PRENTICE-HALL @ SERIES

'COMPUTER LOGIC

~ The Functional Design of Digital Computers

by Ivan Flores

How computers are put together—

how they work—how to use them

W. L. EVERITT, Editor




b §

COMPUTER LOGIC

The Functional Design of
Digital Computers

by IVAN FLORES

THIs Is THE FIRST book on computers
to describe and illustrate with block
diagrams exactly how a computer is
put together and how it works. The
author emphasizes the organization and
functional interrelation of fundamental
units and discusses these relationships
from the viewpoint of operational ne-
cessity rather than mathematicalllogic,
Boolean algebra or circuit theory.

Among the features the reader will
find especially helpful are:

e the extensive treatment of two often-
neglected topics: (1) input/output
and (2) control of computer func-
tion

e the use of functional symbols for
functional parts of equipment

e the problems that provide a means
. of acquiring facility with computer
terms

e the final chapter that reviews in de-

tail what happens from the time the

‘programmer receives the problem
until the answer is ready

e the complete glossary of terms at
the end of the book

(Continued on back flap)



(Continued from front flap)

These and many more features make
this book an outstandingly thorough
and practical guide to the logic, the
function, and the use of computers.

Whether he wants an overall picture
of computers and their roles in scien-
tific invéstigation and business enter-

-prise or a detailed explanation of the
how’s and why’s of their operation, the
reader will find it in this book. Even
though he has only a limited scientific
background he can discover how a
control unit or input/output unit func-
tions and how the logical elements are
combined to make each unit do its job.

Tvan Frores, Pu.D., New York
University, design consultant, Norwalk,
Connecticut, and senior engineer at
Dunlop and Associates, Stamford,
Connecticut, is an active member of
the professional engineering societies
and a frequent contributor to their
journals and lecture series.

Prentice-Hall International, Inc.
34-36 Beech Street, London, E.C.1

960 e Printed in U.S. of America



COMPUTER LOGIC



PRENTICE-HALL ELECTRICAL ENGINEERING SERIES
W. L. Everitt, Editor

N e i e



IVAN FLORES

Consultant
Norwalk, Connecticut

COMPUTER LOGIC

The Functional Design of
Digital Computers

Prentice-Héll International, Inc.

3486, Beech St., London E.C.1



© 1960 by Ivan Flores

All rights reserved. No part of this book may be reproduced
in any form, by mimeograph or any other means, without
permission in writing from the publishers.

Library of Congress Catalog Card Number: 60-16719

PRINTED IN THE UNITED STATES OF AMERICA
16567—C




PREFACE

This book considers computers first at the overall or highest level
of organization and proceeds later to the lower levels of detail. We empha-
size the organization and functional interrelationship of the fundamental
units. These relationships are discussed from the viewpoint of necessity—
they are not dependent upon mathematical logic or Boolean algebra, and
they are not arrived at by circuit theory. They are, instead, discussed
from the point of view of operational necessity.

A minimum is required of the reader in the way of engineering and
mathematical background. The work should be comprehensible to those
of some scientific training. Problems have been included to provide a
means of acquiring facility with computer theory.

It is the method of the first part of the book to examine computers
from the air down—a first look, a bird’s-eye view from the air, is taken to
see how the computer fits into the overall system of scientific investigation
and business enterprise. The characteristics and specifications, then the
relationship between the problem and the computer are examined. The
structure and organization are investigated with regard to the large
functional units, their interrelation, interdependence, and control, and
an examination of programming is included. The function and com-
position of each unit are then pursued. The analytic approach in the
first part of the book will help the reader to understand at each step the
overall pattern. The second half continues, by synthesis, to build up
larger and larger functional units with the goal of a complete and unified
machine concept.

The interplay between design and application is emphasized. A
design which keeps the user, the programmer, and the applications in
mind cannot help but be superior. Similarly, the programmer who is
aware of how the computer operates to carry out his instructions is able
to make use of the machine.

How is each process initiated and controlled and what are the methods
of coordinating the varied activities of the units which comprise the

computer?
v
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Programming is considered from the point of view of the programmer,
the functional units of the computer, and the type of problem to be
handled by the computer and the designer. The job of the programmer
and the art of doing it are explained by programming a fictitious machine.
The flow diagram is used as a tool. The techniques of tallying, com-
parison, subroutines, branch points, cycle indices, sentinels, iterations,
decision making and automatic program alteration are the programming
background required for effective computer design.

The computer performs arithmetic by addition, complementation,
and shifting. How these are used to do subtraction, multiplication, and
division is explained with examples in the decimal system so that the
reader may follow with ease.

A thorough background of counting and number systems is developed
in order to bring an understanding of how arithmetic is performed by the
computer in its own language. This understanding is expanded to a per-
ception of arithmetic and translation within and between different
number systems. The other languages used by machines, the machine
codes, and the means for performing arithmetic in machine code are
discussed.

