- Product Company PSD
specification restrioted SD 2.5.1

Sheet 1

Issue 6 Zo

This is a controlled Company document. its safekesping is the responsibility of

- Holder

Copy no.
Dssircution Centre to insert name and copy number of holder
m T® PRIMITIVE LEVEL INTERFACE
Prepared by: various Technical authority: RS&P, SCD
me Location: "~ Name: J. E. Thompson
Enquiries to: J. E. Thompson Location: BRA Ol
o Location: BRA O1 ' Issuing authority: PDG Documentation

Location: BRA Ol

-

Status - Red

v
: et
2

tructions to hoiders
c}"" {The PSD is incomplete until these instructions have been carried out)

Signature of Signature of
- ’ . Technical Issuing
fssue Sheet Instructions Replaces Authority Authority Date of Issue

A - e-issue ~/ y ?&1 v . §. |
- 6/0 |1- 147 R gpgé /1/" / 27.5- %0

CP3y,

e e
=

- c_,?sohaﬁild:locnmicvoﬁdn Boeoo ‘E 2

The information in this document is provided for development purposes only and is subject to change. The information is proprietary to ICL and is

supplied on the understanding that it shall be kept confidential to recipients and that it shall not be reproduced and/or used for commerciai purposes
withuut the written consent of 1ICL

-

Product Company PSD 2.5.1
specification restricted 6/0
ﬁ'\~ Issue
B Sheet 2
- 0 DOCUMENT CONTROL
0.1 Contents List
- 0 Document Control
0.1 Contents List
0.2 Status record details
- 0.3 Change proposals approvals list
0.4 Documentation cross—-reference
0.5 Document predecessors
- 0.6 Document acceptances
0.7 Changes forecast
- 1 General
1.1 Scope
TN 1.2 Introduction
o l.2.1 Purpose of document
= 1.2.2 History
1.3 Changes from previous issue
by 2 Concepts and conventions
2.1 The primitive level
2.2 New concepts
- 2.2.1 Virtual machines and processes
2.2,2 The stack
2.2.3. Descriptors
2.3 Conventions
- 2.4 Ignored fields
2.5 Architectural Mod levels.
- 3 Registers and image store
3.1 Visible registers
3.1.1 Program counter
- 3.1.2 Stack front pointer
N 3.1.3 Local Name base
s 3.1.4 Extra Name Base
3.1.5. Cross—-referenced Table Base
- 3.1.6 Accumulator
'3.1.7 1Index accumulator
3.1.8 Descriptor register
- 3.1.9 ACC size
3.1 010 Overflow
3.1.11 Condition code
- 3.1.12 Program mask
3.1.13 Real-time clock
3.2 'Invisible' registers
3.2.1. SSR
- 3.2.2 PSR
i 3.2.3 LSTB
3.2.4 PSTB
- 3.2.5 IT
3.2.6 IC
3.2.7 SSN
N Image store

3.3
3.4 Privilege

Product Company pSD 251
specification restricted e 6/0
Sheet 3

3.5 1Image Store map
3.5.1 Block O
3.5.2 Block 2

Virtual Store addressing and protection
4.1 Segment and page tables

4.2 Protection

4.3 Slave stores

Instruction sequencing

5.1 Normal sequencing and jumps
5.2 Procedure entry and exit
5.3 Interrupt mechanism

Instruction and descriptor formats

6.1 Instruction formats

6.2 Descriptor formats

6.3 Operand addressing and alignment
6.3.1 General principles
6.3.2 Primary and tertiary format operands
6.3.3 Secondary format

Exception conditions
7.1 Categories

7.2 System errors

7.3 Virtual store conditions
7.4 Program errors

7.5 Program mask

7.6 State of registers

Instruction descriptions
8.1 Miscellaneous functions
8.l1.1 List of instructions
8.1.2 Control and jump instructions
8.1.3 ACC instructions
8.1.4 B instructions
8.1.5 DR instructions
8.2 Computational functions
.1 List of instructions
«2 Data formats
«3 Floating-point instructions
4 Fixed-point instructions
5 Logical instructions
6 Decimal instructions
tore—-to-store instructions
1 Introduction
2 List of instructions
8.3.3 1Instruction descriptions
8.4 Bridgeware instructions

8.3

Privileged operations

9.1 General

9.2 Instruction descriptions
9.3 Bootstrap

ICL Product Company PSD 2.5.1)
pecification restricted
- s ca lssue 6/0
Sheet 4
(]
Appendix 1: Alphabetical list of instructions
Appendix 2: Summary of additional facilities at AML1
L Appendix 3: List of microcode routines
0.2 Status Record Details
.
Nil
0.3 Change proposals approvals list
"
All approval centres
o 0.4 Document cross-references
N Ref PSD Issue Title
- (1] 4.2 series Processor specifications, pts I &II
| [2] 2.5.2 - 2/4 PI for Peripheral Controllers
[3]
[4] Current KERNEL documentation
= [5] 2.4.1 4/0 ICL/CDC Compatible Trunk Interface
(6] 2.3.8 1/3 Primitive level system communication
and control
] [7] 2.5.5, Primitive interfaces for Emulators
2.5 06, etc.
iy
0.5 Document predecessors
Previous issues of this document (see also section 1.2.2)
N
0.6 Document acceptances
]
/N\. All the contents of this document have either been agreed by
. representatives of CDD and SPD at resolution meetings, or circulated
- on paper and discussed and agreed formally before publication in
this document.
- 0.7 Changes forecast
The whole of this document will be brought up to date, to reflect
the changes that have occured during the previous three years.
LS The addition of such items as vectored interrupts, slaving
facilities and new descriptor types will be included.
L]
Lo~
N
Fosi

Product Company PSD 2.5.1

specification restricted e 6/0
Sheet 5

1 GERERAL

1.1 Scope

This document defines the range standard for the primitive level interface
for P1, P2, P3 and P4. The contents of subsequent sections are outlined
below:

~

Section 2: Concepts and conventions

Describes the significance of the 'primitive level' referred to in the
title of the specification, and its relationship to Alice and to other
elements in the range structure. Certain new concepts, defined in detail

in later sections, are outlined, with the aim of making those sections
easier to read.

Section 3: Registers and Image store

The information on which the processor operates directly is held, outside
the main store, in a well-defined set of registers: This section defines
those registers, dividing them into two classes: visible and invisible.
The former are those whose contents are directly concerned in, and in
certain cases may be altered by, the sequencing and execution of
instructions at a non-privileged level. The latter play a similar part at
more highly privileged levels.

The 'Image store' mechanism which provides access to these and other
registers, e.g. for diagnostic purposes, is also defined.

Section 4: Virtual store addressing and protection

Defines the virtual store accessing mechanism (which provides inter-
process protection), and the in-process store protection mechanism.

Section 5: Instruction sequencing

Defines the way instructions are normally sequenced, and the rules for
updating the Program Counter register; the procedure entry and exit
mechanisms, including the way they exploit the stack; and the interrupt
mechanism and conditions which lead to interrupts.

Section 6: Instruétion and descriptor formats

Defines the formats of 16-bit and 32-bit instructions, and of all the
different types of descriptor. The rules whereby instructions access
operands are given.

Section 7: Exception conditions

Classifies the various interrupt conditions which arise out of program
execution.

Product Company PSD 2.5.1

specification restricted

- Section 8: Instruction descriptions

Defines the action of each instruction, including the error conditions
which they may generate.

Py
Section 9: Privileged operations

- Defines certain functions which may be implemented either as special
instructions or by using other instructions to access privileged image
store locations.

]
Appendix 1: List of instructions

- An alphabetical index giving function codes and section references.

~ Appendix 2:
- A summary of additional features at AMLl.
-
1.2 Introduction

- 1.2.1 Purpose of document
This document describes the range standard primitive features common to
P1-P4, and indicates which features are implementation-defined. It does

= not define, for example, which instructions are expected to be extracoded
on which models, nor does it go into detail on any implementation-defined
aspects. For these the appropriate processor specifications (1) should be

- consulted. Nor is this document concerned with Input-Qutput facilities;
these are defined in (2). Features used by microprogrammed emulators are
included.

N System components such as SAC, SMAC, etc. are defined in the processor

specifications.

- 1.2.2 History

After the publication of NRSD 1.1.6, Issue 1/0 (20.10.69), which is
- totally superseded by the present document, the primitive interface was
completely revised as part of the process of convergence with Manchester
University. The revised primitive interface, as it applied to P3 and P4,
- was described in NWB 101-108. NWB 103-108, respectively, corresponded to
sections 3-8 of this document.

Issue 1 of NWB 103-108 appeared at the end of March, 1970. A resolution
meeting for these documents, chaired by the Deputy Manager, NRO, was held
on lst April, 1970, and on 9th-10th April, 1970 a further meeting with
repregsentatives of CEO(NW) and DPEO. As a result of these meetings Issues
- 2 of NWB 103-108 were produced at the end of April, 1970. At the same
time NWB 109 was produced which described the points at which Pl and P2
(as originally planned) diverged from P3 and P4.

Product Company PSD 2.5.1

specification restricted oo 6/0

Sheet 7

Issue 1/0 of this document, dated 29.5.70, was effectively a merger of NWB

- 103~-108, Issue 2, with NWB 109, to produce a range standard for Pl1-P4.
Issue 1/1 (1.7.70) contained numerous small corrections aimed at

- tightening up and clarifying the specification, and some more significant
changes.

- Issue 2/0 was the outcome of a mini-resolution meeting held on 15.10.70,
attended by members of NRO, SPO, CEO(NW) and DPEO.
Issue 2/1 (23.2.71) incorporated more detailed descriptions of the image

- store, privileged functions, real-time clock, and other changes,
circulated prior to the end of 1970.

o Issue 2/2 (24.3.71) was the outcome of a meeting with representatives of

— DPEO, CEO (NW) and SPO held on 10.2.71.

- Issue 2/3 (26.5.71) incorporated changes circulated in April 1971.
Issue 2/4 (8.7.71) changed the status of the document to RED.

-

Issue 2/5 (10.9.71) resulted as a consequence of the policy decisions made
by the New Range Working Party on 17th June 1971. The format of floating-
point numbers was changed to that used in IBM 360 and 370 Computers (and
- System 4), and the EBCDIC internal character code was adopted as standard.
Changes to the format of IT and IC were also incorporated. (CP2)

- Issue 3/0 (2.12.71) contained cross-referencing between sections 7 and 8,
' several minor changes for clarification and for consistency with other
documents, and some additional notes involving hardware changes. The
real-time clock was also changed. (CP3)

P‘
Issue 3/1 (18.2.72) contained a change to the Validate Address instruction
to incorporate adequate checks on stack references. (CP4/5)
-
Issue 3/2 (2.10.72) contained changes to improve efficiency of software
particularly that written in S3, by reducing certain commonly-occurring
- overheads. (CP6)
Issue 3/3 (19.2.73) clarified certain details in line with hardware
implementation. (CP7)
- .
Isgue 4/0 (11.7.73) introduced "null" string operations (L=0), removed ACR
checks on the stack segment, described the features required by emulating
e machines, and included other minor amendments and clarifications (CP8).

Issue 4/1 (2/11/73) made slight changes to IS access rules and introduced
- the processor type number (IS block O, line 16) and the bit distinguishing

external CPU register IS addresses from SAC or trunk addresses (CPl0,
superseding CP9).

Company PSD 2.5.1

restricted — 6/0

Sheet 8

Issue 4/2 (31.1.74) qualified the absence of ACR checking on stack
segment, and specified less stringent check on EM bits in SSR when
switching to emulation mode.

Issue 4/3 incorporated the following changes:-

(a) ST, STUH to clear OV if operand is B.

(b) LSS to be permitted to use image store operand forms.

(c) ASF to leave SF unadjusted if VSI occurs.

(d) Checks on accesses above SF in stack segment to be implementation
option,

(e) Stack segement not to be used for I/0 (paging excepted).

(£f) Actions of PK, SUPK undefined if more than 127 bytes involved.

(g) IC may be decremented "during" rather than "at termination of" each
instruction (less precision implied).

(h) Space to be available in main store for the interrupt parameters on
a stack switching interrupt.

Issue 4/4 corrected a typographical error.
Issue 4/5 incorporated the following change:-

Descriptors created by SIG and SUPK to have bits 2 - 7 defined.
The following changes were introduced in Issue 5/0.

(a) A new register called Linkage Table Base (LTB) is added and
associated operand forms in place SSN.
(b) Three new instructions are added
(1) Load LTB (LLT)
(11) Store XNB (STXN)
(111) Store LTB (STLT)
(c) The Diagnose instruction (DIAG) is deleted.
(d) A new instruction Pre-call (PRCL) is added.

Issue 5/1 introduces the following changes:-

(a) Deletion of COM and EXP

(b) Clarifications to DEBJ, JAT, JAF, TTR, TCH.
(c) Stack segments must not be marked as NS.

Issue 5/2 introduced the following changes.

(a) Miscellaneous clarifications.

(b) ‘'Linkage Table Base' change to 'Cross-reference Table Base'.

(c) Description hardware System Call decode added.

(d) Need for Read access permission for Block 0 of Image Store deleted.
(e) Semaphore descriptors introduced and INCT and TDEC modified.

(f) EXIT modified to place link in DR.

(g) Microcode Descriptor introduced.

(h) Addition.

Issue 5/3 introduced the following changes

(a) Typographical corrections to Issue 5/2.

(b) Addition of Bit String operand form.

(c¢) Addition of OBS (Operate on Bit String) instruction.
Issue 5/4 introduced the following changes

- Product Company PSD 2.5.1
specification restricted
TN\
-
Sheet 9
Applicable to AMLO (and AML 1)
= (8) Correction of minor errors from previous issues
(b) Appendix 3 is added listing microcode descriptor numbers
(c) Event pending interrupts (during ACTIVATE) are defined to be taken
L before completing an instruction if II is set.
Applicable to AML1 only
(a) Read Real Time Clock - alternative format
. (b) System Call Count maintained by system call decode routine
(c) P Space Check - Number of parameters checked by system call decode
routine.
(d) Modified VALIDATE instruction
- (e) Extension of use of bit string operands
(f) OBS replaced by three functions - Test, Clear and Set
(g) Operand form (B+N) introduced
- (h) Vector descriptors, size code 4 (=16 bits) introduced
~ (1) ‘'signed' descriptors introduced
_— Issue 5/5 introduced the following changes:
(a) Definition of Block 2 Image Store for SCUl systems.
(b) Preferred values of Block O, sub-block 60, Image Store.
- (c) Revisions to 'Processor Characteristics' Image Store, Block O,
’ Line 16.
(d) Relaxed requirements for Slave Store clearing.
(e) Miscellaneous corrections and clarifications.
T
Issue 5/6 introduced the following changes:
(a) Clarification of AMLI.
- (b) Removal of Bit String and TEST CLR and SET.
(c) Amplification of setting of USE bits.
(d) Miscellaneous corrections and clarifications.
= Issue 6 introduce the following changes:
(a) A complete retyping of this document on a 7700 Information
Processor has been made. This incorporates minor editorial
LS corrections only. :
(b) CP35 (Image Store Changes) has been added.
(c) CP36 changes of a minor nature to bring the document nearer
o to its final state. These include slaving conditions
in TCH & TTR, protection of slaves, addition of 128 bit
image store area and a restriction to one, in the indirection
an of Global Segment Tables.
(d) CP37 restoration of infrastructure characteristics in image store
word 16
(]
-
A.
]
-

Company PSD 2.5.1

restricted — 6/0

2.1

2.2

CONCEPTS AND COWVENTIONS
The primitive level

The 'primitive level' is the lowest level at which a description of a New
Range Processor as a machine which sequences and executes imstructions can
be given. It corresponds to the hardware instruction code. Most users
will program the system at one of two levels higher than the primitive
level, 1.e. either at a 'high level (using a high level language, e.g.
PL/1), or at the Alice Level which is intermediate between 'high' and
‘primitive’ levels (Alice = Translator Target Language - see [3]). Alice
has many features of an Assembly code but has greater significance in
that, as its name implies, it is the language into which high level
languages compile, and also, although it is not really in one-to-one
correspondence with any primitive level instruction code, it is
sufficiently close to that level to be implemented efficiently on any
current or projected New Range processor.

The primitive level interface described in this document defines the
facilities available to a programmer operating at the primitive level.
These facilities are provided on Pl, P2, P3 and P4. The description
speaks of instructions, registers, and store, but these should not be
assumed to mirror the hardware too precisely - some of the instructions
described may be implemented on some machines by extracode, rather than
directly in hardware; and since store addressing is virtual the
composition and allocation of physical main storage is hidden, e.g. some
'registers' may be held therein. In other words, this is the description
of an interface and does not attempt to define how the facilities are
implemented in hardware on the other side of the interface.

Bew Concepts

2.2.1 Virtual machines and processes

Unless explicitly described as real addresses, all store addresses are
virtual, i.e. they refer to a conceptual 'virtual store' which is mapped
onto the real store, rather than directly to the real store. A virtual
address is converted by hardware to a real address (of whose value the
user is ignorant) in the act of accessing the store.

The dynamic relocatability implicit in the virtual-to-real address
conversion means that the allocation of real store can be optimised by the
supervisory software which controls the mapping of the virtual store.

A virtual address 1is 32 bits long, and 18 the address of an 8-bit byte.
The virtual store available to any user thus appears to be up to 232
bytes in size. This virtual store is divided into 16384 segments each
congisting of up to 218 bytes; the segment number in any virtual address
occupies the most significant 14 bits. Conversion of virtual to real
addresses 1s performed using 'segment tables' held in the real store; two
registers called the Local Segment Table Base register (LSTBR) and the
Public Segment Table Base register (PSTBR) are provided to hold the real
base addresses of the segment tables for segments 0-8191 ('local'
segments) and 8192-16383 ('public' segments), respectively. These
registers also hold limit values giving the largest permitted segment
numbers in the ranges 0-8191 and 8192-16383, respectively, which may be

Product Company PSD_ 2.5.1

specification restricted . 6/0

Sheet 11

m,‘\

used. Fach segment is also individually limited in size and its permitted
modes of access controlled, by values held in the segment tables.

A program having a single instruction stream (i.e. not capable of being
multiprogrammed with itself), which makes continuous and exclusive use of
the procesor registers while it is being executed (i.e. their contents are
preserved on interruption and restored when execution of the program is
resumed), and which refers to a virtual store defined by LSTBR and PSTBR
as described above, is called a process. The environment for a process is
called a virtual machine. A virtual machine may support more than one
process, each having a separate stack within the virtual store. One
operating system may provide several virtual machines and by convention
they all use the same public segments, i.e. the contents of PSTB are the
same for all the processes controlled by one operating system. Changes to
PSTB necessitate re-initialisation of peripheral controllers by software
(see [2]). Different virtual machines will, by definition, use different
values of LSTB. However local segments may be shared between them. Such
shared segments, which may be numbered differently in the different
virtual stores to which they are common, are controlled by a conceptual
'global segment table'.

The system of address conversion and store protection is described in
detail in Section 4.

2.2.2 The Stack

The instruction code at the primitive level is based on the use of a last-
in, first out stack, held in the virtual store. Each process has a stack.
This stack 18 defined by three registers, as follows:

SSN (Stack Segment Number - 14 bits) SSN contains the number of the
segment in which the stack is held. The stack 'base' is at location 0 of
this segment, and the stack 'expands' through increasing addresses. The
contents of SSN can only be changed by the action of supervisory software
~ the stack cannot 'overflow' from one segment to the next.

SF (Stack Front - 16 bits) The stack is 32 bits (1 word) wide - i.e. it
expands and contracts in steps of one or more words. The contents of SF
(n,say) indicate the number of words in the stack that are occupied; these
are words 0-(n-1) of the stack segment, so that SF may be regarded as a
pointer, relative to the base of the stack, to the first unoccupied word
in the stack. The instruction code allows for 'reverse Polish' operations
to be carried out which either remove the top item from the stack, or
place a new item at the top of the stack; these operations automatically
cause the contents of SF to be decremented or incremented by the
appropriate number of words. SF may also be altered by an instruction
which specifies a quantity to be added to it or subtracted from it - thus
a specified number of locations may be added to, or deleted from, the
stack, in a single operation.

LNB (Local Name Base - 16 bits) As well as being used for reverse Polish
operations, the stack exists to provide each procedure (subroutine) with
its own working area, or 'local name space'. When a procedure is called,
a local name space is created for it at the top of the stack. This space
is deleted on exit from the procedure.

Product Company PSD 2.5-!
specification restricted o

w810

Nested procedure calls will cause a succession of local name spaces to be
built up on the stack, which will be deleted on a 'last in, first out '

bas

is as the procedures end.

The base of the current local name space is pointed to by LNB; i.e. LNB

con

tains the word address, relative to the base of the stack, of the first

location in the local name space. The quantity in LNB is always less than
in SF.

The

instruction code provides facilities for addressing items in the local

name space relative to LNB. The value in LNB may be altered to point to a
location a specified number of words below the top of the stack, and it

may also be stored away at the top of the stack or elsewhere in the
virtual store.

The

(a)
(b)
(c)

(d)

(e)

sequence of events when entering procedures is illustrated in Fig. O.
(a)

SSN | (stack base)
| I

(b) (c) (d) (e)
LNB~| Local LNB~ LNB-
name
space .
SP~ LNB LNB LNB- LNB-| 01d
SF- Para- New LNB
meters Local Links
| name
space
SF- SF- SF-
I |
Fig.0

Shows the state of the stack just before the process starts to enter
the new procedure.

LNB is stored at the top of the stack, causing SF to be incremented
by 1 word. LNB is still unaltered.

Parameters are stored at the top of stack (leaving at least 2 words
vacant next to the word where LNB was stored). This is accompanied
by a further increase in SF.

LNB is altered (specifying a displacement from SF) to point to the
location where its previous value was stored. A new local name space
is thus created, which contains the old LNB and the parameters.

The 'Call' instruction is executed. This causes linkage information
including the return address, to be placed in the two words adjacent
to the location now pointed at by LNB, before control is transferred
to the procedure. The procedure may now extend the local name space
further by loading more items to the top of the stack, at the same
time incrementing SF.

Product Company PSD 2.5.1

specification restricted

tesue 6/0

Sheet 13

When the 'Exit' instruction is executed, the stack is returned to its
status quo at (a), and control is transferred to the return address.
Further information on the use of the stack and its associated registers
is given in Sections 3, 6 and 8.

2.2.3 Descriptors

2.3

2.4

The instruction code makes extensive use of 'descriptors' for indirect
addressing. A descriptor is a 64-bit entity which formally describes an
item of information in the store. The second word of the descriptor
containg the base address of the item described. The first word contains
information relating to the unit size of the item, the number of units it

contains, whether modifiers added to the item's address should be scaled
or not, etc.

Full information on descriptors is given in Sectiom 6.

Conventions

(a) The contents of a register are usually referred to by the name of the
register itself, thus SF, LNB for the contents of the registers SF
and LNB.

(b) The contents of the location whose virtual address is x are given by
(X); €ef e (LNB"‘ 1)0

(c) The contents of locations addressed by a descriptor in location x is
indicated by ((x)); e.g. ((LNB+3)).

(d) When a register or location has n bits, they are numbered 0 (leftmost
bit) to (n-1) (rightmost bit). Thus ACC (0-31) indicates the
leftmost 32 bits of (the contents of) ACC.

The same applies to fields within registers.

(e) An address (also the register or field containing it) is said to be
"word aligned" when it is a word number rather than a byte number;
i.e. such an address is multiplied by &4 to convert it to a byte
address. "Halfword aligned", etc., are similarly defined (mutatis
mutandis).

Ignored Fields

Where fields in registers, image store locations, or data or instruction
formats are ignored, they are described in one of three ways:

(a) Reserved

The field 1s currently ignored by hardware but may be used in the future.
Where there 1s a program control over the contents of the field, the only
information which a program should store there is a pattern of bits which,
if the field is later exploited by hardware, will ensure that the program
still works in the same way. This pattern should be assumed to be 'all
zeroes' except where otherwise stated.

Product Company PSD 2.5.1

specification restricted
Sheet 14
o (b) Unused (applies to fields in registers and image store only)

The field is unused by hardware and would only be used to allow for the
expansion of adjacent fields; it may not be present at all, and the

- retrievability of information stored into it is undefined. Effectively
the field is 'reserved' but the value stored in it by programs is
immaterial.

]

(c) Spare

- The field is not, and will not, be used by hardware: it may be used by
programs to store and retrieve any pattern of bits, subject to the usual
protection and privilege rules.

- Note: A field which is used by hardware in some circumstances may be

. 'reserved' or 'spare' in others. The context will make this clear.

il 2.5 Architectural Mod Levels

The concept of Architectural Mod Levels (AML) is introduced to allow for
- progressive enhancements to the primitive level interface without
instantaneously impacting the total population of 2900 systems. The basic
AML 18 AMLO and it is a rule that AMLs are backwards compatible such that
software written for systems at AMLn will run on systems at AMLn+l: All

= new or enhanced software designed to exploit AMLl features will continue
to run on AMLO machines.
- The AML of systems can be read from line 16 of Block O of the Image Store.
: The sections of this specification which are affected by variations
between AMLs are indicated in bold type.
e
A summary of additional facilities are given in Appendix 2.
H,-—\
o
]
]
-
]
~~
-

i

Product Company PSD 2.5.1

specification restricted

lssue 6/0

Sheet 15

3.1

RECISTERS AND IMAGE STORE

The 'image store' comprises the totality of addressable hardware
registers. 1t gives the appearance of being a consecutively-addressed set
of 32-bit locations. Image store locations may be accessed as such using
suitable instruction operand formats, but require privilege to be accessed
in this way.

Two particular subsets of hardware registers are described separately
below. These are:

(a) 'visible' registers - those registers accessible without
privilege, i.e. without using the
image store operand format.

(b) 'Invisible' registers - those registers accessed with

privilege which define the virtual
machine environment.

Some of these registers are shorter than 32 bits - in which case they may
share image store location with other registers - and some longer, in
which case they are spread over more than one image store location.

Visible Registers
The 1list of visible registers is, with mnemonics:

PC Program counter 31 bits
SF Stack front pointer 16 bits
LNB Local name base pointer 16 bits

XNB Extra name base pointer 30 bits
CTB Cross-reference table 30 bits

base pointer

ACC Accumulator 32, 64 & 128 bits
B Index accumulator 32 bits

DR Descriptor register 64 bits

ACS ACC size 2 bits

OV Overflow 1 bit

CC Condition code 2 bits

PM Program mask 8 bits

RTC Real-time clock 64 bits

3.1.1 Program counter

This register points to the start of the current instruction and is half

word aligned. It occupies bits 0-30 of an image store location: bit 31 is
unused.

3.i.2 Stack Front pointer

SF points to the word which is in front of the top of the stack. It is
word aligned and may only point within the stack segment. Any references
not below SF are invalid and the results will be unpredictable. When an
item is stacked or unstacked SF is incremented or decremented by the

Product Company PSD 2.5.1

specification restricted 6/0

Sheet 16

length 1in words of the item. Items ate‘stacked most significant word
first so that SF points to the word in fromt of their significant word,

i.e. 1f the 1.8, word is at address N, SF contains M+l. SF occupies bits
14-29 of an image store location; bits 30, 31 are unused. SF is

concatenated with the invisible register SSN (which contains the stack
segment mumber) for addressing the stack.

3.1.3 Local Name Base

LNB points to a word in the stack which is, by convention, the base of the
local name space. It is word aligned and may only point within the stack.
It has associated load instructions. It occupies bits 14-29 of an image
store location; bits 30, 31 are unused. LNB is concatenated with the
invisible register SSN (which contains the stack segmeat number) for
addressing the local name space. ‘

3.1.4 Ext;a Name Base

XNB may point to a word in the stack which will be, generally, the base of
some addressing space. By convention it is used for back tracking lexical
levels. It may also be used as a base address for directly addressed off-
stack areas. It is word-aligned. It occupies bits 0-29 of an image store
location; bits 30, 31 are unused.

3.1.5 Cross~reference Table Base

CTB may be used in the same way as XNB. By convention it is used to point
to the base of a procedure linkage table. It is word aligned. It

occupies bits 0-29 of an image store location, bits 30, 31 are unused.

3.1.6 Accumulator

The accumulator register is 128 bits long; its 32 bit portions are called
A0 (most significant), Al, A2 and A3. The currently visible part of the
accumulator register is referred to as ACC and may be 32, 64 or 128 bits
long, as determined by ACS (3.1.9). ACC is right aligned in the
accumulator register so that ACC (0-31) occupies A3, A2 or A0 depending on
whether ACS-32, 64 or 128 bits respectively. Most arithmetic operations
occur in ACC. AO0-A3 occupy four consecutive image store locations.

3.1.7 Index accumulator

B 18 a 32 bit register whose contents are assumed to be a signed integer.
Its main use is for descriptor address modification. Positive or negative
overflow out of B during arithmetic operations on it sets OV and generates
a maskable interrupt condition, It occupies one image store location.

3.1.8 Descriptor Register

The DR register holds a descriptor in standard descriptor format or the
result of an explicit DR instruction. Any indirect addreses access places
the descriptor used, in DR during the course of an instruction. The
descriptor 1s in unmodified form unless explicitly changed by the
instruction or changed by the operation of a store to store instruction.
DR occupies two image store locations.

Company PSD 2.5.1
restricted — 6/0

Sheet 17

(The'next four registers all form part of PSR in the image store).

3.1.9 ACC size

For all operations which involve the contents of ACC the comceptual size
of ACC is given by ACS as follows:

ACS = 0 Invalid
1 32 bits
2 64 bits
3 128 bits

The contents of ACC are right-justified in the 128 bit accumulator
register. The rules concerning size of operands are given in section
6.3.1. When ACS 18 increased the item in ACC is extended on the left with
zeroes - i.e. the current contents of ACC are regarded as a bit pattern.
If the change makes the ACC smaller then the item in ACC is trumcated on
the left with the remaining bits unchanged. Inspection of the truncated
portion of ACC will not yield predictable results.

3.1.10 Overflow (OV)

This marker is set when the current operation in ACC (as qualified by ACS
and the type of arithmetic operation) or B overflows. The marker may be
inspected by the two Jump on arithmetic instructions. The marker is only
and always set or cleared by instructions which change the contents of ACC
or B. A "store" operation with B as operand will clear OV.
The conditions which set OV are:-

Floating overflow

Fixed overflow

Decimal overflow

B overflow

3.1.11 Condition code (CC)

This two bit marker is set by various instructions which produce
transitory conditions which may be tested later. The marker remains set
until the next instruction defined as setting it occurs, as defined in
section 8.

3.1.12 Program mask

If the mask bit corresponding to a defined interrupt is 1 then when the
interrupt occurs the interrrupt is reset and operation continues as though
the interrupt had not occurred.. The program mask is alterable by program
by the 'Modify PSR' instruction.

Bit 0 Floating overflow

1 Floating underflow

2 Fixed overflow
3 Decimal overflow
4 Zero divide
5 Bound check overflow
6 Size
7 B overflow

Product Company PSD 2.5.1

specification restricted — 6/0

Sheet 18

3.1.13 Real-time clock (RTC)

The visible portion of RTC consists of two 32-bit registers, X and Y. The
instruction 'Read real-time clock' (section 8.1.3.11) causes X to be
stored in bits 0-31 of ACC, Y in bits 32-63. In a multiprocessor system X
and Y are effectively common to all processors.

Register Y is a hardware binary counter with counting from any low order
bit to give resolution of 2 microseconds at bit 31 (+ or - 0.01%).

Register X may be maintained by software and is a continuation of Y with
bit 31 duplicating bit 0 of Y.

An 'External' interrupt is generated whenmever carry out of bit 1 of Y
occurs. The carry is added to bit O in the normal way. Carry out of bit
0 is ignored. The interrupt remains pending if interrupts are masked.
Software is expected to update X. Should a Read real-time clock
instruction occur before the interrupt is serviced the value stored will
show bits 31 and 32 of ACC not equivalent and one must be added to bit 31
to correct the value. To produce a true 64-bit number bits 33-63 must be
shifted up one place. It is a requirement that the registers are not
cleared by IPL reset, and that successive accesses to the real time clock
using the RRTC instruction generate unique times. Apart from the Read
real-time clock instruction, the X and Y registers can be read or written
by the normal image store action.

A third, invisible, register, Z (up to 5 bits) may be set by an image
store instruction to a value n in the range 0-31 (upper limit depending on
counting frequency in register Y). This will have the effect of causing
an additional external interrupt to occur when bit n of Y changes from 0
to 1; except when n=0 when this interrupt does not occur. However the
regular overflow interrupt when bit 1 changes from 1 to 0 occurs
regardless of the setting of Z.

See hardware Specifications for explicit definition of RTC Controi on
Multiprocessor Systems.

