sheel 7.8
1CL Literature °
issue 1
7.9
Contd. CC & Unaltered.
Program errors § Operand addressing errors

Indirect address form (see 12. 8/12.2)

Incorrect type and size code of descriptor

in DR (see 12.6/10.4).

(see 12.2/5.3)

31

(i - x)y=> z (includes (i-x) y 227) (see 12.2/5.6)

(see 12.2/5.7)

i<x unless)
is xale bound) (see 12.2/5.2)
y<0 checkis) (seel2.2/5.4)
z<0 masked) (see 12.2/5.5)
)
)

Bound check on %, y or z

Example 1
Say we wish to calculate the modifier to access z8 in the array

z (5-9).
This can be done using the Dope Vectcr Multliply insiructions as
follows:-

VMY 8

where the operand i = 8.

Thus (i - x) y = (8 - 5). = 3, which is left in the B register. The
result is checked to be less than z (=5).

We can see that a modifier of three will enable us to access Z8.

The descriptor register must contain a type 0 descriptor with size
code 32-bits - the address field of the descriptor points at x. This

information is summarised in fig. 34.
The modifier required for a multi-dimensional array is the sum of
the individual modifier results.

i.e. for a 3-D array the modifier is:-

4 ==y, + @, - xz) y, + (i3 o x}) v,

EPG 44737278 © Internationnl Gompulers Limiled

ICL '{?chnical Number 6594899
terature Sheet 7_9

Issue 1

Example 2
Fig 35 shows another worked example - here the modifier is
calculated to access FRED 36 in the array FRED (2:3, 5:6). First of

all the dope vectors for the array have to be evaluated.

For the first dimension x = 2, y =1, z=2. Moving on to the second
dimension x = 5 (being the lower limit for that dimension), y = 2
(the number of elements in the previous dimension), z = 4 (total

number of elements in the array).

A descriptor pointing to) (x for the first dimension) is loaded into
DR. A dope vector multiply using an operand of 3 calculates the
modifier for the first dimension, The result, which is 1, is left by
the instruction in the B-register - this is copied to the top of stack.
Now the procedure is repeated for the second dimension; a dope
vector multiply using the operand of 6 leaves the result of 2 in the B
register. The contents of TOS, containing the modifier for the first
dimension, are added to B to give the final modifier required.

.

Example 3
Fig 36 illustrates an example of VMY used to calculate the modifier

in a 3-D array. The element required is JOE (5, -1, 10) in the
array JOE (3:9, -2:10, -20:20). The dope vectors are calculated
and DR is loaded with the descriptor pointing to X Three dope
vector multiply operations are carried out, results of which are

stacked and finally added togather to produce the modifier.

@ International Computers Limited
€PG 4473/2/78

. Number ();’94899 4
[F) T,

Issue 1

Fig 35 DOPE VECTOR EVALUATION

a
Calculate the modifier required to access FRED 36 in the array

FRED (2:3, 5:6).

FRED 25 FRED 35 FRED 26 FRED 36
- ~ J\. v - —
First Dimension Second Dimension

The Dope Vector for the above example is:-

TN A2 |2

@ @ @ 6 @ @

To calculate M for FRED 36:-

LD operand pointing to x)

VMY 3 B'=(3-2). 1=1 Checks that B' < z1
(first dimension)

STB TOS B'=1, TOS=1

VMY 6 B'=(6-5). 2=2 Checks that B' < z2
(second dimension)

ADB TOS B' = 3 = modifier

PG
EPG ea73/2/78 (©) mternational Computers Limited

icL] Technical Number 6594899
Literature Sheet 7,11
Issue 1

Fig 36 VECTOR MULTIPLY FOR A 3-D ARRAY

Array JOE (3:9, -2:10, -20:20)
Find modifier to access JOE (5, -1, 10)

xI =3 3 yl =1 : zl =17

x, = -2 : ¥y =¥ : z2=7xl3=91
x3=-20 : y3=9l ; z3=7xl3x4l=3731
LD operand

VMY 5 B'=(5-3). 1=2 Checks that B' < 7
STB T B'"=2, TOS=2

VMY.-1 = . " B'=(-1+4+2).7=7 Checks that B' < 91
STB.' T b B'=7,TOS =7

VMY 10 . B' = (10 + 20). 91 = 2730 Checks that B' < 3731
ADB T -e~. B'=2737, TOS=2

ADB T B' = 2739 = modifier

© Internationnl Computers Limited
EPG 4473/2/78

Technical
WL Literature

Number 6594899
Sheet 8.1
Issue 1

8.2

DR INSTRUCTIONS:

Load DR (LD) # 78

Operand length

Description

CC

Program errors

64 bits

The operand is transferred to DR. If it is
accessed indirectly the operand, rather than
the descriptor used to access it, is left in

DR. CC is set to indicate the type of descrip-

tor loaded.

0 Type 0 descriptor loaded
1 Type 1 descriptor loaded
2. Type 2 descriptor loaded
3 Type 3 descriptor loaded

Operand addressing errors.
Fig 37 shows two examples of an LD; the
first with a directly accessed operand, the

second with an indirectly accessed operand.

Load Relative (LDRL) #70 (see fig 38)

Operand length

Description

64 bits

The operand is transferred to DR, with its
least significant 32 bits (the address field)
augmented by the value of its own byte
a&dress. Carry out of the address field
resulting from this addition is ignored. Thus,
if the operand (the item in store) starts in
byte x and is a descriptor pointing at location
y, that descriptor is left in DR with its
address adjusted to point at location (x+y)

x need not be a multiple of 4.

EPG 4473/2178

(© imiernationat Computers Limited

6594899

Technical g
ICL] f'echnica heet 8.2
Literature o
Issue 1
Fig 37 LOAD DR (LD) DR' = operand, CC' = (DR)' type.
The Stack
1) LD.1L_5_
SSN vy
—
DR Lt l LNB —*
CC =0, type 0
CC=1, type l
SN—
CC=i2, ypei2 LNB+s —~{Type |
CC =3, type 3 LNB+6 ~—= 3 e——
ii) LD.IL S
ssu—__. M
Virtual Store
LNB —. Daescriptor \\ 40
in store \..;]‘YP'I | J
DR I ’
LNB +5 —=|type 1 W‘P‘l
LNB+6 —i 40/
CC = descriptor type

The Stack /-___/

Fig 38 LOAD RELATIVE (LDRL)
LDRL ‘operand (20)
lAddr-l-;'x' I
Virtual Store
DR| +
Address x+20
Use of LDRL
SSN
[o00 - - -000J00o- - -o000] Acc
LNB—a!
=
1Ssp o
SF —=» }‘— ST T
SF+2 _ . LDRL T

EPG 4472/2/78 (© tlernationnl Computers Limiled

ICcL}] Technical Number 6594899
!.Iterature Sheet 8.3

Issue 1

If accessed indirectly, the operand, rather
than the descriptor used to access it, is left
in DR. Literal operands and operands in
registers are not permitted. CC is set to

indicate the type of descriptor loaded.

cc 0 Type 0 descriptor loaded
1 Type 1 descriptor loaded
2 Type 2 descriptor loaded
3 Type 3 descriptor loaded
Program errors : Operand addressing errors
Invalid address forms (see 12.8/12.2)
8.3 Stack and Load DR (SLD) # 50
Operand length : 64 bits
Description £ The contents of DR are copied to an inter-

mediate register. The operand is loaded
to DR, and the contents of the intermediate
register are stacked, causing SF to be
incremented by 2 words. The intermediate
register ensures that the operand forms T,

DT, IT and MIT are valid.

If accessed indirectly, the operand, rather
than the descriptor used to load it, is left
in DR. CC is set to indicate the type of

descriptor loaded.

miernationol Computers Limited
EPG 447372/78 © SIS G

Number 6594899

Technical
oL Literature Sheet 8.4
Issue 1
o5 Type 0 descriptor loaded

0

1 Type 1 descriptor loaded
2 Type 2 descriptor loaded
3 Type 3 descriptor loaded

Program errors : Operand addressing errors.

8.4 Store DR (STD) # 58

Operand length 3 64 bits

Description : The contents of DR are stored in the operand
location. Indirect address forms are not
permitted.

CcC 2 Unaltered.

Program errors : Operand addressing errors

- Literal operand (see 12.8/12.1)
Significant part of operand truncated.
(see 12.3/6.0)
Indirect address form'(see 12.8/12. 2)
8.5 Load Address (LDA) # 72

Operand length 3 32 bits

Description g The operand is loaded to the less significant
32 bits of DR. The more significant 32 bits
are unaltered unless an indirect form is
used, in which case they will be replaced by
the corresponding bits of the descriptor
used to access the operand.

CC C Unaltered

Program errors : Operand addressing errors.

EPG 4473/2/78 @ tnternational Compiters | inited

iIcL] Technical ' Number 6594899

Literature Sheet . 5
Issue 3
8.6 Load Type and Bound (LDTB) # 74 (see fig 39)
Operand length g 32 bits
Description s The operand is loaded to the more significant

32 bits of DR. The less significant 32 bits
are unaltered unless an indirect address form
is used, in which case they will be replaced
by the address (unmodified) from the descrip-
tor used to access the operand.

CcC ¥ Unaltered.

Program errors Operand addressing errors.

Fig 39 LOAD TYPE AND BOUND (LDTB)

LDTB operand

o § = L

DR

Virtual Store

Address

CC unaltered.

MN— T
LDTB,1.
operand 0 31 32 63
Descriptor A Address
in store —_"[—[= J
(1) |

(3)

DR
0 S P WY
@ | |\ommrma]

32 63 Virtual Store

\/_\/

© Internalional Computers Limited
EPG 447372178

Number 6 5948 99
8.6

=] D o
8.7 Load Bound (LDB) (see fig 40)
Operand length 2 32 bits
Description The least sigx;ilicant 24 bits of the ope rand
are loaded to bits 8-31 of DR. The
remaining bits of DR are unaltered unless an
indirect address form is used, in which case
they will be replaced by the corresponding
bits (address field unmodified) of the
descriptor used to access the operand, Bits
0-7 of the operand are ignored.
cC 3 Unaltered.
Program errors : Operand addressing errors.

Fig 40. LOAD BOUND (L DB)

[N — ————1

LDR operand — Pyt

N/ —
7!8 { 31 | ‘_]’_4

DR Virtual Store

Address

CC unaltered.

LDB.1 operand F'__,———/\//‘
0 78 31 32 63
@el ' Addressl
0 { 78 31 l | '

DR :z:%%yaf;;d operand (bound)
Address

t

vo 78 31
7%% Operand j
)

Virtual Store

. —]

Bits 0-7 of Operand are ignored.

EPG 447312171
" (©) meenationat Computers Limited

icL] Technical Number 6594899-
Literature Sheet 8.7
Issue 1

8.8

Modify DR (MODD) #16 (see fig 41)

Operand length

Description

32 bits

If DR contains a Vector, String or Code
descriptor (ie type 0 with valid size code,

type 1, type 2 or type 3; subtypes 32 or 33),
the operand is added to the address field of
DR and subtracted from the bound/length field,
carry out of the address field is ignored and
bits 0-7 of DR are unaltered (see Notes
below).

1f DR contains an Escape descriptor, the
escape mechanism is invoked (so that the
required descriptor may be substituted in DR

before being modified).

If the descriptor in DR is type 0 with an
invalid code, or System Call, or type 3 with
an undefined subtype number, a program
error interrupt occurs.

Indirect address forms are not permitted.

Notes: a) If the descriptor is type 0 or 2 and
USC is not set, or type 3 subtype 32 or 33,
the operand is scaled appropriately before
addition to the address field. If the
descriptor .ie tyi:e 0 with size code 0, the
least significant 3 bits of ‘the operand are

ignored because of the scaling operation.

b) If the operand, regarded as un-
signed i.e. positive, is not less than the
original contents of the bound/length field,
only the least significant 24 bits of the

difference are left in that field. In such

EPG 4473/2/78

© nlernational Computers Limited

iIC

Technical
Literature

Number 6594899
Sheet 8.8
Issue 1

8.9

CC

Program errors

pe 0 or 2
pe 32

ondition

cases, if the descriptor is ty
with BCI not set, or type 3 subty
(bounded code) a program error ¢
(Bound Check, maskable) is generated.

This does not apply to String descriptors.

Unaltered.

Operand address errors
Indirect address form (see 12.8/12. 2)
Bound significant, andsoperand (see
12.2/5.1)

Descriptor is System Call (see 12. 6/

10.11)
Descriptor is invalid (see 12. 6/10.9 or 10)

Increment Address (INCA) #14

Operand length

Description

CcC

Program errors

32 bits

The operand is added to bits 32-63 of DR.
Bits 0-31 of DR are unaltered. Indirect

address forms are not permitted.
Unaltered.

Operand addressing errors

Indirect address form (see 12.8/12.2)

* mteraalionnl Computers Limited

Number 6594899

icL] Technical

Literature
2900 ORDER CODE MANUAL el ;;, 9
ssue
Fig. 41 MODIFY DR (MODD)
MODD operand
Operand DR —
0 7 8 31
Bound
Address
i 4.

DR!
0 78 r 31

Bound

_ Address

Fig.42 START SIGNIFICANCE (SIG) (#28)
1If CC = 0, Create the following descriptor and load into operand

location, then set CC =1

012 78 31
V//77/7,

Type =1— {01100 =
/ ////0/ Length = 1

DR Address -1

32 63

If CC # 0 no action

(©) mernatonal Computers Limited

EPG 447312178

Technical
IeL Literature

Nurmber 6594899
8.10

Sheat
Issue 1

8.10 Start Significance (SIG) # 28 (see fig 42)

Operand length

Description

CcC

Program errors

64 bits
If CC = 0, a descriptor is created and
stored in the operand location, and CC is

set to 1. The descriptor is made up as

follows:

Bits 0, 1 (type) =1

Bits 2-7 = 011000

Bits 8-31 (length) = 1

Bits 32-63 (address) = 1 less than contents
of address field.

If CC# 0, no action is performed.

Indirect address forms are not permitted.

Note: This instruction is designed for use
in conjunction with 'Suppress and Unpack'

(10. 12).

0 Not Used

1 CC originally 0, and descriptor stored or

CC originally 1.
2 CC originally 2.
3 CC originally 3.

Operand addressing errors

Literal operand (see 12.8/12.1)
Indirect operand form (s.ee 12.8/12.2)
Significant part of operand truncated
(see 12, 3/6.0)

EPG 4473r2/78

(©) 1ternationnl Computers Limited

icL] Techaical

Literature

Number 6594899
Sheet 8.11
Issue 1

8.11

Validate Address (VAL) # 10

Operand length

Description (AMLO) :

32 bits

This instruction is desigued io investigate
whether a descriptor provided to a called
procedure is valid at the access level of ;:he
caller. The descriptor is assumed to be

in DR, and to be Type 0, Type 1 or Type 2.
If type 0 or 2 the descriptor is assumed tc
be bounded. Bits 8-11 of the operand are
interpreted as the access control key
(normally held in ACR) of the caller; the
remaining operand bits are ignored. If the
descriptor in DR is 'invalid', condition code
3 is set, and the instruction terminates.

Invalidity includes any of the following:

a) Descriptor is typec 0 or 2, and BCl is set
b) Descriptor is type 3
c) Descriptor is type 0 and has invalid
size code -
d) Descriptor (type 0,1 or 2) has zero
in bound/length field.

If the descriptor is valid.. the address

of the last word or byte in the field pointed
at by the descriptor is calculated

(without altering DR). This address is
calculated from the address of the first

byte as follows:

Type 0: Add (Bound-1) (scaled if USC = 0),
then if size = 64 bits add 4 bytes, if size =128

bits add 12 bytés (word alignment assumed).

EPG 4473/2/78

© tnternational Computers Limited

ict] Technical

Literature

Number 6594899
Sheal 8.12

Issue 1

CcC

Program errors

Type 1: Add-(length-1)

Type 2: As for type 0, with size = 64 bits.

If the address thus calculated has a different

segment number from the initial address,

or if it has the same segmei’xt number but lies
beyond the upper limit of that segment, or if

it has the same segment number as SSN but

is not less than SSN + LNB, CC is set to 3
(in the last case, if it is less than SSN + LNB,

and the initial address is also in the stack
segment, CC is set to 0). Otherwise CC is
set to indicate whether read or write access
to that segment, at the access level given

by the operand, is permitted.

If access is not permitted CC is set to 3.
The second word of the segment table entry
is ignored. Indirect address forms are not
permitted. DR is unaltered. ACR is

unaltered.

0 Read and write access permitted at
specified level

1 Read access permitted, write inhibited

2 Read access'inhibited, write permitted

3 Descriptor invalid, or field crosses
segment boundary, or neither read nor
write permitted (includes case of

invalid segment number).

Operand addressing errors

Indirect address form (see 12, 8/12. 2)

EPG 447372778

© Iternationnl Computers Limited

Technical
ICL Literature

Number 6594899
Sheel 8.13

Issue H

Description (AML1)

The descriptor is taken from DR and
must be type 0, 1 or 2 or type 3; subtype
63. I type 0 or 2,the descriptor must
be bounded. Bits 8-11 of the operand
are interpreted as the access control
key (normally held in ACR) of the caller;

the remaining bits are ignored.

The descriptor is first checked for
'Type Null' which is defined to be Type 3,
subtype 63, and if so CC is set to 2 and

the instruction terminates.

The descriptor is then checked for
validity. If 'invalid', CC is set to 3
and the instruction terminates.
‘Invalid' includes any of the following:
(a) Type 0 or 2 and BCI set

(b) Type 3, subtype 63

(c) Type 0 and invalid size code 1,2 or 4

(d) Bound / length field is zero
(e) Field invalid, i.e. all or part of the

field does not exist.

Implementation of check (e):

The address of the last byte or word in
the field pointed at by the descriptor is
calculated (without altering DR) from the
address of the first byte as follows::
Type 0 or 2 - Add (bound - 1), scaled if
USC = 0, then add 4 bytes if size code 6,
add 12 bytes if size code 7 (word

alignment assumed).