Company PSD 2.5.1

restricted — 6/0

- 3.2 'Invisible' registers

This 1ist of invisible registers is, with mnemonics:

-
SSR System status register 1 image store locatiomn
PSR Program status register 1" " "
LSTB Local segment table base 2 " " "
- PSTB Public segment table base 2 " " "
IT 1Interval timer 1 " " "
IC Instruction counter 1 " " "
- RTCZ Periodic interrupt control 1 " " "
(see section 3.1.13)
8SN Stack segment number 1 " " "
- 3.2.1 SSR
."\\
y The system status register may be set by image store command if
bl privileged. It has the fields:
11 Bit O Abnormal termination, instruction
e incomplete
RAM Bit 1 Real addressing mode if 1 bypassing
segment tables
- Bits 2,3 Reserved
PI1 Bits 4,5 Processor Identifier
EP Bit 6 Event pending
DGW Bit 7 Diagnostic write
- ISR Bit 8 Image store read
180 Bit 9 1S0 numeric mode if 1 (see 8.3.3.10)
Bits 10,11 Reserved
ey EM Bits 12-15 Emulation Mode. Non-zero value indicates
alien code to be emulated:
0001 - 1900 code
- 0010 - System &4 code

~ ' ' Other values to be assigned.
Reserved on non-emulating machines.

o Interrupt Mask (Interrupt masked if bit = 1)
Bits 16 ~ 19 Reserved
o 20 Instruction counter
21 Event pending
22 Extracode
- 23 Out
24 System call
25 Program error
26 Interval timer
- 27 Virtual store
28 ' Peripheral
29 Multiprocessor
o 30 External
31 System error
A~
-

Company PSD 2.5.1

restricted — 6/0
Sheet 20
- 3.2.,2 PSR
The program status register may be set by interrupts, by privileged image
o store command or in part by the non-privileged Exit or Modify PSR
instructions.
Bits 0=7 Unused
- ACR Bits 8-11 Access Control Register (see section
4.2.2)
D Bit 12 Set by escape exit, reset by next
- instruction. If 1, use descriptor
already in DR instead of froam store.
PRIV Bit 13 Privilege (see section 3.4)
- ov Bit 14 Overflow (see section 3.1.10)
E Bit 15 If 1, emulate alien code indicated
S~ by bits 12-15 of SSR. Reserved on
_ non-emulating machines.
o PM Bit 16-23 Program mask (see section 3.1.12)
Bits 2427 Reserved.
cC Bits 28,29 Condition code (see section 3.1.11)
= ACS Bits 30,31 ACC sigze (see section 3.1.9)

When a Store instruction with image store operand or an interrupt is used
to overwrite PSR, the following points should be noted:

1) The effect of storing O into ACS is undefined

2) 1f ACS 18 increased the new portion of ACC may not be cleared as
= occurs when a non-privileged instruction is used to perform this
function. However the existing portion will not be altered.

A reduction of ACS will work as defined in section 3.1.9.

—
3.2.3 LSTB
- The local segment table base may be set by privileged image store command.
= Its use 18 defined in Section 4.1 and it occupies two image store
locations.
o LSTBO : Bits 0-13 Segment number limit (bit 0 = 0)
Bits 14-31 Unused
LSTBl : Bits 0-3 Unused
o Bits 4-28 Double word aligned segment table base (real)
address
Bits 29-31 Unused
- 3.2.4 PSTB
. The public version of 3.2.3 (bit O of PSTBO = 1).
-y
3.2.5 1T
™= The interval timer contains a 24 bit logical counter occupying bits 8-31
of an image store location, and a guard bit at bit 7. Bits 0-6 are
~ unused. The counter counts down once every n microseconds (1{ n{16); n

- may be obtained from the hardware manual and will usually, though not
necessarily, be a power of two.

iCL

Product - Company PSD 2.5.1
specification restricted o 6/0
Sheet 21

i

When bit 8 changes from 0 to 1, the guard bit is set, counting continues
and a stack switching interrupt is attempted which if masked or not taken
because of the simultaneous occurence of an interrupt with higher priority
(section 5.3.7), remains pending (recorded by the guard bit): otherwise
the guard bit is cleared and the rules for asynchromous interrupts are
obeyed (section 5.3). The register may be read or writtem to by

privileged image access; if writing sets the guard bit an interrupt is
attempted.

3.2.6 IC

The instruction counter, 1if provided, is a 24 bit logical counter

occupying bits 8-31 of an image store location, and a guard bit at bit 7.
Bits 0-6 are unused.

The mechanism is the same as that for IT except that counting is by
subtracting one during the execution of each instruction, and the
interrupt, if it occurs is non-stack switching (section 5.3). Instructioms
which are restarted as a consequence of VSI's or automatic retries may
decrement IC more than once.

The action of clearing the guard bit by hardware as the interrupt occurs
prevents repeated interruption.

3.2.7 SSN

This register contains the stack segment number and is concatenated with
SF and LNB for addressing in the local name space. ‘It may only be changed
with privilege or by the interrupt stack switching sequence or the
hardware return from such an interrupt.

The contents of this register are constrained to be even. Any attempt to
load it with an odd number leads to a System error interrupt. It occupies
bits 0~13 of both the SF and LNB image store locatioms.

Product Company PSD_ 2.5.1 _
specification restricted

- 3.3 IMAGE STORE

3.3.1 The image store mechanism is a method of addressing hardware registers in
- the system. It provides a method of performing operations at a hardware

level which for reasons of privilege, timing or the level of control could
not be performed at a software level.

- The image store cannot be defined in its entirety as a range mechanism.
Remarks are therefore made in the text following about range definition
gtatus.

-

The image store mechanism in particular allows system components to
communicate with each other.

m—

Here the 32 bit address form (address in B) is used to denote which
N 'External’ register is being used. A register is defined as any hardware
source or destination of data (up to 32 bits in length) which is used to
control or report part of the state of a system component. Each such
register is allocated an address which is unique throughout the range. By
this means, it is hoped that compatible procedures between Pl1, P2, P3 and
- P4 may be evolved. Where registers are common to all systems, then the
same address will apply throughout. An example of this might be 'Send
Channel Flag to SAC on port number 2, trunk number 3'. Here the address
- would be the 'System Control' register of the appropriate trunk 40230800
and the data sent to that address would be 00000001, both numbers quoted
being hexadecimal (see [2] and [5]).

- The addressing structure is more fully described in 3.3.3 below, and the
data associated with the various registers in 3.5.

- 3.3.2 The image store is addressed by using the instruction address forms:
a) Image store N, address = 18 bits of instruction literal N,

- extended with zeroes on the left.

“ b) Image store B, address = bits 0-31 of B register.

Some image store locations are always cleared when read; others can be

= read in two ways, read or read and clear, depending on the image store
address used.

- Image store locations are normally 32 bites wide; however on some systems
it 1s necessary to define image locations that are 64 or 128 bits wide.

- Image store operands should only be used with LSS, LB, STB, CPB, L(ACS=32)
or ST(ACS=32) functions for accessing 32 bit wide image store, or with LSD
(or LSQ as appropriate) or L(ACS=64/128) or ST(ACS=64/128) functions for
accessing 64/128 bit wide image store. The function used (read or write)

= must be appropriate to the type of accessibility (read, read/write, write,
read and clear) of the image store location and the process must have
sufficient privilege as given by the following table. The action is

o undefined if functions other than those listed above are used, or if the
operand length of the function is not equal to the size of the image store
location. '

-

Product Company PSD 2.5.1

specification restricted 6/0
lssue
Shest 23
i]
PRIV DGW ISR READ WRITE READ & CLEAR
0 0 0 N (*]) N N
o 0 0 1 A N (*S)
0 1 0 N (*1) DA N
0 1 1 A DA DA
- 1 0 0 A) Aor N A
1 0 1 A) (*6) A
1 1 0 A) Aor DA A
1 1 1 A) (*6) A
—
where A = allowed, N = not allowed
and DA = A for the diagnostic registers whose diagnostic
o allow bit is set. Otherwise N
N NOTE:
- %]1) Read access to Block 0 lines 0-16 is permitted without read

access permission,
2) The CPU always checks write permission (PRIV = 1 or DGW = 1)
before issuing a 'Write' command.
= 3) The CPU always checks read permission (PRIV = 1 or ISR = 1)
before issuing a 'Read' or a 'Read and Clear' Command.
4) When PSR is addressed using LSS/IS.l, the new ACC size is
- obtained.
*5) Read and Clear access to IS locations not having a
Diagnostic Allow bit set is only permitted with PRIV = 1.
When PRIV = 0, permission for Read and Clear access to IS
locations having a Diagnostic Allow bit set can only be guaranteed
if ISR =1 and DGW = 1.
*6) Write access to certain registers - specifically including
- the Trunk address register, IS address 40PTOOXX - is only
permitted if DA is set and DGW = 1, irrespective of PRIV.
Such registers are only altered by test programs, and accidental
- alteration by Supervisor could be disastrous.
™ 7) The CPU reports the permission fails in notes 2 and 3 above
as Program Error type 9 subtype 3 (7.4.2.9.3).
8) Failure of other checks on the Image Store acces may be reported

8 as Program Error type 9 subtype 4 (see 7.4.2.9.4).
- 3.3.3 Bits 0-2 of a 32 bit image store address indicate block number. The
remaining bits are interpreted according to the block number.
] Literal image store addresses are limited to block O.
Block O: CPU registers. Other address bits as follows:
- 3 - 15 Reserved (must be zero)
16 - 23 Sub-block number
24 - 31 Register or line number
Registers in block 0, sub-block 00 have range-defined addresses
—~ and include the visible registers (excluding RTC) and invisible
- registers (excluding LSTB, PSTB, RTC) described in sectionms

3.1, 3.2 (see gection 3.5.1).

Product Company PSD 2.5.1

specification restricted
Issue 6/0
Sheet 24
[]
Registers in block 0, sub-block 60 are not range-defined
However, a list of preferred values of addresses is given in
section 3.5.1.
F-—
Block 1: Reserved
- Block 2: External registers. Other address bits as follows :
SMAC based systems.
-
Register 0 4 8 |12 |16 |20 |24 |28
SMAC 010X| 11XX| SMAC No | SMAC reg address
Store 010X| 10XX| SMAC No _ |Store mod | Store reg
- SAC 010X| 010X| Port| SAC register address
-~ Trunk 010X| 000X | Port| Trunk|Trunk reg address
’ CPU 010X| OX1X| Port| see hardware specificatioms
= 3 7 11 lSI 19| 23| 27| 31

X = Reserved bit

When addressing a SAC, Trunk or external CPU register, SMAC number is not
required since each is connected to the same port number on all SMACs. In

- these cases, incorrect specification of bit 6, which distinguishes CPUs
from SACs or trunks, may lead to a Program Error (see 7.4.2.9.4)

Refer to processor specifications [1] for definitions of SMAC, SAC, port
sl etc.

SCU1 based systems

-
0 3 4 9 10 31
| 0100 | _DMN | _Reg Address |
N Bits 4 - 9 DMN, Destination Module Number Bits
Bits 10 - 31 address of a 32 bit image store location (not
a byte address)
]
Block 3: 64 bit wide external registers.
- Block 3 1s only available on SCUl systems. The image store locations are
defined to be 64 bits wide. The format of address is
- 0 3 4 9 10 28 29 30 31
|__o0110 | DMN | Reg Address o] 1
Bit 4-9 DMN Destination Module Number
- Bit 10-28 Address of a 64 bit image store loaction
Bit 29 Reserved (must be zero)
~
-

Product Company PSD 2.5.1

specification restricted
lssue 6/0
Shest 25
- Block 4 128 bit wide External Registers
Access to this block 1is only available to those systems in which the
- infrastructure defined i{n PSD 2.5.11 is applicable.
Format of the address in B
wn 0-2 Block Number .
3-9 Reserved (set to zero)
10-27 Address
= 28-31 Zero
Address 1 of this block is for the purpose of sending messages along the
L64 highway from the OCP. This method will not be normally used by the
- supervisor which has access via the unit table, but is provided
~ specifically for those processors implementing their sub-supervisor
functions by use of 2.5.1 facilities.
[
The action of an image store access to this location is interpreted in two
ways, depending on the instruction used.
=
a) Load using B (L IS/B)
Send message in Acc to L2 highway, -
- and await "data" response
b) Store using B (ST IS/B)
Send message in Acc to L2 highway,
= and await "ACK" reponse.
These two forms will normally be preceded by an LSQ (set Acc length to 128
- bits and load data to Acc).
Notes
a) The data sent from Acc to the highway is modified
T~ 8o that the source module number (SMN) is that of the
OCP generating the message. Similarily, transmission
Functions are set as follows.
[
TFO set to 1 (command)
TF1 as in data
o TF2 set to 0 (steering normal)
b) Access to this block other than as described is indeterminate.
= Blocks 5-7 : Reserved
R
L)
~~
o]

Product Company PSD 2.5.1

specification restricted i 6/0 o

- 3.4 Privilege

The privilege bits (PRIV, DGW, ISR) for image store access are held in PSR
- : (13) and SSR (7-8) respectively. Use of these bits is described in
sections 3.3.2 and 9. (Bit = 1 means privilege exists).

The privilege i1s checked against an access lock as described in section
3.3.2 at the time of access, there being a lock held conceptually with
each image store location. Incorrect access to an image store location
(wrong privilege, non existent location, read to write omly or write to
- read only) is detected at this time and leads to a program error
interrupt. On some processors, diagnostic parts of image store may be
selected by writing to other image store locations.

The value of PRIV can only be altered in one of four ways:

a) by interrupt (including explicit System call)

- b) by writing to PSR while in the most privileged mode
¢) by Exit instruction
d) by Activate instruction

m .
Action (a) gives more privilege, actions (b), (c), and (d) give less.
- DGW and ISR may be altered in one of three ways:
a) by a stack-switching interrupt
b) by writing to SSR while in the most privileged mode
- ¢) by Activate instruction
-
™
p—
p-—
-
—
AN
-

Product Company PSD 2.5.1

specification restricted
Issue 6/0
Shest 27
- 3.5 1Image store map
3.5.1 Block O
-—
The range-defined locations in block O correspond to the interrupt dumping
order for lines 0 - 1, and are:
- (Lines 0-16 can be read without access permission.)
]
Line Register Access
- 0 SSN/LNB Read only
1 PSR Read/write, write privilege if
- _ PRIV (PSR (13)) = 1
2 PC Read only
- 3 SSR Read/write, write privilege as for PSR
4 SSN/SF Read only
5 IT Read/write, write privilege as for PSR
- 6 1C Read/write, write privilege as for PSR
7 CTB Read only
8 XNB Read only
- 9 B Read only
10 DRO) Read only, DRO = DR(0-31)
11 DR1) DR1 = DR(32-63)
- 12 A) Read only, A0 = leftmost 32 bits,
13 Al) A3 = rightmost 32 bits of
14 A2) accumulator register
- 15 A3) (not ACC)
16 Processor Characteristics Read only.
o Bits 0-7 Processor Functional Module Number
R (SCU1l or SCU2 systems)
Bits 8-15 Infrastructure Type
00 SMAC/SAC
- 01 scul
02 scu2
03 To FF reserved
o Bits 16-23 Architectural Mod Level.
. Bits 24-31 Processor Type.
n 10 2950
20 2960
21 2956
- 28 (S2+)
‘ 30 2970
31 (s3s)
32 A (83M)
- 41 2976
40 2980
— 43 2982
]
-

Product | Company PSD 2.5.1

specification restricted e 6/0
- Sheet 28
o= Block 0, Sub-block 60
The following addresses are the preferred values which should be used on
- new designs of OCP, where applicable. They are intended to correspond to
the values used on 2950, 2960 and 2970.
Hex Addr Register or Use Access Notes
- —_— . —_— —_—
6000 LSTBO R/W
6001 LSTB1 R/W
- 6002 PSTBO R/W
6003 PSTB1 R/'W
6004 Reserved
- 6005 Reserved
6006 Hand keys R
L~ 6007 OCP Properties R
» 6008 Hooter Control
o 6009 Broad cast System error W 1
600A System Interrupt R/W 1
600B Reserved
- 600C RTC -Register X R/W
600D RTC - Register Y R/W
600E RTC -~ Register Z W
- 600F Clock module No R/W
' 6010 Reserved
6011 OCP Module Control R/W 2
(Bit 0 - Clear Address translation slaves)
b 6012 Load Microprogram 1)
6013 Cause System Error W
6014 Register Load W
P 6015 Reserved
6016 Display Register 1 W 2
6017 Display Register 2 W 2
- 6018 Stop OCP W
-~ 6019 Request Hamming Log R/W 3
601A Enable Microcode Int.buffer R/W 3
601B Clear specific CPR W
o 601C Cause SSN + 1 Dump W
601D Report OCP Failure W
601E Set Interrupt Destination
- Address R/W 3
601F Set Coupler Function W 3
6020 OCP Function Module No. R 3
- 6021 Property Code of Module R 3
6022 Store Blocks on Line R 3
6023 Reserved
6024 SCU Property R 3
- 6025~60FF Not defined
For further details see the relevant OCP specification.
-
Notes. 1. These locations are for SMAC/SAC systems.
2. Use of these locations varies between 2970 and 2960 based
-) ‘ systems.
- 3. These locations are for use by SCUl based systems.
]

Product Company PSD 2.:5.1

specification restricted . 6/0

Sheet 29

Block 0, Sub-block 63 .
Sub~block 63 is used by 2950,2956,2960 for multiprocessor communication

Hex Address Register or Use Access Notes
6300 Null R

6301 System Error Parameter R 4
6302 System Error Interrupt R 4
6303 Multiprocessor interrupt R 4

4. These locations are not used by 2950 or 2956.

Product Company PSD 2.:5.1
specification restricted
tsaue 6/0
Sheet 30
- 3.5.2 Block 2
(Only SAC and Trunk register addresses range defined)
]
ADDRESS (HEX) CONTENTS DETAILS
- SAC BITS MEANING
44PX00XX Peripheral Interrupt 0-15 'Normal'
Trunk Flags
]
44PX01XX External Interrupt 0-15 'External incident
o= Trunk Flags
_,’\
. 44PX02XX System Interrupt 0-15 ' Inmediate action'
Trunk Flags
31 SAC detected
-
44PX04XX Status
- TRUNK
40PTOOXX Address 0-3 Reserved (Byte
lines)
- (Read or write - see 4-5 Spare
note 4 of 3.3.2) 6-31 Real Word Address
= 40PTO8XX Control 30-31 CFA 0-1 (see [5]) |
| (Read and clear*
or write)
=
—\
40PTO9XX Function 28-31 FFBO-3
. (Read only) (see [5])
40PTOCXX System Status
- (Read and clear)
P 40PTODXX Diagnostic Status
(Read or write)
= 40PTOEXX Image Store Diagnose 0-31 Data for diagnos-
(Read or write) tic mode
.~
P = Port number *Read and clear checks are enforced on this
T = Trunk number register for the sake of additional protection.
- X = Reserved

Bits 30-31 are not actually reset on a Read.

Company PSD 2.5.1

restricted . 6/0

Sheet 31

4

4.1

VIRTUAL STORE ADDRESSING AND PROTECTION
Segment and Page Tables

4,1.1 The store is addressed from a 32 bit virtual address which is referenced

to the virtual memory of the process using the address.

| Seiaént I Word [Byte |
0 13 14 29 30 31

The address translation hardware converts virtual addresses to 28-bit real
byte addresses, which have the following format:

| RSN | Word [Byte |
0 1 2 25 26 27

RSN = Remote Store Number. Local (i.e. nonremote)
storage may have RSN = 0, and vice-versa.

The real address is derived by referencing the virtual word-byte address
to the base, or the page table, of the segment given in the first 14 bits.
The segments are divided into two classes - those in the range 0-8191 are
local to the process although they may be shared with other processes and
those in the range 8192 up which are public.

4.1.2 In order to find the base, or page table, of the segment named, access is

made by hardware to the segment table via a segment table base register
(STBR). A process has access to two STBRs, which are hardware registers,
one for local (i.e. 'private') segments and one for public segments, the
selection being made on the segment number used. STBR format:

STBO | Segment no. limit |
0 13

STB1

| _Table base pointer (double word aligned real address)|
4 28

In order to find the entry for the required segment, the segment number
being accessed is checked less than or equal to the limit (else virtual
store interrupt). Bits 1~-13 of the segment number are then added to the
base pointer and the result is used as a real double word aligned address
to access the entry in the segment table giving the base of the required
segment or of its page table. The segment table is therefore a list of
double word entries, double word aligned, indexed from the base by bits 1-
13 of the segment number. :

Product Company PSD 2.5.1

specification restricted

tssue 6/0
- 4.1.3 A segment table entry has the following form:
0 1 2 3 11 12 13 14 24 25 3;
SP [P | NS APF | s | Segment Limit] SP
- A |1 | USE Real Address SP|F|
32 33 34 35 36 . 60 61 62 63
il SP : Spare - usable by software
A : 0 - Segment unavailable
1 - Segment available
- Note: If A= 0 and F = O the real address field is
ignored by CPU and peripheral controller hardware, and
may be treated as 'spare' by software, subject to the
= general proviso that undefined effects may result if
. alterations are made while there is a copy of the
> table entry in the Address Translation slave store -
- see section 4.3. See also [2].
P : 0 - Non-paged segment
- 1 - Paged segment
I ¢ 0 -

Segment not shared; real address points directly

at base of segment (P = 0) or page table base (P = 1)
1 - Segment shared; real address points at Global

= segment table entry.

N8 : O - Segment may be freely 'slaved'
1 = In certain circumstances items in this segment must be
= removed, or excluded, from slave stores (see Section
4.3).
Segments used for stacks must not be marked NS and the
. OCP may assume without checking that the Stack segment
has N8=0.
Use H
-
‘\/_ This field is ignored (spare) if I = 1l or P = 1.
- Note: It is not set by 1/0 Controllers.
If I = 0 and P = O the bits indicate segment usage as
follows:
m—

Bit 34 - set to 1 by hardware when any location in the
segment is referenced (read or write)

Bit 35 - set to 1 by hardware when any location in the
= segment is written to.

Hardware is permitted to set the "Referenced" bit if it
prefetches any code or data from the segment.

At AML]1 hardware is permitted to set the "use" field

- for the operands of am imstruction which is started bdaut
oot cempleted.
e APF: Access Protection Field. This field must always contain meaningful

. information, even when A = 0. See section 4.2.2.

Product Company PSD 2.5.1

specification restricted

6/0

Shest 33

Real Address: (see section 4.1.1): Real addresses occupy bits 36 onwards
(1.e. RSN 18 in bits 36,37) and point either to 128 byte boundaries (if
I=0Oand P= 0), or to 8 byte boundaries (1if I = 1 or P= 1). The real
address field is accordingly truncated on the right, the least significant

bits being spare and avajlable for software use; in the former case bits
57 - 62 are spare, in the latter case 61 - 62.

Segment limit: bits 14 -~ 24 contain the maximum value which i8 permitted
in the corresponding field (i.e. bits 14 - 24) of any virtual address
referencing this segment. This allows for 128 - byte boundaries, which is
the case with unpaged segments (P = 0). In order to cater for 1024 - byte
page boundaries, bits 22 - 24 of this field must contain 111 when P = 1],
otherwise undefined end effects may occur.

F: 'Fixed' bit = 1 indicates to peripheral controllers (see [2]) that the
‘segment is wholly or partially available for 1/0.

4.1.4 Having accessed the required segment table entry, the hardware has to
check that the Access Protection Field permits access of the required type
(see Section 4,2.2., - if access is not permitted a program error interrupt

occurs), that bits 14 - 24 of the virtual address do not exceed the
segment limit and that A= 1 (otherwise virtual store interrupt).
Subsequent action depends on the setting of I and P.

If I = 1 the second word of the segment table entry is interpreted thus:

|_A] 1 T SP | Real address - double word aligned [SP | F |
32 33 34 35 60 61 62 63

The (Global) segment table entry pointed to by the double-word-aligned
real address in bits 36 - 60 of the original segment table entry is
referenced. This indirection process continues until a segment table
entry with I = 0 is found. If any of the segment table entries thus
referenced has A = 0 a virtual store interrupt occurs. The first word
(bits 0 - 31) of each table entry referenced after the first is ignored;
effectively, the segmeant table entry used to access the required item in
virtual store is formed by combining the first word of the original
segment table entry with the second word of the last one (which has I=0),
the indirection process being omitted if I=0 in the original entry.

Only one level of indirection of this type is permitted; the effect of
' violating this rule is undefined.

4.1.5 If P = 0 the second word of the final segment table entry is interpreted
thus:

|~ & I 0 l USE_]| Real addreu-lZi_bytnuu% [sp !r [

The 128-byte-aligned real address is the segment datum, and is added to
the word-byte number (bits 14 - 31; bit 24 aligned with bit 56 of the
datum) of the original virtual address to produce the required real
address. The USE bits in this case are interpreted as described inm 4.1.3
(and are the only segmeat table field altered by hardware).

| Product Company PSD 2.5.1
@ specification restricted 6/
=
- Shest 34

o 4.1.6 If P= 1, the second word of the final segment table entry is imterpreted

thus:

-

The real address points at the base of the page table for the segment. The

- page table contains one 32 bit entry for each pege, and starts on a

double~word (8-byte) boundary.

- Bits 14-31 of the origimsl virtual address are conceptually subdivided as

follows:

- |__ Segment | Page | Line | Byte |

Y 0 13 14 21 22 29 30 31

_ To form the real address of the required page table entry, the psge aumber

i (bits 14 - 21), regarded as a number of wards, is added to the double~word

sligned page table base sddress.

- The format of a page table entry is as follows:

| A USE] Real address - alig: SP F |
o 0 1 2 34 21 22 30 31
A : 0 - Page unavailable (causes virtusl store interrupt to occur)
1 - Page available
(]
Note: If A= 0 and F = 0 the remaining fields are ignored
by CPU and peripheral controller hardware, and may be treated
o as 'spare' by software subject to the same provise that applies
to segment table entries (4.1.3.)

- F: Fixed bit, used by peripheral controller. See [2].

-~ - USE : These bits indicate page usage in exactly the same way as the
corresponding bits in the second word of segment table emtries
do for non-paged segments.

]

Bit 2 - set to 1 by hardware when any location in the page is
referenced (read or write)

- Bit 3 ~ set to 1 by hardware when any location in the page is

written to.

- The USE bits are the only page table field altered by hardware.
These bits are not set by I/0 Controllers. Hardware is permitted
to set the "refersnced" bit if it prefetches amy code or data from
the page.

At A Hardware 1s permitted to set the use field feor operands of
an imstruction which is started but not cempleted.

The 1024 - byte aligned real address is the page base, and is
concatenated with the line-byte number (bits 22-31) of the original

7N .

virtual address to produce the required real address.

Product Company PSD 2.5.1 .
specification restricted — 6/0
Shest 35

4.2 Protection

4.2.1 A process is seen as having a certain entitlement to system resources and
protection exists to confine the process to that level of extitlement. At
the level the process may make access to store, a check is made by
comparing the process level with the segment access protectiom (see this
section). The process may require facilities at a lower level and a check
must be made that it is entitled to access that lower level and that the
parameters it passes are valid at its curremt level of entitlement. These
latter points are covered part by hardware, part by software. The
transition between levels carries hardware checking (see section 5)
followved by software checks at the lower level. The checking of
parameters is software initiated but aided by the hardware Validate
instruction (section 4.2.3). Finally, since addresses derive largely from
the stack, checks are made that the stack registers are handled reasonably
although the security of the stack lies mostly in the way in which it is
generated. ‘

NOTE: Lower Level means more trustworthy, nearer to the Kermel.

4.2.2 Segment protection occurs in that on access to store the access control
register contents (ACR) and the mode of aecess (execute, read, write) are
compared with the access permisssion fields of the segment. Access is
permitted (else program exception) 1f:

Read and t] not less than ACR. tl is read access key. (Note: Read access

to current code segment for items addressed as (PC + N) (see section 6) is
not checked)

Write and t2 not less than ACR. t2 is write access key.

Read or write accesses by a process to its stack, via any type of operand
address, or as implicit in the operation of certain instructions, are not
checked if SSN is less that 8192. A local segment may therefore have
values of tl and t2 less than the ACR of a process which uses it for its
stack, and hence be protected from possible corruption by other processes
in the same virtual machine (Section 2.2.1). Programmers should assume,
however, that accesses to the stack are ACR-~checked if SSN is not less

than 8192, though this check may also be waived in some circumstances.

When ACR checking is applied via Address Translation Slave Store (Section
4.3), the absence of checks on a local segment may persist, even after a
stack-switching interrupt of the process whose stack it contained, until
the next execution of "Activate" has cleared the relevant slave stores.

Execute and t3 =], t3 is execute permission bit.

Hardvare implementors may assume that tl is not less than t2. An
additional check is made for the execute access. A relative jump must not
alter the segment number in PC (else program error). The result of

writing into the segment currently being executed is unpredictable.

After writing to segments not currently being executed, care must be taken
to clear those instruction slave stores which may contain items from many
segments vwhen the writtea segment is subsequently executed.

Where tl = APF (5-8), t2 = APF (1-4), t3 = APF (0).

Product Company PSD 2.5.1

specification restricted

Issue é/ 0

Shest 36

4.2.3 The Validate instruction (see section 8.1.5.9) is used by a lower level
to check the validity of parameters passed from a higher level. The
instruction takes the ACR value put on the stack at call time and compares
it with the value of APF for the segment to which the descriptor being
validated points. A condition code is set on the comparison.

4.2.4 The stack segment is protected by the way in which it is generated and
also by minor checks upon stack register operatioms.

4.2.4.1 The stack segment number can only be altered by a hardware checked
mechanisem - interrupt or activate. SF and LNB must be in the same segment
as stack base since they share the same S8N register. Operations on SF
and LKB cannot alter the segment number, i.e. the stack eamsot overilow
its segment (else progrsm error).

N.B. The segment limit for the stack segment must not have the maximum
value - {.e. the segment size must not emeeed 255 x 1024 bytes (paged) or
2047 x 128 dytes (unpaged). The results of violating this rule are
undefined.

4.2.4.2 Manipulation of the stack for procedural use occurs largely under
hardware mechanisms - the call, exit and escape exit mechanisms.

4.2.4.3 Checks apply to those instructions which do set stack pointers.

e.g. Load LNB : Check new value less than SF
Raise LNB: Check new value less than SF
Adjust SF: Check new value greater than LNB

4.2.4.4 Any access to the locations between the current top of stack and the
stack segment limit (except in the course of increasing.SF) is considered
incorrect because the contents of those locations are unpredictable.
Rardware checks (e.g. on accesses using the operand forms (LNB+n) and
(LNB+N) may be implemented.

4.2.4.5 On a stack segment, input-output operations (paging excepted) must not
be performed at any time when that segment may be writtem to by an OCP
operation., For other segments, a similar restriction may be
implementation-defined.

Company PSD 2.5.
restricted
tasue 6/0
Shest 37

4.3 Slave Stores .

4.3.1 Parts of the main store may be 'slaved' to improve effective performance
= 1.e. the contents of various locations may be held in fast-access
registers outside the main store. The choice of locations will vary
dynamically in the course of program execution.

It 18 expected that slaving as implemented in New Range processors will
adhere to the following principles:

(a) The slave stores will be associatively addressed using the virtual,
rather than the real, addresses of the corresponding main store locatioms.

(b) Writing to store will always imply that the main store location
concerned 1is overwritten (and possibly a slave store associated with it).
However reading from store will frequently bypass the main store

altog)ethcr, if the item concerned is currently 'slaved'. (see section
‘03.2]

One implication of these principles is that great care must be taken to
avoid ambiguity in cases when two or more different locations in main
store have the same virtual address (because they belong to different
virtual machines), or where items in shared segments are referred to by
more than ome virtual address - a danger in the first case being that an
item with & certain virtual address might be left in a slave store and
later referred to there in error by another process which uses the same
virtual address to reference a totally different item; in the second case
a process might read an out-of-date item from a slave store, because
another process had updated the main store location currently associated
with that slave store but through using a different virtual address had
not caused the slave store to be updated. A similar problem may arise as
a result of peripheral input transfers which cause store locations, some

of which may be slaved, to be overwritten, without updating the
appropriate slave stores.

The action to ensure such ambiguities do not occur must be taken by
hardware, and consists of clearing appropriate slave stores on specified
occasions, e.g. before permitting a process to access the store locations
which have been overwritten by a peripheral input transfer. It is also a
rule that where segnents are shared between processes, or where the same
itea 18 referred to by two different virtual addresgses, and are updated,
those segments must be marked 'non-slaved', and the processes referring to
them must use the semaphore instructions. A segment used as a Stack
segment canmot be used for this purpose.

4.3.2 Delayed Write-Through

Writing to store will always imply that the mainstore location is over-
written. However, this may be delayed, if there is an associated slave
store, until the occurance of certain trigger actions. An exception to
the above, occurs when writing to the Stack segment, in that items which

were written but are subsequently above Stack Front, at the time of the
trigger action, may be discarded.

Product Company PSD 2.5.1
specification restricted _ 6/0
Sheet 38

The delayed write-~through must be completed by those actions which cause
the associated slave store to be cleared, namely:- Load PSTB, Activate,

Semaphore Descriptor access, Clear Address Translation Slave Stores,
Stack~switching interrupts (Stack Slaves only).

The data transferred into mainstore during write-through will always
consist of an integral number of bytes. Write-through will not be applied

to any byte unless at least one bit has been writtea to it since the last
trigger action..

I1f during a write-through of any store location from slave stores a
hardware error occurs which is reported by a System Error Interrupt, then
the Interrupt Identifier must contain the value of ACR that was in use at

the time of the most recent instruction that stored an operand in that
location. '

_ The above defines the legal requirements, but in practice it will be
undesirable to delay all write-throughs until the occurance of the trigger
actions. In general, it is reasonable to delay write-through to the
address space between LNB and SF until the trigger actions occur. Writes
to other areas may be delayed, but the OCP should be organised to 'trickle
write' updated slave store locations to main store. This also applies to
items below LNB after a CALL instruction. The trickle write must be
completed by the trigger actions.

4.3.3 The slave stores are classified in one of the four following categories:-

1. Instruction Slave Store - Contains items from segments that have been
fetched for the purpose of execution.

2. Stack Slave Store - Contains items from one segment only, the segment
being the Stack segment defined by the SSN register.

3. Operand Slave Store - Contains items from all other segments.

L 4, Address Translation Slave Store - Contains items from Segement Tables
and Page Tables.

4.3.4 The slave stores are cleared selectively by any one of the following
actions:-

1. Load PSTB - These are instructions which, using Image store operand

forms, store the contents of ACC into the two halves of the Public Segment
Table Base Register (PSTB).

2. Activate CPU Process -~ This is an instruction which loads LSTB and all

the registers necessary for starting/restarting a process from the segment
SSH+1 (see Section 9)

3. INCT and TDEC instructions - Modify and test a specified store

location without letting any other CPU or peripheral processor access the
location until the completion of the instruction (see Section 8.1.2.7)

N 4. Clear Address Translation Slave Store -~ This clears the Address
" Translation Slave store of a processor and halts it. This is achieved by

Company PSD 2.5.1

restricted
. isaue 6/0
Shest 39
- writing to the internal image store location (block 0) sub-block 60 line
11 of the required processor with bit 0 = 1. (Note: see processor
specifications for implementation deviations and method of writing to
= image store of other OCPs).
4.3.5 The action of eaech instruction on the slave store is now described.
a 1. Load PSTB (these actions performed when either half of PSTB is
alter
- Instruction Slave Store is cleared of all items referenced by segment
Numbers 8192-16383.
- Stack Slave Store is cleared completely if the segment Number of the stack
is in the range 8192-16383.
AN

Operand Slave Store is cleared of all items referenced by segment Numbers
P 8192-16383.

Address Translation Slave Store is cleared of all items tramslating the

- segment Numbers 8192-16383.
2. Activate CPU process
- 1f the new LSTB is different to the old LSTB, then the Instruction Stack,

Operand and Address Translation slave store are cleared of items
referenced by segments 0~8191.

The Operand slave store is cleared of items in segments 8192-16383 if the
segnent is marked NS.

3. AMLO
INCT and TDEC with all operands

“~ or AML]
INCT and TDEC with semaphore descriptors only, if a switch bit is set;
otherwise all operands.

Instruction 8Slave Store is not required to be cleared. The Stack Slave
store 18 not required to be cleared. Operand Slave Store is cleared of

- itens from segments marked 'Non-slaved' (NS) in the Segment Table. Address
Translation S8lave Store is not required to be cleared.

- 4. Clear Address Translation Slave Store

Instruction, Stack and Operand Slave Stores of the specified processor are

not required to be cleared. This instruction causes the Address
- Translation Slave Store of the specified processor to be cleared
completely. The specified processor remaims halted until it receives a
Restart signal from the processor which halted it; it will then contiaue
- at the instruction it was suspended on, These facilities are essential
for multi-processor systems.

- - 4.3.6 8lave Stores whose contents have been invalidated by a peripheral input
transfer will normally be cleared by the Activate instruction which

Product Company PSD 2.5.1

specification restricted

o 6/0

Shest 40

restarts a process waiting to access the store area coscerned. Thus

during the transfer various slave stores sy coatain iaformaifen which is
wholly or partly invalid.

Hardware should therefore avoid "writing back" the conteats of a slave
store to main store, which may be expedient when a process legitimately
overvrites part of a slaved location, unless certain that the rest of that
location has not been altered by a peripheral transfer since being copied
to the slave store. In practice this implies that "writing back" should
be restricted to the stack segment, which, if the rule in 4.2.4.5 is
- observed, will not be imvolved in I/0 activity, or aceees by snother OCP.

4.3.7 1t may be necessary to clear slave stores on other occasioms, depending
- on how they are used. PFeor instance when an item read from store is loeded
B to a slave store it should not be necessary to check its segment APF
C~ against ACR when it is subsequently read again from the slave store,

provided ACR has not been increased before the second access. An increase
in ACR (e.g. accompanying Exit) may therefore necessitate the clearance of
those slave stores on access to which ACR s not checked. The stack slave
need not be cleared on such occasions simee in effect ACR checkieg is net
- applied to the stack segment. (see section 4.2.2)

To increase ACR, programmers should omnly use Exit, Activate, or an

explicit write to PSR (Image Store block 0, line 1) and must ensure that
= the overwriting of PSR which is part of either the standard interrupt
mechanism (see Fig. 3 in section 5), or non-standard hardware
implementations of the System Call mechanism which do not clear slave
stores, does not cause ACR to be increased.

Note that when ACR 18 decreased, locations which were previously
- accessible only for reading (and which may be already "slaved™) may also
become accessible for writing.

Company PSD 2.5.1

restricted — 6/0

Shest 41

5.2

Noermal Sequemncing and Jumps

Instructions are processed sequentially until a jump instructiom,
procedure Call, Exit, Activate, escape or interrupt actiona is met. The
address of the current instruction is held in the program coumter (PC)

register. Instructions are half word aligsed so that addvesees held in PC
bave the fommat:

| _Curient code sagpent | _Current half word |
0 13 14 30

When PC 18 read (e.g. by Call) or writtemn to (e.g. by Exit) the copy in

store has an extra 'bit 31' concatenatsd so it repteseante a 32-bit byte
address.

PC is automatically updated in the course of each instructiom, to point to

the next instruction in sequence. Updating in this way is not permitted
to cross the upper boundary of the current code segmest; nor is an
instruction permitted to lie across this bbundary.

The contents of PC may be altered to point to an instruction which is not
the next in store sequence by a jump (including Call) instructionm,
relative or absolute, or by Exit, Activate, escape or interrupt.

In certain machines, instructions overlap and this leads to situations in
which they may be abandoned, e.g. a jump in a previous instruction is
successful. No changes in main store will occur due to the partial
implementation of an instruction, however the USE field may be set in the
segment or page tables see sections 4.1.3 and 4.1.6.

A relative jump is one whose operand is a literal, and the literal is
regarded as a signed integer half word displacement from the address of
the current instruction. The target inmstruction must lie within the
current segment. An absolute jump is one whose operand is a 32-bit
quantity, addressed directly or indirectly, which is interpreted as a byte
address and overwrites PC. A change of segment is allowed. The other

mechanisms by which PC may be altered are detailed in the following
sections.

Procedure Eatry aand Exit

5.2.1 Three types of procedure entry are provided:

(a) procedure using the same name space (Jump and Link)
(b) binding procedure using the same name space (escape)

221117;'ocedurc with nev name space and extra name access to current space

The Jump and link instruction provides for case (a) by stacking the
address of the next instruction at (SF) before jumping. This link may be
transferred to PC by a Jump inetruction specifying TOS as operand.

Company PSD 2.5.1

restricted — 6/0

Shest 42

5.2.2 The escape mechanism occurs when an escape descriptor is found or placed

in DR when executing Modify DR or accessing store during instruction
= execution. (See Fig. 2). By use of the escape mechanism (which is
automation recognitiom of the descriptor type) and the Escape exit
instruction it is poseible to return to execute the origisal imstruction
with the D bit set in PSR to indicate that the operand is to de accessed

= via the descriptor already in DR rather than es indtcated dy the
instruction address ffeld. The D bi{t is reset at thpy éand of the
instruetion.
Y
The escape mechanism cagses a transfer of control to the address contained
in the locstion pointed at by DR after the PC address of the curreat
. instruction has been stacked as a 32 bit item. The type bits in DR are
' changed to give a word vector descripter with BCI and USC set so that
S parameters for the routine are addressable via DR. At the end of the
= escape routine DR may be set with a2 suitable dascriptor amd, by use of the

Escape exit instruction, the original iastruction say be repeated using
the descriptor supplied by the escape rautime. There are other methods of
return since an escape descriptor may ocecur on jump or data access or
= procedure call or exit. If the Escape exit is used after regolution of an
escape descriptor found on a normal procedure exit, it will mot have been
possible to pass a paramster in DR for the normal exit.

5.2.3 The procedure call mechanism (see Fig 1) slways creates a maw local name
space and this is done in two stages.

There 18 a precall sequence of instructions which stores the old LNB as a
1ink for procedure exit, creates space on stack front for the PC link and
for a descriptor to linkage tables for the new procedure amnd then stacks
A parameters for the new procedure. LNB is then raised to the beginning of
this nev name space, local to the new procedure. "If the Pre-call
instruction 1s used, the start of the new name space is automatically

= sligned ‘so that two-word items can be organised to coincide with two-word
N boundaries in the stack sagment".
]

The Call instruction then puts link informsation for the return to the old
procedure in a standard place in the new name space at (LNB+1, +2)
consisting of the updated PC address, links from PSR, and a descriptor
- type. At this point a decision is made as to whether the Call is a system
call or a procedure call. The above operations are standard to both and
the decision is made on the type of descriptor accessed as the Call
- operand if indirection is involved. The choice of type is conventionally
made by the loader rather than Alice so that procedure calls are made by
name at the Alice level in order to defer decisions about type of call and
o level of execution to the loader; though by suitable choice of operands

Alice can take the choice out of the loader's hands. If the operand is
8ccessed directly the Call is a procedure call.

= If the descriptor left in DR is code, vector or descriptor type a jump is

made to a new procedure. If the descriptor is code type the jump
destination address is the address in DR plus the modifier, if any; if
- type O or 2 it is the contents of the indirectly addressed location.

-

specification restricted

Product Company PSD 2.5.1

[6/0

Shest 43

11:‘ :: descriptor is a system call descriptor then a system call interrupt
[] L 1Y

Of the visible registers only DR, PC and (if used for operand access) SF
are affected by the actual Call instruction. However the contents of

other registers may ba overwritten by the software executed immediately
following s System Call interrupt (see [4F).

5.2.4 The Call imstruction is used in four ways (see [4]):

Normal-call with code descriptor or wector descriptor
Inward-call with system call descriptor
Outward-call with system call descripter
Task-call with gystem call descriptor

The normal call is to a procedure of the same status (PSR remains
unchanged). The returp required is therefore of the same sort, i.e.
without chamge of ACR or PRIV. '

The inward eall is to a more trustworthy procedure i.e. with lower ACR
and/or PRIV =1, In order to decrease ACR or set PRIV a hardware interrupt
mechanism must be invoked. The system call descriptor im DR contains
parameters to index two system call tables. The return can be normal as

the original values of ACR and PRIV can be picked up and relsnded with the
Exit mechaniem.

The outward call is to a less trustworthy procedure. It cannot be a
normal call since it is not desired to pass over the same ACR and PRIV and

because a special mechanism (inward Return) must be invoked for the
return. The return must therefore also be by system call (see [4]).

The task call 1s used to implement PL/I tasking; return is by another task
call.

5.2.5 The Exit instruction is therefore used in two ways: exit with code

descriptor - return for normal and inward calls; exit with eystem call
descriptor - return for outward calls.

Pigure 2 shows the Exit instruction. For exit using a code descriptor any
of ACC, B or DR may be used to pass parameters since the Exit instruction
does not alter these registers. However, if the link descriptor on exit
was a system call descriptor, decoding software intervenes, corrupting
both DR and XNB, so in this case the contents of these registers amust be
considered undefined (see [4]). The checks on ACR and PRIV are necessary
because these are reloaded from the stack and may have been overwritten in

error at a legvel of privilege which would write into the stack, but not
into PSR.

Product Company PSD 2.5.1

specification restricted — 6/0
Shaet 44
- The values of ACR and PRIV are loaded automatically on exit, but only if
the comparisons of the stacked values with those already in PSR are
satisfactory. In an emulating machine, B is always restored by the Exit
- instruction (or its alien equivalent) and, if different from its previous
value, will cause a switch to or from alien code. If the other fields of
PSR (PM, CC, ACS, OV) are to be restored oh return then this may be dome
either on exit by bits in the operand or prior to exit By "Modify PSR'
- instruction (whose operand can be (LNB+1)) which requires no privilege.
Restoration of PSR may be necessary following an interyupt.
- Precall Seqgence (implemanted by software) (FIG 1)
Stack 18 at old SF and old LNB.
- 1. Store LB in (SF) (SF=SP+l)
™ 2. Adjust SF by 4 words to allocate loeal name space for link descriptor
- and Procedure Linkage Table descriptor, (is case required) ‘
3. Stack parameters (P words)
4. Raise LMB (P+5) (LNB=SF-P-5)
- "Note. Steps 1 and 2 can be implemented by the Precall imstruction
' (PRCL), which will (prier to stacking LNB) increment SF by O or 1, so that
LNB 1s stored in an odd addressed stack iocation. The least significant
bit of the stored value of LNB is set to 0 or 1 accordingly™.
-
- SSN
0ld LMNB~
(ol
—~
L]
LNB ' ﬁ_
- (old 8F) 0ld SSN/LNB
|_PSR
PC
- PLT descriptor space
(LNB+5)
Parameters (P words) ,
SF
-
o
L]

-y

Product Company PSD 2.5.1

specification restricted 6/0
=]
Shest 45
- Call Instruction (implemented by hardware)
l. Load PC, CC, OV, Program mask, ACS, ACR, PRIV, E, and Oueriptot type
- to (LNB+1), +2) (\mt see step 6)
2. If operand is literal or direct obey nofmal jump procedure, END.
- 3. If operand indirect, load descriptor to DR (if not already there).
4. If descriptor is type 0 or type 2, operand overwrites PC. END.
- 5. If descriptor is code type, address from DR (plus modifier if any)
overwrites PC. END.
- 6. If descriptor is escspe type do ebcapc jomp. (LNBFH1, +2) undefined.
—~ .
T 7. (Else) do program error interrupt.
]
Note. ACC, B, DR unaltered for direct procedure calls, else ACC, B
unaltered, and DR contaims descriptor (U,tm to Call jasgyuction only,
- but see section 5.2.3).
- Format of (LNB+1, 42)
0 7 8 23 24 26_27 28 29 30 31
- T vEseRIP- | l
(LNB#+1)| TOR 0 1] cc ACS
G |
o (3/33 | | :
(LNB+2)
Address from PC
= PC address is that of instruction after the CAll
Exit Instruction (FIG 2)
o
8tack as at end of call instruction.
- 1. Examine bits 0-7 of (LNB+l)
2. I1f code descriptor type go to 6.
=~ 3. 1f Escape descriptor type transfer (LNB+2) to DR and do escape jump.
4. 1f system call type copy PSR and PC to DR, and go to Step 16 of Figure
- 50
5. (Else) do program error interrupt.
- 6. Compare bits 8-11, 13 of (LNB+1) with values of ACR and PRIV in
hardware registers. If of greater privilege or lower protection go to 5
AN

else load ACR and PRIV.

Product Company PSD 2.5.1

specification restricted 6/0
e Shost 46

- 7. Overurite other fields of PSR as specified by operand. Owerwrite E.
8. SF = LN

- 9. LNB = (B8F) (SF not altered) Note: fisquence 1,2,6~11 does not

changs BR

10. Set PC = (old LNB+2).

-
10A 8F = SF -1 1f Bit 31 of (SF) = 1 .

o 11. If ACR increased in Step 6, and EP bit set in SSR, imterrupt (unless
EP masked) otherwise execute instruction at PC. If E= 1, and EM has
correct value, emulate.

o~ Escape Jump

- An escape jump occurs in the middle of an instruction with DR = escape
descriptor.

- 1. 8tack PC (SF = 8P+1) (PC is address of current instructiom)
2. Set PC = Contents of 32 bit location addressed by DR.

= 3. Set DR(0-7) to type 0 (vector) descuptot, size 32, unscaled bound
check inhibited.

]

Escape Exit
1. Unstack PC (SF = SP-1; PC = (SF))

Kote: DR is unchanged.

Escape Descriptor

Adress Addr. of escaps routine
- Parameters for escape

routine

- N
Product Company PSD 2.5.1
specification restricted 6/0

Bheet 47

o 5.3 Interrupt mechanism
5.3.1 The interrupt system allows a change of state within a virtual machine by

— either a forced procedure call using the existing stack or by the use of a

new stack. Interrupt conditions may arise asynchromously with curremt
processing, when they will cause interruption at the earliest opportunity
either between instructions or, in the case of long instructions, in aid-

- instruction; or they may arise synchronously out of the operation of the

current instruction. In the latter case the instruction may be completed
normally or abnormally, or terminated in such a way that it can be

- restarted and interruption then occurs (except in the case of program

errors on pipeline processors, when, in order to bring the pipeline to
rest in an orderly way, the interrupt may be deferred until further

- instructions have been obeyed). Interrupts may be masked by registers in

- PSR 2and SSR in which case they may be ignored, remain pending, or cause

A~ system errors.
~y

Interrupts occur in one of 12 classes:
) Interrupt class Priority Masking hronous Stack Sﬁtchedsv Notes

Rule ﬁﬁronoua } /Ret Switched
- 1. System error 1 (1f - SW a,d,e
Asynchronous)

2. External 2 2 A Sw
-—

3. Multiprocessor 3 2 A SW
r 4. Peripheral 4 2 A Sw

5. Virtual store 1 8 sw a
T~ 6. Interval timer 5 24 A SW c

7. Program error 1 S SW a,b

—

8. System call . 1 S N a

o 9. Out 1) sw a

10. Extracodes 1 s N a
- 11. Event pending 3 8 SW a
12. Instruction 6 2A A N
e ' counter
Priority 1 18 high
~7 N
.=
]

Product Company PSD 2.5.1
specification restricted
tsve 6/0
-\
— Sheet 48
- Masking rules: l. If masked, treated as system error
2. If masked, remains pending to system
See section 5.3.7
u—
2A If masked, remains pending to process
See section 5.3.7.
—
3. 1If masked, ignored
- Notes: (a) Only one of these conditions can arise from the action of
current instruction (see 5.3.7, 5.3.8.)
(b) Computational conditions are ignored if masked by program
= mask bits in PSR, otherwise treated as program errors.
2 (c) oOther time clock interrupts mey be admitted in peripheral
- or external classes, e.g. real-time clock.
(d) 8ome system error conditions are synchromous, some
o= asynchronous.
(e) The masking rules for system error interrupts are machine
dependent.
-
5.3.2. A definition of each of the above interrupt classes is given here or in
- some other section of the primitive interface definition.
System errors - hardware errors defined in hardware manual, interrupts
- 5,7,8,9 and 10 occurring and being masked.
External - interrupts from devices not having a comnnection to store
including real-time clock (e.g. 360 type "Write comtrol"
"~ facility). See hardware manual.
- Multiprocessor- Interrupts between processors sharing the same store e.g.
one processor telling another to reschedule. Similar to
360 remote intitial program load. See hardware manual.
- Peripheral - Interrupts from peripheral controllers via SAC.
See image store. (Sectiom 3).
- Virtual Store - Access to non-available segment or page or outside virtual
memory (but not segment protection (ACR) faults which are
program errors). See section 4.
Timer - Interrupt when interval timer guard bit non-zero
See section 3.2.5 ©
]

At
)

Program Error

- Interrupt due to bound check, illegal instruction
etc. Saee section 7.

| Product Company PSD 2.1 N
m~ specification restricted 6/0
tssue
=
-~ Sheet 49
- System Call - Interrupt due to system call descriptor om Call or Exit.
See Section 7.

- Out - A means of causing an interrupt by software.

Extracode ~ Interrupt to obey by software an assigned function not
available in hardware.

]

Event Pending - Interrupt before the next instruction if:

- (a) When executing Exit (Section 8.1.2.9) with a code
descriptor causing ACR to be increased, the EP bit
set in SSR; or

- (b) When executing Activate (Section 9.2.2), bit 31 of

e Word 0 of the operand is a 1, if II is set, the
interrupt will occur before attempting completion of

= the incomplete instruction.

When executing Activate the EP bit in SSR is ignored;
masking depends on the mask bit in the new SSR.

-

The interruption does not clear the EP bit in SSR.
- Instruction - Interrupt when instruction counter guard bit non-zero.
Counter PC points to the successor to the last inmstruction
completed, i.e. counted.

o

-

o)

™

=

-

(]

]

3

I

-

Product Company PSD 2.5.1

specification restricted - 6/0
—~ Shewt S0
= 5.3.3 Masking of interrupts occurs via parts of PSR and SSR and, since these
registers are of significance in interrupts, their formats are given here
as well as in Section 3.
o]
P
R |O PROGRAM
= PSR| ACR |D |1 [V | E| Masx cC | Acs
v !
I _ _
- 0 7 8 11121314 15 16 23 24 27 28 29 30 31
- | l
I|R D |I |I
SN SSR| A PI |EP| G |S |S EM | INTERRUPT MASK |
I|M WIR |O
o~ |
0 1 23 4 5 6 7 8 9 101112 15 16 31
o]
ACR Store access control register
D Next operand is DR (escape exit)
- ov ACC or B overflow
E Emulate
ACS ACC size (32/64/128)
cc Condition code (0/1/2/3)
= PRIV Privilege for accessing hardware registers (see sectiom 3.3 et.seq)
RAM Real address mode
EM Fnulation mode
" 1I Instruction Incomplete
PI Processor Identifier
EP Event Pending (See 5.3.2)
- DGW Diagnostic write
™ ISR Image store read
_ 1s0 ISO numeric mode
- EM Emulation mode
The interrupt mask has one bit as a mask for each of the 12 classes of
interrupt. Interrupt is masked if the bit =],
r=_]
The program mask has 1 bit for each of a number of computational
conditions.
= Bit 0 Floating point overflow
1 Floating point underflow
2 PFixed overflow
i 3 Decimal overflow N
4 Zero divide
5 Bound check interrupt
" 6 Size
7 B overflow
m/\ The program mask can be altered by the non-privileged Modify PSR
. instruction. When one of these conditions arises, the imstruction is
o]

Product Company PSD 2.5.1

specification restricted 6/0
- completed as described in Section 7.5 (the manner of completion may depend

on the setting of the mask bit, and some results may be undefined); if the
mask bit is 1, the condition is ignored, but if the mask bit is 0 a
program error interrupt occurs.

-
5.3.4 Interruption is a hardware mechanism. The action of an interrupt is to
terminate the current state in such a way that it can later be restarted
- at the same point and under the same conditions; and to initiate a new
state at a point and in an enviromment suitable to the class of interrupt
with sufficient interrupt parameters to allow processing to proceed.
]
The manner of termination depends on the state to be initiated. Each
class of interrupt has an entry in a table call the Interrupt Steering
- table (IST). In a multiprocessor system each processor has its own IST.
Each IST entry contains values to be loaded to hardware registers for the
=~ interrupt state to be initiated. The tables are in fixed segments,
numbers 8192 onwards, and the entry for interrupt class n is at words.
P

8(n-1) SSN/LNB new stack segment if stack switched
8(n~1)+1 PSR load primarily for change of ACR and PRIV
- 8(n-1)+2 PC address of new instruction to be obeyed
8(n-1)+3 SSR load primarily for interrupt mask
8(n-1)+4 SSN/SF defines top of new stack

8(n-1)+5 1IT to time hardware - intimate software

. 8(n-1)4+6 IC (if provided).
8(n-1)+7 CTB defines new Cross-reference Table pointer.
- The hardware must check first whether the stack is to be switched or not

in order to determine the method of terminating the interrupted procedure.
For system call interrupts, a different format of IST is used. This is
- described in section 5.3.15. The consequences of having inconsistent
values of SSN in words 8(m-1) and 8(n-1)+4 are undefined.

—~ 5.3.5 When the stack is not switched then the interrupt is a forced procedure

call to a more trustworthy procedure, like the system call. The return

- will therefore be a normal procedure exit (also restoring the non-
L]

privileged fields of PSR) and the stack must contain the same parameters
as for a system or procedure call. Steps 1-7 of figure 3 achieve this.
These parameters are already on the stack for a system call interrupt
- which therefore misses them out. The parameter for eystem call is in the

descriptor in DR. The new environment for the interrupt decoder is
provided by loading PC and PSR. The sequence requires that IST is locked
- in core. Space must be available for the parameters in fromt of the SF.

If this space 1s not available the sequence is halted and a virtual store
interrupt 1is begun.

(Format Fig. 4).

5.3.6 When the stack is switched then a new procedure is begun on a different
stack and the present stack must be preserved for restart. This is

- achieved by dumping the registers in the bottom locations of segment
(SSN+1) (format Fig. 4). The use and size of the dump area outside 16

locations is given in the hardware manual. It is therefore a *requirement
that these locations be in core when a procedure is active. The new stack
i wvhose segment number is indicated by the first word of the IST entry is

Company PSD 2.5.1

restricted — 6/0

Shest 52

now activated by creating a name space and by putting parameters for the
- interrupt in this space. It is therefore a *requirement that this stack

has sufficient space in front of SF for these parameters, snd that the
locations they will occupy are present in main store.

- # If the requirement is not met a System error interrupt is attempted.
Should this fail implementation - defined error actions are invoked.

- In order to restart a procedure which has been dumped a normal Exit will
not do. The privileged Activate instruction (section 9) is used.

- 5+3.7 Two interrupts may, in practice or conceptually, occur at the same time.

The method of dealing with interrupts ensures that omly ome interrupt is
recorded and handled in general. Where an instruction would produce
multiple (synchronous) interrupts them only the first ome to occur in
o= hardware terms is taken. In effect the other interrupts do not occur
because the operation terminates on recognition of the first imterrupt.

An instruction can therefore only produce ome interrupt. It is still
possible for multiple interrupts to occur by the conincidence of an
asychronous interrupt. In these cases the asynchronous interrupt remains
pending and the synchronous one is taken. Where multiple asynchronous

interrupts only occur then that one with highest priority is taken first,
the others remain pending.

N

- The pending status may be recorded by the hardware in an implementation
defined image store location, in which case the interrupt is held pending
to the system (e.g. a peripheral interrupt); or it may be recorded in a
- guard bit in the associated register, in which case the interrupt is held
pending to a particular process (e.g. interval timer interrupts).

Interrupts in Classes 2,3, and 4 (External, Multiprocessor, Peripheral)
usually arise from occurrences outside the interrupted processor, and in a
multiprocessor system may affect more than one processor. Normally System
Error interrupts (Class 1) will only affect the processor ccncerned but in
. multiprocessor systems the possibility of more widespread effects is not
ruled out. Other classes of interrupt will only affect a single
processor - in the case of IT or IC conditions (Classes 6 and 12) held
- pending, the processor interrupted will be the one in which the process
concerned is running when the removal of the mask bit is detected.

Interrupt Accepted (class n) (Figure 3)

1. Ifn=1-7,9, 11 go to 11.
bl 2. If n=8, go to Step 1, Figure 5.

3. Check 7 words available in front of SF. If not do virtual store
- interrupt.

4, Stack SSN/LNB (bits 30, 31 = 0).

- S. Stack PC as code descriptor, bits 8~31 as in Fig 1.
7~ 6. Advance SF by 2 words and then stack parameter (1 word).
pam

B Product Company PSD 2.5.1
specification restricted
N

lave 6/0
s Shest 53
7. Set LNB= SF - 6.

- 8. Load bits 0-29 of (8(n-1)+1) to bits 0-29 of PSR (i.e. ACS not

altered but PM is overwritten).
9. Load (8(n-1)+2) to PC.

-

10. Obey instruction at PC. END. ‘

- 11. Dump registers to words 0-15 of segment (SSM+1), and, if II=1,
additional information, as required by Activate, to succeeding
locations

= 12. Save old SSN.

4‘\
’ 13. Load (8(n-1)) to SSN and LNB

-

14. Do actions at 8,9, (but alter ACS when overwriting PSR)

- 15. Load (8(n~-1)+3) to SSR

16. Load (8(n-1)+4) to SF
- 17. Load (8(n-1)45) to interval timer .
18. Load (8(n-1)+6) to IC
-
18A Load (8(n-1)+7) to CTB
- 19. Stack interrupt parameter
20. If n=7, store address of erring instruction in word 16 of old
segment (SSN+1)
m~
21 Stack old SSN (in bits 0-13; bits 14=31 = 0).

= 22. Obey instruction at PC. END.

Stack Switching interrupts Non-stack-switching interrupts

o

n=1 System error n=§8 System call
2 External 10 Extracodes
3 Multiprocessor 12 Instruction counter

- 4 Peripheral
5 Virtual store
6 Interval timer

- 7 Program error
9 Out
11 Event pending

/\

i]

—

- | Product Company PSD 25
o specification restricted
= Shest 354
STACK FORMAT - STACK NOT SWITCHED
o SSN ——-| |
= L -
Desc.
type PSR
PC
- Unused
Unused
Parameter
] Sp-—
- STACK FORMAT - STACK SWITCHED _
‘\
New SSN-| |
(]
LNB~—
——
Parameter
Previous SSNx218
]
SP-————
Hardware dump area (words 0-17 of segment (SSN+1))
- . FIG 4
01d (SSM1)/ 0 SSN T LNB
1 PSR
- 2 PC . * Address. of
3 SSR erring
4 SSN | SF instruction
- 5 IT (program
™ 6 1C error
7 CTB interrupt
8 XNB only.
= 9 B Ocherwise
10 DRO undefiaed) .
11 DR1
- 12 A0
13 Al
14 A2
- 15 —A3
16 *
Implementation
- dependent
- information
Ay
—
=
Fanl

Product , Company PSD 2.5.1

8
pecification restricted — 6/0
Shest 55
- 5.3.8 For a virtual store interrupt it is necessary to switch stacks since a

further virtual store interrupt due to stack expansion could not be
allowed. The faulting address is found at TOS with an identifier.

If stack expansion does cause a virtual store interrupt condition on a
non-stack-switching interrupt (except system call) then the interrupt is
converted to a virtual store interrupt. This condition cannot arise in
= connection with other interrupts - classes 1-7, 9 and 11 switch stack and
on a system call the stack does not expand further. The source interrupt
class is recorded for handling after dealing with the virtual store
ot condition if stack expansion is then permitted and an interrupt identifier
is stored in the hardware dump area at the time of interrupt conversion.

5.3.9 Except in the case of Extracode (class 10) interrupts, the value of PC

stored on interrupt is the address of the instruction to which control

~ must be returned after dealing with the interrupt. For Extracode

interrupts, PC indicates the address of the imstruction causing the

-~ interrupt, and software is required to update PC prior to returning to
the interrupted process after dealing with this interrupt. .

- When interruption occurs in mid-instruction, as in the case of a virtual
store condition arising in the middle of a store-to-store instruction, the
II bit in SSRR is set to indicate that on resumption of the process the
instruction indicated by the dumped PC i8s not started from scratch. 1II
may also be set to indicate incompletion of the interrupt mechanism in the
cases where non-stack-switching interrupts are converted to virtual store
interrupts, or to indicate another outstanding interrupt coandition in
] conjunction with a program error interrupt (see 5.3.10 below). 1II is
inspected by the Activate instruction, and if II is set it is assumed that
additional implementation-defined information, used by Activate, is held
iy in segment (SSN + 1). When II is not set the instruction indicated by PC
is executed ab initio. '

In the case of the virtual store interrupt caused by a jump to an address

BN in a non-available segment or beyond the segment limit, PC may poiat
either to the jump instruction (probably with II set) or to the
destination instruction - this is a matter of implementation.

e

Mechanisms will be particular to each machine of the range and will be
given in the hardware manual since each design may be different. Thus
- there are the possibilities of complete checking (where necessary) at the
beginning of an instruction so that partially completed instructions never

occur, or of initialising after a virtual store interrupt condition in
some cases (e.g. multi-word writes) but not in others (e.g. store/store)
et or of making all such conditions cause partially completed instructions.

The matter 18 linked with hardware reloading of the address translation
slave store (section 4.3).

(=]
5.3.10 The precision with which interrupts are handled is allowed to be
variable over the range. Where an instruction would produce multiple
= interrupts then the hardware defines which interrupt is actually taken. In
order to allow for the properties of pipe-lined processors, a program
. error interrupt may occur a few instructions later than the one which
- ' caused the error, because parts of the pipeline may be executing later

instructions at the time the error is detected. On pipelined processors

Product Compaliy PSD 2.5.1

specification restricted — 6/0
- sm 56 e -
- the pipeline will come to rest in an orderly manner, {.e. all fnstrwtions

up to the point of interruption will be completed, and the dumped PC will
indicate the instruction at which the process should resume. II may de
- set if interruption occurred in mid-instruction, e.g. if im the course of

coming to rest after detection of a program error somewhere in the
pipeline, the processor starts to execute a string instruction which meets
a virtual store interrupt condition part-way through, the pipeline will be
closed down, and the program error interrupt will occur, at that point; if

the process is subsequsently re-activated the virtual store interrupt will
be taken.

The address of the instruction causing the error will be placed in word 16
of the dump (segment (SSN +1)); the contents of this word are undefined
for other stack-switching interrupts.

S~ In coming to rest after detecting a program error the processor may
execute jump instructions, but will not go beyond a Call instruction. If
o for some reason the pipeline cannot be brought to rest in an orderly
manner (e.g. because another program error condition is detected - in this
case the parameters will refer to the first error) a bit will be set in

o the interrupt parameters to indicate that the process cannot be resumed at
the instruction indicated by PC.

The method of completing the instruction on which the actual error
i occurred, when not defined elsewhere in this document, is implementation-

dependent. The instruction is always completed, so even on non-pipelined
procegssors the addrese in PC will not be the same as that of the erring
= instruction. Floating-point underflow is the typical case in which the
result is completely, and sensibly, defined, and in which the interrupt
may be required only to log the occurrence without affecting the process.

]
5.3.11 A parameter is stacked, on the new stack if stacks are switched or else
on the old stack, giving further information about the interrupt.
M'-‘\
\
System error 32 bits of hardware identifiers - to be defined
- External Implementation defined. Also distinguishes RTC
interrupts.
- Multiprocessor) Module number (see [6] in image store
) address format (see section
Peripheral) 3.3.3)
. Virtual store See section 7.3.2
- Interval timer Undefined.
Program error Program error identifier - 2 bytes. See section 7.4.1
-
System call None, parameter in DR.
g Out 32-bit operand of Out imstruction.

Product Company PSD 2-5-1

specification restricted | 6/0 o
Ve
Shest 57
Extracode Parameters are machine dependent.
Event pending Undefined.

Instruction Counter Value of IC at interrupt.

5.3.12 The hardware interrupt mechanism accessess IST, segment (SSN + 1), PSR,
SSR, etc., with effective ACR=0 and PRIV=]l, i.e. these segments and

registers are protected against erromneous access but the protection
mechanism cannot inhibit the interrupt action.