EPG 447372178

© Intecnationnl Computers Limited

Technical
ICLY Literature

Number 65948 99
Sheet 8. 14
Issue 1

cc

Type 1 - Add (length - 1)

The address in the descriptor points at

an initial segment, the calculated address
points at a final segment and there may be

‘intermediate'. segments in-between.

The end address is checked to be less
than the segment limit of the final segment
or less than the SSN + LNB if initial seg-
ment is the same as SSN. If the final

" segment is different from the initial

segment then the initial and intermediate

segments are checked that they are of

maximum size (bits 14-24 of STE are all

one's)

Finally, the access keys of the initial,

intermediate and final segments are

checked against the access level given

in the operand. If the addressed segment

is the same as SSN, CC is set to 0.

If read access is not permitted in any

segment, the CC is set to 3. If write

access is not permitted in any segment

then CC is set to 1. Otherwise CC is set

to 0.

Indirect forms are not permitted. DR

and ACR are unaltered.

0 - Read and write access permitted at
specified level

1 - Read access permitted, write access

inhibited.

EPG 447372178

© International Gomputers Limited

Technical
ICL Literature

Number 6594899
Sheel 2. 15

Issue 1

Program Errors

2 - Descriptor is type 3, subtype 63 (Null)

3 - Descriptor invalid OR read access
inhibited.

As for AMLO

EPG 4473/2178

(©) ternational Computers Limited

Sheet 9.1
Issue 1

COMPUTATIONA L FUNCTIONS

The computational functions perform arithmetic operations on the
accumulator., Instructions are provided which can deal with floating-
point, fixed-point, logical and decimal data. Some functions e.g. add,
subtract will perform essentially the same operation and differ only

in the way they interpret the data format. .

Summary of Computational Instructions

Fig 43 summarises the computational functions available on 2900.
Floating point operations are preceded by the letter R (real), fixed-
point by I (integer), decimal by D and logical by U (unsigned).

All the instructions have primary operand formats. With most of the
instructions, the operand interacts with the contents of ACC and the
result is left in ACC, A few functions are provided for converting

data from one format to another. Note that fixed-point and logical

operations with ACS = 128 are not permitted,

Floating Point Data Format

The format for a 32-bit, 64-bit or 128-bit floating-point number is
shown in fig 44. A 32-bit number uses the most significant 32 bits
and a 64-bit number the most significant 64 bits. A 128-bit number
uses bits 0-127 exc.luding bits 64-71, i.e. bit 72 is a continuation

from bit 63.

A 2900 floating-point number can be represented in so-called sign
and modulus format: ‘ .

SFx16 (-64)

where S is the sign bit for the whole number. It is zero for a positive
number, a one for a negative number.

F is the unsigned fractional part of the number. The binary point of

this fraction lies to the left of bit 8, so that F ranges in value from 0

EPG 4473/2/78

(©) ¥rernationnt Computers Limited

6594899

Technical Number
e Literature shect 9.2
Issue 1
Fig 43 SUMMARY OF COMPUTATIONAL FUNCTIONS
. First Digit.]
8 9 A B c D E F
0 UAD | DAD | 1AD RAD
2 uss | psB | IsB RSB
Second ‘ URsD | DRSB | IRSD RRSB
Digit.
v (] uce | bcp | iCP RCP
8 FLT | FIX | usn | pbsit | Isu RSC
A | AND | DDV | DV |RDV | ROT | DMY | IMY RMY
c | or prov| mImDV| RDV| sis | DMYD| IMYD | RMYD
E | NEQ | DMDV| IMDV| RDVD| SHZ | CBIN | CDEC -
Fig 44 FLOATING POINT FORMAT
Hexadcclmal Digit
01 78 1216 20 24 28 ma32 63
— T T —
Ls 7T T T T T]
Diased { ch of 3 Continuation of .
Exponent fraction) fraction
Sign bit S.= 0 Positive Number -
S =1 Ncgative Number
o 7172 . 127
Y i i T E
Wy i T

Continuation of frdction

Dits 1 - 7 contain biascd exponent, C, In the range 0 - 127; this represents a true exponents
biased by + 64.
Number = SF x 16 (C - 64)

EPG 447372178

© Inlernatinnnt Computers Limited

ICL Iechnical . Number 6594899
iterature Sheet 9.3

Issue 1

to just less than I, F ig expressed as a series of hexadecimal digits.

Thus it has 6, 14 or 28 hex. digits depending on whether the format is
32, 64 or 128 bits.

C is characteristic - or biased exponent - in fact, it is a true hexa-
decimal exponent biased by +64., That is the reason why the character-

istic has to be corrected by subtracting 64.

Bits 64-71 are ignored when reading data, however when producing
results, bit 64 is made identical to bit 0, the sign bit and bits 65-71
contain the biased exponent value of bits 72-127, i.e. a value 14 less
than that in bits 1-7. If the characteristic in bits 1-7 is less than 14,
then a negative value would result in bits 65-71. In this situation, the
difference is made positive by adding 128. Note for true zero, all

128 bits are made zero.

Unless otherwise stated, the results of all floating-point operations
are normalised - this implies that the first hexadecimal digit of F is
non-zero. A number is normaliséd by shifting F left by the
appropriate number of hexadecimal places and subtracting this

number from the characteristic.

The use of normalised operands is recommended since greater
precision will be achieved than by the use of non-normalised numbers.

However, it is perfectly acceptable to use non-normalised numbers.

Floating-point underflow occurs if a result cannot be expressed in
normalised form with a true exponent greater than -65. In this situation
the result is made true zero, and an interrupt will occur unless floating -

point underflow is masked. -

Floating-point overflow occurs when a normalised result requires

a true exponent larger than +63. The overflow bit OV is set, and unless
floating-point overflow is masked an interrupt will occur. For either
case the result is given with a normalised fraction and characteristic

128 less than it should be.

© Internationnl Computers Limited
EPG 4472/2/78

ICL]

Technical .
Literature Sheet g 4

Nomber 6 594899

Issue 1

9.3

Arithmetic results are truncated i.e. rounded towards zero.

Precision is achieved in most cases by the use of tintermediate

than appears
When

fractions' which are allowed one more hexadecimal digit
in the result fraction. This is referred to as a 'guard digit'.
normalised operands are used a single guard digit is sufficient to
ensure that the error in the result of any single arithmetic operation
does not exceed unity in the least significant digit of the normalised

result,

Floating Point Instructions

Floating Add (RAD) #Fo0

Floating Subtract (RSB) #F2

Operand length : AGS

Description : The operand is added tb, or subtracted
from, the contents of ACC, and the
normalised result is left in ACC. ACS
may be 32, 64 or 128 bits.

Overflow or underflow may occur as
described in 9.2. OV is cleared if

overflow does not occur.

Floating-point subtraction is performed
by inverting the sigl;l bit (only) of the
operand and then following the rules for
floating-point addition.

CcC : Unaltered.

Program errors : Operand addressing errors
Floating overflow (unless masked) (see
12.1) 4
Floating underflow (unless masked) (see

12.1)

Internalional Computers Limited

a i Spew

Sheet 9.5

Issue 1

Floating-point addition is performed in three stages:- (see fig 45)

(1) The fractional part of the number with smaller characteristic
is shifted down logically by the number of hexadecimal places
which is the difference of the characteristica. The digit left
in the position immediately to the right of that originally
occupied by the least significant digit of the fraction is retained
as 'guard digit' (and the unshifted fraction is extended with a
zero in the corresponding position), but all the other digits
shifted off are lost (effectively, treated as zeros).

If the characteristics were equal both fractions are extended

with zero guard digits.

The above procedure is still carried out even if the number
with larger characteristic has a zero fraction (this will not
occur with normalised operands). In the case where the
number with smaller characteristic has a zero fraction,
shifting may however be suppressed (and the next stage

omitted) without affecting the result.

(2) The two signed fractions, including their guard digits, are
added algebraically to form an intermediate sum in sign-and-
modulus form. The intermediate sum has an associated
sign bit, a possible carry bit and, including the guard digit,
7, 15 or 29 hexadecimal digits.

(©) iernationnl Computers Limited
ENG 447372178

Number 6594899

Technical
o Literature Sheet 9.6
issue 1
(3) The intermediate sum is normalised to generate the final

result. The characteristic initially associated with the
intermediate sum is the larger of the two original characteris-

tics. Normalisation proceeds as follows:-

if all digits and the carry bit of the intermediate sum are
zero, a true zero result is generated.

if the carry bit is non-zero, the intermediate sum is shifted
one hexadecimal place to the right (generating a 1 in the
most significant hexadecimal digit position), and its carry
bit and guard digit are removed, to form the fractional
part of the result. 1 is added to the characteristic (this
may cause overflow as described in 9. 2) to form the

result characteristic. The sign bit of the result is that
associated with the intermediate sum.

if the carry bit is zero, but one or more digits of the
intermediate sum are non-zero, the latter is shifted left
until the most significant hexadecimal digit is non-zero.
Following each hexadecimal shift, zero is inserted in the
guard digit position and 1 is subtracted from the character-
istic. Should this cause the characteristic to become
negative, underflow occurs as described in 9.2 (and a true
zero result is generated). If the characteristic does not
become negative, the result comprises the sign bit
associated with the intermediate sum, the final
characteristic and the normalised intermediate sum with
the‘ carry bit and guard digit removed.

if ACS = 128 bits, bits 64-71 of the result are generated as

described in 9. 2.

€EPG 44T3/2/78

© International Computers Limited

icL] Technical Number 6594899
Literature Sheet 9.7
Issue 1
Fig 45 RULES FOR FLOATING ADDITION
- r~
< Fy lol C, F, 1y !

La J
Hex Guard
Digit

1. The fractional part with the smaller characteristic (Cz in this
case) is shifted right by (Cl - CZ) hex. places, thus converting
the numbers to the same exponent. Note the last digit shifted
off the r.h. end is retained as a guard digit. The unehifted
number is effectively extended on the right with a zero.

2. The two signed fractions are added together algebraically to
form an intermediate sum in sign and modulus form. The
intermediate sum has an associated sign bit, a possible carry
bit, and including the guard digit, 7,15 or 29 hex. digits.

3. The intermediate sum is normalised.

EPG 447372178

(©) ernanonat Computers Limited

Technical
ICL Literature

6594899

Number
Sheet 9.8
Issue l

Floating Reverse Subtract (RRSB) # F4

Operand length

Description

CC

Program errors

.

ACS

This is exactly the same as Floating
Subtract (9. 3) except that the difference lelt
in AGG is formed by subtracting the original
contents of ACC from the operand. Effective-
ly the sign bit (only) of the original contents
of ACC is inverted and the operand is then
added.

Unaltered.

Operand addressing errors

Floating overflow (unless masked) (see 12.1)
Floating underflow (unless masked)

(see 12.1)

Floating Compare (RCP) # F6

Operand length

Description

ACS

The operand is compared algebraically with
the contents of ACC, and CC is set to
imiicate the result of the comparison. ACC
and OV are not altered. ACS may be 32, 64
or 128 bits. Overflow and underflow do not
occur.

The comparison is performed effectively
by carrying out the first two stages of the
Floating Subtract operation (9.3) and
examining the intermediate sum. Equality
is indicated if and only if the carry bit and
all digits (including the guard digit) of the
latter are zero. Otherwise the setting of
CC depends on the sign bit associated with

the intermediate sum.

Note that, when the number with the larger

EPG 4473/2/78

© tntecnalionnl Computars Limited

iICL] Technical Number 6594899
Literature Sheet 9.9

Issue 1

characteristic is not normalised, equality
may be indicated according to the above
rules even though the numbers are not
equal in value; but that in cases where
subtraction would produce a zero result
because of underflow, inequality is alwa'ys
indicated.
ccC : 0 Equality (Intermediate sum zero)

. 1 ACC < operand

2 ACC > operand

3 Not Used
Program errors : Operand addressing errors.
9.6 Scale (RSC) #F8
Operand length : 32 bits
Description - The signed fixed point integer (i) in the

least significant 8 bits of the operand is
added to the characteristic of the floating-
point number in ACC, which is then
normalised.

The contents of ACC are thus effectively
multiplied by 16i, where -128 ¢ 1 ¢ +127.
The remaining bits of the operand are

ignored. ACS may be 32, 64 or 128 bits.

" If the fractional part of the number is zero
a true zero result is generated. If it is non

’ -zero, and if after adding i and subtracting
the amount of normalising shift, the
characteristic exceeds 127, overflow occurs

" as described in 9.2, Similarly, if the
fraction is non-zero, and after adding i, or
subsequently after subtracting the amount.

of normalising shift, the characteristic

International Computers Limited
€PG 447312178 © pul

Technical
Literature

Number 6594899
Sheet 9,10

Issue 1

CC

Program errors

Floating Multiply (RMY)

nd
becomes a negative, underflow occurs &

a true zero result is generated. OV is

cleared if overflow does not occur.

If ACS = 128 bits, bits 64 - 71 of the result

are generated as described in 9.2,

This instruction may be used with a zero
operand to normalise any floating -point
number.

Unaltered.

Operand addressing errors

Floating overflow (unless masked)(see 12.1)
Floating underflow (unless masked)

(see 12.1)

#FA (see fig 46)

Operand length

Description

1

ACS

The normalised product of the contents of
ACC and of the operand isleft in ACC, ACS
may be 32, 64 or 128 bits.

If the fraction.al part of either multiplier is
zero, a true zero result is generated, and
neither overflow nor underflow can occur,
If neither of the fractional parts is zero,
the fractional part of the result is that
which would be produced by forming the
true, double-length, product of the fractions
associating with it a characteristic which is
the sum of the original characteristics,
minus 64, normalising the product and then

truncating it to half length. Overflow or

.underflow occur, as described in 9.2, if

EPG 447272178

© Internationnl Computers Limited

ol Technical Number 6594899

Literature Sheet 9.11
Issue 1
Fig 46 FLOATING MULTIPLY (RMY)
FLOATING MULTIPLY DOUBLE (RMYD)
C F
1 1 X . e
AccC oP
Y N
-64
Acc!
Cl =c + 64]
- where C, and C_ are true exponents.
C,=¢, + 64 1 2

(C1+C2)—64=(c1 +64+cz+64)-64=(c1+c2)+64=E+64

This is the biased exponent sum.

RMYD doubles original ACS

RMY leaves ACS unchanged and truncates the double-length
answer to ACS length.

(©) mernatanal Computers Limited
EFG 447312178

Number 6594899

Technical
ICL Literature Sheet 9.1 2

issue 1

and only if the final characteristic exceeds

127 or is negative; in the latter case a truc
zero result is generated. When the result
is not zero the sign bit is determined by the

rules of algebra.

The desired result can be obtained by pre-
normalising the multiplier and multiplicand
fractions (ignoring overflow or underflow

at this stage) and retaining for normalisation
only the most significant 7, 15 or 29 hexa-
decimal digits of their product; after
normalisation, which in this case will
involve at most one left shift, the guard

digit is removed.

OV is cleared if overflow does not occur.
If ACS =128 bits, bits 64 - 71 of the result
R are generated as described in 9.2.
CC 3 Unaltered.
Program errors : Operand addressing errors

Floating overflow (unless masked) (see 12.1)

Fioating underflow (unless masked) (see

12.1)
9.8 Floating Multiply Double (RMYD) #FG
Operand length : ACS
Description : The contents of ACC are multiplied by the

operand, each having the length specified
by ACS, and their double-length normalised
product is left in ACC. For this operation
ACS must be 32 or 64 bits, and ACS is
doubled on completion.

Except that the true product of the fractions

EPG 447372178
© international Computers Limited

ICL Techn!cal Number 6594899
Literature Sheet
9.13
Issue l

is not truncated (and the result is therefore
exact) this operation is otherwise identical

to Floating Multiply (9.7).

CccC : Unaltered.

Program errors : Operand addressing errors
Floating overflow (unless masked) (see
12.1)
Floating underflow (unless masked) (see
12.1)
ACS =128 bits (see 12.9/13.5)

9.9 Floating Divide (RDV) # BA (see fig 47)
Operand length g ACS
Description :

The contents of ACC are divided by the
operand, and the normalised quotient left
. in ACC. ACS may be 32, 64 or 128 bits.

No remainder is preserved.

If the divisor fraction is zero, the result in
ACC is undefined, but OV is cleared; the
Zero Divide interrupt occurs, unless
masked. If the divisor fraction is non-zero
underflow or overflow may occur as
described in 9.2, unless the dividend
fraction is zero, in which case a true zero

result is generated.

In order to ensure that non-normalised .
operands can be used the dividend and
divisor fractions are first normalised
(ignoring overflow or underflow at this
stage); after normalisation the latter may
be scaled one place up to ensure that the

quotient fraction does not overflow. In this

(©) mternationnt Computers Limited
EPR 44T7AU2ITR

Number 6594899

Technical
WL Literature Sheel 9.14

fssue 1

ACC' = ACC/Op
ACC' = Op/ACC
ACC' = ACC/Op;

ACS'= $ ACS

Fig 47 FLOATING DIVIDE (RDV)
FLOATING REVERSE DIVIDE (RRDV)
FLOATING DIVIDE DOUBLE (RDVD)

(n . (2)

If(1)is being divided by(2:

|

Cz=cz+64

(Cl-CZ)+64=(CI+64-CZ-64)+64=(c1-cz)+64=E+64

cl+64

Apgain we have a correctly biased exponent.

Thus, answer is

“y 'Cz) F, /F

S 164 1772

EPG 4473/2/178
(©) miermationnl Computers Linvited

1cL] Technical Number 6594899
Literature : Sheet 9,15

Issue 1

case not more than one left shift will be
required to normalise the quotient and
therefore should be developed to 7, 15 or
29 digits as appropriate and the guard digit
dropped after normalisation. The
characteristic associated with the quotient
fraction before normalisation is the
difference of the characteristics of the
normalised dividend and divisor, plus 64,
(65 if the divisor fraction is scaled up).
Overflow or underflow occurs as described
in 9.2 if and only if the final characteristic
exceeds 127 or is negative; in the latter
case a true zerc result is generated. When
the result is not zero the sign bit is

determined by the rules of algebra.
OV is cleared if overflow does not occur.