5.3.13 The interrupt mechanisms defined in this document are not required to

clear slave stores, and programmers must therefore ensure that they are
not used directly to increase ACR (see section 4.3).

5.3.14 When emulating alien code, if a stack-switching or non-stack-switching

interrupt (as opposed to an emulated interrupt) loads a new PSR having
E=0, a switch to NR mode occurs.

5.3.15 System Call interrupts are handled differently to other interrupts. The
System Call Descriptor (Type 3 subtype 35) contains two parameters, i and
J which are used to access the jth entry of the ith System Call Table
(SCT) which contains the new value of PSR and either the start address of
the called procedure or a pointer to a location containing the start
address of the called procedure. This entry also contains parameters

defining the maximum ACR level of the calling procedure and the minimum
number of stacked parameters.

The format of the system call descriptor is

0 78 31
11100011 | b

32 63

where 1 is the entry in the SCT Index
j 18 the entry in the ith SCT

The format of the IST entry for System Call (words 56 to 63) is

0 78 29, 30/31
Word 56 (0) /ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ%ZZ;Z;ZZ
57 (1) (/111111111111 New PSR |///////| Used for exception
58 (2) New PC conditions

59~61 (3=S) |///111711T1TT7111111100000001110001111111
1100110000000 LT :
62 (6) 00110000 | L Descriptor Defining
63 (7) A 1//////] SCT Index

The shaded areas are not used.

Where A 18 the base word address of the SCT Index.
L is the number of extries (double words) in the SCT Index.
Words 1 & 2 give the entry point for the exception condition routine

Product Company PSD 251

specification restricted oo
tooue -
Shost AN
- The SCT Index is a table of descriptors, each defining a NSvatem all
Table. The Format of each entry in the SCT Index is :-
- 0 7 8 31
word A+21i 00111000 | M
word A+21+1 B 1771111
e Where B is the base word address of the ith SCT. M is the number of
entries in the ith SCT.
- The System Call Table contains 4-~word entries, each defining the entry
conditions for a procedure. The format of each entry is
- 0 7 8 11 12 24 31
word B+43+1 | 1 {/////]/]] K { Count
=S Bt+4 3+1 P New PSR |
B+43+2 | _Type N) Descriptor
- B+4 343 | C |)

Where Bit 0 of the first word = 1 if hardware action required, and K is

- the System Call Access Key of the called procedure. (To be checked against
ACR of the calling procedure).

- The 2nd and 3rd words form a descriptor which is either a Code descriptor
pointing at the called procedure or a Vector descriptor pointing at a
table, whose entry is a pointer to the called procedure.

]

Count 18 a 20 bit binary number which is incremented by 1 each time the

System Call is used. This is implemented at AMLl. The field is ignored
- at AMIO.

P i8 the minimum difference in words between SF and LNB. This is
- implemented at AMLl. The field is ignored at AMIO.

The steps of the decode routine are given in Figure 5.

- System Call Decode Routine (figure 5)
It is assumed that a double word register, S, exists to hold intermediate
- descriptors. Other letters refer to formats defined in 5.3.15.
1. Load words 6 and 7 of System Call Entry in IST to Reg. S.
- (IST words 62 and 63).
2. Check that descriptor in S is type 0, size 2 words and that USC, BCI
are not set. I1f fail go to step 16.
[
3. Check that i 1s less than than L. If fail go to step 16.
- 4. Load descriptor in the ith entry of the SCT Index to Reg. S.
(Words A+21 and A+21+1).
_fﬂ\ 5. Check that descriptor in S is type 0, size 4 words and that USC,

BCI are not set. If fail go to step 16.

Product Company PSD 2.5.1

specification restricted
lssve 6/0
Sheet 59 o
——
6. Check that j is less than M. If fail go to step l6.
- 7. Load the first word of the jth entry in the SCT to Reg S.
(Word B+43).
8. Check that hardware action is permitted (Bit O of S=1) and that
- current ACR is not less than K. If fail go to step 16.
8a Add 1 to bits 12-31 of Reg S and write them back to first word
- of the jth entry in the SCT (words B+4j) (not AMLO)
9. Check that SP-LNB is not less than P. If fail go to step 16. (not
- AMLO)
-~ 10. Overwrite PSR (bits 8-29) with the new value in second word of jth
entry in the SCT (bits 8=29 of B+4i+l).
PR
11. Load next two words of jth entry in the SCT to DR.
(Words B+43+2 and B+43+3).
—
12. 1f descriptor in DR is type 0, size 1 word: load PC from location
addressed by C. Obey instruction at PC. END.
= 13. 1f descriptor in DR is type 0, size 1 word; load PC from
location addressed by C. Obey instruction at PC. END.
ol 14. If descriptor in DR is type O, size 2 words or type 2; load PC
: from location addressed by C+l. Obey instruction at PC. END.
on 15. Initiate System Error (descriptor incorrect type) END.
16. Overwrite PSR (bits 8-29) with bits 8-29 of word 1 of System
- Call entry in the IST. (IST word 57)
-
17. Load PC from word 2 of System Call entry of IST.
(IST word 58).
i}
18. Obey instruction at PC. END.
(]
L}
-
-
T
=)
-

Product Company PSD 2.5.1

specification restricted

oove 6/0

6.1

Sheat o0

INSTRUCTION AND DESCRIPTOR FORNMATS

Instruction Formats

Instructions are either 16 or 32 bits in length. There are three formats:
primary, secondary (store-to-store) and tertiary. 1Imn all formats the
first 7 bits specify the function code, the remaining 9 or 25 bits the
operand. The format is determined from the function code, and the
instruction length from the operand part of the instruction.

16 bit | Function | Operand |
7 9

32 bit | . Function | Operand |
T 25

In general, instruction may have any of the types of operand allowed by
the format class to which they belong, though for particular functions
there may be restrictions which are listed under the individual
instruction descriptions. Some instructions do not use the operand,
though the operand field determines the instruction length. In such cases
literal operand (zero) must be specified.

Function Decode

The 7-bit function number is decoded in such a way as to provide:

104 primary format instructions (48 computational and 56 miscellaneous).
16 secondary format instructions (store-to-store).
8 tertiary format instructions (jumps).

(see table of allotted function codes in Appendix 1)
Operand decode

Primary format:

16 bit Tkl n | k = 0,1,2
2. 7
k operand

0 n (7 bit signed literal)

1 (LNB+n) (Direct access to local name space)
(n unsigned)

2 ((LNB+n)) (Indirect access via descriptor in

local name space) (n unsigned)
3 implies further decode

16 bit C T k=3 [T [T [* | K" = 6,7
2 2 3 2

* = Reserved

- ICL Product Company PSD -5t
specification restricted 870
-\ m \
-
Sheet 61
- 32 bit 3 [k | K N | k"= 0-5
2 2 3 18
- Operands for different values of k', k".
ot Direct Indirect
k'= 0 1 (Desc. in 2 (Desce in | 3 {(Desc. in
DR, modified) | store) store,
- wodified)
k"=0 N(signed | (DR+N) *(1IS location|*(IS location
literal) N) B)
1 Unassigned
- 2 (LNB+N) | (DR+(LNB+N)) |((LNB+N)) ((LNB+N)+B)
~ 3 (XNB+N) (DR+(XNB+N)) | ((XNB+N)) ((ENB+N)+B)
4 (PCG+N) | (DR+(PGHN))) |((PO+N)) ((PGHN)+B)
- 5 (CTB+N) (DR+(CTB+N)) | ((CTB+N)) ((CTB+N)+B)
16 bit| (6 TOS (DR+TOS) (TOS) { TOS+B)
(7 B *(B+N) ** (DR) { DR+B)
. *Classed as Direct Address Form
(**) 32 bit format. This operand form is unsesigped at AML)
- Notes
(1) Unassigned operand forms cause program error interrupt.
-
(11) PC contains address of current instruction.
- (i11) B=Contents of B register, TOS=Top-of-Stack item
(iv) ((LNB+N)+B), (TOS+B) and (DR+B) indicate items pcinted to by
descriptors held respectively in LNB+N, in the top 2 words
bl of stack, and in DR; '+B' indicates that the address in the
descriptor in each case is modified by B.
o (v) N is unsigned (positive) except when a literal, or when
added to PC (k'"=4)
- (vi) For jump instructions the operand, interpreted as a byte
address whose least significant bit is ignored,
overwrites PC, except when it is a literal in which case it is
treated as a signed quantity (number of half-words) and added to
- the contents of PC.
For the 'Call' instruction the indirect forms may use Code
= descriptors, in which case the address from the descriptor itself,
modified if the instruction form specifies it, overwrites PC.
. The use of System Call (by the 'Call' and 'Exit' instructions)
and Escape descriptors (by any instruction) is described in
Section 5.
~~
o
-

Product Company PSD 2.5.1

specification restricted — 6/0

Operand for k" = 1

Secondary format (used for store-to-store operations):

16 bit] h [q=0] n I
1 1 7

32bit] B Jg=l] ____n_ [Mask | Literal/Filler|
T 1 7 8 8

Interpretation of h :

h= 0 Number of bytes = n + 1
h = 1 Number of bytes = Length of destination string

Interpretation of q :

q=0 16 - bit instruction
q=1 32 - bit instruction

For a detailed explanation of how these fields are used, refer to section
8.3 on store-to-store operations.

Tertiary format (used only for conditional jump instructions)

16 bit [M k"] 00 |
4 3 2

32 bit [M ®" T N |
4 3 18

k''' provides the following operand types:

0. N (literal) 1. (DR+N))

2. (LNB+N) 3. (XNB+N)) 32 bit
4, (PO+N) 5. (CTB+N))
6. (DR) 7. (DR+B) 16 bit

(see note (vi) above)

M= 4 bit mask field (see description of Jump on
CC and Jump on Arithmetic instructions in
section 8.1.2)

ICL Product Company PSD_ ‘%41
specification restricted 670
=
i Shest 03 .
- 6.2 Descriptor PFormats
All descriptors are 64 bit in length, The less significant 32 bits
. always contain a byte address, which may be modified in the course of
accessing the information to which the descriptor refers. The resultant
address points to the leftmost (lowest addressed) byte of the information.
- Descriptor types are distinguished by their more significant 32 bits.
The general form of descriptor is as follows:
[}
2 3 1 1 1 24
| Type | Size [S | USC | BCI] Bound/Length |
- | Byte Address (32 bits) |
™ . The different types, and interpretations of the other fields, are as
o follows:
—
Type 0 = Vector descriptors
Size The size of the addressed item in store. Permitted sizes, and
- the corresponding size codes, are as follows:
Size (bits) Code
L]
1 0
8 3
16 4 not AMLO
- 32 5
64 6
128 7
When the size is 32, 64 or 128 bits, the two least significant bits of the
—_— byte address, after modification, if any, are ignored - i.e. 1, 2, and 4
A word items are made to start on word boundaries. Use of other values will
cause program errors as indicated in Section 8.
When size 18 16 bits, the least significant bit of the byte address,
- after modification, is ignored.
8ize code 4 18 not available at AMIO.
—
8 Signed. If set to 1, then
o a) if the operand is read from store and the addressed item
1s smaller than the operand length, it is sign—extended.
b) 1f the operand is written to store and the addressed item is
- greater than the operand length, the truncated bits are
checked to be equal to the most significant bit of the stored
item.
L]
The S field 18 ignored at AMLO.
]
-

Product Company PSD 2.5.1

specification restricted — 6/0
Sheet 64
usc Unscaled. Unless this bit is a 1, when a modifier is added to

the address field, it is scaled according to the size field 1,2, 3 and 4
places up for 16,32,64 and 128 bits, respectively, and 3 places down
(logically) for 1 bit. In the latter case the least significant 3 bits of
the shifted-down modifier specify the individual bit number (0 = most
significant) which 18 to be accessed within the accessed byte. If the

modifier is unscaled the accessed bit-number is undefined; however if the
descriptor is unmodified, bit 0 is accessed.

BCI Bound Check Inhibit. Unless this bit is 1 any modifier added to
the address is checked (before scaling) to ensure that it is less than the
contents of the Bound field, in this case bits 0 - 7 of the 32-bit
modifier must be all zeros.

Bound ' The contents of this field are unsigned (positive).

When a byte-vector descriptor, i.e. one with Type = 0, Size code = 3, is
used as the operand of a store-to-store instruction, this field contains
the length of the byte string. On other occassions when vector
descriptors with any permitted size code are used, this field is spare if

BCI = 1; 1f BCI = 0 its contents should be 1 greater than the largest
permitted modifier. '

Type 1 = String descriptors

Size Should be set to 011 - this is checked by store-to-store
instructions; at other times it is ignored (reserved).

S This bit 1is reserved for use within the I/O subsystem and is
ignored by the OCP.

USC & BCI These fields are ignored (reserved) and should be set to 00.
Modifications are not scaled or checked.

Length The length field contains the length, in bytes, of the byte

string whose first byte is addressed by the contents of the address field
(modified 1f the instruction specifies modification)

Type 2 = Descriptor descriptors

Size and S are ignored (reserved) and should be set to 1100. These
function just like type 0 descriptors with size code 64 bits, and are
interchangeable with the latter.

Product Company PSD 2.5.1

specification restricted

- Type 3 = Miscellaneous
' Bits 2-7 (Size, S, USC, and BCI) define a subtype wumder.

Subtypes (numbered decimally)

32,33 Code (Bounded, Unbounded)

o Code descriptors may be used to point to the destination

instructions of Jump, Call and Exit instructions. Bits 32-63 contain the
byte address of the first byte of the destination instruction - bit 63 is
ingored as instructions are halfword aligned. Any modifier added to the
- address is multiplied by 2 before addition. If sub~type 32, bits 8-31
contain a bound which is used to check the modifier, if any, in exactly
the same way as for Type O and Type 2 descriptors. If sub-type 33, bits

- 8-31 may contain the identity of a microcode subroutine which may be
~ entered after PC is set. If the microcode subrountine does not exist or
. if an error is encountered within the rountines a jump is made to the
- instruction addressed by PC. A description of the defined microcode
subroutines is given in Appendix 3.
35 System Call
=
Bits 8-31 usually contain an entry displacement to index a System
Call Index Table. Bits 32-63 usually contain an entry displacement to
] Index the System Call Table indicated by the descriptor accessed for the
System Call Index Table. System Call descriptors are only used by the Call
and Exit instructions ~ in the latter case as 'link descriptor'. Their use
- 1s described in section 5 and in [4].
37 Escape
= Escape descriptors are used to by-pass normal instruction
sequencing rules. Whenever a descriptor in DR which is being modified by
MODD, or used to access information indirectly is found to be an Escape
LN

descriptor, a branch out of sequence occurs, as described in section
5.2.2. Bits 32-63 contain the address of a word whose contents will be

transferred to PC as part of the escape action. Bits 62,63 are ignored so

- the address is word-aligned. Escape descriptors are not modified. Bits 8-
31 are ignored (spare).

- 40,41 Semaphores (Bounded, Unbounded).

Semaphore descriptors are used to point to semaphore locations in
store. The format is similar to a Type 0, size code 5 descriptor and the
modification rules are the same. The descriptor is restricted to use with
INCT and TDEC instructions. The effect of use with other instructions is
undefined (but a program error is preferred). The descriptor must not be
- used to access the stack segment.

Access to the word pointed at by the descriptor is forced by
hardware to bypass slave storage and is implemented by a Read Hold, Write

- Hold combination so as to prevent access to the store location while the
word is modified.
_ If slave storage is present, use of this descriptor must clear

the operand slave store of items from segments marked non-slaved (NS).

i | !
Y

Product Company PSD 2.5.1
@ specification restricted — 6/0
Sheet 66
63 Null

A null descriptor is used to ﬁrovide the NIL option when a
descriptor is used as an optional parameter for a procedure. It is

detected by the VALIDATE instructiom and is invalid with all other
instruction. This facility is part of MMl.

Product Company PSD 2.5.1

specification restricted o

N a i g ——— - ——

o A 6.3 Operand Addressing and Aligument

teave
St o?

6.3.1 General Principles

- 6.3.1.1 Operand Length (Primary and Tertiary Formats)
. The 'operand length' of an instruction is the number of bits of the
- operand required by the instruction for its operation. The operand length
is defined in a number of different ways, depending upon the particular
instruction.
- a) Explicitly defined, e.g. 32 bits for Scale, Load B etc.
b) .Implicitly defined equal to ACS for most instruction operating on ACC,
- e.g. Add, Subtract.
“\
_ c¢) Implicitly defined equal to half ACS for Floating Divide Double
p (RDVD), Store Upper Half (STUH).

d) Not applicable for imstructions such as IDLE, in which case a literal
- must be used.

The operand length is not necessarily the same as the length of the
addressed item, in particular when the addressed item is accessed via a

- descriptor or is the contents of Register B. When there is a difference,
extension or truncation will be necessary or not allowed.

- The five possibilities are:

a) Z - Extend with left hand zeros.

- b) S - Sign extend with left hand zeros or ones.
¢) TZ Truncate on the left and check for all zros.

d) TS Truncate on the left and check that all the truncated bits are the
same as the most significant bit of the non-truncated data.
e) X - Addressed item too large.

- In the case of e), or if the check fails in case c) or d), a size
interrupt occurs and the operation is suppressed. If the interrupt
condition is masked, the operation is not suppressed and any truncated
bits are ignored.

(L]

]

-

~~
e

Product Company PSD 2.5.1

specilfication restricted o 6/0
Shest 63
o For instructions which read from the addressed item the rulea ave:
Action
- Addressed Item SOperand length {Operand length
AMLO AML1 AMLO AML1

Register B Not applicable A Z
= String descriptor * * Z+ Zt+

Vector descriptor, S=0 X X 2 Z

Vector descriptor, S=1 X X Z S
-

*Causes a nommaskable program error (descriptor) interrupt.

+Except that in the special case of a zero length value, a nonmaskable
- program error interrupt, (descriptor) occurs.

) For instructions which write to the addressed item the rules are:
]
Action

Addressed Item Operand length (Operand length
- AMLO AML1 AMLO AML1

Register B . Not applicable TZ TZ
- String descriptor * * T2 TZ
' Vector descriptor, S=0 z 'z TZ TZ

Vector descriptor, S=1 Z S TZ TS
]

#Causes a non-maskable program error (description) interrupt.

The exception to the above rules occurs in the case of Jump-type
P instruction, where the operand, which over-writes PC, is conceptually 32

bits long. When the operand is specified indirectly via a descriptor, its
length in store is permitted to be 32 or 64 bits, and in the latter case
- the least significant 32 bits overwrite PC, the more significant 32 bits

™ are ignored. Type 1 descriptors are not permitted.

When accessing Block 0 or 2 of the Image store, the operand length must be
32 bits; otherwise the action is undefined. When accessing Block 3 of the

- Image store, the operand length must be 64 bits; otherwise the action is
undefined.
The operand length required by each instruction is listed with the

e instruction description. The operand lengths for store-to-store
instructions are specified in the secondary instruction format (see 6.1
and 803)0

]

6.3.1.2 Addressing rule

= The address of an item in the store is the address of its left-most
(lowest numbered) byte. Where individual bits are addressed by modified
vector descriptors, the bit number, from 0 (left-most bit) to 7, is

- concatenated to the address of the byte.

/\.
—

-

ICL Product Company PSD 2.5.1
—~ specification restricted 6/0
] lssue
- Sheet 69
- 6.3.1.3 Word alignment
Operands directly addressed in the store (i.e. using the operand forms:-
_—
TOS
(LNB+n), (LNB+N)
- (PO+N)
(XNB+N)
(CTBHN)
(B+N)
-
as well as modifiers and descriptors used in the corresponding indirect
forms, start on word boundaries - i.e. their byte addresses are multiples
- of 4. This is ensured automatically thus:-
™ TOS, (LNB+n), (LNB+N)) : SF,LNB, XNB and CTB contain word
_ (XNB+N)) aligned addresses
a (CTB+N))
(PC+N) : the least significant bit of the sum is ignored.
(B+N): the two least significant bits of the sum are ignored.
-
Note that 64 and 128 bit items are not constrained to be on double -or
quadruple-word boundaries in store. Therefore such items are liable to
. croes page boundaries, or violate segment limits, even when the addresses
of their first words have been checked and found 'legitimate' - the final
address must be checked too.
= 6.3.1.4 Justification in registers
In general quantities transferred from store, or as literals from the
el instruction format, to registers, and vice-versa, are right-justified in
both registers and store locations. Sign extension or zero filling on the
left takes place according to rules stated elsewhere. Thus, in
_-— calculating the value of 'PC+N', N is assumed to be in the same units as
the contents of PC, i.e. halfwords, and signed; while in calculating
_ 'LNB+N', N 18 considered to be a number of words, and is unsigned, i.e.
positive. An exception to this rule occurs when a stored quantity
- represents a virtual address, in which case it is a byte address; this
particularly applies to the items transferred to PC by jump instructious.
Thus for 'Load LNB' the operand is a byte number whose least significant 2
- bits are ignored, rather than a word number.
]
6.3.2 Primary and tertiary format operands
- 6.3.2.1 Literals
The operand forms n and N cause the operand to be generated by extending
the quantities n (7 bits) or N (18 bits) on the left with copies of their
-~ most significant bits, to the required operand length. A signed literal
specified as the operand for a jump instruction will be added to, rather
~ than overwrite, PC Interrupt occurs if this alters the segment number in
- PC.
—

Product Company PSD 5.1

specification restricted -
issue 6/0
Shest 70
- 6.3.2.2 mage Store
The operand forms (IS location N) and (IS location B) cause the 32 bit
image store location indicated by N, or by the contents of the B register
- (see 3.3) to be accessed. They must only be used with the functioms
listed in section 3.3.2, and the operand length must be 32 bits; otherwise
the action is undefined.

-—

6¢3.2.3 Top of Stack
- The operand TOS causes the item at the top of the stack (of length =
operand length) to be used as operand, and SF to be decremented by the
operand length in words. Program error interrupt occurs if this causes SF
to become not greater than LNB.

i For store type instructions the result is stored as a new top-of-stack
=y item causing SF to be incremented. If storing the result violates the
stack segment limit a virtual store interrupt will occur.

- .

6.3.2.4 B
- Causes the 32-bit contents of B to be read (extended with zeroes if
) necessary) or overwritten.
6.3.2.5 Directly-accessed items in store
]
For the operand forms
- LNB+n
LNB+N
XNB+N
- CTB+N
B PC+N
B+N
e the address of the operand is formed by adding N (or n) to the appropriate
pointer location, to form a byte address which is a multiple of 4. Length
of item accessed = operand length. The rules for checking this addition
- vary from one form to another, as shown below:-
(LNB+n), (LNB+N) n extended with zeroes; m.s. 2 bits of N must be

- zeroes. No carry out of LNB permitted.

) (XNB+N), (CTB+N) No check - ‘N extended with zeroes.

(PC+N) N is regarded as a signed half-word displacement.
Bits 1-17 of N are added to bits 14-30 of PC.

- Carry out of bit 14 of PC is checked equal to bit O
of N, and i8 not added to bit 13, i.e. segment
overflow is forbidden. The least significant bit

o of the sum is ignored.

The operand must be wholly in the current code
segment.

- (B+N) No check — N is extended with zeros and is regarded
as a word displacement. The two LS bits of B are
ignored.

Y
il Failure of any check causes interruption.
.

Product. Company PSD 2.1

specification . restricted — 6/0

Shest 71

6.3.2.6 Indirectly accessed items in store
The operand is accessed via a descriptor at the specified location

There are two cases: in one case the descriptor is accessed like a
directly-accessed operand (i.e. as described in 6.3.2.3 and 6.3.2.5 above,
but of length = 64 bits) - the descriptor may be modified by the contents
of B - and in the other case the descriptor is already in DR and may be
modified by a directly accessed quantity. In both cases the descriptor is
left in DR, unmodified, after use. Unless otherwise stated, the
descriptor may be of types 0,1,2 or Escape for any primary or tertiary
format non-jump instructions. For jump instructions (incuding call) the
same rule applies except that type 1 descriptors are not allowed, and the
size code in a type 0 descriptor may only be 32 or 64 bits. Additiomally,
jump instructions are allowed to use descriptors (type 3 subtype 33). For
a 'Call' instruction 'Code or 'System Call' types are also permitted. If

the descriptor is of escape type a jump out of sequence occurs as
described in Section 5.

Modifiers, whether obtained as directly accessed quani:ities or from B, are
32 bit quantities. When N is used as a modifier it is extended with

zeroes on the left. The modifier is added to the contents of the address
field ~ other fields are unaffected.

When the modifier is added, a full 32 - bit addition is performed,
overflow due to scaling or to the addition being ignored. When bound
checking is required (BCI not set) the most significant 8 bits of the
modifier before scaling must be 0's and it must be less than the contents
of the bound field otherwise Bound check interrupt occurs.

The checks of section 6.3.2.5 apply when the directly-accessed item is
used as a descriptor or modifier. The rules for accessing and aligning
operands are given in 6.3.1 Modifiers or descriptors taken from the top
of the stack (using the forms given by k" = 6 in 6.1) cause SF to be
decremented by 1 or 2 words, respectively.

An instruction may overwrite store locations which contained parts of the
descriptor or descriptor modifier that it used to address its operand.
This includes cases where the descriptor or modifier was the top-of-stack
item and the instruction (e.g. Remainder Divide, or Stack-and-Load types)

causes something to be stacked, though the operand itself is not on the
Btacko . .

6.3.3 Secondary Format

The secondary format is only used by store-to-store functioms. ACC may
contain a source descriptor and DR contains the destination string

descriptor (an Escape descriptor may be used in place of the latter).
Further details are given in Section 8.3.

o

ICL Product Company PSD 2.5.1
- specification restricted — 6/0
e Sheet 72
i 6.3.4 Full Segments
Where the segment limit of 256k. bytes is too small to provide sufficient
- space for the data, overflow is allowed into a new segment with the next
higher segment number. The lower segment limit in this case must be set
to the maximum, i.e. bits 14 to 24, all ones. Direct and indirect
operands are allowed to cross the boundaries of such full segments.
- Exceptions to the above are:-
‘Code segments. These may exist in more than one segment but the
- program counter (PC) may not be updated in the course
of a normal instruction to cross such a segment
boundary (see 5.1).
-
—_ Stack segments. Restricted to one segment (i.e. one segment less
than one page, if paged or one segment less 128
- bytes if unpaged).
]
L]
]
o
m/-\
R
()
]
(]
-
7\
-
-

Product Company PSD .5

specification restricted - 6/0
Sheet 73
. 7 EXCEPTION CONDITIONS
7.1 Categories

~
Exception conditions occur in one of three categories and an occurrence
within a category leads to a corresponding interrupt unless masked. They

- are:

System errors

Virtual Store conditions
= Program errors

Each exception condition produces an exception identifier, the 32 bit
o] parameter which is stacked as an interrupt identifier.
-~
7.2 System errors

9 ‘ .

A system error occurs when the system hardware or software fails,. It is
therefore linked to some form of restart mechanism and, since this will to

- some extent be design implementation defined, the definition of the
precise mechanism is implementation dependent. However the following
causes of system error interrupt are defined:

= l. Virtual store condition on 'Activate' (dump area inaccessible)

. 2. Virtual store condition on interrupt (IST inaccessible)

3. Virtual store condition on stack-switching interrupt (dump area

o in (old) segment (SSM+1) inaccessible).

4, Virtual store condition on stack-switching interrupt (top of new
stack inaccessible for loading parameters)

- 5. Masked interrupt in classes 5,7,8,9,10

‘ 6. Hardware errors detected by hardware checking mechanisms (e.g. parity)
7. Segment table format error.

8. Real address out of range.

LN 9. Attempt to load odd number to SSN.

Errors which occur in the use of that part of image store which accesses

&0 different physical units will be handled by fault responses rather than
interrupt (similar to I0 device failures).

The parameter returned at the time of interrupt should indicate the cause
of interrupt but is implementation dependent.

- Some of these conditions (e.g. 2,3,4) may themselves inhibit the normal
system error interrupt mechanism. The subsequent action in this case is
machine dependent.

)

vy

&=

~
N

Product Company PSD 2.5.1
specification restricted i 6/0
Sheet 74

7.3 Virtual store conditions

7.3.1 A virtual store condition occurs when access to the virtual/real

trangslation table does not produce a real address. The following causes
are identified:

0 Segment number greater than limit.

1 Segment not available (A= 0 in segment table entry)

2 Segment limit exceeded (non paged segments)

3 Page number greater than limit

4 Page not available (A = 0 in page table entry)
Checks 1-4 are carried out after ACR against APF checks (see 4.2.2) which
may result in a Program Error.

7¢3.2 The format for the 32 bit parameter returned upon virtual store interrupt
is: ‘
bits 0-24 Most significant 25 bits of virtual address
bits 25,26 OX (X undefined) Write access attempted
10 Read access attempted
11 Execute access attempted
bit 27 0
bit 28 1 if caused during interrupt sequence (II set)
bits 29-31 cause for interrupt, categories as in 7.3.1.

7.3.3 Additional information may be dumped in segment (SSN + 1) (hardware dump
area) to an implementation defined format to indicate partially completed
operations which must be resumed at the point where a condition occurred.

In certain circumstances (see 7.2 above) virtual store conditions will
give rise to system error interrupts.

Product Company PSD 25.1

specification restricted N 6/0

Sheet 75

7.4 Program errors

7.4.1 Each program error is associated with an interrupt parameter.
The parameter has three parts

a) A bit (bit 24) which if = 1 indicates restart is not possible
(see section 5.3.10)
b) A program error identifier (PEI), range defined (bits 25-31)
c) A sub identifier, implementation defined (bits 16=23)
(1f possible, the class numbers in the following sections should
be used).
PEI numbers are assigned as follows:
Code 0 Floating point overflow
1 Floating point underflow
2 Fixed pint overflow
3 Decimal overflow
4 Zero divide
5 Bound check
6 Size
7 B overflow
8 Stack
9 Privilege
10 Descriptor
11 String
12 Instruction
13 Accumulator
14 ESR errors (emulating machines only) (see[7])

7.4.2 Errors in each category are now classified. Class numbers do not
necessarily correspond to sub-identifiers, which are implementation-
defined and which may not be generated at all for some categories. In
such cases bits 16-23 of the parameter will be all 1's.

7.4.2.0 Floating point overflow. Detailed in section 8, no sub-identifiers.

7.46.2.1 Floating point underflow. Detailed in section 8, no sub-identifiers.

7.4.2.,2 Fixed point overflow. Detailed in section 8, no sub-identifiers.
7 +4+243 Decimal overflow. Detailed in section 8, no sub-identifiers.
7.4.2.4 Zero divide. Detailed in section 8, no sub-identifiers.
7.4.2.5 Bound and check. Detailed in section 6 and 8, classes:-

0 Descriptor bound check-modifier (unsigned) too large

1 Modify DR-operand (unsigned) greater than or equal DR bound

2 Dope vector multiply. (Index-lower bound) oveflows

3" " " (Index lower bound) negative

4 " " " Multiplier negative.

5 " " " Upper bound negative

6 " 9 " Displacement (product) greater than or equal to

231, or upper baund.
DR bound goes negative

Table check, translate, (DR) string byte too large.

[+ BN

Product Company PSD 2.5.1

specification restricted 6/ o

Sheet 76

7¢4.2.6 Size. Location too small for operand.
0 Significant part of operand truncated (See section 6.3.1.1)
1 Store to register, descriptor size code
(type 0 or 2) greater than operand length (except for jumps)

7.4.2.7 B overflow. Detailed in section 8; no sub-identifiers

7.4.2.8 Stack. Stack register operation check

Unstacking operation makes SF less than or equal to LNB (SF unaltered)
Undefined.

Load LNB and Exit, bits 0-13 of new LNB not equal to SSN (LNB
unaltered)

Load LNB and Exit, new LNB greater than or equal to SF

Raise LNB, new LNB greater than or equal to SF (LNB unaltered)
Raise LNB, new LNB less than old LNB (LNB unaltered)

Adjust SF, new SF less than or equal to LNB (SF unaltered)
Adjust SF, segment overflow (SF unaltered)

N =0

~NoNnm & W

7.4.2.,9 Privilege. A program error leads to an attempt to use a resource which
the current level of privilege does not justify.

Read protection fail with ACR

Write protection fail with ACR

Execute when execute permission bit not set

Use of image store without privilege permission

Use of non-existent image store (e.g. address does not exist, or

read to write only IS or write to read only IS)

5 ACR less than old ACR or PRIV greater than old PRIV on Exit

6 Diagnose or Activate executed without privilege permission

SFWLWNO=O

7.4.2.10 Descriptor

0 Jump descriptor not type 0, size 32 or 64, type 2. or escape type or
code type

1 Descriptor for normal operand access not type 0,1,2 or escape type

2 Call descriptor is not type O, size 32 or 64, type 2 code, escape
or system call

3 Link descriptor for Exit is not code, escape, or system call

4 Descriptor in DR not type O, size 32 for Dope Vector multiply

-5 Length in type 'l descriptor used by primary format instruction

18 zero or exceeds operand length.

6 DR descriptor is not type O or 1 with size code 3, or escape, for
store-to—-store operation.

7 ACC descriptor not type 0 or 1 with size code 3, for some store-to-
store operations.

- 8 ACC descriptor not type O, size 1 or 8, for Table check and Table
translate, respectively.
9 Size code incorrect in type O descriptor.
10 Descriptor sub-type undefined. -
11 Modify DR with System Call descriptor in DR.
12 Not used.
13 Incorrect descriptor used for semaphore instruction
14 Reserved for emulating machines (see[7])

. Product Company PSD 2.5.1

specification restricted

6/0
z,\ issue .6/

7.4.2.11 String
0 L greater than DR bound
1 Not used.
o 2 L greater than ACC bound for 16 bit form of Move, Compare, And, Or and
Not equivalent strimgs, Check overlap.

- 7+4.2.12 Instruction

Ingtruction function 1s illegal or unassigned

Store to literal.

Incorrect address form for certain functions (e.g. Increment
and test, Modify DR, Load relative).

Relative jump attempts to alter segment number in PC.
Unassigned operand address forms: k'=], k'"=7 and k'=]l

Item addressed in stack segment lies above TOS

Item addressed by PC + N lies outside current code segment.
Normal update of PC attempts to alter segment rumber.
Reserved for emulating machines (see[7])

]
ONOUVEW N=O

7+4.2.13 Accumulator ACC incompatible with instruction

ACS = 128 bits and fixed point or logical. (except Multiply Double)
ACS = 64 bits and Add/Subtract logical,

ACS = 128 bits and Float

ACS = 32 bits and Floating divide double.

ACS = 128/32 bits and Load/Store upper half.

ACS = 128 bits, or 64 if fixed, and Multiply double.

ACS % 64 bits for store-to-store instruction involving descriptor
in ACC ’

Modify PSR or Exit attempts to set ACS = O
ACS = 128 bits and Compress/Expand ACC

® ATV WN=O

7+4.3 Operand addressing errors

The phrase 'operand addressing errors is used throughout section 8 to
cover errors of the following types:

Bound check (class 0) | % Jumps only |
Size (class **]) |___**Not jumps |
Privilege (classes, 0,** 1,3,4)
Descriptor (classes %0, **]1, *2, **5.,9,10)
Instruction (classes *3, 4, 5, 6)

o Other program errors are listed explicitly with each instruction
description, except for errors which are checked as part of the
instruction sequencing process, or apply to all instructions.

- Coee

Stack (class 0)

Privilege (class 2)

Instruction (classes 0,7)

Company PSD 2.5.1

restricted
tasue 6/0

7.5

7.6

Program Mask

The format of the program mask is given in Section 3. If a particular bit
1s set and the corresponding interrupt comdition occurs, it is igmored.

The results left in ACC or B etc, by arithmetic operations when Floating
overflow, Floating underflow, Fixed overflew, Decimal overflow, B overflow
or Zero divide conditions occur are defined in Section 8. These are
unaffected by PM, which in these cases only determines whether or not
these conditions cause interruption, and similarly when a Bound check

condition arises from the Dope Vector multiply instruction, (classes 2 -6
°nly’.

However, when a Bound check condition arises in modifying the address in a
descriptor, during operand access, and is masked the effect is as if BCL
were set in the descriptor. If unmasked the conditioa causes the fetch or
store operation to be suppressed and interrupt occurs.

Similarly if an umnmasked Size condition occurs the operation is suppressed
an interrupt occurs. If the conditiom is masked, and it occurs on a
store-to-register operation, the additional portion of the item in store

is ignored; if a register-to~store operatism, the tmcatul non-zero bits
are treated as zeroes.

Masked program error conditions do not remain pending i.e. clearing a PM
bit does not cause the corresponding interrupt to occur if the condition
arose while it was magked - even if it is one of the overflow conditiomns
and OV is set.

State of registers, etc. after program error

The manner of completion of an instruction which causes a program error
interrupt and the exact point in the instruction sequence at which
interrupt occurs, may be inconsistent between different models, except
where explicitly specified, and subject to the following rules:

a) Registers and store locations (insofar as these can be defined) which
the erring instruction would not have altered in normal circumstances will
be unaffected.

b) With one exception (Privilege, class 2 - execute, when execute
permission bit not set - following a jump or Exit instruction) the
address left in word 16 of segment (SSN+1) is that of the erring
instruction. 1In the exceptional case this address may point to the jump
or Exit instruction or to the destination instruction.

Company PSD 2.5.1

restricted - o/o
Shest 79
- 8 INSTRUCTION DESCRIPTIONS
8.1 Miscellaneows functioms
= 8.1.1 List of instructions
By "Miecellaneous functions" is meant thogse instructions which do not come
- under the headings of floating-point, fixed-point, logical or decimal
operations in the accumulator (but including operations on B), store-to-
store operations, or privileged operations. All instructions use the
primary or tertiary formats described in 6.1; rules for operand access are
- given in 6.3.
These instructions comprise:
-
- Control and Jump Instructions
Load LNB. Jump and Link
- Load XNB Jump)
Raise LNB Decrement B and jump if nom—zero
Adjust SF Jump on CC
. Store LNB ‘ Jump on arithmetic-condition true
- Store SF ' Jump on arithmetic conditiom false
Increment and Test Escape exit
Test and Decrement Out
o Call Idle
Exit Store XNB
Load CTB . Pre-call
o Store CTB
ACC Instructions
Modify PSR Stack and Load
- Copy PSR Load
Set ACS 32 and load Store
Set ACS 64 and load Load upper half
_— Set ACS 128 and load Store upper half
Stack set ACS 32 and load Copy DR
Stack, set ACS 64 and load Read real-time clock
- Stack, set ACS 128 and load
B Instructions
Load B Multiply B
- Stack and load B Compare B
Store B Compare and increment B
Add to B Dope vector multiply
o Subtract from B
DR Instructions
o Load DR : Load bound
Stack and load DR Modify DR
Store DR Validate address
Load relative Increment address
- Load address Start significance
Load type and bound
LT
.y
]

Company PSD 2.5.1
réstricted
lesue 6/0
Shest 80
8.1.2 Control and Jump Instructions
o
8.1.2.1 Load LNB (LLN) Punction Code : 7C
= Operand length : 32 bits .
Description ¢ Bits 14 - 29 of the operand are loaded to LNB. Bits
30,31 are ignored. Bits 0 - 13 are checked equal to SSN. The new value
- of LNB is checked to be less than SF. LNB is unaltered 1if these checks
are not satisfied.
cC s Unaltered
Program errors : Operand addressing errors
ha Bits 0 - 13 not equal to SSN (see 7.4.2.8.2)
Bits 14 - 29 greater than or equal to SF (see 7.4.2.8.3)
wa 8.1.2.2 Load XNB (LXN) Function Code : 7B
™~
Operand length : 32 bits
o Description ¢ Bits 0 - 29 of the operand are loaded to XNB. Bits 30,
31 are ignored. ' :
cC ¢ Unaltered
Program errors : Operand addressing errors
F-=-]
8.1.2.3 Raise LNB (RALN) - PFunction Code : 6C
- Operand length : 32 bits
Description ¢ LNB is set equal to the value of SF minus the operand.
= The operand is regarded as a number of words, which must be less tham the
word address in SF (so operand bits 0 - 15 must be zero), and the new
value of LNB must not be less than the old. LNB is unaltered if these
checks are not satisfied.
=
cC ¢ Unaltered
= Program errors ¢ Operand addressing errors ‘
Operand less than or equal to 0 (see 7.4.2.8.4)
- Operand greater than SF ~ +LNB (see 7.4.2.8.5.)
= 8.1.2.4 Adjust SF (ASF) Function Code : 6E
Operand length ¢ 32 bits
=
Description : The operand, regarded as a signed number (of words),
is added to the word address in SF. Bita 0 - 15 of the operand must be
= all the same and must equal the carry out of the most significant bit of
SF when performing the sum, i.e. segmeént overflow is not permitted. The
result must be greater than LNB. SF is not adjusted if these checks are
. not satisfied. New stack locations are not cleared. If the operand
involves TOS, SF is decremented before being adjusted. If the location
pointed at by SF after adjustment, lies beyond the stack segment limit, or
lies in a page which is not available in main store, a virtual condition
= occurrs, as if that location had been accessed. In this case SF is not
adjusted, but the adjusted address must be left in the VSI parameter. Bits
~~ 25 and 26 of the VSI parameter (section 7.3.2) may indicate that either a
= read or write access was attempted.

ICL

Product Company PSD 2.5.

specification restricted
lssue 6/0
- .
Shest 81
- cC ¢ Unaltered
Program errors : Operand addressing errors
New SF less than LNB (age 704020806)
o Operand too large (segment overflow)
(8ee 70402.807)
o 8.1.2.5 Store LNB (STLN) Function Code : 5C
Operand length : 32 bits
i Description ¢ The contents of LNB, expanded to a 32-bit byte address
concatenating the contents of SSN on the left and 2 zero bits on the
right, is stored. This imstruction will usually be used to 'stack' the
- contents of LNB prior to a procedure call,
- cc ¢ Unaltered
- Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
Non~sero bits of stored item trumcated.
- (Bﬁe 7.4.2.6 00)
8.1.2.6 Store SF (STSF) Function Code : 5SE
]
Operand length ¢ 32 bits
- Description : The contents of SF, expanded to a 32-bit byte address
by concatenating the contents of SSN on the left and 2 zero bits on the
right, 18 stored. In all cases including those where the operand form
involves the top of stack, the value of SF as it was at the beginning of
= the instruction is stored. '
ccC ¢ Unaltered
™~
Program errors : Operand addressing errors.
Literal operand (see 7.4.2.12.1)
- Non-zero bits of stored item truncated (see 7.4.2.6.0)
8.1.2.7 Increment & Test (INCT) Function Code : 56
Test & Decrement (TDEC) Punction Code : 54
Operand length : 32 dits
- Description ¢ The prime use of these instructions is to implement
semaphores and interlocks.
- The following restrictioms apply to operand formats.
a) The operand must be located in the store rather than a register.
Direct TOS and (PO+N) operand forms are not permitted.
= b) If the operand is accessed indirectly it must be via a vector
(type 0) descriptor with size code 32 bits or a semaphore (type 3,
~~ subtype 40,41) descriptor.

Company PSD 2.5.1

restricted
6/0
Shest 82
The Condition Code is set from the final value of the Increment and Test,
- and from the original value for Test and Decrement. '
INCT and TDEC set the accumulator to the original value of the operand.
ACS is set to 32 bits. OV is unaltered.
-
INCT adde 1 to the operamd. Overflow is ignored.
TDEC subtracts 1 from the operand. Overflow is ignored.
-

Hovever the operand is accessed it 1s fetched directly from store and aay
existing slave store copy is updated; and access to the operand location
J by other units is prevented while the operand is modified. If slave
- storage is present in the processor (see section 4.3) INCT and TDEC are
also required to clear the operand slave store of items from segments
marked non-glaved (NS) in either segment table. The segment containing
- . the operand need not be cleared from slave stores unless marked NS.

At AML] the requirements in the above peragraph are restricted to access
- via Semsphore Desriptors if a switch bit is set in the image store.

cC: 0 Operand = 0

1 Operand greater than 0
e 2 Operand less than -1

3 Operand = 1
(Here 'operand' refers to the final value for INCT and original value for
Program errors: Operand addressing errors.

Incorrect descriptor typs (sse 7.4.2.10.13)

- Incorrect operand types: Literal IS, TOS, B, (PO+N).
See 70"02.1302) :

8.1.2.8 Call (CALL) Function code : 1E

Operand length : 32 bits

Note: If the operand is addressed indirectly via a type zero or type 2
r_— descriptor, the addressed item in store may be 32 or 64 bits long. In
either case it is treated simply as an instruction address, not a
descriptor (so neither System Call nor Escape mechanisms can be invoked),
- and i1f 64 bits long, its more significant bits are ignored. If the
operand is addressed indirectly via a Code Descriptor, the address in bits
32-63 of the Code Descriptor is the operand. If the Code Descriptor is
unbounded, & microcode routine may be entered when the jump is made.

= Description: This instruction is used to enter procedures. A link

descriptor specifying the location to return to on gxit is generated and

loaded into (LNB+1), (LNB+2). The operand increments or overwrites PC
- causing a jump to occur.

If SF less than or equal to LNB+2, the link descriptor is not stored and
o= the instruction terminates with a program error interrupt.

The link descriptor is of unbounded Code Type and consists of:

In(LNB#+2):
-

The byte address of the next instruction (i.e. the length of the Call
N instruction added to the contents of PC,, with a zero bit concatenated at
- the less significant end).

Company PSD 2.5.1

_restricted
tasue 6/0
Sheet 83 -
- In(LNB+1);
Bits 0-7 : 11100001 (Type3, subtype 33)
Bits 8-11 : ACR
- ' Bit 12 : D this is always stored as zero
Bit 13 ¢ PRIV
Bit 14 o
- Bit 15 : E
Bit 16-23 : Program mask
Bits 24-26 : 2ero
Bit 27 I |
- Bit 28,29 : CC
Bits 30,31 : ACS
~ 1f the address form is indirect the descriptor which is left in DR, may be
! one of the following types:
=
a) 0 or 2 : no special action
- b) Code : the address in the descriptor itself, possibly

modified, overwrites PC.

¢) System Call : An interrupt is performed (see sectiomn5).

- If the descriptor is modified, the modifier is
accessed but no modification takes place,
(e.g. 1f the modifer is TOS, SZF will be

o decremented).
d) Escape ¢ An escape action is performed (see
Section 5.)(LNB+1,+2) will be undefined
o~
If the operand is accessed directly from (LNB+2) or via a descriptor in
(LNB+1) the result is undefined. If the operand is accessed indirectly,
r-— system software may intervene to decode a system call descriptor and in
‘ this case the contents of ACC, B and XNB must be regarded as undefined
(see [4]).
]
cc ¢ Unaltered
Program errors : Operand addressing errors for call instruction.
= (.Ce 70402.10.20)
8F not greater than LNB+2 (see 7.4.2.12.5).
= 8.1.2.9 Exit (EXIT) Function Code : 38
Operand length : 32 bits
-
Description ¢ This instruction is used to return from procedures
and after non-stack-switching interrupts. The stack 1is returned to its
- status quo and a jump is made as specified by the link descriptor. Fields
of the link descriptor may be used to overwrite parts of PSR as specified
‘ by bits in the operand.
~ The link descriptor is extracted from (LNB+l, LNB+2). It may only be of
- types Code, System Call or Escape. If SF not greater than LNB+2, or the

Product Company PSD :.5.1

]
W specification - restricted
lseve 6/0
- '
Sheet 84
- descriptor is not one of these types, the instruction terminates with a
' program error interrupt.
If the link descriptor is System call, PSR and PC are copied into DR (in
the form of a link descriptor - see section 8.1.2.8) and the System Call
- interrupt exception condition routine 1s entered (see sectiom 5).
If the link descriptor is Code, DR is not altered but variocus fields in
PSR are altered as follows:-
- - 4f the value of bits 8-11 of (LNB+1l) is not less than ACR,
bits 8-11 of (LNB+1) overwrite ACR else program error interrupt.
- 1f the value of bit 13 of (LNBt+l) is not greater than PRIV,
- bit 13 of (LNB+1) overwrites PRIV; else program error interrupt.
- 1f operand bit 25=1, bits 16-23 of (LNB+1) overwrite PM
~ 1f operand bit 26=1, bits 28-29 of (LNB+l) overwrite CC
- 1f operand bit 27=1, bits 30-31 of (LNB+1) overwrite ACS
- (a program error interrupt if attempt is made to set ACS=0)
~ - 1f operand bit 28=1, bit 12 of (LNB+l) overwrites D
- 1f operand bit 29=1, bit 14 of (LNB+1l) overwrites OV
. (this does not cause an overflow interrujt)
- bit 15 of (LNB*+1) overwrites B
Other operand bits are ignored (reserved). The operand may only be a 7-
i bit literal.
To restore the stack status quo, the contents of the LNB register are
transferred to SF, and, provided that bits 0-13 of (SF) = SSN, bits 14-29
- of (SP) are transferred to LNB (otherwise LNB is unaltered). If bits 14-
29 of (SF) are not less than bits 14-29 of SF, a program error is
generated and the contents of LNB are undefined. The address from the
- code descriptor (ex;(LNB+2)) overwrites PC. Finally SF is decremented by
1 1f the least significant bit (Bit 31) of (SF) is 1 and a jump is made to
the address in PC. In emulating machines, if E=1 and EM has a locally
valid value, emulate alien code, If the new ACR is larger than the
- previous value, and the EP bit is set in SSR, an EP interrupt will occur
before the next instruction is executed umless masked.
SN When Exit is used to return from procedures, system software may intervene
to decode a system call descriptor and in this case the contents of DR and
XNB must be regarded as defined (see [4])
—
cc : Unaltered if operand bit 26 = O
If operand bit 26«1 and the link descriptor is of Code
- type, CC takes value spscified in bits 28,29 of (LNB+1)
Program Errors: Incorrect operand type (must be 7-bit literal) (see
: 7.4.2.12.2). SF not greater than LNB+2 (see 7.4.2.12.5.)
- Link descriptor not Code. System Call or Escape (see
7.4.2010.3) N
New PRIV greater than old PRIV) (see 7.4.2.9.5)
- New ACR less than old ACR)
Bits 0~13 of (LNB) not equal SSN (see 7.4.2.8.2)
Bits 14-29 of (LNB) not less than new SF (see 7.4.2.8.3)
- Attempting to set ACS=0 (see 7.4.2.13.7)
(Emulating machines: PRI 14) New BE=1 and EM=0 or invalid
value.
o~
]

- Product Company PSD 2.)
@ specification reetricted
. lssve 6/0
-
Sheet 85
8.1¢2.10 Jump and Link (JLK) Function Code : 1C
-
Operand length ¢t 32 bits. The note under CALL (8.1.2.8) applies
- Description ¢ The updated contents of PC are stacked as a 32 bit
byte address (i.e. with a zero bit concatenated); the operand incresents
or overwrites PC causing a jump to occur. If the operand is the top—of-
- stack item, the updated PC and the opersad are effectively swopped.
cc ¢ Unaltered
- Program Errors : Operand addressimg errors for jump instruction. (see
’0‘0201000)0
- 8.1¢2.11 Jump (J) Function Code : lA
o Operand length : 32 bits. The note under CALL (8.1.2.8) applies.
- Description : The operand increments or covciwrites PC causing a
jump to occur.
- cc ¢ Unaltered
Program Errors ¢ Operand addressing errors for jump imetructiomn.
- (.eg 704.2.1000)
]
=~
m—
]
]
b]
~~
— .

Product Company PSD 2.5.1

~

specification restricted
lsswe 6/0 L
Sheat 86 _
8.1.2.12 Decrement B & Jump If Non-Zero (DEBJ) Punction Code : 24

Operand Length : 32 bits. The note umder CALL (8.1.2.8) applies

Description t 1 is subtracted from B. If the result is non—-zero a
Jump is made, the operand incrementing or overwriting PC. If the result
is zero no jump occurs and the next instruction in sequence is obeyed. In
either case the decremented value is left in B.

1f B originally contained -231 OV is set, 231-1 18 left in B, and
interrupt occurs unless the condition is masked; otherwise OV is cleared.
I1f the operand forms uses B, the jump lemstion is undefined.

cC ¢t Unaltered

Program Errors : Operand addressing errors for jump instruction
B overflow (unless mked) (see 7.4.2.7)

8.1¢2.13 Jump on CC (JCC) Punctien Code : 02
This instruction uses the tertiary format deecr:lbeq in 6.l.
Operand Length : 32 bits. The note under CALL (8.1.2.8) appiies.
Description : If the bits of the mask field M are MO, Mi, M2, and M3,
and if the current condition code setting is i, then operate as for the
Jump instruction 1f, and only if, Ml = 1; otherwise proceed to the next

instruction in sequence. Alternative condition code settings may be
tested by making more than one bit of M men—zero.

cc ¢ Unaltered

Program Errors : Operand addressing errors for jump instructionm.
8.1.2.14 Jump on Arithmetic - Condition True (JAT) Punction Code : 04

Jump on Arithmetic - Condition False (JAF) Function Code : 06

These instructions use the tertiary format described in 6.l.

Operand lemgth : 32 bits. The note under CALL (8.1.2.8) applies.

Description : These instructions test the contents of ACC, regarded

as a floating-point, fixed point or decimal number, of DR, or of B, for

one of the conditions specified by the mask field M, and a jump occurs

(operand increments or overwrites PC) if the specified condition is true

(first version) or untrue (second version). Otherwise next instruction
in sequence is obeyed. ACC, DR, B and OV are unaltered.

Conditions

(floating point)

M= 0 ACC = 0 (Bits *8-31/32-63/72-127 all gzero)
1 ACC > 0 (Bit 0=0, bits *8-31/32-63/72-127 not all zero)
2 ACC O (Bit O=1, bits *8-31/32-63/72-127 not all zero)
3 Undefined

- @ Product Company PSD 2.5.1

specification restricted
=N Shest 87
o (fixed point)
4 ACC = 0 (All bits zero) JUndefined
5 ACC 30 (Bit O=0, remaining bits not all sero)if ACS=3
- 6 ACC €0 (Bit O=1))
7 Undefined
(decimal)
Ll 8 ACC = 0O (Bits *0-27/28-59/60-123 all zeroes)

9 ACC™> 0 (Bits *0-27/28-59/60-123 not all szsroes,
least significant 4 bits = 1011 or 1101)

. 10 acc € 0 (Bits *0~-27/28-59/60~123 not all zeroes,

least significant 4 bits = 1011 or 1101)

- (DR)
11 Length = 0 (DR bits 8-31 zero)
~ :
(B)
ron 12 B = 0 (Bits 0-31 all zero)
13 B 0 (Bit 0=0, bits 1-31 not all zero)
14 3<€ 0 (Bit O=1)
- 15 OV set
#8-31/32-63/72-127 implies that bits 8-31 of ACC are always
- checked, that bits 32-63 are checked as well if ACS = 64 or 128 bits, -
also bits 72-127 if AC8 = 128 bits.
ccC ¢ Unaltered
]
Program errors : Operand addressing errors for jump instruction.
- 8.1.2.15 Escape Exit (ESEX) Function Code : 3A
Operand length : Not applicable. Literal must be specified.
~ Description : The operand field is ignored. Bits 0-30 of the word

at the top of the stack overwrites PC; bit 31 is ingored. SF is
decremented by 1 word. The 'D' bit is set in PSR, and a jump is made to
. the instruction pointed at by PC. If that instruction accesses the store
indirectly, via a descriptor located in the store, the effect of the D bit
will be to prevent that descriptor from being used; instead the descriptor
- alresdy in DR (assumed to have been placed there by the escape routine)
will be used. If the instruction specifies modification, it will take
place. e.g. if the operand format is (TOS + B), it will be interpreted as
(DR + B). 1If indirect access via DR, or direct access, is specified, the
D bit is ignored. E.g. if the operand format is (DR + TOS) it will be
interpreted literally. The D bit is cleared by the instruction so that
its effect is limited to the first instruction after Escape exit. That
®a instruction will usually be the one which originally triggered the escape
mechanism, re-executed; note that in the first example above, TOS will
have been accessed (to obtain the Escape descriptor) before the escape
. action, in the second example TOS is not accessed until after Escape exit
since Escape descriptors are unmodified.

Product Company PSD 2.5.1

specification restricted
‘ tsue 6/0
Shest 88
cc ¢ Unaltered
=
Program errors ¢ Only universal types listed in sectiom 7.4.3
- 8.1.2.16 Out (0UT) Punction Code : 3C
Operand length ¢ 32 bits
= Description ¢ This instruction causes a class 9 interrupt (See
Section5) to occur. The operand is left as the 32 bit interrupt parameter
on the new stack. ACG, B, and (unless aperand access is indirect) DR are
e unaltered.
cc ¢ (Dumped value) unaltered
=]
~ Program errors ¢ Operand addressing errors
- 8.1.2.17 Idle (IDLE) ~ Function Code : 4R
Operand length : Not applicable. Literal must be specified.
™~ Description ¢ This instruction causes instruction sequencing to be
suspended until an interrupt (of any class) occurs. The value of PC
dumped on interrupt points to the next instruction in sequence. The
e instruction makes no reference to store or registers if the operand is a
literal.
-~ CC ¢ Unaltered.
Program errors : Any universal types listed in section 7.4.3.
- 8.1.2.18 Load CTB (LCT) Function Code : 30
Operand length ¢ 32 bits
M-\
i Description ¢ Bits 0-29 of the operand are loaded to CTB. Bits 30,
31 are ignored.
a cC ¢ Unaltered.
Program errors ¢ Operand addressing errors
]
‘ 8.1.2.19 Store XNB (STXN) ' Function Code : 4C
i Operand lemngth ¢ 32 bits
Description ¢ The contents of XNB, expanded to a 32-bit byte
s address by concatenating two zero bits on the right, is stored.
cc ¢ Unaltered
- Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
~~ Non—-zero bits of stored item truncated,
o (ﬂee 704.20600)0

Company PSD 2.5.1

restricted 6/0
- Shest 89
- 8.1.2.20 Store CTB(STCT) Function Code : 36
Operand lemgth ¢ 32 bits
-~
Description : The contents of CTB, expanded to a 32-bit byte
address by concatenatiag two zero bits om the right, is stored.
P .
cc ¢ Unaltered
- Program errors ¢ Operand addressing errors.
Literal operand ('.‘ 70‘02012.1)
Non-zero bits of stored item truncated.
(Bee 7.4.206.0)
]
- 8.1.2.21 Pre-call (PRCL) Function Code : 18
- Operand length : 32 bits
Description :
a) The operand is fetched. The operand must be a 7 bit literal.
_- b) 1If SF is even (Bit 15=0), SF is incremented by 1.

c) The contents of LNB are expanded to a 32-bit byte address by
concatenating the contents of SSN on the left and 2 zero bits on the
right. Bit 31 is then set to 1 if SF was incremented in (b) and the result

L is stacked. (SF is incremented by 1) _
d) The action Adjust SF (ASF) is now followed as described in
8.1.2.4. (The operand is added to SF).
fiae]
cC : Unaltered
- Program errors : Operand addressing errors.
New SF less than LNB (see 7.4.2.8.5)
Operand too large (see 7.4.2.8.7)
Incorrect operand type (must be 7 bit literal)
"'-\ (.see 704.201202)
8.1.3. ACC Instructions
]
8.1.3.1 Modify PSR (MPSR) Function Code : 32
- Operand length ¢ 32 bits
Description : The least significant 16 bits of the operand are
used to alter the setting of the Program Mask. Condition Code, and ACS
- registers, as follows:
16 _ 23 24 27 28 29 30 31
- 1 PM 1 | CC | ACS
- 4f bit 27 is 1, bits 30 and 31 overwrite ACS. (See section 3.1.9
Program error if attempt is made to set ACS =0).
= If bit 27 is 0, ACS is unaltered and bits 30 and 31 may take any
value.
R - 1f bit 26 is 1, CC is set to the value in bits 28 and 29. Otherwise,

CC is unaltered and bits 28 and 29 may take any value.

ICL

Product Company PSD 2.5.1

specification restricted — 6/0
(]
Sheat 90
- - 1f bit 24 is 1, bits of the Program Mask which correspond to 1's in
operand bits 16~23 are made 1's; otherwise they are unaltered.
- 4f bit 25 is 1, bits of the Program Mask which correspond to 0's in
operand bits 16-23 are made 0's; otherwise they are unaltered.
- = bite 0~15 of the operand are ignered and may take any value.
cC ¢ Unaltered if operand bit 26 = 0. Otherwise
- CC takes value spacified im operand dits 28,29.
(Note: ACS and/or CC may be set using a 7-bit positive literal operand)
- Program errors : Operand addressing errors
' Attempt to set ACS = 0 (see 7.4.2.13.7)
- 8.1.3.2 Copy PSR (CPSR) Function Code : 34
~ _
Operand length : 32 bits
-
Description : The contents of the PM, CC and ACS fields of PSR are
stored in the operand location, in the following 32-bi: format:
- Bits 0 - 15 0's
Bits 16 - 23 PM
Bits 24 - 27 1110
- Bits 28, 29 CC
Bits 30, 31 ACS
o= Subsequent use of this operand by 'Modify PSR' (8.1.3.1) causes PM and CC
to be overwritten, but not ACS, unless bit 27 is made 1.
cc ¢ Unaltered
[|
Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
"~ Significant part of operand truncated
(see 7.4.20600)
oy
8.1.3.3. Set ACS 32 & Load (LSS) Function Code : 62
Set ACS 64 & Load (LSD) Function Code : 64
o Set ACS 128 & Load (LSQ) Function Code : 66
Operand length ¢ New value of ACS
- Description ¢ A new value is loaded to ACS,and the operand (whose
length is determined by the new value of ACS) is loaded to ACC. OV is
cleared.

There are three versions of the instruction, corresponding to the three
possible values of ACS.

cC ¢ Unaltered

Program errors ¢ Operand addressing errors

Company PSD 2.5.1

restricted — 6/0
- Sheet 91
- 8.1.3.4 Stack, Set ACS 32 & Load (SLSS) Function Code : 42
Stack, Set ACS 64 & Load (SLSD) Function Code : 44
- Stack, Set ACS 128 & Load (SLSQ) Punction Code : 46
Operand length ¢ New value of ACS
- Description ¢ The contents of ACC (length determined by the

original value of ACS) are copied to an intermediate register. ACS is set
in a way depending on which of the three versions of the imstruction are
o used. The operand, of length determined by the new value of ACS, is loaded
to ACC; and the contents of the intermediate register are stacked (causing
SF to be incremented by the old value of ACS).

The intermsdiate register ensures that the operand forms TOS, (DR+TOS),

= (TOS) and (TOS + B) are valid.
~ OV 18 cleared
=l cC ¢ Unaltered
Program errors ¢ Operand addressing errors
- 8.1.3.5. Stack & Load (SL) Function Code : 40
- Operand length ¢ ACS
Description : The contents of ACC are copied to an intermediate
register. The operand is loaded to ACC, and the contents of the
= intermediate register are stacked, causing SF to be incremented by ACS.
The intermediate register ensures that the operand forms TOS, (DR+TOS),
(TOS) and (TOS + B) are valid.
OV is cleared
Lol
cc : Unaltered
P~ - Program errors ¢ Operand addressing errors
8.1.3.6. Load (L) . Function Code : 60
(=]
Operand length : ACS
- Description : The operand is loaded to ACC. OV is cleared.
cc ¢ Unaltered
- Program errors : Operand addressing errors
8.1.3.7. Store (8T) Function Code : 48
[]
Operand length ¢ ACS
- Description : The contents of ACC are transferred to the operand
location. If the length of the latter is less than ACS, and any of the
truncated more significant bits of the former are non-zero, an interrupt
e occurs. ACC is unaltered.

Product Company PSD 2.5.1

“icL -
. specification restricted — 6/0
- Shest 92
cc ¢ Unaltered
-
Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
o Significant part of operand truncated
(830 7.4020600) '
- 8.1.3.8 Load Upper Half (LUH) Function Code : 6A
Operand length : ACS
- Description ¢ ACS 18 doubled and the operﬁnd 18 loaded to the
upper half of ACC. The lower half of ACC is unaltered. OV is cleared.
ACS = 128 bits is not permitted.
[=]
~ cc ¢t Unaltered
o Program errors ¢ Operand addressing errors
’ ACS = 128 bits (..‘ 70402.13010)
8.1.3.9 Store Upper Half(STUR) Punction Code : 4A
Operand length : Half ACS
= Description : The contents of the more significant half of ACC are
stored in the operand location. ACS is halved. The lower half of ACC is
unaltered. ACS = 32 bits is not permitted.
- cc ¢ Unaltered
Program errors t Operand addressing errors.
- Literal operand (see 7.4.2.12.1)
ACS = 32 bits (see 7.4.2.13.4)
Significant part of operand truncated
g (see 7.4.2.6.0)
8.1.3.10 Copy DR (CYD) ' Function Code : 12
= Operand length ¢ Not applicable. Literal must be specified.
Description ¢ The contents of DR are copied to ACC. ACS 1is set
= to 64 bits. OV is cleared. DR is unaltered.
cc ' ¢ Unaltered
-
Program errors ¢ Only universal types listed in section 7.4.3
- 8.1.3.11 Read Real Time Clock (RRTC) Function Code : 68
Operand length ¢ 1 bit. Literal must be specified.
" Description ¢ ACS is set to 64 bits and the value of the hardware
real-time clock (see 3.1.13) is loaded to ACC as follows:
PN
=
=

Company PSD 2.5.1

restricted o 6/0

Shest 93

N

i) For OCPs at AMLO
The X register is loaded into bits 0-31 of ACC
The Y register is loaded into bits 32-63 of ACC
14) Por OCPs at AML]

a) 1f the operand valus = 0, ACC is loaded as
above

b) if the operand value = 1
Bits 0-62 of ACC are set to the true binary
value of the Real Time Clock sech that bit 62
of ACC is equivalent to 2 usec of real tims.
The algog%fhil is
ACC = 2*(Xoq HLa@ Vo)) + 2+ ¥;-3

note: in both cases the OV register is cleared.
cc : Unaltered

Program errors ¢ Only universal typee listed in section 7.4.3.

8.1.4. B Instructions

8.144.1 Load B (LB) Punction Code : 7A
Operand length ¢ 32 bits
Description : The operand is loaded to B. OV is cleared. The
previous contents of B may be used as a modifier in fetching the operand
cC ¢ Unaltered
Program errors ¢ Operand addressing errors

8.1.4.2 8tack & Load B (SLB) Function Code : 52

Operand length ¢ 32 bits

Description ¢ The contents of B are copied to an intermediate
registers, and the operand is loaded to B. OV is cleared. The contents
of the intermediate register are stacked, causing SF to be incremented by
1 word. The intermediate register engures that the operand forms TOS,
(DR+TOS) , (TOS) and (TOS + B) .are valid.

The previous contents of B may be used as a modifier in fetching this

operand .
cc ¢ Unaltered
Program errors ¢ Operand addressing errors

8.1.4.3 Store B (STB) Function Code : 5A
Operand length : 32 bits
Description ¢ The contents of B are stored in the operand
location; they may be used as a modifier in accessing the latter. B is
unaltered.