If ACS = 128 bits, bits 64 - 71 of the result
are generated as described in 9.2.

CC s Unaltered.

Program errors : Operand addressing errors
Zero divide (unless masked) (see 12.1)

Floating overflow (unless masked) (see

12.1)
Floating underflow (unless masked) (see
12.1)
9.10 Floating Reverse Divide (RRDV) # BC
Operand length : ACS
Description : This operation is identical to Floating Divide

(9.9) except that the quotient left in ACC is
formed by dividing the operand by the

€PG 447372178 (©) nternational Computers Limited
PG 4473/ p

ict] Technical

Literature

Number 6594899
Sheet 9.16

Issue 1

9.11

CcC

Program errors

contents of ACC.

Unaltered

Operand addressing errors

Zero divide (unless masked) (see 12.1)
Floating overflow (unless masked) (see

12.1)
Floating underflow (unless masked) (see

12.1)

Floating Divide Double (RDVD) # BE

Operand length

Description

cC

Program errors

Half ACS
This operation requires ACS = 64 or 128

bits, and in the course of execution
halves ACS. The contents of ACC are
dividedvby the operand, the latter being
half the size of ACC. ACS is halved and
the normalised quotient (whose size
accords with the new value of ACS) is

left in ACC.

The operation is otherwise identical to
Floating Divide (9. 9) except that the
dividend fraction is longer. All digits of
the latter participate.

Unaltered

Operand addressing errors

Zero divide (unless masked) (see 12.1)
Floating overflow (unless masked) (see
12.1) '

Floating underflow (unless masked) (see
12.1)

ACS = 32 bits (see 12.9/13, 3)

EPG 447312178

2 Nilishahaiad P aiirsiaee a0

ICcL] Technical Number 6594899
Literature Sheet g, 17
» 1
Issue i
9.12

Fixed-Point Format (see fig 48) -

Fixed-point numbers are represented as 32-bit or 64-bit signed

integers. The sign convention is 2's complement, bit 0 being the
sign bit. The binary poiit is assumed to be to the right of the least
significant bit. Thus the contributions to the value of a 32-bit

operand made by 1's in different positions are as follows:

Bit 0 -231
Bit 1 +23'0
Bit 2 ‘\‘229
Bit 31 +1

The largest positive number representable is (Z31 - 1) and the largest

negative number is -231.

For a 64-bit number the.contributions are:

Bit 0 -263
Bit 1 @™
Bit 2 2%
Bit 62 +Z1
‘Bit 63 +1

The largest positive and negative numbers representable in this

format are (263 - 1) and -263. respectively.

Fixed-point results which exceed capacity cause fixed-point overflow
to occur. OV is set, and if the condition is not masked, interrupt

ensues.

By observing suitable conventions regarding the positioning of the
binary point, fixed-point instructions may be used to operate on

fractions as well as integers.

Fixed-point numbers more than 64 bits long may be operated on by
splitting them into 32-bit portions and using those, singly or in pairs,
as operands for the instructions: Add Logical (9.22) Subtract Logical
(9.23). Multiply Double (9.17) and Remainder Divide (9.20).

EPG 4473/2/78

© tnternationnt Computers Limited

T Number 6594899
ICL L?loq;g'tz?le . shet 9,18
Issue 1

When multiplication and division are involved it will generally be

necessary to hold only 31 bits of the number in each 31-bit portion,

with a dummy (zero) sign bit. A pair of consecutive 32-bit portions
in this form can be converted to the normal 64-bit number format

by shifting bits 0-31 into bit positions 1-32 and vice-versa.

Fig 48 FIXED-POINT FORMAT

s |
01 31 32 63

32 bit number

64 bit number

Sis Sign Bit (0 for Positive, 1 for Negative)
Number is represented in Two's Complement form.

For a Positive Number: this is in Normal Binary Fbrmat which is

Right Aligned and with bit 0 equal to zero.
A Negative Number can be formed by taking a Positive Number,

inverting all the bits and adding a 1 to the L.S. bit position.
This gives the Two's Complement Form for a Negative Number.

Bit 0 will always be 1 for a valid Negative Number.

EPG 447372178 (©) wternational Computess Limited

Technical umber 65948
ICY Literature :"ee'e 9, ;;9 »
1

Issue

9.13 Fixed-Point Instructions

Add (IAD) # EO

Subtract (ISB) # E2

Reverse Subtract (IRSB) # E4
Operand length : ACS

Description 3 The operand is added to, or subtractad
from, the contents of ACC, and the
 result left in ACC. ACS = 32 or 64 bits

is assumed.

Fixed-point overflow occurs if the result
lies outside the range of representable
numbers (see 9.12); when it occurs OV is
set and, if not masked, an interrupt
ensues. The result left in ACC in this
case is the least significant 32 or 64 bits
of the true sum or difference. Overflow
can only occur when adding numbers with
like signs or subtracting numbers with
opposite signs. OV is cleared if
overflow does not occur. Reverse
Subtract is exactly the same as Subtract,
except that the difference left in ACC is
formed by subtracting the original
contents of ACC from the operand.

CC s Unaltered.

Program errors 3 Operand addressing errors
Fixed overflow (unless masked) (see 12.1)
ACS = 128 bits (see 12.9/13.0)

(©) mietnationai Computers Limited
EPQ 447372178

ICL

Technical
Literature

Number 6594899
Sheet 9,20

Issue 1

9.14

Compare (ICP) # E6

Operand length

Description

CC

Program errors

ACS

The operand is compared algebraically with
the contents of ACC, and CC is set to
indicate the result of the comparison. ACC,
and OV are not altered.

Equality is indicated if all bits are equal.
ACC < operand is indicated if and when
conducting a left-to-right scan of the bits of
both, the first non-equivalent pair of bits
occurs when the ACC bit concerned is a1
(if bit 0) or 0 (any subsequent bit), and

ACC > operand in the same circumstances
when the ACC bit concerned takes the
opposite values.

ACS = 32 or 64 bits is assumed.

0 Egquality

¢ ACC < operand

2 ACC > operand

3 Not Used

Operand addressing errors

ACS = 128 bits (see 12.9/13.0)

Arithmetic Shift (ISH)#E8

Operand length

Description

32 bits

The contents of ACC are effectively
multiplied by Zi where i the signed integer
specified in the least significant 7 bits of the
operand.

Other bits of the operand are ignored.

(C) mternationnt Compiners L imited

Technical
ICL Literature

Number 6594899
Sheet 9,21
Issue 1

9.16

CC

Program errors :

Multiply (IMY) * EA
Operand length :

Desc ription $

A positive value of i represents a leftward
shift, in which case zeros are inserted at
the least significant end of ACC and OV is
ect if the contents of bit 0 of ACC change at
any time during shifting - this will cause
an interrupt if the condition is not masked.

If bit 0 does not change OV is cleared.

A negative value of i indicates a rightward

shift, In this case the sign bit is propagated

by leaving bit 0 unchanged during the

shifting. Bits shifted off the right of ACC are

lost, but CC is used to indicate what they

were. OV is cleared by a rightward shift.

ACS = 32 or 64 bits is assumed.

0 i< 0; all bits shifted off the right of ACC
were 0's.

1 i< 0; last bit shifted off the right of ACC
= 0 (some 1's)

2 i< 0; last bit shifted off the right of ACC.
=1

3 iyo0

Operand addressing errors

Fixed overflow (unless masked) (see 12.1)

ACS = 128 bits (see 12.9/13.0)

ACS

The contents of ACC and the operand, both
signed integers, are multiplied, and the
least significant 32 or 64 bits of their
px('oduct' left in ACC, Overflow occurs if the
result exceeds capacity (see 9.2). In this

case OV is set and, unless fixed-point

EPG 4472:2/78

@ International Computers Linited

899
Te H Number 6594
ICL L?tce':gl&?'e Sheet 9.22

tssue 1
—

overflow is masked, interrupt ensues.
Otherwise OV is cleared.
ACS = 32 or 64 bits assumed.
cc ¢ Unaltered
Program errors : Operand addressing errors
Fixed overflow (unless masked) (see 12.1)

AGS = 128 bits (see 12.9/13.0)

9.17 Multiply Double (IMYD) # EC

Operand length : 32 bits (= ACS)

Description 2 This operation expects ACS = 32 bits and
leaves ACS = 64 bits on completion. The 64
bit product of the contents of ACC and the
operand is left in ACC. OV is cleared. CC
is set to indicate the signs of the original
contents of ACC and the operand in case
unsigned arithmetic has to be implemented
by software.

cC : 0 ACC and operand both positive
1 ACC positive, operand negative
2 ACC negative, operand positive
3 ACC and operand both negative

Program errors : Operand addressing errors

ACS = 64 or 128 bits (see 12.9/13.5)

9.18 Divide (IDV) # AA (see fig 49)
Operand length s ACS

Description : The contents of ACC ‘are divided by the
operand and the unrounded quotient left in
ACC, all three being signed integers. The
rules for determining the quotient are as
for Remainder Divide (9.20), i.e. quotient
times divisor is numerically not greater

than dividend.

EPG 447312/78 (© ernationnt Computers Limited

iIcL] Technical Number 6594899
Literature- Sheel 9.23
Issue 1

If the divisor is zero OV is cleared but the
quoiient is undefined, and interrﬁpt occurs
unless masked.
Overflow will occur, causing OV to be set
and interrupt to ensue, unless masked, if
23! or .-2% is divided by -1, ACC is
unaltered. If overflow does not occur
OV is cleared.
ACS = 32 or 64 bits is assumed.
CC : Unaltered.
Program errors $ Operand addressing errors
Zero divide (unless masked) (see 12.1)
Fixed overflow (unless masked) see(12.1)

ACS = 128 bits (see 12.9/13.0)

Fig 49 DIVIDE (iDV) (# AA) ACC' = ACC/Op
REVERSE DIVIDE (IRDV) (# AC) ACC' = Op/ACC
REMAINDER DIVIDE (MDV) (#AE) ACC' = ACC/Op;

TOS = Remainder

set CC

CC = 0 Remainder = 0 or Remainder >0, divisor > 0
1 Remainder > 0, divisor < 0
2 Remainder < 0, divisor > 0

3 Remainder < 0, divisor < 0

@ Internationnt Computers Limited
EPG 4473/2/78

6594899

icL] Technical ::e-:er :
Literature .
Issue 1

9.19 Reverse Divide (IRDV) # AC
Operand length 3 ACS

Description : This operation is
except that the operand is divided by the

identical to Divide (9. 18)

contents of ACC rather than the other way

If overflow occurs ACC will contain

round.
-23l or -263. depending on ACS.
ACS = 32 or 64 bits is assumed.
Ccc 3 Unaltered
Program errors 2 Operand addressing errors

Zero divide (unless masked) (see 12. 1)
Fixed overflow (inless masked) (see 12. 1)

ACS = 128 bits (see 12.9/13.0)

9.20 Remainder Divide (IMDV) # AE

Operand length : ACS
The quantity in ACC is divided by the operand,

Description
" the quotient is left in ACC and the remainder

is stacked. All these quantities are signed
integers with length ACS; as a result of
stacking the remainder SF is incremented.

ACS = 32 or 64 bits is assumed.

The remainder is numerically less than the
dividor and, if non-zero, has the same sign
as the dividend. CC is set to facilitate

obtaining a remainder which obeys the rules

for the PL/1 'Mod' function.

EPG 4473/2/78 (© ternational Computers Limited

iICL] Technical Number 6594899
Literature Sheet 9.25

Issue 1

If the operand is zero the quotient, the
remainder (which is stacked) and the setting
of CC are undefined, but OV is cleared, and
the zero divide interrupt ensues, unless
masked. Overflow will occur if -231 or
...263 (according to ACS) is divided by -1.

This will cause OV to be set and interrupt
to occur, unless masked. ACC is unaltered,
an undefined rt;rnainder is stacked, and the
setting ‘of CC is undefined. Otherwise OV is
cleared.

CcC : 0 Remainder zero, or remainder > 0,

divisor > 0

1 Remainder > 0, divisor < 0
2 Re:nainder < 0, divisor > 0

3 Remainder < 0, divisor < 0

Program errors 3 Operand addressing errors
Zero divide (unless masked) (see 12.1)
Fixed overflow (unless masked) (see 12.1)

ACS = 128 bits (see 12.9/13.0)

9.21 Logical Format

Logical operations on 32- or 64- bit.items treat them either as
strings of bits with no numerical significance, or as unsigned (i. e.
positive) fixed-paint numbers. In this case the contributions of
individual bits are as described in 9.12 except that bit 0, if non-zero
contributes +231 (32-bit format) or +Z63 (64-bit format). Overflow

cannot occur with logical operations.

” =T
Ty © International Computers Limited

Number 6594899

Technical
i Literature Sheet 9. 26
Issue 1
9.22 Logical Instructions

9.23 -

Logical Add (UAD) # C0

Operand length

Description

CC

Program errors

ACS (=32 bits)
The effect of this instruction is to leave in

ACC the least significant 32 bits of the sum
of the operand and the original contents of
ACC, both regarded as unsigned integers.

OV is cleared. CC is set to indicate whether

or not carry occurred out of ACC bit 0.

The operation is only defined for ACS = 32 hits
If this operation is performed on words with
dummy (zero) sign bits (i. e. portions of
multiple length quantities) they should be

left shifted to remove those bits.

0 No Carry
1 Carry

2 Not Used
3 Not Used

Operand addressing errors

ACS = 64 or 128 bits (see 12.9/13.1)

Logical Subtract (USB) # C2

Operand length . .

Description :

CcC

ACS

This operation is identical to Logical Add

(9. 22) except that the 2's complement of

the operand is added to the contents of ACC.

OV is cleared. ACS = 32 bits is assumed.

0 No carry (indicates 'borrow' into bit 0
in performing subtraction.),

1 Carry (indicates no 'borrow'). Includes

the case where complementing causes

EPG 447372/78

(©) International Computers Limited

Technical
I, Literature

Number 6594899
Sheet 9,27

Issue 1

9.24

9.25

Program errors :

carry, le. operand = 0).
2 Not Uged
3 Not Used
Operand addressing errors

ACS = 64 or 128 bits (see 12.9/13.1)

Logical Reverse Subtract (URSB) # C4

Operand length :
Description :
CC =
Program errors :

Operand length -

Description

ACS (= 32 bits)

This operation is identical to Logical

Subtract (9.23) except that the result is

formed by adding the 2's complement of the

original contents of ACC to the operand.

OV is cleared. ACS = 32 bits is assumed.

0 No carry (indicates 'borrow')

1 Carry (indicates no 'borrow', include_s
the case where ACC was 0,sc
complementing causes carry).

2 Not Used

3 Not Used

Operand addressing errors

ACS = 64 or 128 bits (see 12.9/13.1)

"Logical Compare (UCP) ® C6

ACs

The operand is compared with the contents
of ACC, CC being set to indicate the result
of the comparison,

Egquality implies equivalence in every bit

’ position. ACC < operand is indicated if,

when scanning the bits of both from left to
right, the first non-equivalence pair of bits
occur when the ACC bit concerned is a 0,
ACC >operand where it is a 1.

ACC and OV are unaltered.

EPG 4473/2/78

(©) tnternationnl Computers Limited

number 6594899

9.26

9.27

Program errors

Logical Shift (USH) # C8

Operand length

Description

cC

Program errors

And (AND) # 8A
Or (OR) # 8C

NEQ # 8E
Operand length

Description

Technical
= Literature sl 9.28
Issue 1
ACS = 32 or 64 bits is assumed.
o 0 Equality

1 ACC <operand

2 ACC >operand

3 Not Used

Operand addressing errors

AGS = 128 bits (see 12.9/13.0)

32 bits
The least significant 7 bits of the operand

are treated as a signed integer specifying
the number of places of left (positive) or
right (negative) shift applied to the contents
of ACC. Zeros are inserted in the least or
most significant bit of ACC as shifting
proceeds. OV is cleared.

The remaining operand bits are ignored.
ACS = 32 or 64 bits is assumed.

Unaltered.

Operand addressing errors

ACS = 128 bits (see 12,9/13.0)

ACS
Each bit in ACC is replaced by a new bit
generated from its original value and the

corresponding bit in the operand, as follows:

EPG 447312/78

© tnternationnl Computers L umited

iCcL] Technical Number 6594
Literature s::e'e 9.29899
: issue)
Original Operand Result Bits
ACC bit bit AND OR NOT EQUIV,
0 0 0 0 Q
0 ’ . 1 0 1 1
1 0 0 1 1
1 1 1 1 0
OV is cleared.
ACS = 32 or 64 bits is assumed.
CC Unaltered

9.28

Program errors

Rotate (ROT) # CA

Operand length

Description

Operand addressing errors

ACS =128 bits (see 12.9/13.0)

32 bits

The contents of ACC are shifted left by the
number of binary places specified by the
operand, interpreted as an unsigned integer,
in such a way that ezch bit shifted off the
left-hand end of ACC (bit 0) is re-inserted
at the right-hand end (bit 31 where ACS =

32 bits; bit 63 where ACS = 64 bits).

OV is cleared.

ACS = 32 or 64 bits is assumed.

When ACS = 32 bits, bits 0-26 of the operand
(bits 0-25 when ACS = 64 bits) do not affect
the result, but may influence the time taken
by the instruction, so it is recommended as
a programming rule that when the operand

is a literal, operand bits 25 and 26 should be
the same as bit 27, Similarly, when ACS =
64 bits, bit 25 should be the same as bit 26,

Deviation from this rule will not lead to any

error.

EPG 4473/2/78

© International Computers Limited

Number 6594899

Technical
K Literature sheet 9,30
Issue 1
CcC Unaltered

9.29

9.30

Program errors

Shift 32 Bits (SHS) #CGC

Operand length

Description

CccC

Program errors

Operand addressing errors.