Product Company PSD 2.5.1

specification restricted — 6/0
Sent 94
- cc ¢ Unaltered
Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
- 8ignificant part of operand truncated. (see
7.4.2.6.0)
NOTE: The effect on OV 1f B is the operand of STB is undefined.
-
8.1¢4.4 Add to B (ADB) Punction Code : 20
- Subtract From B (SBB) Function Code : 22
Multiply B (MYB) ' Function Code : 2A
- Operand length ¢ 32 bits
N Descriptions ¢ The arithmetic operation indiceted is performed
4 between the operand and the contents of B (which may be used as a modifier
in accessing the operand). Both are treated as signed 32-bit integers.
The least significant 32 bits of the resulting sum, differemc2 or product
18 left in B. ‘ ‘
= 1f overflow occurs, i.e. the sum, difference or product is less than
=231 or greater than 231-1, 0OV is set; othervise OV is cleared.
Overflow will also cause interrupt to oceur if not mesked.
(] .
ccC : Unaltered
- Program errors ¢ Operand addressing errors
B overflow (unless masked)(see 7.4.2.7)
- 8.1.4.5. Compare B (CPB) Function Code : 26
Operand lengi:h ¢ 32 bits
M~ Description ¢ The contents of B are compared with the operand,
both being regarded as signed integers. The result of the comparison is
indicated in CC. ‘
- B and OV are unaltered.
Comparisons are performed exactly as for 32-bit fixed-point Compare
(8.2.4.3) '
- The contents of B may be used as a modifier in accessing the operand.
cc ' t: 0 Bw= operand
: 1 B less than operand
- 2 B greater than operand
3 Not used ‘
Program errors ¢ Operand addressing errors
- 8.1.4.6 Compare & Increment B (CPIB) Function Code : 2E
- Operand length t 32 bits
Description ¢ The action of the instruction is identical to that
— of Compare B (8.1.4.5), with the addition that after the comparison 1l is
- added to the contents of B. OV is gset if this causes B to overflow (i.e.

Company PSD ..

restricted
lowe /0

Sheet 95

if the contents of B go from 231-1 to -231); interrupt will occur if
this condition is not masked. OV is cleared if overflow does not occur.

The original contents of B may be used as a modifier in accessing the
operand.

cc : 0 B (original comntents) = oparand
1 B (original comtents) less than operand
2 B (original costents) greater than operand
3 Not used
Program errors : Operand addressing errors
B overflow (unlese masked) (see 7.4.2.7)
8.1.4.7 Dope Vector Multiply (VMY) Function Code : 2C

Operand lemgth : 32 bits

Description ¢ DR must contain a type 0 descriptor, with size code
32 bits and USC and BCI = 0. (or an interrupt occurs). The contents of the
word pointed at by this descriptor and of the next two words :ve referred
to below as x,y and z. .
The action of the instruction is to evaluate the expression

(1 - x)y (1 = operand)
vhose 1.8, 32 bits are left in B. As each of x, y and z are accessed the
address in DR is incremented by 4 bytes and the bound decreased by 1
(Bound Check interrupt occurs if this changes the bound field contents
from 0 to all 1's). Thus at the end of the instruction the address will
have been increased by 12 bytes and the bound decreased by 3. Indirect
addressing forms are not permitted. Interrupts occur if any of the
following conditions are not satisfied (unless Bound check is masked.)

0 ¢ (1=x) ¢ 231 (1 and x signed integers)
0 €& U-x)y z° ‘
OV is cleared.

cC ¢ Unaltered

Program error ¢ Operand addressing errors
Indirect address form (see 7.4.2.12.2)
Incorrect type and size code of descriptor in DR
(Bee 7.4 ¢201006)

i less than x) (see 7.4.2.5.3)
i-x not less than 2 33) (see 7.4.2.5.2)
)Unless
y less than 0)Bound (see 7.4.2.5.4)
z less than 0 Jcheck 18 (see 7.4.2.5.5)
(1-x)y not less than Z, Jmasked
includes (1-x)y not less than 2 31)‘) (see 7.4.2.5.6)
Bound check on x, yor z) (see 7.4.2.5.7)

Product Company PSD 2.5.1 o
specification restricted

toowe 6/0
. Shoet 96
- 8.1.5 DR instructions
8.1.5.1 Load DR (LD) FPmction Code : 78
]
Operand length : 64 bits
- Description ¢ The operand is transferred to DR. If it is accessed
indirectly the operand, rather than the descriptor used to access it, is
left in DR. CC is set to indicate the type of descriptor loaded.
- cc : 0 Type O descriptor loaded
1 " 1 "]
2 " 2] w
oo 3 " 3 " n
o Program errors ¢ Operand addressing errors
- 8.1.5.2 Stack & Load (SLD) Function Code : 50
- Operand length : 64 bits
Description ¢ The contents of DR are copied to an intermediate
register. The operand is loaded to DR, and the comntents of the
- intermediate register are stacked, causing SF to be incremented by 2
words. The intermediate register ensures that the operand forms TOS,
(DR+TOS) , (TOS) and (TOS+B) are valid.
- I1f accessed indirectly, the operand, rather that the descriptor used to
load it, 1s left in DR. CC is set to indicate the type of descriptor
loaded. . .
- cc ¢ 0 Type 0 descriptor loaded
l " 1 " ”"
2 " 2 " ”
" " ”
Program errors : Operand addressing errors.
- 8.1.5.3 Store DR (STD) Function Code : 58
Operand length : 62 bits
]
Description : The contents of DR are stored in the operand
location.
- Indirect forms are not permitted.
cc ¢ Unaltered
- Program errors : Operand addressing errors
Literal operand (see 7.4.2.12.1)
Significant part of operand truncated (see
- 7.4.2.6.0)
Indirect address form (see 7.4.2.12.2)
~~
-

; 2.5.1
ICL Product Company PSD

specification restricted

o
Sheat 97
- 8.1.5.4 Load Relative (LDRL) Fanction Code : N
- Operand length t 64 bits
e . Description ¢ The operand is transferred to DR, with its least
significant 32 bits (the address field) augmented by the value of its own
byte address. Carry out of the address field resulting from this addition
- is ignored. Thus, if the operand (the item in store) starts in byte x and
is a descriptor pointing at location y, that descriptor is left in DR with
its address adjusted to point at locatiom (x-y). x need not be a multiple
of 4. 1f accessed indirectly, the operamd, rather than the descriptor
- used to access it, is left in DR. Literal operands and operands in
registers are not permitted. CC is set to indicate the type of descriptor
loaded. .
. cC t 0 Type O descriptor loaded
1 ” 1 " ' ”
EI! 2 " 2 ” "
3 ”n 3 ”" 1]
Prograam errors ¢ Operand addressing errors
= Invalid address forms (see 7.4.2.12.2)
8.1.5.5. Load Address (LDA) Function Code : 72
- 4
Operand length : 32 bits
- Description ¢ The operand is loaded to the less significant 32
bits of DR. The more significant 32 bits are unaltered unless an indirect
address form is used, in which case they will be replaced by the
correspounding bits of the descriptor used to access the operand.
-—
cC ¢ Unaltered
R Program errors ¢ Operand addressing errors
8.1.5.6. Load Type and Bound (LDTB) Function Code : 74
fu—
Operand length : 32 bits
Description ¢ The operand is loaded to the more significant 32
= bits of DR. The less significant 32 bits are unaltered unless an indirect
address form is used, in which case they will be replaced by the address
(unmodified) from the descriptor used to access the operand.
]
cc : Unaltered
. Program errors : Operand addressing errors.
8.1.5.7. Load Bound (LDB) Function Code : 76
- Operand length ¢ 32 bits
AN

Product Company PSD 2.5.1

specification restricted -~ 6/0
St 98 .
- Description : The least significant 24 dits of the operand are

loaded to bits 8-31 of DR. The remaining bits of DR are umaltered unless
an indirect address form is used, in which case they will be replaced by

the corresponding bits (address field ummodified) of the descriptor used
= to access the operand.

Bits 0-7 of the operamd are ignored.

= cc ¢ Unaltered
Program errors ¢ Operand addressing errors

= 8.1.5.8 Modify DR (MODD) Function Code : 16
Operand length ¢ 32 bits

- Description ¢ If DR contains a Vector, String, Descriptor or Code

’ descriptor (i.e. type 0 with valid size code, type 1, type 2, type 3,

. subtypes 32 or 33), the operand is added to the address field of DR and
subtracted from the bound/length field; carry out of the addressfield is
ignored and bits 0-7 of DR are unaltered (see Notes below).

- 1f DR contains an Escape descriptor, the escape mechanism is invoked (so
that the required descriptor may be substituted in DR defore being
modified).

Lo}

If the descriptor in DR is type 0 with an invalid size code, or System
Call, or type 3 with an undefined subtype number, a program error
- interrupt occurs.

Indirect address forms are not permitted.

- Notes: a) If the descriptor is type 0 or 2 and USC is not set, or type 3
subtype 32 or 33, the operand is scaled appropriately before additiom to
the address field. If the descriptor is type 0 with size code 0, the
least significant 3 bits of the oeprand are ignored because of the scaling
L operation. .

b) If the operand, regarded as unsigned, i.e. positive, is not less than
the original contents of the bound/length field only the least significant
- 24 bits of the difference are left in that field. In such cases, if the
descriptor 1is type O or 2 with BCI not set, or type 3 subtype 32 (bounded
code) a program error condition (Bound Check, maskable) is generated.

= This does not apply to String descriptors
cC ¢ Unaltered
= Program errors ¢ Operand addressing errors

Indirect address form (see 7.4.2.12.2)

Bound significant, and not greater than operand (see
& 7.4.2.5.1)

Descriptor is System Call (se 7.4.2.10.11)
Descriptor is invalid (see 7.4.2.10.9 or 10)

Product Company PSD 2.5.1

specification restricted — 6/0
Sheet 99
- 8.1.5.9 Validate Address (VAL) Function Code : 10
The following applies to AMLO
= Operand lol;;th t 32 bits
Description ¢ This instruction is designed to investigate whether
o a descriptor provided to a called procedure is valid at the access level

of the caller. The descriptor is assumed to be in DR, and to be Type O,
Type 1, or Type 2. If Type O or 2 the descriptor is assumed to be
- bounded. Bits 8-11 of the operand are interpreted as the access control
key (normally held im ACR) of the caller; the remaining operand bits are
ignored. If the descriptor in DR is 'invalid' condition code 3 is set,
and the instruction terminates. ' .

- Invalidity includes any of the following:

a) Descriptor is type 0 or 2, and BCI is set

. b) Descriptor is type 3

c¢) Descriptor is type 0 and has invalid size code

d) Descriptor (type O, 1 or 2) has zero in bound/lerzth field.

- If the descriptor is valid, the addrees of the last word or byte in the
field pointed at by the descriptor is calculated (without altering DR).
This address is calculated from the address of the first byte as follows:
-

Type 0: Add (Bound-1) (scaled if USC = Q) then if size = 64 add &4 bytes;

if size = 128 bits, add 12 bytes (word alignment assumed).

Type 1: Add (Length-1)

- Type 2: As for type 0, with size = 64 bits.

If the address thus calculated has a different segment number from the

initial address, or if it has the same segment number but lies beyond the

- upper limit of that segment, or if it has the same segment number as SSN

but 18 not less than SSN + LNB, CC is set to 3 (in the last case, if it is

less than SSN + LNB, and the initial address is also in the stack segment,

CC 18 set to 0).

'~ Otherwise CC is set to indicate whether read or write access to that
: segment, at the access level given by the operand, is permitted. 1If

access is not permitted CC is set to 3. The second word of the segment

- table entry is ingored. Indirect address forms are mot permitted. DR is
unaltered.

ACR 18 unaltered

cc t 0 Read and write access permitted at specified
level
1 Read access permitted, write inhibited
= 2 Read access inhibited, write permitted
3 Descriptor invalid, or field crosses segment
boundary, or neither read nor write permitted
- (includes case of invalid segment number).

Program errors ¢ Operand addressing errors
- Indirect address form (see 7.4.2.12.2)

’

| ICL Product Company PSD 2.5.1

specification restricted
: lasve 6/0
L]
Shest 100
- The following applies to AML].
Operand length ¢ 32 bits
[

Description This instruction is designed to investigate whether
a descriptor provided to a called procedure is valid at the access level
of the caller. The descriptor is taken from DR and must be Type 0, 1 or 2
- or Type 3, subtype 63.

I1f type O or 2 the descriptor must be bounded. Bits 8-11 of the operand
are interpreted as the access control key (normally held in ACR) of the
- caller; the remaining operand bits are ignored.

The descriptor is first checked for 'Type Null' which is defined to be
Type 3, subtype 63, and if so CC is set to 2 and the instruction

terminates,
= The descriptor is them checked for validity. If 'invalid', CC 1s set to 3
~ and the instruction tetminates. 'Invalid' includes any of the following
. a) Type 0 or 2 and BCI set

b) Type 3 and subtype 63
c) Type 0 and invalid size code (1,2 or 4)

- d) Bound/length field is zero
e) Pield invalid, i.e. all or part of the addressed field does not
exist
(sl

Check (e) 1is implemented as follows:-

The address of the last byte or word in the field pointed at by the
descriptor is calculated (without altering DR) from the address of the
- first byte as follows

Type 0 or 2: Add (Bound-1) scaled if USC=0, then add 4 bytes if size
code=6, add 12 bytes if size code=7 (word alignment assumed) .

- Type 1' Add (Length-1)

The address in the descriptor points at an 'initial' segment, the
calculated address points at a 'final' segement and there may be
'intermediate' segments between the above.

The end address 1s checked that it is less than the segment limit of the
final segment or less than SSN+LNB if initial segment is the same as SSN.
- I1f the final segment is different from the initial segment then the
initial and intermediate segments are checked that they are maximum size
segnents (i.e. bits 14-24 of STE are all one's).

p—
Finally, the access keys of the initial, intermediate and final segments
are checked against the access level given in the operand. If the
addressed segment is the same as SSN, CC is set to 0., If read access is
= not permitted in any segment, the CC 1is set to 3. If write access is not
permitted on any segment then CC is set to 1. Otherwise CC is set to 0.
- Indirect forms are not permitted. DR and ACR are unaltered.
cc ¢t 0 Read and Write access permitted at specified
P level
1 Read access permitted, write access inhibited
2 Descriptor is type 3, subtype 63 (Null)
~ 3 Descriptor invalid OR read access inhibited
fo-_—

Product Company PSD 2.5.1 -
specification restricted

tave 6/0
| Shest 101
Program errors ¢ Operand addressing errors
Indirect address forms (see 7.4.2.12.2)
8.1.5.10 Increment Address (INCA) functiom Code : 14
Operand length t 32 bits
Description ¢ The operand is added to bits 32-63 of DR. Bits 0~31
of DR are unaltered. Indirect address fomms are not parmittsd.
cC : Unaltered
Program errors ¢ Operand addressing errors

Indirect address form (see 7.4.2.12.2)
8.1.5.11 Start Significance (SIG) , Functiom Code : 28

Operand length " : 64 bits

Description ¢ 1f CO=0 a descriptor 10 created and storcsd in the
operand location, and CC 18 get to 1.

The descriptor is made up as follows:

Bits 0,1 (type) =1

Bits 2-7 011000

Bits 8-31 (length) = 1

Bite 32-63 (address) = 1 less than contents of DR address field

If CC= 0, no action i8 performed
Indirect address forms are not permitted

Note: This instruction is designed for use in conjunction with 'Suppress
and Unpack' (8.3.3.10)

cc ¢ 0 Not used
1 CC originally 0, and descriptor stored; or CC
originally 1
2 CC originally 2
3 CCoriginally 3

Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
. Indirect operand form (see 7.4.2.12.2)

813n1£1cant part of operand truncated (see
o‘ 02 06 00)

c°mp.ny PSD 2.5.1

restricted — 6/0
et 102
. 8.2 Computatiomal Punctioms
8.2.1 List of Imstructions
= By 'computational functions' is meant those instructioms which perform
floating-point, fixed point, logical and decimal arithmetie operatioms in
the accumulator. With most of these opsputions the operaud interacts with
- the contents of ACC and the result is lefit in ACC.
All 1instructions use the primary format described im 6.1. Rules for
- operand access sre given in 6.3. ‘
Several functions (e.g. Add, Subtract) are common to the different
- arithmetic types, i.e. they perform essentially the same operatiom and
differ only in the way they interprer the data format. This may be
A~ reflected in the function decoding.
= A few special functions are provided for couverting data from one format
to another (these are listed under the arithmetic type of the somurce
data).
]
Pixed-point and logical operations with ACS = 128 bits are not provided.
Further restrictions are mentioned under individual imstructions.
- Instructions common to several types:
Floating Fixed Logical Decimal
a Add X X X X
Subtract X X X X
Reverse subtract X X X X
on Compare X X X X
Shift (scale) X X X X
Multiply X X - X
- Divide X X - X
~-{ Reverse divide X X - X
- Remainder divide - X - X
Divide double X - - -
~ Multiply double X X - X
(X provided - Not provided)
-
Additional floating-point instructions:
Pix 4
- Additional fixed-point instructions:
Convert to decimal
Float
Additional logical instructionms:
And
o or
Not equivalent
Rotate
N Shift 32 bits
= Shift while zero
T—

Product Company PSD 2.1
specification restricted — 6/0
Shest 103

Additional decimal instructions
Convert to binmary

8.2.2. Data Foi‘nta

8.2.2.1 Floating-point format

':hfl format for a 32-bit, 64-bit, or 138-bit floating-peiat number is as
ollows:

\ 7T Continusties of fraction |
64 72 | 127

This 1s also the format used in IBM 360 and 370 computers. Bit O contains

the sign bit, S, of the number; O for positive numders, 1 £>r negative
nunmbers.

Bits 1-7 contain a 'characteristic' (IBM terminology) or biased expounent,

C, in the range 0~127. This represents a true hexadecimal exponent biased
by +64.

Bits 8 onward (excluding bits 64-71 in the 128 bit case; bits 63 and 72
are effectively adjacent) contain an unsigned fraction, F. The binary

point of this fraction lies to the left of bit 8, so F ranges in value
from 0 to just less than 1.

F has 6, 14 or 28 hexadecimal digits according to whether the format is
32-bit, 64~bit or 128-bit.

If S = 0 the value of the number is F x 16¢-64
1f S = 1 the value of the number is -F x 16¢-64

Thus to change the sign of a number only S need be changed. This sign
convention is called sign and modulus, and differes from that used in
fixed-point arithmetic.

The contents of bits 64-71 of a 128-bit number are ignored in data;
however in results (except when the result is 'true zero' in which case
all 128 bits are zeroes) bit 64 is made a copy of the sign bit (bit 0) and
bits 65-71 are made to contain a value 14 less than the characteristic in

bits 1-7. If the latter is less than 14, 128 is added to the difference
to make it positive.

The results of all floating point arithmetic operations, except where

othervise stated, are normalised., This implies that F, if non-zero, is
made to lie in the range

 47¢

So that the first hexadecimal digit of F is non-zero Normalisation is

Company PSD 2.5.1

restricted

toove 6/0

Sheat 104

- achieved by shifting F to the left by the requisite number of hexadecimal
places and subtracting this number from the characteristic. If F is marvo,

nom??ution is achieved by making all 32, 64 or 128 bits szerces ('¥xue
Z2ero’).

Arithmetic resulte are truncated, i.e. rounded towards zero. Precisiom is
achieved in most cases by the use of 'intermediate fractioms' which are
- allowed one more hexadecimal digit than appears in the result fraction.
This is referred to as a 'guard digit'. When normalised operands are used
a single guard digit is sufficient to ensure that the error in the result
- of amy single arithmetic operation does not exceed unity in the least

significant digit of the normalised result. Variatioans ia implementation

may produce differeat results withim the above error for the DIVIDE
function.

—_ Non-normalised numbers are acceptable as operands for all floating-point

' operations, and will give correct results, albeit with less precision than

i might have been the case with normalsied operands. For this reagon the

use of normalised operands is recommended. A non-normalised number with

zero fraction may have either or both of S and C non-gere and will be
- operated on as described in the individusl instruction descriptioms.

When a result cannot be expressed in normalised form with a true expoment
greater than - 65 i.e. it would require a negative characteristic,

underflow occurs and the result is made true zero, and unless the
condition is masked an interrupt ensues.

- When a normalised result requires a true exponent larger than +63,

floating point overflow occurs. OV is set, and if this condition is not
masked an interrupt ensues. In either case the result is given with a
- normalised fraction and a characteristic 128 less than it should be.

8.2.2.2 Fixed point format

~~ Fixed point numbers are represented as 32 bit or 64 bit signed integers.

The sign convention is 2's complement, bit 0 being the sign bit. the
binary point is assumed to be to the right of the least significant bit.
- Thus the contributions to the value of a 32-bit operand made by 1's in

different positions are as follows:
Bit O =231

- Bit 1 +230
Bit 2 +229
Bit 31 +1

The largest number representable is (231-1) and the largest negative
number is -231,

- Por a 64~bit number the contributions are:
Bit O -263

Bit 1 +262
- Bit 2 +261
Bit 62 421
Bit 63 +1

: 2.5.1
ICL Product Company PSD

specification restricted 6/0

have —~———
-
Shont 103
- The largeet positive and negative numbers representadle im this forwat are
(263-1) and -263, respectively.
Fixed-point results which exceed capacity cause fixed-poiat overflow to
-—

occur. OV is set, and, if the condition is not maskad, imterrupt ensues.

By observing suitable conventions regarding the positioning of the binary

- point, fixed-point imstructions may be used to aperate em fractions as.
well as integers.

- Fixed-point numbers more than 64 bits lomg may be operated om by splitting

them into 32-bit portions and using those, singly or in pairs, as operands
for the instructions. Add logical (8.2.5.1), Subtract logical (8.2.6.2),
Multiply deuble (8.2.4.5) and Remainder dividie (8.2.4.6).

Y
~ When mulitplication and division are involved it will generally be
) necessary to hold only 31 bits of the number in each 32 bit portion, with
ot a dumny (zero) sign bit. A pair of consecutive 32 bit pertions in this
form can be converted to the normal 64 bit number format by shifting bits
0-31 into bit positions 1-32 and vice-vessa.
- 8.2.2.3 Logical Formats
Logical operations on 32 or 64 bit items treat them either as strings of
=N

bits with no numerical significance, or as unsigned (i.e. positive) fixed-
point numbers. In this case the contributions of individual bits are as
described in 8.2.2.2 except that bit 0, if non-zero, contributes +231
- (32-bit format) or +263 (64-bit format). Overflow camnot occur with
logical operations.

8.2.2.4 Decimal format

Decimal numbers in the accumulator or store occupy a string of comsecutive
bytes. The less significant 4 bits of the right:nost byte contain the sign
—~ of the number, as follows:

1011 or 1101 - negative

1010, 1100, 1110, 1111 - positive

o any other value - undefined.

The more significant 4 bits of the rightmost byte contain the least
- significant digit of the number, in binary-coded-decimal form, and the
remaining digits of the number, in 4-bit binary-coded-decimal form, are
held two to a byte in the remaining bytes, each digit being one decimal
place more significant than the one held in the adjacent half byte on the

e right. All decimal numbers are integers. Thus:
Most Significant Least 81nificant:
= | DETEDigTelblgte] I :
4 4 4 4 4 4
- Leftmost byte Rightmost byte
Thus a decimal number in this form always contains an odd number of
N digits. Decimal numbers in the accumulator have 7, 15, or 31 digits,
= corresponding to ACC sizes 32, 64 or 128 bits.

Product Company PSD 2.5.1

specification restricted

¥

2]

oo 6/0

Sheat 106

Results gemerated by decimal operations have sign codes as follows:

Negative 1101
Positive 1100

This does not apply to DSH, SUPK or PK (see instruction descriptioms).
Zero results will have sign code 1100 except possibly after ome of these
operations or following overflow which occurs when the mumerical part of
the result is too large for the accumulator. This will cause OV to be set
and interrupt to occur unless the decimsl overflow condition is masked.

The values of the numeric digits in operands are not checked, and the
results of decimal operations are undefined when non-numeric digits (i.e.
in the range 1010 - 1111) are present in operands. However operands in
the correct form will always give result® in the correct fexm.

8.2.3 Floating-point instructions

))
n

e o0

Floating Subtract (RSB) Function Code

Operand length ACS

Description ¢ The operand is added to, or subtracted from the
contents of ACC, and the normalised result is left in ACC. ACS may be 32,
64 or 128 bits.

Overflow or underflow may occur as described in 8.2.2.1. OV is cleared if
overflow does not occur.
Floating-point subtraction is performed by inverting the sign bit (omly)

of the operand and then following the rules for floating-point additionm,
below.

Floating-point addition is performed in three stages:-

1) The fractional part of the number with smaller characteristic is
shifted down logically by the number of hexadecimal places which is the
difference of the characteristics, The digit left in the position
immediately to the right of that originally occupied by the least
significant digit of the fraction is retained as 'guard digit' (and the
unshifted fraction is extended with a zero is in the corresponding
position), but all other digits shifted off are lost (effectively, treated
as zeroes).

1f the characteristics were equal both fractions are extended with zero
guard digits.

The above procedure is still carried out even if the number with larger
characteristic has a zero fraction (this will not occur with normalised
operands). In the case where the number with smaller characteristic has a

zero fraction, shifting may however be suppressed (and the next stage
omitted) without affecting the result.

2) The two signed fractions, including their guard digitis, are added

algebraically to form an intermediate sum in sign-and-modulus form. The
intermediate sum has an associated sign bit, a possible carry bit and,

Company PSD 2.5.1

restricted
- 6/0
Shest 107
- including the guard digit, 7, 15 or 29 hexadecimal digits.
3) The intermediate sum is normalised to generate the final result. The
- characteristic initially associated with the intermediate sum is the
larger of the two original characteristics. Normalisation proceeds as
follows:
-

- If all digits and the carry bit of the intermediate sum are zero, a
true zero result is genmerated.

- - If the carry bit is non-zero, the intermediate sum is shifted one
hexadecimal place to the right (generating a 1 in the most significant

hexadecimal digit position), and its carry bit and guard digit are

removed, to form the fractional part of the result. 1 is added to the
= characteristic (this may cause overflow as described in 8.2.2.1) to form
—~ the result characteristic. The sign bit of the result is that associated

wvith the intermediate sum.

- If the carry bit is zero, but one or more digits of the intermediate
sum are non-zero, the latter is shifted left until the mo:: significant
- hexadecimal digit is non-gzero. Following each hexadecimal shift, zero is
inserted in the guard digit position and 1 is subtracted from the
characteristic. Should this cause the characteristic to become negative,
underflow occurs as described in 8.2.2.1 (and a true zero result is
generated.) If the characteristic does not become negative, the result
comprises the sign bit associated with the intermediate sum, the fimal
characteristic and the normalised intermediate sum with the carry bit amnd
- guard digit removed.

- If ACS = 128 bits, bits 64-71 of the result are generated as

. deacriped in 8.2.2.1.
cC ¢ Unaltered
T Program errors : Operand addressing errors

Floating overfow (unless masked)(see 7.4.2.0)
Floating underflow (unless masked)(see 7.4.2.1)

ey
8.2.3.2 Floating Reverse Subtract (RRSB) Function Code : Fé
- Operand length : AC8
Description : This is exactly the same as Floating subtract
(8.2.3.1) except that the difference left in ACC is formed by subtracting
= the original contente of ACC from the operand. Effectively the sign bit
(only) of the original contents of AC is inverted and the operand is then
added.
cC ¢ Unaltered
- Progtaﬁ errors ¢ Operand addressing errors
Floating overflow (unless masked)(see 7.4.2.0)
~ Floating underflow (unless masked)(see 7.4.2.1)
/‘\ .
o

Product Company PSD 2.5.1

specification restricted T
Sheet 108

o 8.2.3.3. Floating Compare (RCP) Function Code : F6
Operand length ¢ ACS

- Description ¢ The operand is compared algebraically with the
contents of ACC, and CC is set to indicate the result of the comparison.
ACC and OV are not altered. ACS may be 32, 64 or 128 bits. Overflow and

- underflow do not occur. .

The comparison is performed effectively by carrying out the first two
- stages of the Floating subtract operation (8.2.3.1) and examining the

intermediate sum. Equality is indicated if and only if the carry bit and
all digits (including the guard digit) of the latter are gzero. Otherwise

- the setting of CC depends on the sign bit associated with the intermediate
sum.

Note that, when the number with the larger characteristic is not
normalised, equality may be indicated according to the above rules even
though the numbers are not equal in value; but that in cases where

subtraction would produce a zero result hecause of underflow, inequality
- is always indicated.

cC ¢ 0 Equality (Intermediate sum zero)
— 4 1 ACC less than operand
2 ACC greater than operand
3 Not used
- Program errors ¢ Operand addressing errors
8.2.3.4 Scale (RSC) ' ‘Punction Code : F8
-
Operand length : 32 bits
- Description : The signed fixed point integer (1) in the least
-~ significant 8 bits of the operand is added to the characteristic of the
floating-point number in ACC, which is then normalised by 161, where i
lies between - 128%+ 127 including both values. The remaining bits of the
o operand are ignored. ACS may be 32, 64 or 128 bits.

1f the fractional part of the number is zero, a true gero result is
- generated. I1f it is non-zero, and if after adding i and subtracting the
amount of normalising shift, the characteristic exceeds 127, overflow
occurs as described in 8.2.2.1. Similarly, if the fraction is non-zero,
- and after adding i, or subsequently after subtracting the amount of
normalising shift, the characteristic becomes negative, underflow occurs
and a true zero result is generated. OV is cleared if overflow does not

occur.
If ACS = 128 bits, bits 64~71 of the result are generated as described in
8.2.2.1.

L]
This instruction may be used with a zero operand to normalise any
floating-point number.

N
o

Product Company PSD :.5.1
specification restricted

issue 6/ 0

Sheet 109

- cc

(Y3

Unaltered

Program errors

Operand addressing errors
Floating overflow (unless masked)(see 7.4.2.0)

- Floating underflow (unless masked)(see 7.4.2.1.)
8.2.3.5 Floating Multiply (RMY) Function Code : FA
-
Operand length ¢ ACS
- Description ¢ The normalised product of the contents of ACC and
of the operand is left in ACC. ACS may be 32, 64 or 128 bits.
If the fractional part of either mulitplier or mulitplicand is zero, a
- true zero is generated, and neither overflow nor underflow can occur. If
~ neither of the fractional parts is zero, the fractional part of the result
if that which would be produced by forming the true, double-length,
i product of the fractions, associating with it a characteristic which is

the sum of the original characteristics, minus 64, ..ormalising the product
and then truncating it to half length. Overflow or underflow occur, as
- described in 8.2.2.1, if and only if the final characteristic exceeds 127
or is negative; in the latter case a true zero result is generated. When
the result is not zero the sign bit is determined by the rules of algebra.

The desired result can be obtained by pre-normalising the multiplier and
multiplicand fractions (ignoring overflow or underflow at this stage) and
retaining for normalisation only the most significant 7, 15 or 29
Ll hexadecimal digits of their product; after normalisation, which in this
case will involve at most most one left shft, the guard digit is removed.

- OV is cleared if overflow does not occur.

I1f ACS = 128 bits, bits 64-71 of the result are generated as described in

8.2.2.1.
_~
cc : Unaltered
= Program errors : Operand addressing errors
Floating overflow (unless masked)(se 7.4.2.0)
Floating underflow (unless masked)(see 7.4.2.1)
= 8.2.3.6 Floating Divide (RDV) Function Code : BA
Operand length : ACS
L]
Description : The contents of ACC are divided by the operand, and
the normalised quotient left in ACC. ACS may be 32, 64 or 128 bits. No
nn remainder is8 preserved.

If the divisor fraction is zero, the result in ACC is undefined, but OV is
o= cleared; the Zero Divide interrupt occurs, unless masked. If the divisor
fraction is non-zero underflow or overfllow may occur as described in

8.2.2.1, unless the dividend fraction is zero, in which case a true zero
N result 1s generated.

Product Company PSD 2.5.1

specification restricted — 6/0 3
M “(‘ . . e .- .

- In order to ensure that non-normalised operands can de used the divident
and divisor fractions are first normalised ignoring overflow or uwnderflow
at this stage); after normalisation the latter may be scaled one place up
to ensure that the quotient fraction does not overflow. In this case not

- more than one left shift will be required to normalise the quotient and
the quotient should therefore be developed to 7, 15 or 29 digits as

appropriate and the guard digit dropped after normalisation.

]

The characteristic associated with the quotient fraction before
normalisation is the difference of the characteristics of the normalised

o dividend and divisor, plus 64, (65 if the divisor fraction is scaled up).

Overflow or underflow occur as described in 8.2.2.1 if and only if the
final characteristic exceeds 127 or is negative; in the latter case a true
zero result is generated. When the result is not zero the sign bit is

- determined by the rules of algebra.

-~
OV is cleared if overflow does not occur.

.

If ACS = 128 bits, bits 64-71 of the result are gczuerated as described in
8.2.2.1.

]
cc ¢ Unaltered

Program errors ¢ Operand addressing errors
- Zero divide (unless masked)(see 7.4.2.4)
Floating overflow (unless masked)(see 7.4.2.0Q)
Floating underflow (unless masked)(see 7.4.2.1)
]
8.2.3.7 Floating Reverse Divide (RRDV) Function Code : BC
- Operand length ¢ ACS
Description : This operation is identical to Floating divide
(8.2.3.6) except that the quotient left in ACC is formed by dividing the
"~ operand by the contents of ACC.
- cc : Unaltered
]
Program errors ¢ Operand addressing errors
" Zero divide (unless masked)(see 7.4.2.4)
- Floating overflow (unless masked)(see 7.4.2.0)
Floating underflow (unless masked)(see 7.4.2.1)
8.2.3.8 FPloating Divide Double (RDVD) Function Code : BE
L]
Operand length : Half ACS

- Description ¢ This operation requires ACS = 64 or 128 bits, and
in the course of execution halves ACS. The contents of ACC are divided by
the operand, the latter being half the size of ACC. ACS is halved and the

- normalised quotient (whose size accords with the new value of ACS) is left

N The operation is otherwise identical to Floating divide (8.2.3.6) except

- that the dividend fraction is longer. All digits of the latter participate.

Product Company PSD 5.1

speclfication restricted — 6/0
Sheet 111

L]
ccC ¢t Unaltered

o Program errors : Zero divide (unless masked)(see 7.4.2.4)

Floating overflow (unless masked)(see 7.4.2.0)
Floating underflow (unless masked)(see 7.4.2.1)
ACS = 32 bits. (see 7.4.2.13.3)
P~
8.2.3.9. Floating Multiply Double (RMYD) Function Code : FC

.- Operand length : ACS
Description ¢ The contents of ACC are multiplied by the operand,

- each having the length specified by ACS, and their double-length normalised
product is left in ACC. For this operation ACS must be 32 or 64 bits, and

-~ ACS 18 doubled on completion.

- Except that the true ptoducﬁ of the fractions is not truncated (and the
result is therefore exact) this operation is otherwsie identical to
Floating mulitply (8.2.3.5)

-
cC ¢ Unaltered

- | Program errors ¢ Operand addressing errors

Floating overflow (unless masked) (see7.4.2.0)
Floating underflow (unless masked)(see 7.4.2.1)
ACS - 128 bits (See 704-201305)
-
8.2.3.10 FIX (FIX) Function Code : B8

r Operand length ¢ 32 bits
Description ¢ The exponent, and sign and fraction, of the
floating-point number in ACC are separated; the former is adjusted and

"~ stored as a 32 bit signed integer in the operand location, the latter left
in ACC as a signed (2's complement) integer. If the number in ACC had a
zero fraction, zero exponent is stored.

-

ACS may be 32, 64 or 128 bits. If it was 128 bits ACS is halved and the
least significant 14 digits of the fraction are lost, CC being set to

- indicate the nature of the lost bits.

OV 18 cleared.

- 1f fraction (all 6,14 or 28 digits) is zero the action of the instruction
is to clear ACC and OV, halve ACS if it was 128 bits, and store a 32 bit
zero word in the operand location.

- CC is set to O.

If the fraction is non-zero, bits 1-7 of ACC are stored at the least

- significant end of a 32 bit intermediate register, whose remaining bits are
zeroes. The exponent is unbiased, and the fraction effectively converted
to an (unsigned) integer, by subtracting 70 (ACS =32 bits) or 78 (ACS = 64

_”‘\ or 128 bits) from the quantity in the intermediate location which is then
stored in the operand location. .

-

Product Company PSD 2.5.1
specification restricted

issue 6/0

Shest 112

If bit O of ACC is 0 bits 1-7 are made zerces. If bit O of ACC is 1, the
fraction (effectively including bits 72-127 if ACS = 128 bits; although
these bits are subsequently discarded, they affect the value of bit 63 and
of CC) is negated, and bits 0-7 of ACC made 1's. If ACS = 32 or 64 bits CC
is set to 0. If ACS = 128 bits, CC is set to 2 if bit 72 of ACC (after
negation, if any) is non-zero; to 1 if bit 72 is zero but bits 73-127 are
not all zeros; to 0 if bits 72 - 127 are all zeroes. The more significant

64 bits of ACC overwrite the less significant 64 and ACS is set to 64 bits.
OV 1is cleared.

cC No non-zero bits lost

(ACS = 128 bits) lost portion less than 1/2
(ACS = 128 bits) lost portion not less than
1/2

Not used

w = O

Program errors ¢ Operand addressing errors
Literal operand (see 7.4.2.12.1)
‘Significant part of operand truncated
(see 7.4.2.6.0)

8.2.4 Fixed-point 1nstructions‘

8.2.4.1 ADD (IAD) Function Code : EO
SUBTRACT (ISB) Function Code : E2
Operand length : ACS
Description ¢ The operand is added to, or subtracted from the
contents of ACC, and the result left in ACC. ACS = 32 or 64 bits is
assumed.

Fixed point overflow occurs if the result lies outside the range of
representable numbers (see 8.2.2.2); when it occurs OV is set and, if not
masked, an interrupt ensues. The result left in ACC in this case is the
least significant 32 or 64 bits of the true sum or difference. Overflow
can only occur when adding numbers with like signs or subtracting numbers
with opposite signs. OV is cleared if overflow does not occur. '

cC ¢ Unaltered
Program errors ¢ Operand addressing errors

Fixed overflow (unless masked)(see 7.4.2.2)

ACS = 128 bits (see 7.4.2.13.0)

8.2.4.2 Reverse Subtract (IRSB) Function Code#iks) E4
Operand length ¢ ACS £
(]

Description ¢ Exactly as for Subtract (8.2.4.1) except that the

difference left in ACC is formed by subtracting the original contents of
ACC from the operand.

Product Company PSD 2.5.1
specification restricted

6/0

losve
Sheet 1l

. A e ® e mrems e

- cc

oo

Unaltered

Program errors Operand addressing errors

Fixed overflow (unless masked)(see 7.4.2.2)
=~ ACS = 128 bits (see 7.4.2.12.0)

oo

8.2.4.3 Compare (ICP) Function Code : E6
=
Operand length : ACS
- Description ¢ The operand is compared algebraically with the
contents of ACC, and CC is set to indicate the result of the comparison.
ACC, and OV are not altered.
- Equality is indicated if all bits are equal. ACC less than the operand is
— indicated if, when conducting a left-to-right scan of the bits of both, the
first non-equivalent pair of bits occur when the ACC bit concermed is a 1
P (1f bit 0) or O (any subsequent bit), and ACC greater than the operand in
the same circumstances when the ACC bit concerned takes the opposite
values.
B ACS = 32 or 64 bits is assumed.
CcC ¢t 0 Equality
- : 1 ACC less than operand
2 ACC greater than operand
3 Not used
M .
Program errors ¢ Operand addressing errors
ACS = 128 bits (Bee 70402013.0)
b]
8.244.4 Arithmetic Shift (ISH) Function Code : ES8
"~ Operand length t 32 bits
Description ¢ The contents of ACC are effectively multiplied by
- 21 yhere i 1s the signed integer specified in the least significant 7 bits
of the operand. Other bits of the operand are ignored.
- A positive value of i represents a leftward shift, in which case zeroes are

ingerted at the least significant end of ACC and OV is set if the contents
of bit 0 of ACC change at any time during shifting this will cause

interrupt if the condition is not masked. If bit 0 does not change OV is
- cleared.

A negative value of i indicates a rightward shift. In this case the sign
= bit is propagated by leaving bit 0 unchanged during the shifting. Bits
shifted off the right of ACC are lost, but CC is used to indicated what

they were. OV is cleared by a rightward shift.
- ACS = 32 or 64 bits is assumed.

Product Company PSD 2.5.1

specification restricted rove 6/0
w xl‘ .- —. - .
- cc t 0 1 less than 0O all bits ahitfted 0ttt the
right of ACC were 0's.
1 1 less than 0; last bit shifted off the
right of ACC = 0 (some 1's)
e 2 1 less than 0; last bit shifted off the right
of ACC = 1
3 1 not less than 0
]
Program errors ¢ Operand addressing errors
Fixed overflow (unless masked)(see 7.4.2.2)
- ACS = 128bits (see 70402012.0)
8.2.4.5 Multiply (IMY) Function Code : EA
s Operand length : ACS
—~
Description ¢ The contents of ACC and the operand, both signed
&= integers, are multiplied, and the least significant 32 or 64 bits of their
product left in ACC. Overflow occurs if the result exceeds capacity (see
8.2.2.2). 1In this case OV is set and, unless fixed point overflow is
- masked, interrupt ensues. Otherwise OV is cleared.
ACS = 32 or 64 bits assumed.
Ccc ¢ Unaltered
v Program errors ¢ Operand addressing errors
Fixed overflow (unless masked)(see 7.4.2.2)
ACS = 128 bits (Qee 7.4.201300)
.
P
=~
=
= -
=]
o~
-
/“\\
L]
-

Product Company PSD 2.5.1

specification restricted — 6/

~ Shest 115

o 8.2.4.6 Divide (IDV) Function Code @ A\
Operand length t ACs

-~ Description : The contents of ACC are divided by the operand and
the unrounded quotient left in ACC, all three being signed integers. The
rules for determining the quotient are as for Remainder Divide (8.2.4.8),

o i.e. quotient times divisor is numerically not greater than dividend.

If the divisor is zero OV is cleared but the quotient is undefined, and

o the interrupt occurs unless masked. Overflow will occur, causing OV to be
set and interrupt to ensue, unless masked, if -231 or -263 is divided
by -1, ACC is unaltered. If overflow does not occur OV is cleared.

ACS = 32 or 64 bits assumed.

cC : Unaltered
i
Program errors : Operand addressing errors
Zero divide (unless masked)(see 7.4.2.%.)
o Fixed overflow (unless masked)(see 7.4.2.2)
ACS = 128 bits (eee 70402013.0)
8.2.4.7 Reverse Divide (IRDV) Function Code : AC
]
Operand length : ACS
= Description : This operation is identical to Divide (8.2.4.6)

except that the operand is divided by the contents of ACC rather than the
other way round. If overflow occurs ACC will contain -231 or -263,
- depending on ACS. :

ACS = 2 or 64 bits is assumed.

= cc ¢ Unaltered
Program errors : Operand addressing errors
- Zero divide (unless masked)(see 7.4.2.4.)
Fixed overflow (unless masked)(see 7.4.2.2.)
ACS = 128 bits (see 7.4.2.13.0)
- 8.2.4.8 Remainder Divide (IMDV) Function Code : AE
Operand length ¢ ACS
o]
Description ¢ The quantity in ACC is divided by the operand, the
quotient is left in ACC and the remainder is stacked All these quantities
- are signed integers with length ACS; as a result of stacking the remainder

SF 1is incremented.
ACS = 32 or 64 bits is assumed.

- The remainder is numerically less than the divisor and, if non-zero, has
the same sign as the dividend. CC is set to facilitate obtaining a

remainder which obeys the rules for the PL/1 'Mod' function.

Product Company PSD s

. specification restricted T
tosue &4\ S
Shoat 116 o
o If the operand is zero the quotient, the remainder (which is stacked) aund
the setting of CC are undefined, but OV is cleared, and the zero divide
interrupt ensues, unless masked. Overflow will occur if -231 or =203
- (according to ACS) is divided by -1. This will cause OV to be set and
interrupt to occur, unless maskeds ACC is unaltered, an undefined
remainder is stacked, and the setting of CC is undefined. Otherwise OV is
cleared. '
-—
cc ¢ O Remainder zero, or remainder greater than O,
divisor greater than 0
- 1 Remainder greater than 0, divisor less than 0
2 Remainder less than 0, divisor greater than 0
3 Remainder less than 0, divisor less than 0
- Program errors ¢ Operand addressing errors
~ Zero divide (unless masked) (see 7.4.2.4)
: Fixed overflow (unless masked)(see 7.4.2.2)
r ACS = 128 bits (7.4.2.13.0.)
8.2.4.9 Multiply Double (IMYD) Function Code : EC
[]
Operand length : 32 bits (=ACS)
- Description ¢ This operation expects ACS = 32 bits and leaves ACS
‘ = 64 bits on compeltion. The 64 bit product of the contents of ACC and
the operand is left in ACC. OV is cleared. CC is set to indicate the
signs of the original contents of ACC and the operand in case unsigned
= arithmetic has to be implemented by software.
cc : 0 ACC and operand both positive
o : 1 ACC positive, operand negative
2 ACC negative, operand positive
3 ACC and operand both negative
M'\s Program errors ¢ Operand addressing errors
_ ACS = 64 bits or 128 bits (see 704.201305)
o
8.2.4.10 Convert to Decimal (CDEC) Function Code : EE
—
Operand length ¢ Not applicable. Literal must be specified
- Description ¢ The contents of ACC, a signed fixed-point integer,
are converted to standard decimal form in ACC (see 8.2.2.4). ACS is
doubled. OV 1is cleared.
ACS = 128 bits 1is not permitted.
- :
cC ¢ Unaltered
- Program errors : ACS = 128 bits
~~
L]

Product Company PSD 254

specification restricted — o/0 o
Sheat nw
(]
8.2.4,11 Float (FLT) RNinction Code : N
- Operand length : 32 bits
Description ¢ The 32- or 64— bit signed integer in ACC is
combined with the exponent value specified by the operand to form a
o normalised floating-point number in ACC. ACS (32 or 64 bits) is doubled.
The least significant 8 bits of the operand specify a signed integer which
is the hexadecimal exponent associated with the integer in ACC. Other
- operand bits are ignored.
If the contents of ACC are zero the action of the instruction is to double
- ACS, extending ACC with another zero word or double word. The value of
the operand is immaterial. OV is cleared. If the contents of ACC are
o~ non-zero, the action is effectively as follows (though hardware may not
follow these steps precisely):
R
-~ ACS is doubled, the previous contents of ACC now being placed in the
more significant half and the less significant half made zero.
femm

- The least significant 8 bits of the operand are placed in an
intermediate register. The value of the most significant of these 8 bits

is recorded for future reference. The quantity in the register is
= incremented by 72 (ACS = 64 bits) or 80 (ACS = 128bits) - this is now the
‘intermediate characteristic'.

- - The contents of ACC are shifted right arithmetically 8 binary places. If
bit 0 of ACC was originally a 1, the contents of ACC are negated (to form
the modulus of the fraction) and bit 0 of ACC is made 1. Bits 8 onward

o now form the 'intermediate fraction'; bit 0 is the sign bit.

- The intermediate fraction is now normalised by shifting it up one
hexadecimal place (4 bits) at a time until bits 8-11 are not all zeroes. l

BN is subtracted from the intermediate characteristic for every hexadecimal
Bhifto

Ty

- The least significant 7 bits of the intermediate chartacteristic
overwrite bits 1-7 of ACC. If CS = 128 bits, the contents of the least
significant 64 bits of ACC are shifted 8 binary places to the right and a
- copy of the characteristic in bits 1-7 minus 14 (or plus 114, if the
latter is less than 14) inserted in bits 65-71 of ACC. Bit 63 is made the
same as bit 0. OV is cleared.

- The most significant bit of the 8-bit intermediate characteristic should
be 0. If it is a 1, underflow or overflow occur as described in 8.2.2.1,

depending on whether the corresponding bit of the original operand was 1
ol or 0, respectively.

If underflow occurs ACC is made 0. If overflow occurs OV is set.
cc : Unaltered

= Program errors ¢ Operand addressing errors
Floating overflow (unless masked)(see 7.4.2.0)

Product Company PSD 251
specification restricted

Shest \\§. o

IR

Floatfing underflow (unlexz wmaszked){see "3,
ACS = 128 bdits (.“ 7.‘020‘302)

8.2.5 Logical Instructions

8.2.5.1 Logical ADD (UAD) Function Code : CO
Operand length ¢ 32 bits
Description ¢ The effect of this instruction is to leave in ACC

~the least significant 32 bits of the sum of the operand and the original
contents of ACC, both regarded as unsigned integers. OV is cleared. CC is
set to indicate whether or not carry occurred out of ACC bit 0.

The operation is only defined for ACS = 32 bits.
If this operation is performed on words with dummy (zero) sign bits (i.e.

portions of multiple length quantities) they should be left shifted to
remove thogse bits.

cC ¢t 0 No carry
1 Carry)
2 Not used
3 Not used
Program errors ¢ Operand addressing errors
ACS = 64 or 128 bits (see 7.4.2.13.1)
8.2.5.2. Logical Subtract (USB) Function Code : C2
Operand length : 32 bit
Description ¢ This operation is identical to Logical Add

(8.2.5.1) except that the 2's complement of the operand is added to the
contents of ACC. OV is cleared. ACS = 32 bits is assumed.

cC t 0 No carry indicates 'borrow' into bit 0 in
performing subtraction)
1 Carry (indicates no 'borrow'. Includes the
case where complementing causes carry,
i.e. operand = ()

2 Not used
3 Not used
Program errors ¢ Operand addressing errors

ACS = 64 or 128 bita (Bee 70“.201301)

8.2.5.3 Logical Reverse Subtract (URSB) Function Code : C4

Operand length : 32 bit

Product Company PSD 2.5.1

restricted
specification ed — 6/0
Shest 119
o Description : This operation is identical to Logical Subtract

(8.2.5.2,) except that the result is formed by adding the 'z complement

of the original contents of ACC to the operand. OV is cleared. ACY = %2
bits is assumed.

L]
cc ¢ 0 No carry (indicates 'borrow')
1 Carry (indicates no 'borrow'; includes the
- case where ACC was 0, so complementing
causes carry)
2 Not used
- 3 Not used
Program errors ¢ Operand addressing errors
o ACS = 62 or 128 bits (7.4.2.13.1)
~ 8.2.5.4. Logical Compare (UCP) Function Code : C6
- Operand length t ACS
Description ¢ The operand is compared with the contents of ACC,
= CC being set to indicate the result of the comparison. Equality implies

equivalence in every bit position. ACC less than operand is indicated if,
when scanning the bits of both from left to right, the first non-

- equivalent pair of bits occurs when the ACC bit concerned is a 0, ACC
greater than operand where it is a 1.

ACC and qv are unaltered.

-
ACS = 32 or 64 bits is assumed.
- cC ¢ 0 Equality
1 ACC less than operand
2 ACC greater than operand
3 Not used
]
/‘\
_ Programming errors : Operand addressing errors
ACS = 128 bits (see 7.4.2.13.0)
-y
8.2.5.5 Logical Shift (USH) Function Code : C8
o Operand length : 32 bits
Description : The least significant 7 bits of the operand are .
. treated as a signed integer specifying the number of places of left
’ (positive) or right (negative) shift applied to the contents of ACC.
Zeroes are inserted in the least or most significant bit of ACC as
shifting proceeds. OV is cleared. '
o]
The remaining operand bits are ignored.
ACS = 32 or 64 bits 1s assumed.
]
cC ¢ Unaltered
F_f“\ Program errors ¢ Operand addressing errors

. ACS = 128 bits (see 7.4.2.13.0)

Product Company PSD
restrict ‘
specification ed — o0
Shest 20 '
5= .
8.2.5.6 And (AND) Function Code : &A
or (OR) Function Code : 8C
= Not Equivalent (NEQ) Function Code : 8E
Operand length :t ACS
- Description : Each bit in ACC is replaced by a new bit generated
from its original value and the corresponding bit in the operand, as
follows:
B
Original | Operand Result bits
= ACC bit bit AND OR NOT EQIV.
| 0o . 0 o] 0 0 |
P~ | 0 1 0 1 1 |
| 1 0 0 1 1
= | 1 1 1 1 0 |
OV 18 cleared.
==
ACS = 32 or 64 bits is assumed.
= cc ¢ Unaltered
Program errors : Operand addressing errors
- ACS = 128 bits (see 7.4.2.13.0)
8.2.5.7. Rotate (ROT) Function Code : CA
= Operand length ¢ 32 bits
Description ": The contents of ACC are shifted left by the number
. of binary places specified by the operand, interpreted as an unsigned
™ integer, in such a way that each bit shifted off the left-hand end of ACC
(bit 0) is re-inserted at the right-hand end (bit 31 where ACS = 32 bits;
bit 63 where ACS = 64 bits). OV is cleared. ACS = 32 or 64 bits is
m assumed.
When ACS = 32 bits, bits 0-26 of the operand (bits 0-25 when ACS = 64
] bits) do not affect the result, but may influence the time taken by the
instruction, so it is recommended as a programming rule that when the
operand is a literal,operand bits 25 and 26 should be the same as bit 27.
- Similarly, when ACS = 64 bits, bit 25 should be the same as bit 26.
Deviation from this rule will not lead to any error.
cc ¢ Unaltered
Y
Program errors : Operand addressing errors
ACS = 128 bits (see 7.4.2.13.0)
L]
N
fo-)

Product Company PSD 2.5.1

specification restricted — 6/0
Shost 121 . —
- ‘ 2.5.8 shift 32 Bits (SHS) E - Fmction (e SRS Y
i Operand length : 32 bits ; B
il l Description : The least significant 32 bits of the contents

of ACC are shifted logically in exactly the same way as for Logical Shift
(8.3.5.5); in fact if ACS = 32 bdits the instructions are identical. If
- ACS =64 bits, the more significant 32 bits of ACC are unaltered. Zeroes
are inserted in the least (i< tward shift) or most (rightward shift)

significant bit position of tae 22 bits shifted as shifting proceeds. OV
is cleared.

= ACS = 32 or 64 is assumed.
cC : Unaltered
gl
Program errors ¢ Operand addressing errors
N : ACS = 128 bits (see 7.4.2.13.0)
- .
8.2.5.9 Shift While Zero (SHZ) ‘ ’ Function Code : CE
- Operand length : 32 bits
Description ¢ The contents-of ACC, if non—zero, are shifted
logically leftward until bit O is a 1. The number of binary places
= shifted is stored as a 32 bit positive integer in the operand location. OV
is cleared.
- If ACC is zero, a zero is stored. This condition may be detected by
testing ACC for zero after the operation.
- ACS = 32 or 64 bits is assumed.
CC : Unaltered
’1ﬁ\ Program errors ¢ Operand addressing errors

Literal operand (see 7.%5.2.12.1)

. Non-zero bits of storer item truncated
e (see 7.4.2.6.0)

ACS = 128 bits (see 7.4.2.13.0)

- 8.2.6 Decimal Instructions
8.2.6.1 Decimal Add (DAD) Function Code : DO
- Decimal Subtract (DSB) ' Function Code : D2
Operand length ¢ ACS
o .
Description : The operand is added to, or subtracted from the
contents of ACC. The subtraction operation is equivalent to changing the
sign of the operand and adding. If overflow occurs the result is correctly
- represented (including the sign digit) apart from the overflowed digit. -V
is set and interrupt occurs unless decimal overflow is masked. OV is
— cleared if overflow does not occur.
=)

Product Company PSD

specification restricted — /0
Shoet N2
-
cc ! Unaltered
. Program errors ¢ Operand addressing errors
: Decimal overflow (unless masked) (see 7.4.2.3.)
= 8.2.6.2 Decimal Reverse Subtract (DRSB) Function Code : D4
Operand length ¢ ACS
-
Description ¢ As for Decimal subtract (8.2.6.1) except that the
difference left in ACC is formed by subtracting the original conteats of
- ACC from the operand.
N cC ¢ Unaltered
- Program errors ¢ Operand addressing errors
Decimal overflow (unless masked) (see 7.4.2.3)
e 8.2.6.3 Decimal Compare (DCP) Function Code : D6
Operand length s ACS
L]
Description ¢ The operand is compared with the contents of ACC.

ACC and OV are unaltered. CC is set to indicate the result of the
- comparison,

Equality is indicated if the operand is identical in every numeric digit
with the contents of ACC, and the sign digits are both positive or both
negative (positive sign digits do not necessarily have the same bit
representation), or if the sign digits are opposite but all the numeric
digits of both are zeroes. If the signs are opposite and the numeric
- digits are not all zeroes, ACC less than operand is indicated if the ACC
sign is negative, ACC greater than operand otherwise. If the sign digits
are equivalent ACC less than operand is indicated if, when conducting a
- left-to-right scan of the numeric digits of both operands, the smaller
digit of the first unequal pair is in ACC (positive sign) or in the
operand (negative sign); otherwise ACC greater than operand is indicated.
There is no check that the numeric digits lie in the range 0-9.

fied
cc . ¢ 0 Equality
1 ACC less than operand
- 2 ACC greater than operand
3 Not used
- Program errors ¢ Operand addressing errors
8.2.6.4 Decimal Shift (DSH) Function Code : D8
.
Operand length ¢ 32 bits
- Description : The least significant 7 bits of the operand specify

the amount by which the contents of ACC are to be shifted. This amount is

Product Company PSD 2.5.1
specification restricted

issue 6/0

Sheet 123

interpreted as a signed integer in the range -64 to +63. COther dits of
the operand are ignored. If the integer is positive (=1i) sall bdut the
least significant 4 bits of ACC are shifted 4i binary places to the left.
The sign digit is unaltered. If any of the bits shifted off the leftmost
end of ACC are 1's, OV is set and interrupt occurs unless decimal overflow
is masked. OV is cleared if all bits shifted off are zeroes.

Zero bits are inserted in the bit position adjacent to the sign digit as
shifting proceeds. If the amount of shift is negative (= -1i) all except
the least significant 4 bits of ACC are shifted 4i binary places to the
right. OV is cleared. The sign digit is unaltered. Bits shifted out of
position to the left of the sign are lost. Zeroes are inserted at the
most significant end of ACC. '

cC ¢ Unaltered

Program errors ¢ Operand addressing errors
Decimal overflow (unless masked)(see 7.4.2.3)

8.2.6.5 Decimal Multiply (DMY) Function Code : DA
Operand length ¢ ACS
Description ¢ The product of the contents of ACC and the operand

is left in ACC. All numeric digits of both participate. If the product
exceeds ACC capacity the result is undefined; OV is set and interrupt
occurs unless decimal overflow is masked. Otherwise OV is cleared.

cC ¢ Unaltered
Program errors : Operand addressing errors
Decimal overflow (unless masked)(see 7.4.2.3)
8.2.6.6. Decimal Divide (DDV) Function Code : 9A
Operand length t ACS
Description ¢+ The contents of ACC are divided by the operand and

the unrounded quotient left in ACC. The rules for determining the
quotient are those for Decimal Remainder Divide (8.2.6.8). OV is cleared.

I1f the divisor is zero (i.e. all its numeric digits are zeroes) the result
is undefined (but OV is cleared), and the zero divide interrupt occurs

unless masked. ~
cc : Unaltered
Program errors : Operand addressing errors

Zero divide (unless masked)(see 7.4.2.4)
8.2.6.7 Decimal Reverse Divide (DRDV) Function Code : 9C

Operand length : ACS

Product Company PSD 2.5.1

strict)
specification re ed o 6/0
Sheet 124
- Description : The operation is exactly as for Divide (8.2.0.6)
except that the operand is the dividend and the contents of ACC the
divisor.
= cc : Unaltered
Program errors : Operand addressing errors
- Zero divide (unless masked)(see 7.4.2.4)
- 8.2.6.8 Decimal Remainder Divide (DMDV) Function Code : 9E
Operand length : ACS
= Description ¢ The contents of ACC are divided by the operand; the
T~ quotient is left in ACC, and the remainder is stacked, causing SF to be
incremented. All these quantities are of length ACS. OV is cleared.
o]
The quotient value is such as to produce a remainder which is either zero,
or of the same sign as the dividend and numerically less than the divisor.
-
CC 1is set to facilitate the evaluation of the PL1 'Mod' function.
If the divisor is zero (all its numeric digits are zero) the quotient, the
=~ remainder (which is stacked) and the setting of CC are all undefined (but
OV i8 cleared), and the zero divide interrupt occurs unless masked.
L cC ¢t 0 Remainder zero, or remainder greater than O,

divisor greater than 0
1 Remainder greater than 0, divisor less than 0
- 2 Remainder less than 0, divisor greater than O
3 Remainder less than 0, divisor less than O

Program errors ¢ Operand addressing errors Zero divide (unless
"~ masked)(see 7.4.2.4)
o 8.2.6.9 Decimal Multiply /Double (DMYD) ' Function Code : DC
Operand length : ACS
- Description : The double-length product of the contents of ACC
and the operand is left in ACC, ACS being doubled in the course of the
operation. OV is cleared. ACS = 128 bits is not permitted.
-
(o] ¢ Unaltered
o~ Program errors ¢ Operand addressing errors
ACS = 128 bits (see 7.4.2.13.5)
- 8.2.6.10 Convert to Binary (CBIN) : Function Code : DE
—~ Operand length ¢ Not applicable. Literal must be -specified.
L]

Product Company PSD 2.5.1

specification restricted
tasue 6/0
Sheet 125
o Description ¢ The operand is ignored. The signed integer in ACC
is converted from its packed decimal representation to fixed-point bimary
representation, with 2's complement sign convention. If ACS = 128 bits it
. is halvedé in this cagse overflow may occur if the number lies outside the
range =263 to + (263-1), inclusive, whereupon OV is set, and interrupt
occurs unless fixed-point oveflow is masked. Otherwise OV is cleared.
- cc : Unaltered
Program errors t Fixed overflow (unless masked)(see 7.4.2.2)
-
o~
N
[]
[]
-
-
-]
N
L]
-y
]
(]
]
—
-
\
-

Product Company PSD 2.5.1
specification restricted

issue 6/0

Sheet 126

- 8.3 Store-to—-store instructions

8.3.1. ‘ Introduction

Store-to-store operations take place between a string of bytes (referred
X to as the (DR) string) described by a string or byte-vector descriptor
held in DR (usually, but not always, the 'destination string') and (in
= most cases) a second string described by a string or byte-vector
descriptor held in ACC (referred to as the (ACC) string, and usually the
'source string'). In some cases ACC is not involved, and a string
- congisting of copies of a byte specified as a literal in the instruction
may be used as source string, or alternatively a source byte may be taken

from B; in three cases the (DR) string interacts directly with the
contents of ACC itself.

Yy

o, Byte-vector and string descriptors are checked to ensure their size fields
contain Oll. The length of a string described by a byte-vector is in this

. context defined by the contents of the bound field.

The number of bytes involved in a store-to-store operation (referred to as
“n L) 1s specified either explicitly in the instruction format, or iam the
length field of the descriptor in DR. Instructions are 16 or 32 bits

long, and use the secondary format described in 6.1. The format of the
first 16 bits is as follows:

L]
| _Function | bl q] n
Bei 7 1 1 7
h=0:L=n+101&§ L §128)
, h=1:L= (Length field of DR) (0 &L € 224) (n fleld reserved)
q =0 : 16-bit instruction
q=1: 32-bit instruction
"~ When the instruction is 32 bits long, the second 16 bits specify a Mask
byte and a Literal or Filler byte, thus
L:)
| __Mask | Literal/Filler |
8 8
~ In the course of each operation, the (DR) string is processed from left to
right, one byte at a time, and for each byte processed the address field
is incremented by 1 and the bound field decremented by 1. When the (ACC)
- string is similarly processed from left to right (this is not the case for
all instructions) the descriptor in ACC is updated likewise (and OV is
cleared).
p—

When the (ACC) string is processed left to right, and it contains less
than L bytes, it is effectively extended on the right with copies of the
- filler byte. 1If there is no filler byte, i.e. the instruction is 16 bits
long, an interrupt occurs. When the filler byte is used the descriptor in
ACC 18 left with zero in its length field and the original contents of the
KN length field added into the address field. If the ACC length field is
initially zero, the filler is used immediately, and the address field is

iICL

rmuc‘ A4 41 trﬂl t, - wwea
specification restricted — 6/0 _
Shest 127

ignored. If L=0 the imstruction will be interpreted as a null operation,
the contents of the (ACC) and (DR) strings being ignored and unaltered
(virtual store interrupts cannot occur).

All store-to-store operations include certain standard checks; interrupt
occurs if any check fails. These checks (referred to in the instruction
descriptiong) are:

1) DR must contain a type O or type 1 descriptor with size Code 3, or an
escape descriptor, else see 7.4.2.10.6.

2) When L = n + 1 (literal), L not less than (length field of DR else see
7.4.2.11.0,

3) When ACC contains a descriptor, it must be of the correct type (type O
or 1 with size code 3, except for Table check and Table translate), and -

ACS = 64 bits (for some instructions (ACC) is only used with the 16 bit
ingtruction formet), else see 7.4.2.10.7 or 8.

4) When the {ACC) string i1s processed left to right, and the ianstruction
is 16 bits long, (length field of descriptor in ACC) must be not less than
L,else see 7.4.2.11.2,

Most store-to-store operations can be interrupted in mid-flight, and
resumed after the interruption. As well as DR and, where relevant, ACC
being updated in the course of the operation, additional facilities are
provided (see section 5.3) enabling the instructions to be thus resumed.

The results of store-to-store operations which necessitate changing the
contents of store locations are undefined if the two strings involved
cverlap, uniess otherwilse specified.

For the purposes of determining overlap the (DR) string is taken to be L
bytes long, and the ACC string’s length is the lesser of L and the length
gpecified by the descriptor in ACC.

When source information is taken from B, the contents of B are unaltered
by the instruction. Fields of B ignored by the instruction are spare.

Product Company PSD 2.5.1
specification restricted — 6/0
Shest 128

The following table summarises whether mask and filler/literal bytes in B
or the second half of along instruction are used by each store-to-store
instruction. For precise details see section 8.3.3.

Instruction |16~bit Instruction Format|32-bit Instruction Format
Mnemonic B(16-23) B(24-31) |[Instr.(16-23)]|Instr.(24-31)
SWEQ used used used used ’
SWNE
CPS not used | not used used used if
i L§(ACC)1gth
MV] not used 1 not used used used if
Li(ACC)1gth
CHOV | not used | not used ignored ignored
(reserved) (reserved)
MVL used used used used
TCH 1 1 | ignored ignored
TTR | not used | not used '1 (reserved) (reserved)
PK
SUPK 1 not used 1 wused if ignored u'~d 1f
CC=0 (reserved) CC =0
INS used if 1l used 1f | wused if used if
CCAO CC=0 CCAO CC =0
ANDS ignored
ORS not used not used (reserved) used
NEQS

8.3.2 List of Instructions

Scan while equal
Scan while unequal
Compare strings
Move

Check overlap
Move literal
Table check

Table translate

Pack

Suppress and unpack
Conditional insert

And strings

Or strings

Not equivalent strings

8.3.3 Instruction descriptions

8.3.3.1 Scan While Equal (SWEQ) Function Code :

A0
Description ¢ In the 16-bit case, the reference byte is the
contents of bits 24-31 of B, and the mask byte the contents of bits 16-23.
In the 32-bit case the reference byte is the literal byte.