AGS = 128 bits (see 12.9/13.0)

32 bits

The least significant 32 bits of the contents
of AGC are shifted logically in exactly the
same way as for Logical Shift (9.26); in
fact if ACS = 32 bits the instructions are
identical. If ACS = 64 bits, the more
significant 32 bits of ACC are unaltered.
Zeros are inserted in the least (leftward
shift) or most (rightward shift) significant
bit position of the 32 bits shifted as shifting
proceeds. OV is cleared.

ACS = 32 or 64 bits is assumed.

Unaltered

Operand addressing errors

ACS =128 bits (see 12.9/13.0)

Shift While Zero (SHZ) # CE

Operand length

Description

CC

Program errors

32 bits

The contents of ACC, if non-zero, are
shifted logically leftward until bit 0 isa 1.
The number of binary places shifted is
stored as a 32 bit positive integer in the
operand location. OV is ;:leared.

If ACC is zero, a zero is stored. This
condition may be detected by testing ACC
for zero after the operation,

ACS = 32 or 64 bits is assumed.
Unaltered

Operand addressing errors

EFPG 447372178

@ Internationnl Computers Limited

icl! Technical ' Number 6594899
Literature Sheet g, 3]

Issue 1

Literal operand (see 12.8/12.1)
Non-zero bits of stored item truncated
(see 12.3/6.0)

ACS =128 bits (see 12,9/13.0)

9.31 Decimal Data Format (see fig. 50)

Decimal numbers are held in the accumulator or in store in packed
decimal format, See fig.,50. Each digit is represented in a
hexadecimal form so that two digits are held to a byte. The 4 least
significant bits of a decimal number contain the sign of the whole

number - the values for positive and negative sign code are given in

the diagram.
Thus a decimal humber in this form always contains an odd number
of digits, i.e. 7, 15 or 31 bits corresponding to ACC sizes 32, 64 or

128. Results generated by decimal operations have sign codes as

follows:

#C for positive numbers, #D for negative numbers.
The only exceptions to this rule are DSH (Decimal Shift), SUPK
(Suppress and unpack) and PK (pack). Zero results will have sign
code #C except possibly after one of the above (exception) instructions

or following an instruction which causes overflow,

Overflow will occur if the numeric part of the result is too large
for the accumulator - OV will be set and unless decimal overflow is

masked an interrupt will occur.

Inéidentally the values of numeric digits in the operands are not checked,
and the results of decimal operations are undefined when digits in the

range #A - #F are present in the operands.

© International Computess Lxmted
EPG 4473/2/78

Technical Number 6594899
IcL Literature Sheet 9. 32
1ssve - 1

Fig 50 Decimal Data Format

Decimal Number Hex Decimal Number Hex
0 0000 5 o101
1 0001 6 o110
2 0010 7 o111
3 0011 8 1000
4 0100 9 1001

____lafaaJafaTa]q[s]

Sign Code

Positive 1010 (*A), 1100 (¥C), 1110 (*#E)
1111 (#F)
Negative 1011 (#B), 1101 (¥*D)

All other values are undefined

ACC Size No. of Dec. Digits Bit Positions of >
Sign Code
32 7 28 - 31
64 15 60 - 63
128 31 124 - 127

€ mterankonal Comnutere | anitnd

I Technical
Y Literature

Number 6594899
Sheet 9,33

Issue 1

9.32

9.33

9.34

Decimal Instructions

Decimal Add (DAD) & DO

Decimal Subtract (DSB) 3 D2

Operand length :

Description :

cC :

Program errors :

ACS

The operand is added to, or subtracted from

the contents of ACC. The subtraction opera-
tion is equivalent to changing the sign of the
operand and adding.

If overflow occurs the result is correctly
represented (including the sign digit) apart
from the overflowed digit, OV is set and
interrupt occurs unless a decimal overflow
is masked.

OV is cleared if overflow does not occur.
Unaltered.

Operand addressing errors

Decimal overflow (unless masked) (see 12.1)

Decimal Reverse Subtract (DRSB) # D4

Operand length ¢

Description :

CC

Program errors ¢

ACS

As for Decimal subtract (9.32) except that
the difference left in ACC is formed by
subtracting the original contents from the
operand.

Unaltered.

Operand addressing errors

Decimal overflow (unless masked) (see 12.1)

Decimal Compare (DCP) #D6 -

Operand length

Description :

ACS

The operand is compared with the contents

of ACC, ACC and OV are unaltered. CC is
set to indicate the rssult of the ;:omparison.

Equality is indicated if the operand is

EPG 4473/2/78

(©) tnternationai Computers Limited

Technical
ICL Literature

Number 6594899
Sheel . 9. 34
tssve |1

9.35

CC

Program errors

Decimal Shift (DSH)

identical in every numeric digit with the
contents of ACC, and the sign digits are both
positive or both negative (pbsitive sign digits
do not necessarily have the same bit
representation), or if the sign digits are
opposite but all the numeric digits of both are
zeros. If the signs are opposite and the
numeric digits are not all zeros, ACC <
operand is indicated if the ACC sign is
negative, ACC > operand otherwise. If the
sign digits are equivalent AGC <operand is
indicated if, when conducting a left-to-right
scan of the numeric digits of both operands,
the smaller dig.it of the first unequal pair is
in AGC (positive sign) or in the operand
(negative sign); otherwise ACC>operand is
indicated. There is no check that the
numeric digi'ts lie in the range 0-9.

0 Equality

1 ACC«< operand

2 ACC > operand
3 Not Used

: Operand addressing errors

D8

Operand length

Description

32 bits

2 The least significant 7 bits of the operand
specify the amount by which the contents of
ACC are to be shifted. This amount is
interpreted as a signed integer (i) in the range
-64 to +63. Other bits of the operand are
ignored. If the integer is positive (=i) all
but the least significant 4 bits of ACC are
shifted 4i binary places to the left. The

EPG 4473r2/78

© tnlernationnl Compulers Limited

ICL Iechnlcal Number 6594899
iterature Sheet 9.35

1ssue 1

sign digit is unaltered. If any of the bits
shifted off the leftmost end of ACC are 1's,
OV is set and interrupt occurs unless
decimal overflow is masked. OV is cleared.
if all the bits shifted off are zeros. Zero
bits are inserted in the bit position adjacent
to the sign digit as shifting proceeds. If the
amount of shift is negativé (= -i) all exc.ept
the least significant 4 bits of ACC are
shifted 4i binary places to the right. OV is
cleared. The sign digit is unaltered. Bits
shifted out of the position to the left of the
sign are lost. Zeros are inserted at the
most significant end of ACC.

CC - Unaltered

Program errors : Operand addressing errors

Decimal overflow (unless masked) (see 12.1) -

9.36 Decimal Multiply (DMY) # DA

Operand length : ACs

Description : The product of the contents of ACC and the
operand is left in ACC, If the product
exceeds ACC capacity the result is undefin-
ed; OV is set and interrupt c;ccurs unless
decimal overflow is masked.
Otherwise OV is cleared.

CC 3 Unaltered

Program errors ¢ Operand addressing errors

Decimal overflow (unless masked) (see 12.1)

9.37 Decimal Multiply Double (DMYD) #DC
Operand length : ACS

Description g The double-length product of the contents of
ACC and the operand is left in ACC, ACS

EPG 447312178 © internationnl Computers Limited

9.38

9.39

Program errors

icl] Technical Number 6594899
Literature Sheel 9. 36
Issue 1
being doubled in the course of the operation.
OV is cleared. ACS = 128 bits is not
permitted.
CC Unaltered.

Operand addressing errors

ACS = 128 bits (see 12.9/13. 5)

Decimal Divide (DDV) #9A

Operand length
Description

CC

Program errors

ACS

The contents of ACC are divided by the
operand and the unrounded quotient left in
ACC. The rules for determining the
quotient are those for Decimal Remainder
Divide (9. 40). OV is cleared.

If the divisor is zero (i.e. all its numeric
digits are zeros) the result is undefined
(but OV is cleared), and the zero divide
interrupt occurs unless masked.
Unaltered.

Operand addressing errors

Zero divide (unless masked) (see 12.1)

Decimal Reverse Divide (DRDV) # 9C

Operand length

Description

CcC

Program errors

ACS

The operation is exéc;ly as for Divide
(9. 38) except that the operand is the
dividend and the contents of ACC the
divisor.

Unaltered.

Operand addressing errors

Zero divide (unless masked) (see 12. 1)

EPG 4473/2/78

© Internationnl Compulers Limited

iIcL] Technical

Number 6594899
Literature Sheet 49, 37
Issue 1
9.40

Decimal Remainder Divide (DMDV) # 9E

Operand length

Description

CcC

Program errors

ACS

The contents of ACC are divided by the operand;
the quotient is left in ACC, and the remainder
is stacked, causing SF to be incremented. All
these quantities are of length ACS5, OV is
cleared. .

The quotient value is such as to produce a
remainder which is either zero, or of the
same sign as the dividend and numerically less
than the divisor.

CC is set to facilitate the evaluation of the
PL/1 'Mod’ function, If the divisor is zero (all
its numeric digits are zero) the quotient, the

remainder (which is stacked) and the setting of

"CC are all undefined (but OV is cleared), and

the zero divide interrupt occurs unless masked.
0 Remainder zero, or remainder =0,
divisor >0
1 Remainder > 0, divisor< 0
2 Remaix;der <0, divisor >0
3 Remainder < 0, divisor< 0
Operand addressing errors

Zero divide (unless masked) (see 12.1)

EPG 4473/2/78

(©) mternational Computers Limvted

Technical
ICL theraﬁu:e Sheet 9, 38

Number 6594899

Issue 1

9.41

Miscellaneous Instructions

Four functions are provided to allow conversion between floating -

point and fixed - point formats and fixed - point and decimal formats.

Fix (FIX) # B8 (see fig 51)

This instruction converts data from floating - point to fixed - point

format. Prior to the instruction ACC is loaded with the floating -

point number to be converted.

Operand length ¢ 32 bits

Description : The exponent, and sign and fraction, of the
floating - point number in ACC are gseparated;
the former is adjusted and stored as a 32 bit
signed integer in the operand location, the
latter is left in ACC as a signed (2's
complement) integer, If the number in ACC
had a zero fraction, a zero exponent is stored.
ACS may be 32, 64 or 128 bits. If it was 128
bits AGCS is halved and the least significant 14
digits of the fraction are lost, CC being set to
indicate the nature of the lost bits,
OV is cleared.
If the fraction (all 6, 14 or 28 digits) is zero
the action of the instruction is to clear ACC
and OV, halve ACS if it was 128 bits, and store
a 32 bit zero word in the operand location. CC
is set to 0.
If the fraction is non-zero, bits 1 - 7 of ACC
are stored at the least significant end of a 32
bit intermediate register, whose remaining
bits are zeros. The exponent is unbiased, and
the fraction effectively converted to an
(unsigned) integer, by subtracting 70 (ACS =
32 bits) or 78 (ACS = 64 or 128 bits) from the

quantity in the intermediate location which is

4472178

(©) tnternationnt Computers Limited

ICU Iechnlcal Number 6594899
Iterature Sheet 9.39
Issue 1

Fig 51 Fix (FIX) B8
If fraction is non-zero e.g. 32 bit ACC

7 8 31

0 1
Acc &L EE | Fraction J

0 25 l 31
Intermed.
Reg l000000 00! EXP J

Unbias
0 25 31
Operand =
Location 000000, - = = = mmimimie = oSS & @S 00|Unb1a.sed Exponent l
The exponent is unbiased by subtracting 70 | (ACS = 32 bits)

78 | (ACS = 64, 128 bits)

from the quantity in the intermediate register.
If bit 0 of ACC = 0, bits 1-7 are made zeros.
If bit 0 of ACC = 1, fraction is negated, bits 0-7 of ACC are made 1's.

CC = 0 No non-zero-bits lost.
1. (Acs
2. (Acs

128 bits) lost portion < 3

128 bits) lost portion > 3
3. Not Used.

(©) Internaonal Computers Limited
EPG 447372178

icy Technical

Literature

Number 659 4899
sheet 9. 40

issue 1

9.42

CcC

Program errors

then stored in the operand location.

If bit 0 of ACC is 0 bits 1-7 are

If bit 0 of ACC is 1, the fraction (e
S = 128 bits;

made zeros.

ffectively

including bits 72 - 127 if AC
although these bits are subsequently dis
they effect the value of bit 63 and of CQ) is
negated, and bits 0-7 of ACC made 1's. If
AGS = 32 or 64 bits CC is set to 0. If ACS=
128 bits, CC is set to 2 if bit 72 of ACC

carded

(after negation, if any) is non-zero, to 1 if

bit 72 is zero but bits 73-127 are not all

zeros, to 0 if bits 72 - 127 are all zeros;

the more significant 64 bits of ACC overwrite
the less significant 64 and ACS is set to 64 bits.
OV is cleared.

0 No non-zero bits lost

1 (ACS = 128 bits) lost portion <

N

2 (ACS = 128 bits) lost portion >
3 Not Used

Operand addressing errors
Literal operand (see 12.8/12.1)
Non-zero bits of stored item truncated (see

12.3/6.0)

Float (FLT) # A8 (see fig52)

Operand length .

Description

32 bits

The 32 or 64-bit signed integer in ACC is
combined with the exponent value specified
by the operand to form a normalised
floating-point number in ACC. ACS (32 or

64 bits) is doubled. The least significant 8
bits of the operand specify a signed integer
which is the hexadecimal exponent associated

with the integer in ACC.

EPG 447372178

© Intarnational Computers Limited

icL] Technical

Number 8
Literature S::‘el 35211 o
Issue l

Other operand bits are ignored.

If the contents of ACC are zero the action of
the instruction is to double ACS, extending
ACC with another zero word or double word.
The value of the operand is immaterial.

OV is cleared, If the contents of ACC are
non-zero, the action is effectively as follows
(though hardware may not follow these steps
precisely):

- ACS is doubled, the previous contents of
ACC now being placed in the more significant
half and the less significant half made zero.
- The least significant 8 bits of the operand
are placed in an intermediate register. The
value of the most significant of these 8 bits
is recorded for future reference. The
quantity in the register is incremented by
72 (AGS = 64 bits) or 80 (ACS =128 bits) -
this is now the 'intermediate characteristic'.
- The contents of ACC are shifted right
arithmetically 8 binary places. If bit 0 of
ACC was origiria.lly al, the contents of ACC
are negated (to form the modulus of the

fraction) and bit 0 of ACC is made 1. Bits 8

~ onward now form the 'intermediate fraction';

bit 0 is the sign bit.

- The intermediate fraction is now norm-
alised by shifting it up one hexadecimal place
(4 bits) at a time until bits 8-11 are not all
zeros, 1 is subtracted from the intermediate

characteristic for every hexadecimal shift.

- The least significant 7 bits of the inter-

mediate characteristic overwrite bits 1-7 of

ACC, If ACS = 128 bits, the contents of the

EPG 447372178

@ Internationnt Computers Limited

tcl] Technical

Number 6594899
Literature Shect 9, 42
Issue 1

Fig52 Float (FLT)#A8 converts fixed point number in ACG into floating

point format.
For ACC =0

ACS' = 2 ACS : ACC' =0
For ACC {0
0 23 24 3
g Jovesa Acc[7]
Double ACS
0 i 31
l Intermed Reg. J Accf Ioo Oﬂ
Add 72 (ACS 64) Shift ACC 8 places
or 80 (ACS 128) right
24 25 3 oI 78
| l J N ACC! L I IInterr_ned.Fract]00 - --00 l
Intermediate
Characteristic
The intermediate fraction is normalised.
0 1 7 8 31
Acc'/} | cHAR] Fraction |
Sign bit

Seven bits from Intermediate Register

(Intermediate Characteristic).

EPG 447372778

© Intarnationn! Computers Limited

Technical
ICL Literature

Number 6 594899
Sheet 9,43

1ssue 1

CcC

Program errors :

9.43 Convert To Binary

least significant 64 bits of ACC are shifted
8 binary places to the right and a copy of
the characteristic in bits 1 -7, minus 14

(or plus 114, if the latter is less than 14)
inserted in bits 65-71 of ACC, Bit 64 is
made the same as bit 0. OV is cleared.

- The most significant bit of the 8-bit inter-
mediate characteristic should be 0. If it is
a 1, underflow or overflow occur as
described in 9.2, depending on whether the
corresponding bit of the original operand
was 1 or 0, respectively.

If underflow occurs ACC is made 0. If
overflow occurs OV is set,

Unaltered

Operand addressing errors

Floating overflow (unless masked) (see 12.1)
Floating underflow (unless masked) (see
12.1)

ACS =128 bits (see 12.9/13.2)

(CBIN) # DE

Operand length

Description

CC

Not applicable. Literal must be specified.
The operand is ignored. The .signed integer
in ACC is converted from the padkced decimal
representation to fixed-point binary
representation, with 2's complement sign
convention, If ACS = 128 bits it is halved;

in this case overflow may occur if the
number lies outside the range -263 to +
(263-1), inclusive, whereupon OV is set, and
interrupt occurs unless fixed-point overflow
is masked. Otherwise OV is cleared.

Unaltered

EPG 447372178

(©) mternational Computers Limited

Technical
lc‘“ Literature

Number 6594899
sheat 9. 44

Issue 1

9.44

Program errors

Fixed ove rflow (unless masked) (see 12.1)

Convert to Decimal (CDEC) # EE

Operand length

Description

CC

Program errors

Not applicable, Literal must be specified.
The contents of ACC, a signed fixed-point
integer, ‘are converted to standard decimal
form in ACC (see 9.31).

ACS is doubled., OV is cleared.

AGCS = 128 bits is not permitted.

Unaltered

ACS =128 bits.

EPQ 447272178

(©) tnternationnl Computers Limited

icL] Technical Number 6594899
Literature Sheet 10.1

Issue 1

10. STORE TO STORE FUNCTIONS.

10.1 Strings

A versatile repertoire of store-to-store functions is provided on

2900. As was mentioned in the 'instruction formats' chal.)ter. these
are specifically provided for the c.ommercial data processing
establishments (generally the moving or manipulation of data from
one part of store to another possibly allowing editing during the move).
Store-to-store operations take place between a string of bytes, referred
to as the (DR) string, described by a string or byte-vector descriptor
held in DR (usually, but not always, the 'destination string') and

(in most cases) a second string described by a string or byte-vector
descriptor held in ACC (referred to as the (ACC) string, and usually
the 'source string'). In some cases (ACC) is not involved, and a2

string consisting of copies of a byte specified as a literal in the
instruction may be used as source string, or alternatively a source
byte may be taken from B; in three cases the (DR) string interacts
directly with the contents of ACC itself.

Byte-vector and string descriptors are checked to ensure their size
fields contain 011. The length of a string described by a byte-vector

is in this context defined by the contents of the bound field.

The number of bytes involved in a store-to-store operation (referred
to as L) is specified either explicitly in the instruction format, or in
the length field of the descriptor in DR. Instructions are 16 or 32 bits

long, and use the secondary format described in chapter 1.

@ tnlernstional Computers Limited
EPG 4473/2/78

icl TYechnical Number 6594899 -

Literature Sheet 10.2
Issue 1
The format of the first 16 bits is as follows:-
0 67 8 9 15
l Function I hlq I n I
7 1 1 7

"

h=0:L=n+1(1¢ Lg 128)
h=1:L = (length field of DR)(0<L< 224) (n field reserved)
q = 0 : 16-bit instruction

q = 1 : 32-bit instruction

When the instruction is 32 bits long, the second 16 bits specify a
Mask byte and a Literal or Filler byte, thus

16 23 24 31
| Mask | Literal/Filler B

8 8

In the course of each operation, the (DR) string is processed from
left to right, one byte at a time, and for each byte processed the
address field is incremented by 1 and the bound field decremented
by 1. When the (ACC) string is similarly processed from left to
right (this is not the case for all instructions) the descriptor in ACC
is updated likewise (and OV is cleared).

When the (ACC) string is processed left to right, and it contains less
than L bytes, it is effectively extended on the right with copies of the
filler byte. If there is no filler byte, i.e. the instruction is 16 bits
long, an interrupt occurs. When the filler byte is used, the

- descriptor in ACC is left with zero in its length field and the original
contents of the length field added into the address field. If the ACC

EPG 447372778 @ International Compulers Limited

Technical Number
ICL Literature Sheet 16 g 9 ; i
issue l

10.2

length field is initially zero, the filler is used immediately, and the
address field is ignored. If L = 0 the instruction will be interpreted
as a null operation, the contents of the (ACC) and (DR) strings being

ignored and unaltered (virtual store interrupt cannot occur).’

Checks

All store-to-store operations include certain standard checks;
interrupt occurs if any check fails. These checks (referred to in

the instruction description) are:

1) DR must contain a type 0 or type 1 descriptor with size Code 3,

or an escape descriptor, else see 12.6/10. 6.

2) When L = n + 1 (literal), L < (length field of DR) else see
12.7/11.0.
3) When ACC contains a descriptor,it must be of the correct

type (type 0 or 1 with size code 3, except for Table check and
Table translate), and ACS = 64 bits (for some instructions
(ACC) is only used with the 16-bit instruction format), else
see 12.6/10.7 or 8. ‘

4) When the {ACC) string is processed left to right, and the .
instruction is 16 bits long, (length field of descriptor in ACC)
=2 L, else see 12.7/11.2.

Most store-to-store operations can be interrupted in mid-flight, and
resumed after the interruption. As well as (DR) and, where relevant,
(ACC) being updated in the course of the operation, additional facilities

are provided enabling the instructions to be thus resumed.

The results of store-to-store operations which necessitate changing
the contents of store locations are undefined if the two strings

involved overlap, unless otherwise specified.

EPG 447372178

© wternational Computers Limited

iIc] Technical Number 8
Literature Sheel 16 3.9; -
Issue 1

For the purposes of determining overlap the (DR) string is taken to
be L bytes long, and the ACC string's length is the lesser of L and
the length specified by the descriptor in ACC.

When the source information is taken from B, the contents of B are
unaltered by the instruction. Fields of B ignored by the instruction

are spare.

Note that these instructions only shift BYTES - there are no word
shifts. It is also important that the source and destination string

descriptors be loaded prior to the operation.

For short instructions, the formatis:

Function h, n,
where h indicates where the number of bytes involved is to be
specified explicitly, (h = 0) as n + 1, or implicitly, (h = 1) as the
length field of DR.

For long instructions, the format is:

Function h, n, m, lit/filler,
where m is the mask byte and there is also a literal/filler byte. The
use of these bytes is demonstrated for the move instruction, although
the rules hold true for other instructions in the series. The following
table (Fig. 53) summarises whether the mask and literal/filler bytes
in B or the second half of a long instruction are used by each store to

store instruction.

EDC AaTUIITA © mlernationnl Comﬁulz-s Limited

IE Technical Number 6594899
ICL Literature Sheet 10.5
Issue 1
Fig 53. VALIDITY OF MASK AND LITERAL/FILLER BYTES
Instruction| 16-bit Instruction 32-bit Instruction Description
Mnemonic | B(16-23)[B(24-31)| Inat. (16-23) Inst. (24-31)| \» Section
used if L>
MV not used | not used | used (Acc) 10.3
length
MVL used used used uéed 10.5
SWEQ used used used used 10.6
SWNE used used used used 10.7
used if L>
CPS not used | not used | used (acc) 10.8
length
ANDS
ORS not used | not used A e used 10.9
(reserved)
NEQS
ignored ° ignored
CHOV not used | not used \ 10.11
(reserved) | (reserved)
PK 10.13
SUPK not used| used if ignored used if 10.14
CC=0 (reserved) | CC=0 *
TTR not used | not used| ignored ignored 10.16
TCH (reserved) | (reserved) |10.17
used if used if used if used if
10.18
s cCto CC#0 cC =0

CC=0

EPG 4473/2/78

© miernational Computers Limited

Number
Technical 6594899
CL Literature Sheel 10.6
Issue
1
10.3 Move (MV) # B2 (see fig54)

10.4

Description

CcC

Program errors

Move Example

The (ACC) string overwrites the (DR) string,
In the 16-bit case the (ACC) string must be at
least L bytes long. In the 32-bit case the
(ACC) string, if shorter than L bytes, is
effectively extended with copies of the filler
byte; and only those bits of each (DR) string
byte which correspond to 0's in the mask
byte are altered (to the corresponding bits

of the appropriate (ACC) string byte or the
filler byte).

The result is undefined if the (DR) string
overlaps the (ACC) string on the right- i.e

if the first byte of the (DR) string coincides
with any one of the 2nd to nth bytes of the
(ACC) string, where 'n ' is the lesser of L
and the length of the (ACC) string. Otherwise
the fields may overlap in any way and the
correct result is obtained. If L = 0, and none
of the other checks fail, a null operation is

performed, leaving ACC and DR unaltered.

Unaltered.
Any failures of standard checks 1 - 4 (see
10.1)

Fig 55 shows a worked example of a move instruction. The (ACC)

string is 4 bytes long and the (DR) string is 6 bytes long - thus the

first four bytes are taken from the (ACC) string, the remainder from

the filler byte. The mask byte only allows the most significant

two and least significant four bits of each byte to be propagated.

FPQ 44721718

© internationnl Computers Limited

ICU Technical Number 6594899
Literature Sheet 10.7
Issue 1

Fig 54. MOVE (MV)

Source String

ACC | Length {
Address

DR L Length i <

Destination String
Address

If we wish to move 6 bytes, the instruction can be written as either:

MV 0, 5 (i.e. L = 6 = n-1 therefore n = 5) the compiler subtracting

1 automatically.

or MV 1, 0 which specifies the length of the transfer by the length
field of the descriptor in DR,

Fig 55. EXAMPLE OF MOVE

Suppose we wish to transfer four bytee except bits 2 and three of
each byte, which remain unchanged. Let us suppose further that;
ACC . string (source) contains four bytes: AA, 76, 24, EF; DR string
(destination) contains six bytes (all zeros); and the fifth byte of the
destination string is to be set to all ones except those bits masked

out.

So to mask out bits 2 and 3 a mask:
00110000 = X'30' is constructed.
For the fifth byte a filler of all ones:
11111111 = X 'FF"' is constructed.
The seco-nda.ry order in SFL to achieve this is:

MV.N 5, X'30', X'FF'
Diagramatically it can be shown as:

]
: FILLER
I
i

111111 11

101010100111 01 IOIOOIOOI 00j11 10111]lj]-——ACC STRING (SOURCE)

SIXTH BYTE
UNCIIANGED"

10 0010 10J01 0001 10J0000 01 00f11 001111}11001111|00 0000 OOJ
DR STRING (DESTINATION)

EPG 447372178 © Inlernational Computers Lanited

iC Technical Number 6594899
Literature Sheot 10.8
Issun 1

10.5 Move Literal (MVL) # Bo

Description g The unmasked bits of the source byte over-
write the corresponding bits of each byte of
the (DR) string. In the 16-bit case, the
source byte is the contents of bits 24-31 of
B, and the mask byte the contents of bits
16-23. In the 32-bit case, the source byte
is the literal byte. Only those bits of each
(DR) string byte which correspond to 0's in
the mask byte are altered (to the correspond-
ing bits of the source byte), If L =0, and
none of the other checks fail, a null

operation is performed, leaving DR unaltered.

CcC s Unaltered.
Program errors : Any failures of standard checks 1 and 2, (see
10.1).

10.6 Scan While Equal (SWEQ) #A0 (see fig. 56)

Description H In the 16-bit case, the reference byte is the
contents of bits 24-31 of B, and the mask
byte the contents of bits 16-23. In the 32-bit

case the reference byte is the literal byte.

Each byte in the (DR) string, working from
left to right, is compared with the reference
byte. Only those bits in each byte, including
the reference byte, which correspond to 0's

in the mask byte, are cohmpared.

The operation stops when the (DR) string is
exhausted, or when inequality is detected,
whichever occurs first; in the latter case
(DR) will finish pointing to the first byte in the

(DR) string which is not equal to the reference

byte.

(©) niernationnt Computars Limited

Technical Number 65948
ICL Literature Sheel 1 0?9 99
Issue 1

CC is set to indicate whether or not
inequality was found, and if so whether (the
unmasked portion of) the (DR) byte was

less than or greater than the (unmasked
portion of) the reference byte.

If L = 0, and none of the other checks fail,
a null operation is performed, leaving DR

unaltered, but leaving CC = 0.

CC) : - 0 Inequality not found
1 Not Used
2 (DR) string byte > reference byte (unmas-
ked portions)
3 (DR) string byte < reference byte (unmas-

ked portions)

Program errors : Any failures of standard checks 1 and 2,

(See 10.1).

Fig.56 Scan While Equal (SWEQ)

SWEQ X'0', X '00",

l |

Mask reference byte

#00| #00 | 400 [¢FF |¢ FFleA2 B

l Length
Address

DR

Reference byte is contents of bits 24-31 B register (for 16 bit instruc-.

tion) or contents of literal part of instruction (for 32 bit instruction).

In this example at the end of the instruction (DR) will point to the
first byte containing #FF and CC will be set to 2.

vaernatonal Computers Limited
EPG 4473/2/78 © vie c

Technical Number 6594899

iterature Sheet 10,10
Issue 1
10,7 Scan While Not Equal (SWNE) #A2 (see fig. 57)
Description : This operation is similar to Scan while

equal (10.6) except that the operation term-
inates when the unmasked portion of a (DR)
byte equals the unmasked portion of the
reference byte, or after L bytes. I L =10
and none of the other checks fail, a null
operation is perft;rmed. leaving DR unaltered,

but leaving CC = 0.

CC : 0 Equality not found
1 (DR) string byte - reference byte
(unmasked portions)
2 Not Used
Not Used

Program errors : Any failures of standard checks 1 and 2
(see 10.1).

Fig 57 SCAN WHILE NOT EQUAL (SWNE)

SWNE X0, X103!

Mask reference byte

#FF | #A0 | #01 |#o0z | #o3 \

Length

DR

Address - -

Reference byte is contents of bits 24-31 B Register (1 6-bit instruction)

or contents of literal part of instruction (32 bit instruction)

In this example at the end of the instruction (DR) will point to the byte
containing # 03 and CC will be set to 1.

(©) tteenntional Comnulers Limited
EPG 4473/2/78

Technical
ey Literature

—~A

Number 6594899
Sheet 10.11

Issue 1

1.0.8

Compare Strings (CPS) A4 (See fig. 58)

Description

CcC

Program errors

Successive bytes of the (ACC) and (DR)

strings are compared - i.e. the first byte of
one with the first byte of the other, and so on -
until an unequal pair is found, or L bytes have
been compared equal., In the 16-bit case the
(ACC) string must be at least L bytes long. - .
In the 32-bit case comparison is only applied
to those bits which correspond to 0's in the
mask byte; and.if the (ACC) string is less
than L bytes long, it is effectively extended

(if necessary) with copies of the filler byte.

CC is set to indicate the result of the com-
parison. Where inequality is found, (DR)

will finish pointing to the first (DR) string

byte which compared unequal, and (ACC)
likewise unless the (ACC) string has already
expired.

1If L = 0, and none of the other checks fail,

a null operation is performed, leaving ACC

and DR unaltered, but leaving CC = 0.

(-]

Inequality not found

Not Used

2 (DR) String byte>(ACC) String byte
(unmasked portions)

3 (DR) String byte < (ACC) String byte

(unmaskcd porticas)-

Any failures of standard checks 1-4.
(see 10.1),

EPG 44r73/2/78

(©) mrernanono! Computers Limited

ict] Technical Number 6594899
Literature Sheet 10.12

Issue
1

Fig 58 COMPARE STRING (CPS)
CPS.N 6

Before execution:

00 10] az| B3 ar] az] B [or] !
| s
ACC i
OOIIOJAZI B3| 86| DD| AE ED[oo ¥ | \
| 10
DR 1
After execution:
[OOIIOJ A2~l B3| A1 lAzI Bl JBO H
ACC 4
[oollolAzl B3 [B6 | pp| aE| ED[oo|FD ||
[6
CE =2
10.9 And Strings (ANDS #82

Or Strings (ORS) #84
NEQ Strings (NEQS) #86
Description : See Fig. 59. Each byte of the (DR) string is

replaced by the result of performing the
appropriate logical operation between itself and
the corresponding byte of the source string.

In the 16-bit format the source string is defined
as the (ACC) string.. In the 32-bit format ACC
is not used and the source string is L copies of
the literal byte. The mask byte is ignored
(reserved).

If LL = 0, and none of the other checks fail, a null
operation is performed, leaving ACC and DR

unaltered.

CcC : Unaltered,

Programerrors : Any failures of standard checks 1-4(see 10.1).

R o g i o e soaecan Rk o i

’ Technical Number 6594899
Literature Sheet 10.13

Issue 1

Fig. 59 AND STRINGS (ANDS)
OR STRINGS (ORS)
NEQ STRINGS (NEQS)

ANDS X'0', X'OF'

Before execution After execution

IAIJ lA[cnf |01|oAlon

DR 3 DR | o '

|

ORS.N 3

Before execution After execution

[ooTor [72] . [ooTor el
A

| = [°
ACC ACC
Ll-l ICCl ICI DE ﬁl] CF] FEL DE
[
DR | 4 DR [1
" NEQS.N 3
Before execution After execution
oF [or | 1a] [or] or]1a]
L
ACC | = ACC ;] ! —]
[
DR | 2 DR | o

EPG 447312178 © Internationat Computers Limited

6594899
i Technical Number
= Literature Sheet 10.14

Issue 1

10.10 String Overlaps
If the address of a source string in store coincides with the address
of the destinétion string then chaos could be caused by an instruc-
tion such as a MOVE, However, some overlap conditions could be

tolerated. See Fig. 60 (a), (b) and (c).

Fig. 60 OVERLAP CONDITIONS

Fig. 60(a)Overlap on the LEFT MV.N 9
Store before MOVE Y T ACC
] Length
. o ‘ e
1 2 3 4 5 6 7 8 | 9 |Jetc.
. ‘ v ——— ——————
Destination address DR Length

Store after MOVE

1 2 3|4 5 6 7 819 5 6 718 9 Jetc.

Although the overlapped locations are now corrupted (as a future
source) the MOVE itself has been successful i.e, 9 Bytes have been
correctly moved from the address in ACC to the address in DR,

.’. overlap on the left is acceptable.

(©) wiernationnl Computers Limited
EPG 4473/2/78

Technical
Literature :::::e' fggfggq

Issue 1

IC

=

Fig. 60 (b) Overlap on RIGHT MVN, 9

Store before MOVE,
Source AEC

1|l2|3|4]s5]e]|7]8]09 n=9

"

Store after MOVE| Destination
fo— Overlap —

1 12 3 4 511 2 3 4 {5 |1 |2 3 4

Not only are the overlapped locations corrupted (as a future
source) but the MOVE itself has been unsuccessful i.e. Only 5
bytes have been correctly moved. Bytes 6 - 9 were overwritten
before they could be moved. This is termed a corrupting overlap.

.’. Overlap on the RIGHT is unacceptable.

Note:- In the above example if the Source (ACC) String length
was 5 or less, and the 32-bit format was used (with Mask
and Filler specified) then the overlap would be acceptable,

as shown below.