Each byte in the (DR) string, working from left to right, is compared with
the reference byte. Only these bits in each byte, including the reference

byte, which correspond to 0's in the mask byte, are compared. The
operation stops when the (DR) string is exhausted, or when inequality is

Product Company PSD 2.5.1 L
pecification restricted
8 catio lssue 6/0

Sheet 129

- detected, whichever occurs first; in the latter case (DR) will finish
pointing to the first byte in the (DR) string which is not equal to the
reference byte.

- CC is set to indicate whether or not inequality was found, and if so
whether (the unmasked portion of) the (DR) byte was less than or greater
than (the unmasked portion of) the reference byte.

- .

If L=0, and none of the other checks fail, a null operation is performed,
leaving DR unaltered, but leaving CC=0.

1]
ccC : 0 Inequality not found

1 Not used

- 2 (DR) string byte greater than reference

byte(unmasked portions)

A~ 3 (DR) string byte less than reference

) byte(unmasked portions)
(o]
Program errors ¢ Any failures of standard checks 1 and 2.
-
8.3.3.2 Scan While Unequal (SWE) Function Code : A2

- Description ¢ This operation is similar to Scan while equal
(8.3.3.1) except that the operation terminates when the unmasked portion
of a (DR) byte equals the unmasked portion of the reference byte, or after
L bytes. If L=0, and none of the other checks fail, a null operation is

ol performed, leaving DR unaltered, but leaving CC=0.
cC ¢ 0 Equality not found

o 1 (DR) string byte = reference byte (unmasked

portions)
2 Not used
3 Not used
L]
~
Program errors ¢ Any failures of standard checks 1 and 2.
m .
8.3.3.3 Compare Strings (CPS) Function Code : A4

o Description ¢ Successive bytes of the (ACC) and (DR) strings are
compared - i.e. the first byte of one with the firast byte of the other,
and so on - until an unequal pair are found, or L bytes have been compared

- equal. In the 16-bit case the AC string must be at least L bytes long. In
the 32-bit case comparison is only applied to those bits which correspond
to 0's in the mask byte; and if the (ACC) string is less than L bytes
long, it is effectively extended (if necessary) with copies of the filler

- byte. CC is set to indicate the result of the comparison.

Where inequality is found, DR will finish pointing to the first (DR)

- string byte which compared unequal, and ACC likewise unless the (ACC)
string had already expired. If L=0, and none of the other checks fail, a
null operation is performed, leaving ACC and DR unaltered, but leaving

e Ce=0.

-—

Product Company PSD 5.1
specification restricted . 6/0
Sheat 130
cc t 0 1Inequality not found

1 Not used

2 (DR) string byte greater than (ACC) string
byte (unmasked portioms)

3 (DR) string byte less than (ACC) string
byte (unmasked portions)

Program errors ¢ Any failures of standard checks 1 - 4
8.3.3.4 Move (MV) Function Code : B2
Description : The (ACC) string overwrites the (DR) string. In the

16-bit case the (ACC) string must be at least L bytes long. In the 32-bit
case the (ACC) string, if shorter than L bytes, is effectively extended
with copies of the filler byte; and only those bits of each (DR) string
byte which correspond to 0's is the mask byte are altered (to the
corresponding bits of the appropriate (ACC) string byte or the filler
byte).

The result is undefined if the (DR) string overlaps the (ACC) string on
the right -~ 1i.e. if the first byte of the (DR) string coincides with any
one of the 2nd to nth bytes of the (ACC) string, where 'n' is the lesser
of L and the length of the (ACC) string. Otherwise the fields may overlap
in any way and the correct result is obtained. If L=0, and none of the
other checks fail, a null operation is performed, leaving ACC and DR
unaltered.

CcC : Unaltered
Program errors ¢ Any failures of standard checks 1 - 4.

8.3.3.5 Check Overlap (CHOV) Function Code : B4
Description : This instruction tests whether the (ACC) and (DR)

strings overlap, and if so whether or not the starting address of the (DR)
string is greater than that of the (ACC) string. For the purpose of
testing for overlap, the length of the (DR) string is L, and the length of
the (ACC) string is the lesser of L and the contents of the (ACC) lemgth
field. The latter is only permitted to be less than L if the 32-bit
instruction format is used, in which case the mask and filler bytes are
ignored (reserved); 1f the length of the (ACC) string is zero, no overlap
is indicated. CC is set to indicate the type of overlap. ACC and DR are
unaltered. If L=0, CC is set =0,

cc : 0 No overlap
1 Overlap - (ACC) address greater than (DR)
address
2 Overlap -(ACC) address less than (DR) address
3 Not used
Program errors ¢ Any failures of standard checks 1 -~ 4.

Product Company PSD 2.5.1

specification restricted 6/0
Shest 131

- 8.3.3.6 Move Literal (MVL) Anction Oode @ W
Description ¢t The unmasked bits of the source byte overwrite the
corresponding bits of each byte of the (DR) string. In the 16-bit case,

i the source byte is the contents of bits 24-31 of B, and the mask byte the
contents of bits 16-23. In the 32 bit case, the source byte is the
literal byte. Only those bits of each (DR) string byte which correspond

) to 0 in the mask byte are unaltered (to the corresponding bits of the
source byte). If L=0 and none of the other checks fail, a null operation
is performed, leaving DR unaltered. ,

]
cC ¢ Unaltered

. Program errors ¢ Any failures of standard checks 1 and 2.

- 8.3.3.7 Table Check (TCH) Function Code : 80

(]

Description ¢ The descriptor in ACC points to a table check of
bits. This descriptor must be of type 0, with size code 1 bit, and a

- valid bound; USC and BCI must be zero. Successive bytes in the (DR)
string are checked against this table in the following way: the more
significant 5 bits of the byte are used as a modifier of the address in
the ACC descriptor to reference a byte in the table, and the least

b significant 3 bits to refer to one of the bits (numbered 0-7) in that
byte. Thus, if the value of the byte is 10010101 (=8 x 18 + 5) and the
byte address in ACC is A, the check bit is bit 5 of byte (A + 18). If the

oy value of the byte is not less than the bound field of the descriptor in
ACC, an interrupt occurs. Processing of the (DR) string, from left to
right, continues until the string is exhausted, or a byte whose check bit

-~ is 1 is found; in the latter case DR is left pointing to that byte. CC is
used to indicate the reason for termination . ACC is unaltered. The (DR)
string is unaltered. 16 or 32 bit instruction forms are permitted. In the
32-bit form, the mask and literal bytes are ignored (reserved). If L-0,

ey and none of the other checks fail, a null operation is performed, leaving
DR unaltered, but leaving CC=0.

L Certain hardware implementations may access some or all of the check bit
table before any DR string reference is made against it. Such
implementations may generate virtual store interrupt conditiomns for

- referenced or unreferenced parts of the table.

If Program Mask bit 5 (bound check) is set, the table is assumed to be 32
bytes long.

i)
cC ¢t 0 No non-zero check bit found

1 Non-zero check bit found

~ 2 Not used
3 Not used

o Program errors ¢ Any failures of standard checks 1 to 3. (DR) string
byte not less than bound field of descriptor in
ACC. (see 7.4.2.5.8.)

N
=] -

o mstmre

Product | Company PSD 2.5.1

specification restricted 6/0
Shest 132
8.3.3.8 Table Translate (TTR) : Function Code : &
Description ¢t The descriptor in ACC points to a translation

table. This descriptor must be of type 0, with size code 8 bits, and a
valid bound; USC and BCI must not be set. Each byte in the (DR) string is
replaced by a translation byte, obtained by using the byte as a modifier
for the base address in ACC to access the required translation byte. Thus
if the byte address in ACC is A, and the value of a (DR) string byte is
11011011 (=219), the latter is replaced by the contents of byte location A
+ 219. An interrupt occurs if the value of any (DR) string byte (219 in
the above example) is not less than the bound field of the descriptor in
ACC. ACC is unaltered. If L=0 and none. of the other checks fail, a null
operation is performed, leaving DR unaltered. Either 16 or 32 bit forms
may be specified but for 32 bits the mask and literal bytes are ignored
(reserved).

Certain hardware implementations may access some or all of the translation
table before any DR string reference is made against it. Such
implementations may generate virtual store interrupt conditions for
referenced or unreferenced parts of the table.

I1f program mask Bit 5 (bound check) is set, the table is assumed to be 256

bytes long.
cC ¢t Unaltered
Program errors ¢ Any failures of standard checks 1 to 3. (DR) string
byte not less than bound field of descriptor in
ACC. (See 7.40205.80)
8.3.3.9 Pack (PK) Function Code : 90
Description ¢ For each (DR) string byte, working from left to

right, the contents of ACC are shifted decimally left by 1 place and the
least significant 4 bits of the byte inserted in the space thus created
next to the sign digit of ACC. ACS may be 32, 64 or 128 bits. OV is set
if any non-zero bits are shifted off the top of ACC, and in this case
decimal overflow interrupt will occur unless masked. If no non-zero bits
are shifted off OV is cleared. The sign digit is unaltered. If L=0, and

none of the other checks fail, a null operation is performed, leaving ACC
and DR unaltered; OV is cleared.

Either 16 or 32 bit forms may be specified but for 32 bits the mask and
literal bytes are ignored (reserved).

The results of the instruction is undefined if L is not less than 128
CcC ¢ Unaltered

Program errors ¢ Any failures of standard checks 1 and 2. Decimal
overflow (unless masked)(see7.4.2.3)

Product Company PSD 5.

specification restricted 6/0
Sheet 133
8.3.3.10 Suppress & Unpack (SUPK) Function Code : 94
Description : Successive digits of the decimal number in ACC are

unpacked, each digit generating a byte which overwrites the next position
in the (DR) string. The value of the inserted byte depends on the value
of the leftmost (unpacked) digit of ACC, and on the setting of CC. After
each (DR) string byte has been overwritten, ACC is decimally shifted up
one place to remove the unpacked digit, and CC is updated. The sign digit
is not shifted or altered.

The inserted byte is either a copy of the literal byte (bits 24-31 of B if
the 16-bit instruction format is used), or is formed by prefixing bits 0-3
of ACC (the unpacked digit) with a numeric zone code. In the action table
below, these two alternatives are referred to as 'insert literal' and
'ingsert digit' respectively. In the latter case, the zonme code is binary
0011 if the 1SO mode bit in SSR is 1, binary 1111 1f it is O.

__€cc=0 __¢cc*0
Unpacked Insert literal Insert digit
digit = 0 CC unaltered CC unaltered
Unpacked Insert digit Insert digit
digit £ 0 Set CC = 2 Set CC = 2
*Stack descriptor

*1f CC = 0 and the digit being unpacked in non-zero, a type 1 descriptor
is generated and stacked, which has 1 in its length field and whose
address field contains 1 less than the current address in DR - i.e. it
points to the byte immediately to the left of the position in the (DR)
string where the digit is inserted. This causes SF to be incremented by
two words. (A similar effect is achieved by the Start significance
instruction - see section 8.1.5.11)

The operation terminates after unpacking L digits. If after unpacking the
last digit, CC = 2 or 3, the sign digit of ACC is inspected, and CC is set
to 2 or 3 depending on whether the sign is positive or negative,
respectively. If CC= 0 or 1 it is unaltered and the sign is ignored. If
1=0 and none of the other checks fail, a null operation is performed,
leaving ACC, CC and DR unaltered.

OV is cleared. ACS may be 32, 64 or 128 bits. With the 32-bit instruction
format the mask byte is ignored (reserved). The result of the inmstruction
is undefined if L greater than or equal to 128

Notes a) After a number has been completely unpacked ACC will contain no
non-zero digits, and only by testing CC can it be ascertained whether the
number was positive, negative or zero.

b) 1f the descriptor which is stacked when the first non-zero digit
is unpacked is not used for sign insertion (.e.g.) it must be removed from
the stack anyway.

ICL Product Company PSD 2.5.1 B
~| specification restricted — 6/0 -
Sheet 134
- cc : 0 CC was 0, and all digits unpacked were ('s
1 CC was 1, and all digits unpacked were {0's
2 CC was 2 or 3, or some nomzero digits
- unpacked. Sign positive.
3 CC was 2 or 3, or some non—2zero digits
unpacked. Sign negative.
- Program errors ¢ Any failures of standard checks 1 and 2.
- 8.3.3.11 Conditional Insert (INS) Function Code : 92
Description : This instruction is similar to Move literal
- (8.3.3.6) in that the source byte overwrites successive bytes of the (DR)
string. However the source byte is defined differently, as follows:
~ CC=0 Literal (bits 24-31 of B, if 16-bit format)
CC#0 Mask (bits 16-23 of B, if 16-bit format)
- Each (DR) string byte is completely overwritten.
If L=0, and none of the other checks fail, a null operation is performed,
v leaving DR unaltered.
This instruction is intended for use with Suppress and unpack (8.3.3.10).
[]
cC ¢ Unaltered
- Program errors ¢ Any failures of standard checks 1 and 2.
8.3.3.12 And Strings (ANDS) Function Code : 82
o Or Strings (ORS) . Function Code : 84
Not Equivalent Strings (NEQS) Function Code : 86
- Description : Each byte of the (DR) string is replaced by the
™ result of performing the appropriate logical operation betwen itself and
the corresponding byte of the source string. In the 16-bit format the
source string is defined as the (ACC) string. In the 32 bit format ACC is
. not used and the source string is L copies of the literal byte. The mask
byte is ignored (reserved).
=i If L=0 and none of the other checks fail, a null operation is performed,
leaving ACC and DR unaltered.
- cc : Unaltered
Program errors ¢ Any failures of standard checks 1 - 4.
-
R
N
=,

Product Company PSD 2.5.1

ICL specification | restricted - 6/0
Sheot 135

8.4 Bridgeware Instruction

Two instructions are provided for converting 6 bit data to or from 8 bit
data.

8.4.1 Compress ACC (COMA) Function Code : 98

Expand ACC (EXPA) : : Function Code : 88
These instructions use the primary format described in Sectiom 6.1.
Operand length : Not applicable, literal must be specified.
Description : These instructions require ACS = 32 or 64 bits.

They convert the contents of ACC between an unpacked and a packed form by
manipulation of fields as follows:

Packed Form Unpacked Form
(ACS = 32) (ACS = 64)
Bits 8 - 13 Bits 16 - 21 Bits 2 - 7
14 - 19 22 - 27 10 - 15
20 - 25 28 - 33 18 - 23
26 - 31 34 - 39 26 - 31
40 - 45 34 - 39
46 - 51 42 - 47
52 - 57 50 - 55
58 - 63 58 - 63

Compress ACC converts from unpacked form to packed form, ignoring the
original contents of bits 0, 1, 8, 9, etc. of ACC, and generating zeroes
in bits 0-7 or 0-15, depending on ACS. Expand ACC converts from packed
form to unpacked form, ignoring the original contents of bits 0-7 or 0-15

and generating zeroes in bits 0, 1, 8, 9, etc. ACS is unchanged. OV is
cleared. -

cC ¢ Unaltered

Program errors : ACS = 128 bits (see 7.4.2.13.8.)

Product Company PSD 2.5.1

specification restricted 6/0
Issue
Sheet 136
- 9 Privileged Operations
9.1 General

= The only privileged instruction is Activate (Function Code 3E) and PRIV
must be set for its execution.

L Other privileged operations will be performed by using the instructions
Load (8.1.3.6) or Store (8.1.3.7.) with appropriate image store operand
addresses and, in the latter case operands in ACC (see section 3.3 et

- seq.). These operations are privileged in the sense that they require
appropriate settings of PRIV, ISR and DGW (see section 3.3.2) to access
the image store locations concerned.

= Included in the functions thus performed with image store operands are the
following:~

N

- Fire 1/0)

Record I/0 interrupt state) see [2]

- Initial load

Set or read SMAC registers
Set or read SAC registers
Communicate with linked processors
- Clear slave stores
Load PSTB
Set real-time clock
- Clear real-time clock overflow
- and other implementation-defined actiomns.
9.2 1Imnstruction Descriptions

N Activate (ACT) Function Code : 3E
Operand length ¢ 128 bits

o

i Lescription ¢t The first two words of the operand are loaded
i to LSTB (see section 3.2.3). Bits 14-30 of the first word, and 0-3 and

- 29-31 of the second word are ignored (spare). The third word is ignored
(spare). Bits 0-13 of the fourth word contain the new value of SSN; bits
14-31 are ignored (spare). After loading LSTB the action of the
instruction 18 to generate the base address of segment (SSN+1)

- (effectively by concatenating the bit pattern 100 with bits 0-12 of
the fourth word of the operand; if the segment number is in the range 0-
8191, the new LSTB is used to translate it) and unload the contents of

- words 0-15 of that segment (the 'process state') to the appropriate CPU
registers, the reverse of the stack-switching interrupt process portrayed
in Figure 4 of section 5.3. In emulating machines, E and EM bits of the

- new PSR and SSR will be examined after unloading words 0-7, and subsequent
action will depend on their values. Virtual addressing mode is assumed
throughout. Methods of changing addressing mode are implementation-

— defined. :

[

[}

F——

Product Company PSD 2.5.1
specification restricted o 6/0
Sheet 137

i .

9.3

If there is disagreement between the values of SSN specified by the
operand and in words 0 and 4 of the process state the result is undefined.
A system error interrupt may occur if an attempt is made to load an odd

- segment number to SSN.

The new process defined by the undumped process state is entered at the
instruction specified by PC, qualified if necessary by the setting of II
(see section 5.3.9.). In emulating machines, if E=1 in new PSR, and EM in
new SSR has a locally valid value, alien code is executed.

If bit 31 of the first word of the operand is a 1, and if the EP interrupt
mask bit 18 not set in the new SSR, an Event Pending interrupt occurs on
resumption of the process. This may occur before the registers have been
completely undumped and, if II is set, it will occur before attempting

completion of the uncompleted instruction. The EP bit in SSR is ignored
and is not cleared.

PSTB i8 not altered. Execution of Activate may cause the new value of IC
(section 3.2.6) to be decremented.

This instruction requires PRIV = 1 to be executed.
cc ¢ As specified in new PSR

Program errors : Operand addressing errors

Privilege (see 7.4.2.9.6.)

(Emulating machines; PEI 14) New E=1 and

EM=0 or invalid value
(Note: Masking of program error interrupts is controlled by the program
and interrupt mask bits in PSR and SSR at the beginning of the
ingtruction. The occurrence of an unmasked program error during the
intitial state of Activiate will prevent the loading of LSTB, SSN and the
other processor registers (i.e. effectively it is the old process, not the
new one, being interrupted.) However in the case of an error in switching
to emulation, implementation defined action will occur.)

Bootstrap

When the initial load button is pressed on the operator's console a
transfer into store is initiated from the device nominated on the load

device address switched on that console. Subsequent actions are as
follows: .

1 The transfer is into real addresses starting at 0 (all store addresses
quoted below are real word addresses).

2 At the end of the transfer, the following sequence occurs, instead of
the interrupt procedure described in section 5 (no IST is required). The
CPU may load its microprogram store, in an implementation-defined manner,
from real words 64 onwards. The image store locations in Block O, lines
0-15 (section 3.5.1.), are loaded with the contents of real words 32-47,
and LSTB and PSTB are loaded from implementation-defined locaiioms in
words 48-63 the initial CPU status is thus completely defined).
Instruction execution commences at the instruction indicated by PC.

-y

ICL Product Company PSD 2.5.1
specification restricted — 6/0
Shoat 138
- Whether the address of PC and addresses subsequently gex\eiat\\i ave
treated as virtual or real depends on the setting of the RAM bit {iwn SSR
(see section 3.2.1). If virtual, all segment and page tables wmust have
o= been set up as part of the initial transfer; and provision must be made
for addressing the controller communication area in real words 0~7. (see
below).
~ 3 For the purpose of the initial transfer the communication area for the
peripheral controller involved is in real words 0-7; the_bootstrap
respongse area (see [2]) is in words 6 and 7. There are no stream SAWS or
gl response areas involved. ‘
The CPU can establish the SAC/trunk/stream number of the input device as
- follows: SAC number from CPU interrupt flags (in image store Block 0,
implementation defined); trunk number from SAC interrupt flags (see
~ section 3.5.2); and stream number from bits 24-31 of real word 6
- (bootstrap response area).
Differences in operation due to configuration details are dealt with in
6].
- (6]
-
L]
[
-
™
\
L]
-
-
n/\
-

Product Company PSD_ 2! .
specification restricted — 6/0
Sheet 139
p= APPENDIX 1
Alphabetical list of instructions
- Miscellaneous
Name Section . Mnemonic F Code
= Add to B 8144 ADB 20
Adjust SF 8.1.2.4 ASF 6E
Call 801 2.8 CALL 1E
- Compare & Increment B 8.1.4.6 CPIB 2E
Compare B 8.1.4.5 CPB 26
Decrement B & jump if non-zero 8.1.2.12 DEBJ 24
~ Dope vector multiply 8.1:4.7 VMY 2C
- Escape exit 8.1.2.15 ESEX 3A
Exit 8.1.2.9 EXIT 38
Increment & Test 8.1.2.7 INCT 56
- Increment address 8.1.5.10 INCA 14
Jump 8.1.2.11 J 1A
Jump & 1link 8.1.2.10 JLK 1C
. #Jump on arithmetic - condition false 8.1.2.14 JAF 06
*#Jump on arithmetic - condition true 8.1.2.14 JAT 04
*Jump on CC 8.1.2.13 JcC 02
m Load 8.1 0306 L 60
Load address 8.1.5.5 LDA 72
Load B 8.10401 LB 7A
Load bound 8.1.5.7 LDB 76
- Load DR 8.1.5.1 LD 78
Load LNB 8010201 LLN 7C
Load relative 8.1.5.4 LDRL 70
o Load type & bound 8¢1.5.6 LDTB 74
N\ Load upper half 8.1.3.8 LUH 6A
Load XNB 80102.2 LXN 7E
- Out 801 02016 ouT 3c
Pre-call 801.2.2] PRCL 18
Raise LNB 801.2 -" RALN 6C
- Read real-time clock 8.1.3.11 RRTC (1]
Set ACS 128 & load 8.1.3.3 LSQ 66
Set ACS 32 & load 8.1.3.3 LSS 62
. Set ACS 64 & load 8.1 «3.3 LSD 64
Stack & load 801 0305 SL AO
Stack & load B 801.4.2 SLB 52
Stack & load DR 8010502 SLD 50
o StaCk, set ACS 128 & Load 8-10304 SLSQ 46
Stack, set ACS 32 & load 8.1.3.4 SLSS 42
Stack, set ACS 64 & load 8.1.3.4 SLSD 44
- Start significance 8.1.5.11 SIG 28
Store 8.1.3.7 ST 48

=5

ICL Product Company PSD 2.5.1
specification restricted . 6/0
Sheet 140
= Name Section Mnemonic F Code

Store B gol 4.3 §!§ SA

Store DR 8.1.5.3 STD 58

= Store LNB 8.1.2.5 STLN 5C

Store SF 8.1.2.6 STSF SE

Store upper half 8.1.3.9 STUH 4A

. Subtract from B 8.1.4.4 SBB 22

Test & decrement 8.1.2.7 TDEC 54

Validate address 8.1.5.9 VAL 10

Store CTB 8.1.2.20 STCT 36

- Store XNB 8.1.2.19 STXN 4C

= *Tertiary format
~~
(]
-
L]
=R
ram
2
—~

;]
(=]
rm

2]
ICL Product Company PSD 3.1
specification restricted 6/0
Shest 142
= Store-to-store-
Name Section Mnen F _Code
. And strings 8.3.3.12 ANDS 82
Check overlap 8.3.3.5 CHOV BA
Compare strings 8.3.3.3 CPS Ab
Conditional insert 8.3.3.11 INS 92
= Move 8.3.3.4 MV B2
Move literal 8.3.3.6 MVL BO
Not equivalent strings 8.3.3.12 NEQS 86
e Or strings 8.3.3.12 ORS 84
Pack 8.3.3.9 PK 90
Scan while equal 8.3.3.1 SWEQ AD
i Scan while unequal 8.3.3.2 SWNE A2
Suppress & Unpack 8.3.3.10 SUPK 94
~ Table check 8.3.3.7 TCH 80
- Table translate 8.3.3.8 TIR A6
Bridging
o
Compress ACC 8.4.1 COMA 98
Expand ACC 8.4.1 EXPA 88
(=9
- Privileged
Activate 9.2 ACT 3E
-
2]
—
(2]
-

ﬂ'

Product Company PSD 2-5.1
specification restricted — 6/0
~ Sheet 143
- List of instructions in mnemonic alphabetical order
- Mnemonic | Name Section
ACT Activate
- ADB Add to B 8.144.4
' AND And 8.2.5.6
ANDS And strings 8.3.3.12
ASF Adjust SF 8.1.2.4
- CALL Call 8.1.2.8
CBIN Convert to binary 8.2.6.10
CDEC Convert to decimal 8.2.4.10
- CHOV Check overlap 8.3.3.5
COMA Compress ACC 8.4.1
N CPB compare B 8 eleb oS
- CPIB |Compare & increment B 8.1.4.6
CPS Compare sttinga 8.3.3.3
CPSR Copy PSR 8.1.3.2
CYD Copy DR 8.1.3.70
™~ DAD Decimal add 8.2.6.1
DCP Decimal compare 8.2.6.3
DDV Decimal divide 8.2.6.6
o DEBJ Decrement B & jump if non-zero 8.1.2.12
DMDV Decimal remainder divide 8.2.6.8
DMY Decimal multiply 8.2.6.5
- DMYD Decimal multiply double 8.2.6.9
‘ DSB Decimal subtract 8.2.6.1
DSH Decimal shift 8.2.6.4
DRDV Decimal reverse divide 8.2.6.7
- DRSB Decimal reverse subtract 8.2.6,.2
ESEX Escape exit 8.1.2.15
EXIT Exit 8.1.2 09.
- EXPA Expand ACC 8.4.1
™ FIX Fix 8.2.3.10
PLT Float 8.2.4.4
IAD Integer add 8.2.4,.1
- 1CP Integer compare 8.2.4.3
IDLE Idle 801.2017
IDV Integer divide 8.2.4.6
- IMDV Integer remainder dlvide 8.2.4.8
! IMY Integer multiply Be2.4.5
i IMYD Integer multiply double 8.2.4.9
- INCA Increment address 8.1.5.10
INCT Increment & test 8.1.2.7
INS Conditional insert 8.3.3.11
- IRDV Integer reverse divide 8.2.4.7
IRSB Integer reverse subtract 8.2.4.2
ISB Integer subtract 8.2.4.1
ISH Arithmetic shift 8-2 b 4
- J Jump 8.1.2.11
JAF Jump on arith. condition false 8.1.314
~ JAT Jump on arith. condition true 8.1.3.14
- JCC Jump on CC 8-1.2013
‘ JLK Jump & link 8.1.2.10

Product Company iy -
specification restricted — 6/0
Sheet 144

- L Load 8.1.3.6
LB Load B 8.1.4.1
LCT Load CTB 8.1.2.18

_— LD Load DR 8.1.5.1
LDA Load address 8.1.5.5

LDB Load bound 8.1.5.7

LDRL Load relative 8.1.5.4

- LDTB Load type & bound 8.1.5.6
LLN Load LNB 8.1.2.1

LSD Set ACS 64 & load 8.1.3.3

- LSQ Set ACS 128 & load 8.1.3.3
LSS Set ACS 32 & load 8.1.3.3

LUH Load upper half 8.1.3.8

- LXN Load XNB 8.1.2.2
MODD Modify DR 8.1.5.8

—~ MPSR Modify PSR 8.1.3.1
MV Move 8.3.3.4

- MVL Move literal 8.3.3.6
NEQ Not equivalent 8.2.5.6
o NEQS Not equivalent strings 8.3.3.12
OR or 8.2.5.6
ORS Or strings 8.3.3.12
- ouT Out 8.1 «2.16
PK Pack 8.3 3.9
PRCL Pre-call 8.1.2.21

RAD Floatiﬂs add 80203-1

- RALN Raise LNB 8.1.2.3
RCP Floating compare 8.2.3.3

RDV Floating divide 80203.6

ol RDVD. Floating divide double 8.2.3.8
RMY Floating mulitply 8.2.3.5

RMYD Floating multiply double 8.2.3.9

- ROT Rotate 8.2.5.7
—~ RRDV Floating reverse divide 8.2.3.7
RRSB Floating reverse subtract 8.2.3.2
RRTC Read real-time clock 8.1.3.11

= RSB Floating subtract 8.2.3.1
RSC Scale 8.2.3.4

SBB Subtract B 8.1.4.4

- SHS Shift 32 bits 8.2.5.8
SHZ Shift while zero 8.2.5.9
SI1G Start significance 8.1.5.11

- SL Stack & Load 8.1.3.5
SLB Stack & load B 8010‘. 2

SLD Stack & load DR 8.l.5.1

SLSD Stack,set ACS 64 & load 8.1.3.4

- SLSQ Stack,set ACS 128 & load 8.1.3.4
SLSS Stack,set ACS 32 & load 8.1.3.4

ST Store 8-10307

= STB Store B 8010‘.03
STCT Store CTB 8.1.2.20

STD Store DR 8010503

- STLN Store LNB 8.1.2.5
STSF Store SF 8.1.2.6

Product Company PSD 2.5.1
specification restricted — 6/0
Sheet 145
o STUH Store upper half 8.1.3.9
STXN Store XNB 8.1.2.19
SUPK Supress and unpack 8.3.3.10
- SWEQ Scan while equal 8.3.3.1
SWNE Scan while unequal 8.3.3.2
TCH Table check 8.3.3.7
TDEC Test & decrement 8.1.2.7
- TTR Table translate 8.3.3.8
UAD Logical add 8.2.5.1
ucp Logical compare 8.2.5.4
- URSB Logical reverse subtract 8.2.5.3
USB Logical subtract 8.2.5.2
USH Logical shift 8.2.5.5
- VAL Validate address 8.1.5.9
VMY Dope vector multiply 8.1.4.7

Product Company PSD 2.5.1

specification restricted

issue 6/ 0

Sheet 146

’

F N
Ty

Second

hexadecimal
digit
(even)

Second
digit

Table showing allotted function codes

"~ First hexadecimal digit

1

2

3

4

VAL

ADB

LCT

SL

SLD

LDRL

JCC

CYD

SBB

MPSR

SLSS

SLB

LSS

LDA

JAT

INCA

MODD

DEBJ

CPB

CPSR

STCT

SLSQ

SLSD

TDEC
INCT

LSD

LSQ _

LDTB
LDB

PRCL

SIG

EXIT

ST

STD

RRTC

MYB

ESEX

STUH

STB

LUH

LB

&ﬂ-*&g

JILK

VMY

ouT

STXN

STLN

RALN

LLN

mlal> a:ola~ha<>
)

CALL

CPIB

ACT

IDLE

STSF

ASF

First digit

8

9

A

B

C

TCH

PK

SWEQ

MVL J UAD

DAD

TAD

ANDS

INS

SWNE

MV JUSB

DSB

ISB

RSB

ORS

CPS

URSB

DRSB

IRSB

RRSB

NEQS

SUPK
*

TTR

FLT |

CHO
*

FIX

UCP

DCP

ICP

RCP

USH

DSH

ISH

RSC

AND

DDV

IDV

RDV

ROT

DMY

IMY

OR

DRDV

IRDV

RRDV

SHS

DMYD

IMYD

RMYD

m|alr|eojols|vo

NEQ

DMDV

IMDV

RDVD

SHZ

CBIN

CDEC

**l

* - Unassigned function code

*% - illegal function code
(00 Tertiary, FE Primary format)

02-0E Tertiary format
10-7E Primary format (miscellaneous)

80-86)

90-96) Secondary format

AO-A5)
BO-B6)

88-8E,C0~CE Primary format (logical)
(decimal)
(fixed-point)

(floating point)

98-9E,DO-DE
A8-AE,EO-EE
BS—BE,FO—FC

mAaAP»ORASNO

mO>»OOSNO

Product Company PSD 2-5-1
specification restricted ...;. 6/0
Shest 147

Appendix 2
Summary of additional facilities at AML 1.

Item
1.
2.
3.
4o

S.

Description
Alternative format for RRTC
Alternative form of VALIDATE instruction
System Call Count
Parameter space check for System Calls

Addition of image store bit to control
clearing of slaves in INCT & TDEC

(B+N) operand form

Vector Descriptor, Type 0, size code 4
(=16 bits)

Vector descriptor, for signed items

Null descriptors

Sheet References
8.1.3.11
8.1.5.9
5.3.15
5.3.15

4.3.5 & 8.1.2.7

6.1.1

6.2

6.2
6.2

. Product Company PSD 2.5.1 i
specification restricted — 6/0
Shest 148
= A3 Appendix 3 Microcode Routines
This appendix lists the numbers that have been assigned for
= use with microcode descriptors. This appendix does not define the
implementation of the available functions, but a brief descriptiom is
given where applicable.
= A3.1 DR8-23=0000 Maths Library Functions.
DR24~31 Function Notes
e Mnemonic
00 - NULL
01 SQRT i
02 LOG log X
. 03 EXP eX
P ™
o 04 SIN)
= 05 Cos) radian only
06 TAN)
07 ATAN)
an 08~FF Reserved
The above microcode descriptors must be used with a JLK
- instruction. The input parameter is taken from ACC and the result is
returned to ACC.
- A3.2 DR-23=0001 to OOOF.
Not allocated.
= A3.3 DR-23 = 0010 Error Status Monitor.
Values of DR24-31 of 00 to OF are used on S1/S2 to initiate
= internal OCP tests. On completion of a test, CC will be set to zero. If
D~ any test fails, the Error Status Monitor will be turned off.