Fig. 60 (c) No effective overlap MV X'co', X'40'

Store before MOVE,
Source (ACC) length = 5

1 {2 3 4 5 6 718 9

p—

Store after MOVE"..__Overlap ~——o| Destination (DR) length=9

1|2 3|4 5 1 213 4 5 | #40] #40] #40] #o0
The item defined by (ACC) has been correctly moved and the

remainder correctly filled.
For the purposes of MV and CHOV:

'n' in example 2 is 9 (L < Source (ACC) String length)
‘n' in example 3 is 5 (Source (ACC) String length < L)

EPG 4473/2178 (© 'ernationol Computers Limited

o T ol e

Sheet 10. 1 5
1

Issue

10. 11 Check Overlap (CHOV) # B4

Description g This instruction tests whether the (ACC)
and (DR) strings overlap, and if so whether
or not the starting address of the (DR) string
is greater than that of the (ACC) string.
For the purpose of testing for overlap, the
length of the (DR) string is L, and the length
of the (ACC) string is the lesser of L. and
the contents of the (ACC) length field. The
latter is only permitted to be less than L if
the 32-bit instruction format is used, in
which case the mask and {iller bytes are
ignored (reserved); if the length of the (ACC)
string is zero, no overlap is indicated. CC
is set to indicate the type of overlap. ACC
and DR are unaltered. If L = 0, CC is set
= 0. ‘

CC g 0 No overlap
1 Corruption of source string when overlap

on LEFT,

2 Corruption of destination string.

If the (ACC) string length < (DR) string
length, the mask and filler bytes are
ignored. .Thus CC values 0, 1 indicate
permissible overlap, while a value of Z
indicates corrupting overlap. ‘
Program errox.'s : Any failure of standard checks 1-4 (see

10.1).

e ters Limited
EPG 447372/78 © nternationol Computers Limi

icr] Technical

Number 6594899
Literature Sheet 10.17
Issue 1
CHOYV Flowchart
L = No of bytes to be moved
Defined by:
Ifn=0 Literal field + 1
Ifn=1 Length field of DR (destination)

n = The lesser of L and the length of the (ACC) Source String.

ACC = Address of 1st Source byte.
DR = Address of 1st destination byte,

L=07? Y I
CC=0
N : No overlap
ACC-DR 20 Y
Overlap on left
jlq or no overlap

Overlap on right

or no overlap

No overlap
CC=0 N
No overlap
b =8 (Example 3) CC =1 (Example 1)

(Example 2) ‘
. The result of the instruc-

The result of the instruc- tion will be correct but
tion will be incorrect and the Source String will
the Source String will be . be corrupted:
corrupted.

(© 'rernational Computers Limted
EPG 4473/2/78

icy Technical

> Number
Literature

Sheel

6594899

Issue

10.18
1

10.12 Decimal Numbers

Decimal numbers can be represented in unpacked form by either
the ISO format or the EBCDIC (Extended Binary Coded Decimal
Interchange Code) format. In both formats each decimal digit
occupies a byte, since the numeric is preceded by a zone code.

Numbers in ISO have a zone code of #3, in EBCDIC # F - see fig
61.

Both formats are usable but they are wastefulas one byte represents
a single character or number, so they are converted to packed
decimal format (which was described in chapter 9 computational
functions) where each decimal digit occupies 4 bits. This
conversion is called PACKING and the reverse operation is

UNPACKING.

Fig 61. DECIMAL NUMBERS

1SO Format EBCDIC Format
34 7 o 34 7

FIZQeI&meﬂeJ [Zone | vmerte |

I 1.1

For mumbers, Zone =3 For numbers, Zone = #F

s @ tnternationnl Compulers Limited

=

[Technical
iC Literature

Number 6594899
Sheet 10,19
1

Issue

10.13

Pack (PK)# 90

This instruction converts the zone/numeric formats into a packed

decimal format leaving the result in the accumulator. Prior to the

instruction, a descriptor pointing to the string of unpacked numbers

is loaded into DR. (Fig, 62).

Description

CcC

Program errors

For each (DR) string byte, working from
left to right, the contents of ACC are
shifted decimally left by 1 place and the
least significant 4 bits of the byte inserted
in the space thus created next to the sign
digit of ACC. ACS may be 32, 64 or 128
bits. OV is set if any non-zero bits are
shifted off the top of ACC, and in this
case decimal overflow interrupt will occur
unless masked. If no non-zero bits are
shifted off OV is cleared.

The sign digit is unaltered.

If L = 0, and none of the other checks fail,
a null operation is performed, leaving ACC
and DR unaltered; OYV is cleared.

Either 16 or 32 bit forms may be specified
but for 32 bits the mask and literal bytes
are ignored (reserved).

The results of the instruction is undefined

if L =128,

Unaltered.

Any failures of standard checks 1 and 2
(see 10.1).

Decimal overflow (unless masked)

(see 12.1).

EPG 4473/2/78

@ Internatvonal Compulters Limited

I Technical

Number
Literature Sheet i,(s)q:ggq
Issue 1 :
Fig 62 PACK (PK) (#90) Example with ACS 32,
e R T
3 T T T T T
Qiz|zie|zi3]z)0|z 3|z]4
E | 1 1 1 L |
0 7
I Blts 4-7
0 3 4 78 11 12 15 18 1820 23 2¢ 27 28 31
Sign
Accl\ll\ll\ll\lL\ll\': L digit 1s
~—— ~— < ~—~ g unaitered
1 decimal shift
(4 places) left
o 34 78 1112 1516 19 20 2324 27 28 31
o [V 1] [+ 12 1]]=]
olace bits 4-7
______ 56 59 60 63
Sign digit ~
e R is unaltered
______ 123124 127
For ACS 128

Sign digit
1s unaltered

© miternalionnl Computers Limited

Technical
IcL Literature

Number 6594899
Sheet 10.21

Issue 1

10. 14 Suppress and Unpack (SUPK) # 94 (see fig 63)

Description

Successive digits of the decimal number in

ACC are unpacked, each digit generating a

byte which overwrites the next position in

the (DR) string.

The value of the inserted

byte depends on the value of the leftmost

(unpacked) digit of ACC, and on the setting

of CC. After each (DR) string byte has

been overwritten, ACC is decimally shifted

up one place to remove the unpacked digit,

~ and CC is updated.

shifted or altered.

The sign digit is not

The inserted byte is either a copy of the

literal byte (bits 24-31 of B if the 16-bit

instruction format is used), or is formed

by prefixing bits 0-3 of ACC (the unpacked

digit) with a numeric zone code. In the

action table below, these two alternatives

are referred to as 'insert literal' and

'insert digit' respectively. In the latter case,

the zone code is binary 0011 if the ISO mode

bit-i—n_SSR is 1, binary 1111 if itis O.

CC=0

CC#o0

Unpacked
digit = 0

Insert literal
CC unaltered

Insert digit

CC unaltered

Unpacked
digit £ 0

Insert digit
Set CC =2

*Stack descriptor
See Overleaf

Insert digit
SetCC =2 -

EPG 4473/2/78

© International Compulers Limited

Technical Number

6
Literature Sheei L :.9: : 99
Issue 1

*If CC = 0 and the digit being unpacked is
non-zero, a type 1 descriptor is generated
and staqked. which has 1 in its length field
and whose address field contains 1 less than
the current address in DR - i.e. it points
to the byte immediately to the left of the
position in the (DR) string where the digit
is inserted. This causes SF to be incremen-
ted by two words. (A similar effect is
achieved by the Start significance instruction.)
The operation terminates after unpacking

L digits. If after unpacking the last digit,

CC = 2 or 3, the sign digit of ACC is

inspected, and CC is set to 2 or 3 depending

on whether the sign is positive or negative.

If CC = 0or 1 it is unaltered and the sign

is ignored. If L = 0, and none of the other

checks fail, a null operation is performed

leaving ACC, CC and DR unaltered.

OV is cleared. ACS may be 32, 64 or 128

bits.

With the 32-bit instruction format the mask

byte is ignored (reserved)

The result of the instruction is undefined if

L > 128.

Notes: (a) After a number has been
completely unpacked ACC will
contain no non-zero digits, and
only by testing CC' can it be
ascertained whether the number
was positive, negative or zero.

(b) If the descriptor which is stacked

when the first non-zero digit is

© mternational Computers Limited

|er I?t%?git%% Number 6594899

Sheet 10.23
Issue 1
unpacked is not used for sign
insertion (e. g.) it must be removed
from the stack anyway.
cC 4 0 CC was 0, and all digits unpacked were
0's.
1 CC was 1, and all digits unpacked were
0's.
2 CC was 2 or 3, or some non-zero digits
unpacked. Sign positive.
3 CC was 2 or 3, or some non-zero digits
unpacked. Sign negative.
Program errors : Any failures of standard checks 1 and 2.

(see 10.1).

Fig. 63 SUPPRESS AND UNPACK (SUPK) (# 94) BASIC OPERATION

0 3
ACC [dl Iled3ld4ld5|d6|d7IS]

- Sign digit is
Shi i
ift left 4 bits not shifted
at a time

o[]

BECOMES (in store)

T

T T T]
z 'a z:dzlz}dalz:d4letc.
_T_J — "

lnt;ert ' /

Bytes

zone character

0011 (i.e. # 3) for ISO
1111 (i.e.# F) for EBCDIC

EPG 4473/2/78 (© wternationsl Computers Limited

Technical
ICL Literature
Fig. 64.

Number 659 4899

Sheet 10.24
Issue 1

D UNPACK (SUPK) DETAILED OPERATION

oy

DR

SUPPRESS AN

SUPK.N 1,

xo,V

@in EBCDIC)

0 34 78

111215 16 19202324 2728 31

accf o [ol ol o]t o]s Jc]amaum

Test ACC 0-3
N
=07
Y CcC=0 7“_
N CC=07? Puth X
for first Path for
non-zero successive
Y | Insertdigit digits
; & zoas
e 1
Insert 1 2 Set CCa2
Hegeal 'Path msert o . stack
(usually [digit & ! e descriptor
space ' zone } pointing to
character) last space
Noo- character
significant
zero / SN T
\ BLNB
T1 L=1
[sp]splsp @ln'rolnl k |
Address
SF ~»f

Virtoal Store

© International Computers Limited

=== Technical
L Literature Number 6594899
ot . Sheet 1 0’ 25
Issue l
10. 15 Detailed Operation

Fig 64 shows the mechanism of the instruction in more detail.

Bits 0-3 of ACC are examined - if they are zero, then CC is checked.
This should be zero if no significant zeroes have been encountered.

In this situation a literal (usually a space character) is inserted

(i.e. path 1 is followed) DR is updated and ACC is shifted down 4 bits.

The procedure is repeated until the first non-zero character is

reached.

ACC is tested, found to be non-zero, CC is examined - this is still
zero, so path 2 is followed. The digit is inserted, prefixed by the
zone code. Then condition code is set to 2 and 2 descriptor is

stacked pointing to the last space character.

The next pa'cked digit is accessed, in the example shown, this is a
zero - However itisa significantzero. CCis examined. This is now
non-zero, since it was set to a value of two on the last loop, so

ipath 3 is taken. 'I‘he_z.ero ‘prefi.xed by the zone code is inserted into

store.

The next digit examined'is 3 (i.e. non-gero), CC # 0 so path 4 is
followed - the digit and zone-code are inserted. The operation
terminates after L digits have been unpacked. If CC =2 or 3, the
sign digit of ACC is inspected at this stage and CC is set to2o0r3

depending on whether the sign was positive or negative respectively.

Incidentally the mode bit in SSR determines the zone code to be
inserted - if it is a one, then the I1SO code# 3 is used. For a zero,

the EBCDIC code # F is inserted.

Summarising the CC settings of the SUPPRESS & UNPACK

instructicn:

CC = 0, CC was zero and all the digits unpacked were zeros (path 1)

EPG 4473/2/78

© International Computers Limited

iC Technical
Literature

Number 6594899
Sheet 10.26
1

Issue

CcC

CC

CC

CC was originally a one and that all digits
unpacked were zeros (path 3)
Either CC was originally two (path 4) or that

some non-zero digits were unpacked (path 2).
Sign was positive.

Either CC was three, (path 4) or some non-zero

digits were unpacked (path 2). Sign was negative.

EPG 4473/2/T8

© mternational Computers Limited

'cL Technlca' Number 6 5 948 99

Literature Sheet . 19,27
Issue 1
10.16 Table Translate (TTR) ¥ A6 (see fig 65)
Description 3 The descriptor in ACC points to a translation

table. The descriptor must be of type 0,
with size code 8 bits, and a valid bound;
USC and BCI must not be sei. Edch byte in
the (DR) string is replaced by a translation
byte, obtained by using the byte as a
‘'modifier for the base address in ACC to
access the required translation byte.

Thus if the byte address in ACC i's A, and
the value of a (DR) string byte is 11011011
(=219), the latter is replaced by the contents
of byte location A +219. An interrupt occurs
if the value of any (DR) string byte (219 in the
above example) is not less than the bound
field of the descriptor in ACC. (ACC)is
unaltered. If L = 0, and none of the other
checks fail, a null operation is performed,
leaving DR unaltered. Either 16 or 32-bit
forms may be specified but for 32 bits the
mask and literal bytes are ignored
(reserved). If Program Mask bit 5 (Bound
Check) is set, the table is assumed to be
256 bytes long.

cC § Unaltered.
Program errors s Any failures of standard checks 1-3 (see
10.1)

(DR) string byte > bound field of descriptor
in ACC. (see 12.2/5.8)

EPG 447372/78 @ international Computers Limited

Number 65948 99

1 Technical S
Literature o 10.28
1

Issue

Fig 65 TABLE TRANSLATE (TTR) (#A6)

S —

oelzvlMTA;lszTib:]ulnc[Mlnl

DR

or [os | os | 05| 03] 02 | 08 | o7 | string to be transtated
" (before)

[z [aa]as [& Jas [a4 [aa] Bc] canen

Fig 66 TABLE CHECK (TCH) (#80)

Strings to be Checked

| M.S. LS.
3
ts
o
']
1
1 |
] Check Table
ACC Address
T
1
I
1 no
Byte Address &
Yyes cceo
SetCCa=1

Note:- The check table is normally 32 bytes x 8 bits long.
Max. 256 bits.

@ Internationat Computers Limited

ICL Technical

Literature Number 6594899

Sheet 10.29

Issue 1

The first byte to be translated in the example shown is # 0l - using
this value as a modifier the byte containing # 27 is accessed. This
value replaces # 0l in the (DR) string. The next byte in the (DR)
string is # 08 - using it asamodifier, the value ¢ AA replaces # 08
in the (DR) string.

A use of this instruction would be for conversion between the

EBCDIC and ISO character codes.

10.17 Table Check (TCH) # 80 (see fig 66)

Description . : The descriptbr in ACC points to a
table of check bits. This descriptor
must be of type 0, with size code 1 bit,
and a valid bound; USC and BCI must be
zero. Successive bytes in the (DR)
string are checked against this table in
the following way; the mo;re significant
5 bits of the byte are used as a'modifier
of the address in the (ACC) descriptor
to reference a byte in the table, and the.
least significant 3 bits to refer to one
of the bits (numbered 0-7) in that byte.
Thus, if the value of the byte is
10010101 (=8,x 18 + 5) and the byte
address in ACC is A, the check-bit is
bit 5 of byte (A + 18). If the value of
the byte is not less than the bound
field of the descriptor in ACC, an
interrupt occurs. Processing of the (DR)
string, from left to right, continues
until the string is exhausted, or a byte
whose check bit is 1 is found; in the
latter case (DR) is left pointing to that

byte. CC is used to indicate the reason

EPG 4473/2/78 © tnternational Computers Lemited

i Technical
Literature

Number 6594899
Sheet
Issue

10.30

10.18

CC

Program errors

—_—

for termination. (ACC) is unaltered. The
(DR) string is unaltered.

16 - or 32-bit instruction forms are
permitted. In the 32-bit form, the mask ang
literal bytes are ignored (reserved). If

L = 0, and none of the other checks fail,

a null operaticn is performed, leaving DR
unaltered, but leaving CC = 0.

If program Mask bit 5 (Bound Check) is set,
the table is assumed to be 32 bytes long.

0 No non-zero check bit found

1 Non-zero check bit found

2 Not Used

3 Not Used

Any failures of standard checks 1-3. (see
10.1)

(DR) string byte > bound field of descriptor
in ACC. (see 12.2/5.8)

Conditional Insert (INS) $92

Description

This instruction is similar to Move literal
(10. 5) in that the source byte overwrites
successive bytes of the (DR) string. However

the source byte is defined differently, as

“follows:

CC = 0 Literal (bits 24-31 of B, if 16-bit
format)

CC # 0 Mask (bits 16-23 of B, if 16-bit
format)

Each (DR) string byte is completely over-

written.

If LL = 0, and none of the other checks fail,a

null operation is performed, leaving DR

unaltered.

This instruction is intended for use with

EPG 4473/2/T8

(R 1nternationat Computers Limited

Technical Number 6594899
ICL Literature 0 Sheet 10'931

Issue 1

Suppress & Unpack (10.14).
cc . H Unaltered.
Program errors : Any failures of standard checks 1

and 2. (See 10.1).

PG (©) wternational Computers Limited
EEPG 4472/2/78

Note that three of the
instructions in the following
section (TEST, SET and CLR)
are illegal at AMLO.

In addition, these instructions

disappeared from some later
documentation, and may not
have been implemented at all.

icL Technical Number 6594899
Literature Sheet 11.1
: Issue 1
11 MISCELLANEOUS FUNCTIONS
This section covers the instructions not dealt with elsewhere. The
first two instructions are used for bridging purposes between 1900
series and 2900 machines. They convert 6 bit data to or from 8 bit
data.
11.1 Compress ACC (COMA)#98

Expand ACC (EXPA)#88 (see fig. 67)

These instructions use the primary format described in Chapter 1.,
Operand length : Not applicable, literal must be specified.
Description : These instructions require ACS = 32 or 64
bits. They convert the contents of ACC
between an unpacked and a packed form by
manipulation of fields as follows:
Packed Form Unpacked Form
(ACS = 32) (ACS = 64)
Bits 8 - 13 Bits 16 - 21 Bits 2 -7

14 -19 22 - 27 10 - 15
20 - 25 28 - 33 18 - 23
26 - 31 34 - 39 26 - 31
40 - 45 34 - 39
46 - 51 42 - 47
52 - 57 50 - 55
58 - 63 58 - 63

Compress ACC converts from unpacked form

to packed form, ignoring the original contents
of bits 0, 1, 8, 9, etc. of ACC, and generating
zeros in bits 0-7 or 0-15, depending on ACS.
Expand ACC converts from packed form to
unpacked form, ignoring the original contents
of bits 0-7 or 0-15, and generating zeros in
bits 0, 1, 8, 9, etc. ACS is unchanged.

OV is cleared.

EPG 4473/2/78

© Internatronat Computers Limited

Technical Number 6594899

[

ICY Literature Sheet 11.2

Issue 1

Fig. 67 COMPRESS ACC (COMA) (#98) and EXPAND ACC (EXPA) (#88)

For ACS 32 _ o
.0 78 1y - 19 20 2526 3
Acc loooooooo [[I I I

7 - -

e D P Faiea

00 { 6bits | 001 6bita 0 | ebits 00 6 bits
[[or [| [o} l

o 1516 2122 2728 3334 3940 48546 5152 5758 63

ror Acs o | T L T 1T T 1 11 ~
2471 10 l lu ur_:'v ch‘u‘_sTlss aalea' .
TT 11 _T11- 1T |

BL R I TL

EPG 447372178 @ International Computers Lmited

in] Technical Number 6594899
=™ Literature Sheet 11. 3
Issue 1
CC ‘ Unaltered.
Program errors ! ACS =128 bits (see 12.9/13.8)
11.2° Increment and Test (INCT) #56
Test and Decrement (TDEC) #54
Operand length : 32 bits
Description : Increment and test causes 1 to be

added to the operand in store, and CC

to be set according to the value of the
result of that addition. Between reading
the original operand value and replacing »
it by the incremented value, access to
the operand location is prevented by
hardware.

Test and decrement causes CC to be

set according to the original value of

the operand, and 1 to be subtracted

from it. Between reading the original
operaﬁd value and replacing it by the
decremented value, access to the
operand location is prevented by
hardware.

In both cases the operand is effectively
incremented or decremented in situ;
ACC and OV are unaltered 2nd over-

flow is ignored.

EPG 447372 (©) mternationai Computers Limited
44737278

1 Technical
Literature

Number 6594899
Sheet 11.4
Issue 1

CcC

Program errors

The following restrictions apply:

a) Access to the operand is forced by
hardware to bypass slave storage.

b) The operand must be located in the
store rather than a register. Direct TOS
and (PC+N) operand forms are not
permitted.

c) If the operand is accessed indirectly it
may only be via a vector (type 0)

descriptor with size code 32 bits.

If slave storage is present in the
processor these instructions are also
required to clear the operand slave store
of items from segments marked non-
slaved (NS) in either segment table. The
segment containing the operand need not
be cleared from slave stores unless

marked NS,

Note: The operand value will usually be
interpreted as the number of other
processes waiting to use a shared
resource with -1 indicating 'available'.

0 Operand zero

1 Operand >0

2 Operand< -1

3 Operand = -1

(here 'operand' refers to the final value for
Increment and test, the original value for
Test and decrement).

Operand addressing errors

Incorrect descriptor type (see 6/10.13)
Incorrect operand types; Literal, IS, TOS,
B, (PC+N) (See 12.8/12.2)

EPG 447372/78

(©) tntnrmationot Computers Limited

Technical Number 65948
ICL Literature Sheet b
11.5
1

. Issue

11. 3 Activate (ACT) # 3E (gee fig. 68)
Operand length 3 128 bits

Description 3 The first two words of the operand are
loadcd toc LSTB. Bits 14-30 of the first
word, and 0-3 and 29-31 of the second
word are ignored (spare). The third word
is ignored (spare). Bits 0-13 of the fourth
word contain the new value of SSN; bits
14-31 are ignored (spare). After loading
LSTB the action of the instruction is to
generate the base address of segment
(SSN + 1) (effectively by concatenating the
bit pattern 10... 0 with bits 0-12 of the
fourth word of the operand; if the segment
l.mmber is in the range 0-8191, the new
LSTB is used to translate it) and unload
the contents of words 0-15 of that segment
(the 'process state') to the appropriate OCP
registers, the reverse of the stack-switching
interrupt process. In emulating machines,
the E and M bits of the new PSR and SSR
will be examined after unloading words
0-7, and subsequent action will depend on

their values.

Virtual addressing mode is assumed through- .
out. Methods of changing addressing mode
are implementation-defined. If there is
disagreement between the values of SSN
specified by the operand and in words 0 and
4 of the process state the result is undefined.
A system error interrupt may occur if an

atternpt is made to load an odd segment .

number to SSN.

EPQG 4473/2/78 (©) 'mternationst Computers Limited
4

IC

Technical
Literature

Number 6594899

Sheet 11.6
Issue ' 1

CcC

Program errors

The new process defined by the undumped
process state is entered at the instruction
specified by PC, qualified if necessary by
the setting of II, In emulating machines,
if E =1 in new PSR, and EM in new SSR
has a locally valid value, alien code is
executed.

If bit 31 of the first word of the operand is
a 1, and if the EP interrupt mask bit is
not set in the new SSR, an Event Pending
interrupt occurs on resumption of the
process. This may occur before the
registers have been c.ompleteiy undumped
and, if Il is set, it will occur before
attempting completion of the uncompleted
instruction. The EP bit in SSR is ignored
and is not cleared,]

PSTB is not altered. Execution of
Activate may cause the new value of IC

to be decremented.

The instruction requires PRIV =1 to be
executed.

Asg specified in new PSR

Operand addressing errors

Privilege (see 12.5/9.6)

(Emulating machines; PEI14). New

E =1 and EM = 0 or invalid value.

(Note: Masking of program error interrupts is. controlled by the

program and interrupt mask bits in PSR and SSR at the beginn-

ing of the instruction. The occurrence of an unmasked program

error during the initial stage of Activate will prevent the loading

of LSTB, SSN and the other processor registers (i.e. effectively

it is the old process, not the new one, being interrupted).

However, in the case of an error in switching to emulation,

implementation defined action will occur.

© Internationnl Computers Limited

Technical Number 6594899
IHCL Literature Sheet 11.7
' Issue 1

Fig 68 ACTIVATE (ACT)

.8.]0

(#3E)

Operand of Activate Instruction

13

////////
2) //

ik

LST

B Address

LST . Limit

13

5///////////// 3"'57:2:;

Generates Base Address of (SSN + 1) by concatenating SSN

bits 0 - 12 with the bit pattern 100..... 00

even.

(Note SSN is always

Fig 69 LOAD CTB (LCT)#30

0 29 30 31
Operand

Ignore bits
30, 31

0 29

LTB I
STORE CTB (STCT)# 36

0 29
LTB | J

0 29 30 31
Operand | 0 ol

EPG 4473/2/78

(©) mteenationol Computers Limited

Numter 6594899

Technical Shael
ICL Literature 's::’ :l.a

11.4 Load CTB (LCT) #30 (see fig 69)

Operand length 3 32 bits

Description 3 Bits 0-29 of the operand are loaded to CTB.
Bits 30, 31 are ignored.

CC .8 Unaltered.

Program errors - Operand addressing errors

Store CTB (STCT) # 36
Operand length 2 32 bits

Description 3 The contents of CTB, expanded to a 32-bit
byte address by concatenating two zero bits
on the right, is stored.

CcC s Unaltered.

Program errors : Operand addressing errors
Literal operand (see 12.8/12.1)

Non-zero bits of stored item truncated

(see 12. 3/6.0)

(© Wernational Computers Limited
EPG 4473r2/78

G i =
Issue 1
11.5 Test (TEST) #08
This function is illegal in AMLO
Operand length : 32 bits
Description : The operand is fetched and used to set CC.
The ACC and OV are unaltered.
CC settings : 0 Operand =0 '
1. Operand >0
2 Operand < -1
3 Operand= -1
Program Errors : Operand addressing error.
Note: If the operand is accessed indirectly via a vector

descriptor size 6 or 7 (64 or 128 bits) only the 1.s.

32 bits are used.

11.6 Clear (CLR)# 0C
Set (SET)#0E

These functions are illegal in AMLO

Operand length : 32 bits

Description : These instructions are provided for clearing
or setting store locations without affecting
the contents of the accumulator. In effect,
a pseudo 32 bit accumulator is created,
containing all-zeros if CLR or all-ones
if SET. The contents of this ACC are
stored in the operand location which is thus
set to all zeros or all-ones.

CC : Unaltered.

Program Errors Operand addressing errors.
Literal operand)

Size error

EPG 447372/78 (©) mernatonal Computers Limited

Number 6 5948‘)‘)
Technical
ok Literature Sheet 11.10

Issue 1

Notes: With function SET

1) Use of a byte string descriptor with a

length of 1 -3 bytes will cause a size error
(non-zero bits truncated).

2) Bit string operand formats should have the
S field set t.o 1, otherwise a size error
will occur.

3) Use with a vector descriptor for a double
or a quadruple word item will only set the

1.s. 32 bits to all-ones.

] ters Limited
EPG 4473/2/78 © nternationn! Compu! A i

ict] Technical) Number 0594899
Literature Sheet 12,1

Issue 1

12
12.1

Fig. 69.

PROGRAM ERRORS

Interrupt Parameter

Each Program Error is associated with an interrupt parameter.
See fig. 69.

P.E.I. numbers are assigned as follows:-
Code 0 Floating poin.t overflow

Floating point underflow

Fixed point overflow

Decimal overflow

Zero divide

Bound check

Size

B overflow

Stack

® N O oW N -

0

Privilege
10 Descriptor
11 String
12 Imstruction
13 Accumulator
14 ESR errors (emulating machines only).
Codes 0 to 4 and 7 have no sub-identifiers and therefore bits 16-23 are

all 1's for these program errors.

The program errors are now listed in Identifier and Sub-identifier

order, except for cases where no sub-identifiers exist (0-4&7).

Program Error Interrupt Parameter

16 2324 25 31

Sub Identifier R Identifier

Bite 16-23 = Sub Identifier, implementation defined (= alll's if no sub-
identifier).

Bit 24 = Restart bit, If bit 24=1 indicates restart is not p'ossible.

Bits 25-31 = P,E.I, (Program Error Identifier). Range defined.

EPG 44723/2/78

@ nternationn! Computers Limited

Tachnloal Number 6594899
Literature Sl 122

Issue

1

12.2

12.3

12. 4

12.5

Bound

5.0
5.1

5.2
5.3
5.4
5.5
5.6

5.7
5.8

Descriptor bound check-modifier (unsigned) too large.
Modify DR-operand (unsigned) = DR bound.

Dope vector multiply: (Index-lower bound) overflows.

Dope vector multiply: (Index-lower bound) negative.

Dope vector multiply: Multiplier negative.

Dope vector multiply: Upper béund negative.

Dope vector multiply: Displacement (product)> upper bound.
or 3 22,

Dope vector multiply: DR bound goes negative.

Table check, translate, (DR) string byte too large.

Size (Location too small for operand)

6.0

6.1

Significant part of pperand truncated.

Store to register, descriptor size code (typea Oor2)> operand

length (except for jumps).

Stack (Stack register operation qheck)

8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Unstacking operation makes SF< LNB (SF unaltered).

Undefined.

Load LNB and Exit, bits 0-13 of new LNB # SSN (LNB unaltered).
Load LNB and Exit, new LNB 2SF :

Raise LNB, new LNBJ SF (LNB unaltered).

Raise LNB, new LNB < old LNB (LNB unaltered).

Adjust SF, new SFE LNB (SF unaltered).

Adjust SF, segment overflow (SF unaltered).

Privilege (A program error leads to an attempt to use a resource which

9.0
9.1
9.2
9.3
9.4

9.5
9.6

the current level of privilege does not justify).
Read protection fail with ACR
Write protection fail with ACR.
Execute when execute permission bit nqt set.
Use of image store without privilege permission.
Use of non-existent image store (e.g. address does not exist, or
read to write only IS or write to read only IS).
ACR< old ACR or PRIV > old PRIV on Exit.

Activate executed without privilege permission.

@ Internationni Computers Limited

mGil Technical
HI“'L Literature

Number 6594899
Sheet 12.3

Issue 1

12. 6

12. 7

12.8

Descriptor

10.0 Jump descriptor not type 0, size 32 or 64, type 2, escape
code,

10.1 Descriptor for normal operand access not type 0, 1, 2 or
escape type.

10.2 Call descriptor is not type 0, size 32 or 64, type 2, code,
escape or System Call.

10.3 Link descriptor for Exit is not code, escape, or system call.

10.4 Descriptor in DR not type 0, size 32 for Dope Vector multiply.'.

10.5 Length in type 1 descriptor used by primary format instruction
is zero or exceeds operand length.

10.6 DR descriptor is not type 0 or 1 with size code 3, or escape,
for stoi-e-to-stqre operation. .

10.7 ACC descript-or not type 0 or 1 with size code 3, for some
store-to-store operations.

10.8 ACC descriptor not type 0, size 1 or 8, for Table check and
Table translate, respectively.

10.9 Size code incorrect in type 0 descriptor.

10.10 Descriptor sub-type undefined.

10.11 Modifier DR with System Call descriptor in DR.

10.12 (Not Assigned)

10.13 Incorrect deécriptor used for semaphore instruction.

10.14 Reserved for emulating machines.

String

11.0 L > DR bound.

11.1 (Not Agsigned) -

11.2 L > ACC bound for 16 bit form of Move, Compare, And, Or
and Not equivalent strings. Check overlap.

Instruction

12.0 Instruction function is illegal or unassigned.

EPG 4473/2/78

@ Internations! Compulers Limitad

ic] Technical Number 6594899

Literature Sheet 12,4
Issue 1

12.1 Store to literal.
12.2 Indirect address form for certain functions (e.g. Increment

& test, Modify DR, Load relati‘ve).
12,3 Relative jump attempts to alter segment number in PC,
12.4 Unassigned operand address formsk"=7andk'=1 ork'=1 (AMLo
12,5 Item addressed in stack segment lies above TOS. only).
12,6 Item addressed by PC +N lies outside current code segment,
12.7 Normal update of PC attempts to alter segment number.

12.8 Reserved for emulating machines.

12.9 Accumulator (ACC incompatible with instruction)
’ 13.0 ACS 128 bits and fixed point or logical. (except Multiply
Double).
13,1 ACS 64 bits and Add/Subtract logical.

13.2 AGCS =128 bits and Float.
13.3 ACS = 32 bits and Floating divide double.
13.4 ACS =128/32 bits and Load/Store upper half.

13.5 ACS = 128 bits, or 64 if fixed, and Multiply double.

13.6 ACS # 64 bits for store-to-store instructions involving
descriptor in ACC.

13.7 Modify PSR or Exit attempts to set ACS = 0.

13.8 ACS =128 bits and Compress/Expand ACC.

12.10 Operand Addressing Errors

The phrase 'operand addressing errors' is used throughout to cover
errors of the following types:

Bound check (class 0)

Size (class ¥*1)

Privilege (classes 0, **1, 3, 4)

Descriptor (classes *0, **1, *2, **5, 9, 10)

Instruction (classes *3, 4, 5, 6)

* JUMPS ONLY, ** NOT JUMPS

Other program errors are listed explicitly with each instruction

description, except for errors which are checked as part of the

© International Compulars Limited
FPG 447342/78

Technical
IcL Literature

Number 6594899
Sheet Al.l

Issue 1

APPENDIX 1

LIST OF INSTRUCTIONS IN MNEMONIC ALPHABETICAL ORDER

Mnemonic Name
ACT Activate
ADB Add to B
AND And
ANDS And strings
ASF Adjust SF
CALL Call
CBIN Convert to binary
CDEC Convert to decimal
CHOV Check overlap
CLR Clear
COMA Compress ACC
CPB Compare B
CPIB Compare & increment’
CPS Compare strings
CPSR Copy PSR
CYD Copy DR
DAD Decimal Add
DCP Decimal compare
DDV Decimal divide
DEBJ Decrement B & jump if non-zero
DMDV . Decimal remainder divide
DMY Decimal multiply
DMYD Decimal multiply double
DRDV Decimal reverse divide
DRSB Decirr;al reverse subtract
DSB Decimal subtract
* DSH Decimal shift
ESEX Escape exit
EXIT Exit
EXPA Expand ACC
FIX Fix

Function

Section Code (Hex)

11.3
7.4
9.27
10.9
4.6
6.8
9.43
9.44
10.11
11.6
11,1
7.5
7.6
10.8
5.11

"5.6

9.32
9.34
9.38
6.5

9.40
9.36
9.37
9.39
9.33
9.32
9.35
6.10
6.9

11.1

9.41

3E
20
8A
82
6E
1E
DE
EE
B4
0C
98
26
2E
A4
34
12
Do
Dé
9A
24
9E
DA
DC
9C
D4
D2
D8
3A
38
88

B8

EPG 447372178

(© mternational Comouters Limuted

ictl Technical Number 6594899

Literature Sheet Al.2
Issue 1
Function
Mnemonic = Name Section Code {Hex)
FLT Float 9.42 A8
IAD Integer add 9.13 EO0
ICP Integer compare 9.14 E6
IDLE Idle 6.7 4E
IDV Integer divide 9.18 AA
IMDV Integer remainder divide 9.20 AE
IMY Integer multiply 9.16 EA
IMYD Integer multiply double 9.17 EC
INCA Increment address 8.9 14
INCT Increment & test 11.2 56
INS Conditional insert 10.18 92
IRDV Integer reverse divide 9.19 AC
IRSB Integer reverse subtract 9.13 E4
ISB Integer subtract 9.13 E2
ISH Arithmetic shift 9.15 . E8
J Jump 6.1 1A
JAF Jump on arith. - condition false 6.4 06
JAT Jump on arith. - condition true 6.4 04
JCC Jump on CC 6.3 02
JLK Jump and link 6.2 1C
L Load 5.1 60
LB Load B 7.1 7A
1CT Load CTB 11.4 30
LD Load DR _ 8.1 78
LDA Load address 8.5 72
LDB Load bound 8.7 76
LDRL Load relative 8.2 70
LDTB Load type & bound 8.6 74
LLN Load LNB 4.2 7C

ISD -~ Set ACS 64 & load 5.2 64

@ Internationat Compulers Limited
EPG 4473s2/78

L] Teehaice il
Issue 1

Mnemonic Name Section g:::t(i:lr;xl
LsQ Set ACS 128 & load 5.2 66
LSS Set ACS 32 & load ' 5.2 62
LUH Load upper half 5.4 6A
LXN Load XNB ' 4.5 7E
MODD Modify DR - 8.8 16
MPSR Modify PSR . 5.1iv 32
MV Move 10.3 B2
MVL Move literal 10.5 BO
MYB Multiply B 7.4 2A
NEQ Not equivalence 9.27 8E
NEQS Not equivalence strings . 10.9 86
OR Or 9.27 8C
ORS Or strings) 10.9 84
ouT Out _ 6.6 3C
PK Pack 10.13 90
PRCL Precall - 4.8 18
RAD Floating add 9.3 Fo
RALN Raise LNB 4.4 6C
RCP Floating compare 9.5 Fé6
RDV Floating divide 9.9 BA
RDVD Floating divide double 9.11 BE
RMY Floating multiply 9.7 FA
RMYD Floating multiply double 9.8 FC
ROT Rotate 9.28 CA
RRDV Floating reverse divide 9.10 BC
RRSB Floating reverse subtract 9.4 Fq
RRTC Read real-time clock 5.7 68
RSB Floating subtract 9.3 F2
RSC Scale ; 9.6 F8
SBB Subtract B 7.4 22
SET Set 11.6 0E

EPG 4473/2/78 © mternationat Computers Lmited
447312/7 -

ICH Technical

Number 6594899

Mnemonic Name
SHS Shift 32 bits
SHZ Shift while zero
SIG Start significance
SL Stack & load
SLB Stack & load B
SLD Stack & load DR
S1SD Stack, set ACS 64 & load
SLsQ Stack, set ACS 128 & load
S1SS Stack, set ACS 32 & load
ST Store
STB Store B
STCT Store CTB
STD Store DR
STLN Store LNB
STSF Store SF
STUH Store upper half
STXN Store XNB
SUPK Suppress and unpack
SWEQ Scan while equal
SWNE Scan while unequal
TCH Table check
TDEC Tth & decrement
TEST Test
TTR Table translate
UAD Logical add
ucp Logical compare
URSB Logical reverse subtract -
UsB Logical subtract
USH Logical shift
VAL Validate address
VMY Dope vector multiply

Literature '5"“‘ fd .4
ssue
Function

Section Code (Hex)

9.29
9.30
8.10
5.8
7.2
8.3
5.9
5.9
5.9
5.3
7.3
11.4
8.4
4.3
4.7
5.5
4.5
10.14
10.6
10.7
10.17
11.2
11.5
10.16
9.22
9.25
9.24
9.23
9.26
8.11
7.9

CC
CE
28
40
52
50
44
46
42
48
5A
36
58
5C
SE
4A
4C
924
A0
A2

" EPG aa73r2/78

@ Internationnl Compulers Limiled

ICL] Technical " Number 6594899
Literature Sheet A2.1
Issue 1

APPENDIX 2
Functional Grouping of 2900 Orders

JUMPS
Mnem Hex Type
Code
J 1A P Jump unconditionally, PC'=PC + LIT or OPo 30
DEBJ 24 P Decrement B & Jump if non-zero, B'=B-1, jump if B'# 0
JCC 02 T Jumpon CC, PC'=PC + LIT or 'OPO 30 if bit (CC) of M=1
M= ojl1]|2]|3|4|5|/6|7|8|]9|A|B|C|D|E|F
JCC -}13]2|2)1f{1|1|j1|0o|OofjOo|Oo]|O|O |Of|A
can 3 3122 3121211 |1]|N
be 3 3 312)Y
JAT 04 T Jump on arithmetic true. jump if 'M'is true.
JAF 06 T Jump on arithmetic false. jump if 'M' is false.
Where with floating M=0 ACC=0, M=1 ACC > 0, M=2ACC <0
with fixed M=4 ACC=0, M=5ACC > 0, M=6ACC < 0
with decimal M=8 ACC=0, M=9ACC > 0, M=10 ACC<0
with B M=12, B=0, M=13, B>0, M=14, B <0
and M=11, DR-BOUND =0, M=15, OV=1
JLK 1C P Jump & link, TOS'=PC, PC'=PC + LIT or OPO 30
CALL 1E P Procedure call. (L+1)' = descriptor of PC and jump
EXIT 38 P Procedure exit. stack returned to status quo, jump to link
ESEX 3A P Escape exit, PC'=TOS, D'=1 with descriptor in DR
DR INSTRUCTIONS
LD 78 P Load DR. DR '=01:’0 63'CC.= descriptor type
LDRL 70 P Load relative. DR':OP0 63+OP address, CC'=descriptor type
' =
LDA 72 P Load address. DR 32-63 _0P0-31
' =
LDTB 74 P Load type and bound. DR 0-31 0P0-31
. DR! =
LDB 76 P Load bound. DR 8-31 0P893l
SLD 50 P Stack & load DR. TOS'=DR, DR':OP0 63,CC':descriptor type
P DR. OP! = DR
STD 58 Store DR. O 0-63

EIPG 447312178) © International Computers Limited

Technlcal Numbier 65948
Literature Sheer A29 " 99

Issua 1

IC

b

P In ' =DR +OP
INCA 14 crement address. DR 32-63 32-63 0-31
OoODD 16 P Modify DR. ' =DR -OP DR! =

M adiy BB DR 81" "Nggh =™ pealt" 3™ Ry g

+OP
0-31 scaled.

VAL 10 P Validate address. check validity of DR by OP8 uas ACR
OK CC'=0, read only CC'=l, write only CC'=2 invalid CC'=3,

SIG 28 P Start significance. If CC'=0, OPO 63= type 1 descriptor of
length = 1.

address = address -1 and CC set to 1. If CC # 0.do nothing

B INSTRUCTIONS

. B'= =
LB 7A P load B OP0_31. oVv'=0

SLB 52 P Stack & Load B. TOS'=B, B'=Ol'-’O 310 oVv'=0

STB SA P Store B. OP'O 3l=B' oVv'=0

ADB 20 P Add:ito B, B'=B + OPO 31" OV'=overflow

SBB 22 P Subtract from B. B'=B - OP0 31 0V'=o'verfl.ow
MYB 2A P Multiply B. B'=B, OPO 3’ OV'=overflow

CPB 26 P Compare B. B=OP ,, CC'=0, B<OP,CC'l, B>OP,

CC'=2
CPIB 2E P Compare B increment B, as CPB & B'=B +1
VMY 2C P Dope vector multiply. B'=(0Po 31 -x). y, check 0 €B' < z
&0 <(OP - x) <23, x, y, z=(DR), (DR +1), (DR +2).
STACK CONTRQL
. I= 3 SSN

LLN 7C P - Load LNB, LNB 0P14_29, 0P0-l-3must equal .
STLN 5C P . Store LNB, OP'0 31 = SSN/LNB

RAIN 6C P Raise LNB, LNB'=SF - OPo 31

ASF 6E P Adjust SF, SF + 011'0 31" OP may be -ve

LXN 7E P Load XNB, XNB':O]?0 29

STSF 5E P Store SF. OP', ., = SSN/SF
STXN 4C P Store XNB. OP'=XNB
PRCL 18 P Precall, Stack SSN + LNB & ASF

Tl tional Computers Limited
EPG 447372/18 © nternation o

iCL] Technical

Literature

Number 6594899
Sheet AZ. 3

Issue 1

ouT

IDLE
ACT

LCT

STCT
~ TEST
+ CLR
% SET

SWEQ

SWNE
CPS

MV
CHOV

MVL
TCH

TTR
PK
SUPK
" INS
ANDS
ORS
NEQS

3C

4E
3E

30

36
08
0oC
0E

A0

A2
A4

B2
B4

BO
80

A6
90
94
92
82
84

g

W.9 Y X

«n

“ 0 u o n uon

SUNDRIES

Out. Cause class 9 interrupt with OP as parameter,

0-31
Idle. Suspend instruction sequencing until interrupt occurs

=]1STB: i . =
3 B; 0P64-95“ spare; 0p96-110 SSN.

Load OCP registers with contents of SSN + 1 and start

Activate. OP0-6

process.

. =
Load CTB. CTB -0P0-29

Store CTB, OP'=LCB
Test operand. ACC & OV unaltered.
Clear store location. ACC unaltered.

Set store location. ACC unaltered.

STRING INSTRUCTIONS
Scan while equal. LIT # (DR) stg, not found CC'=0
(DR)> ref. CC'=2. (DR)¢ ref. CC'=3,
Scan while unequal, LIT = (DR) stg, not found CC'=0 else 1
Compare strings. (DR) = (ACC), CC'=0|(DR) > (ACC),
CG'=2 | (DR)<(ACC), CC=3
Move . (DR) string = (ACC) string
Check overlap. none, CC'=0[{(ACC) > (DR), CC'=1]|
(ACC)< (DR), CC'=2
Move literal., (DR)' string = literal
Table check. check (DR) stgs with bit in (ACC) stg and stop
if bit = 1 setting CC'=1, else CC'=0

Table translate. (DR) string is translated by (ACC) stg.
Pack. ACC'= (DR) string, packed. OV = 0 _
Suppress & unpack. (DR)' string = ACC unpacked, CC is set
Conditional insrt. (DR)' string = LIT (CC=0) or mask (CC#0)
And string. (DR)' stg.= (SR) stg. & (ACC) stg.or literal

Or string. (DR)' stg = (DR) stg. v (ACC) stg. or literal

Not equivalent string . (DR)' stg = (DR) stg 3 (ACC) stg. or

literal.

EPG 447372178

(©) internatronnt Compuiers Limited

Number 6594899
sheet A2.4

tssue 1

Technical
Literature

SEMAPHORE INSTRUCTIONS

INCT 56 P Increment and test OP'=OP +1

TDEC 54 P Test and decrement OP!'=OP -1
OP=0, CC=0| OP>0, CC=1| OP¢ -1, GC=2| OP= -1,
CC=3 ‘ '
(OP=final value for INCT and original value for TDEC),

ACC INSTRUCTIONS

| . {
L 60 P Load. ACC'=OP, . OV'=0
LSS 62 P Set ACS 32 & load. ACS'=32, ACC'=OP_ ,,, OV'=0
LSD 64 P Set ACS 64 & load. ACS=64, ACC'=OP ., OV'=0
LSQ 66 P Set ACS 128 & load. ACS=128, ACC'=OP .., OV'=0
LUH 6A P Load upper half, ACS'=2ACS, ms } of ACC'=OP, o, OV'=0
CYD 12 P Copy DR. ACS'=64, ACC'=DR, OV'=0
- L -
SL 40 P Stack & load. TOS', ..=ACG, ACC'=OP, . 0V'=0
SLSS 42 P Stack, set ACS 32 & load. TOS, .. = ACC, ACS'=32,
- { P
ACG=OP .., OV'=0
SLSD 44 P Stack, set ACS 64. & load. TOS, _=ACC, ACS'=64,
- 1=
ACC=OP ., OV'=0

S1LSQ 46 P Stack, set ACS 128 & load. TOSACS=ACC, ACS'=128,

= V=
ACC OP0_127, OoVvV=0

= Vi=
ST 48 P Store. OPACS ACC, O 0

STUH 4A P Store upper half. OP'; , ~c=ms 1 of ACC, ACS'=} ACS
2

oVv'=0

MPSR 32 P Modify PSR. If OP27=1, ACS':OP30_31 1f OP26=1,
CC'=OP28_29 1f OP24=1 , PM'=1's at 0P16-23=l 's or
OP25=1, PM'=0's at 0Pl6_23=0's.

(©) Wiernationnl Computars Limited

icL] Technical Number 6594899
Literature Sheet A2.5

Issue 1

CPSs PSR, OP = = ' =
R 34 P Copy 0-1591 01>16_23 PM IOPZ4_27 1110
= ' = !
OF.o a9 cc | OP, ;,=ACS'.
RRTC 68 P Read real time clock. ACC! = clock output.

0-63

LOGICAL (WORD)
UAD CO0 P Logical add. ACC'=ACC + OP

CC'=carry, OV'=0

0-31"
USB C2 P Logic subtract, AC'=ACC - OPo 31" CC'=borrow, OV'=0
URSB C4 P Logical reverse subtract. ACC':OI—’0) ACC, CC'=borrow,
ov'=0
UCP Cé6 P Logical compare,. ACC:OPACS, CC'=0 | ACC<OP, CC'=1

ACC >0P, CC=2

USH C8 P Logical shift. Shift ACC left 0P25_3lplaces or right if

OP-ve, OV'=0

ROT CA P Rotate. Rotate ACC left OPZS-SI places or right if OP-ve,

oVv'=0

SHS CC P Shift 32 bits. Shift ACCO_31 left OPZS_Slplaces or right if

OP-ve, OV'=0
SHZ CE P Shift while zero. Shift ACC left until ACC, # 0, OP'= no. of
places, OV'=0

AND B8A P And. ACC'sACC & OP

L
ACSs'’ ov'=o

OR 8C P Or. ACC'=ACC v OP V=0

ACS’ -

NEQ 8E P Not equivalent. ACC'=ACC # O OoV'=0

PACS'

DECIMAL
DAD DO P Decimal add. ACC'=ACC + OPACS' OV'=overflow
DSB D2 P Decimal subtract. ACC'=ACC - OPACS' OV'= overflow
DRSB D4 P Decimal reverse subtract. ACC':OPACS - ACC, OV'=gverflow
DMY DA P Decimal multiply. ACC'=ACC. OPACS' OV'= overflow
DMYD DC P Decimal multiply double. ACS'=2ACS, ACC'=ACC. OPACS'

ov'=0

EPG 447372/78 @ Internatianal Computars Lnuted

ict] Technical

Number 594899

Literature Sheel A2.6
Issue | 1
DDV 9A P Decimal divide. ACC‘:ACC/OPACS, oV'=0
3 . e s _
DMDV 9E P Decimal remainder divide. ACC -ACC/OPACS.TOSACS_
rem. OV'=0, rem=0 or rem, 0 & div> 0, CC'=0, | rem >0
& div¢ 0, CC'=1,| rem<¢ 0 & div) 0. CC'=2,|
rem<¢ 0 & div¢ 0, CC'=3
DRDV 9G P Decimal reverse divide. ACC':OPACSIACC, oVv=0
DCP D6 P Decimal compare. ACC:OPACS, CC'=0 | ACC<OP,
CC=1 | ACC) OP, CC=2
DSH D8 P Decimal shift. Shift ACC left 4, OP places or right if -ve,
OV'= overflow
CBIN DE P Convert to binary. ACC' (binary) = ACC (pk decimal),
OV!' = overflow <
CDEC EE P Convert to decimal. ACS'=2 ACS, ACC' (dec) = ACC (bin);
ovV'=0 Y
FIXED POINT (INTEGER)
IAD E0 P Add. ACC'=ACC + OPACS' OV! = overflow
ISB E2 P Subtract. ACC'=ACC - OPACS’ OV' = overflow
IRSB E4 P Reverse.subtract. ACC':OPACS - ACC, OV'= overflow
: - 1=
IMY EA P Multiply. AC'=ACC, OPACS' oVvi= (')verflow
IMYD EC P Multiply double. ACS'=2ACS, ACC'=ACC, OPACS' oVv'=0
ACC +ve, OP +ve, CC'=0, | ACC +ve, OP -ve, CC'=1,
ACC -ve, OP tve, CC'=2 | both -ve, CC=3
IDV AA P Divide. ACC':ACC/OPACS, OV'= overflow
IRDV AC P Reverse divide. ACC':OPACSIACC, OV'= overflow
IMDV AE P Remainder divide. ACC'=ACC/OP ACS’ TOS'= rem,
'CC!' as DMDV
ICP E6 P Compare. ACC=OP cc'=0, [ACCK OP, CC'=1,

ACS’
ACC) OP, CC'=2

EPG 447372/78

© Infernationnl Gomputers Lunited

icL] Technical Number 6594899
Literature Sheet A2,7
Issue 1
ISH E8 Arithmetic shift. ACC'=ACC, 2i, i = -
OV'= overflow i +ve, CC'=3 | i -ve, all last bits =0, CC'=0/
Last bit 0,CC'=1 | Last bitl, CC'=2
FLOATING POINT (REAL)
RAD FO Floating add, ACC'=ACC + OPACS' OV'= overflow
RSB F2 Floating subtract. ACC'=ACC - OPACS' OV'= overflow
RRSB F4 Floating reverse subtract. ACC':OPACS -ACC, OV'=
overflow
RMY FA Floating multiply. ACC'=ACC, OPACS,OV'= overflow
RMYD FC Floating multiply double. ACS'=2ACS, ACC:ACC.OPACS,
OV'= overflow _
RDV BA Floating divide. ACC':ACC/OPACS, OV'= overflow
RRDV BC Floating reverse divide, ACC':OPACS/ACC, OV'= overflow
RDVD BE Floating divide double., ACS'=2ACS, ACC':ACC/OPACS,
OV'= overflow
RCP Fé6 Floating compare. ACC:OPACS, CC'=0 | ACCKOP,
CC'=1| ACC > OP, CC=2
RSC F8 Scale, ACC'=ACC, 16%. i=OP,, . . OV'= overflow
-] - 1 3} = 1
FLT A8 Float. ACS'=2 ACS, ACC FP-ACC int. 1_0P22_3l(blased)
OV'= overflow
FIX B8 Fix. ACS':% ACS, ACC! int :ACCFP, OP'=ACC exp
(unbiased) OV'=0
EMULATION
COMA 98 Compress ACC ACC! (6 bit chars) = ACC (8 bit bytes)
EXPA 88 Expand. ACC ACC! (8 bit bytes) = ACC (6 bit chars)
* Instruction illegal for AMLO.

EPG 4473/2/78

© International Computers Limited