Manipulation of five kinds of elements is used to present the process
of symbolic logic: propositions, geometric areas, letter symbols, functional
blocks, and components. Symbols proposed by the Institute of Radio
Engineers’ Standards Committee are adopted. After an introductory
treatment, logical methods are discussed and the binary half-adder and
adder are derived; examples of its use are given. Boolean algebra is sum-
marized. Nor circuits are given attention as logical blocks, along with
examples of their incorporation in a computer logic.

The logical construction of functional units and operational units from
elementary logical units is considered, including a discussion of serial,
serial parallel, and parallel adders for different codes and counting sys-
tems, accumulators, shift registers, comparators, complementors, coding
units, and control units. This material comprises a fund of “unwritten
art” in the computer field. '

Here is where the synthesis approach really pays off. Starting from
simple logical elements, large functional units are built up; a simple
symbolic block is used to represent each large functional unit. When
constructing still larger operational units it is thus possible to see and
understand the relationships among the functional units because each is
represented by a single block. There is not s welter of symbols all over
the page to confuse the reader and obscure and complicate the reasoning,.

_ The section on arithmetic capitalizes upon this principle. The func-
tional fxnd logical blocks are combined before the reader’s eyes to make
operatlon‘al units to do each of the arithmetic operations. Before each
construction, the reasoning and the elementary steps required of each

e st e
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unit are explained both verbally and with subcommand operational flow
charts. The generation of the sign of the result is also covered.

Nothing could be more important to the computer than how its func-
tions are controlled! A chapter is devoted to the previously neglected
topic of control unit operation—where the asynchronous decentralized
computer control is dissected for the reader. The plan of action for the
control unit is presented verbally and with operational flow charts; then
each subdivision of control is analyzed. Finally, the logic to supplement
the control is presented and discussed ; centralized control is also examined
here. :
The operation of the memory is dependent largely upon the character-
istics of the components comprising it. These components are investi-
gated first and the logic necessary for memorizing and remembering
follows. More attention is given core and drum memories than others
because of their importance in modern computers.

Input and output equipment have received the greatest slight in the
computer literature, at least in the aspect of the logic associated with them.
Maybe the author has gone overboard in his coverage of this area. But
there has been so little available elsewhere that an extensive treatment is
necessary to tie things together. Much mechanical detail has been
included which may seem expendable. Yet, to appreciate the symbiosis
of the mechanical and electronic aspects of the equipment one must
comprehend its mechanical function as well as the logical principles
involved. The kinds of direct communication to and from the computer
are catalogued and control panels of current computers are used to demon-
strate these general principles.

To encapsulate the ideas which pervade the book, a problem is pre-
sented in the last chapter. A complete analysis is made of what happens
from the time the problem is given to the computer programmer until he
returns the answer to whomever posed it.

The Glossary which follows the text has been culled from a number of
glossaries published by the various professional computer societies. To
these extracts have been added a number of definitions not found else-
where, and some of the published definitions.

I would like to express sincere gratitude to those who have made this
venture possible. First, to my wife Helen, who courageously and devot-
edly waded far afield into the morass of computer technology. Next, to
the small band of associates, Saul Teichman, Andre Godefroy, Tom Cull,
and Ralph Townsend, who painstakingly read each draft to point out
where the text became unintelligible and obscure. Then to the alert and
untiring efforts of the stenographic force, notably Virginia Kirchhoff and
also Alice Bennett and Evelyn Davison. Lastly, to all my friends who
have gracefully accepted my hibernation for the duration of this project.

I F.
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INTRODUCTION

1.1. WHAT IS A COMPUTER?

Anyone who has sufficient interest in computers to search out a
book on that topic must have some idea of what one is. But somehow a
fresh look at this question before plunging into a detailed study may be
an advantage.

A computer, whether analog or digital, is a device for solving prob-
lems automatically. The word “automatically’’ indicates that there is as
little human intervention as possible. Modern computers can solve prob-
lems so quickly because they are electronic devices. The types of prob-
lems computers can solve are discussed in the next section.

An important consideration is the language used by the computer.
Tt is obvious that the computer doesn’t use the same language as we do,
either for receiving the problem or for solving it. If it did, we could merely
tell our problem to the computer and it would answer us in spoken English.

The computer uses a unique language for solving problems. A differ-
ent language may be required to get information into the computer. Thus,
we may have to contend with three different languages: the English lan-
guage we speak; the intermediate language used to convey information
to the computer, such as the language of the holes on punched cards; and
the language the computer uses for the information and for solving the
problem. Let’s hope this language barrier is not too great for the reader!

1
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The computer can perform certain operations upon the information
furnished it. If these operations are repeated in various sequences, dif-
ferent problems can be solved. Each application requires the solution of
one or more problems. Thus a hierarchy exists: a few operations can
solve many problems, and sets of these problems make up the applications.

In the next section the problems are discussed in answer to the ques-
tion, “What can the computer do?”’ The operations the computer per-

forms are discussed in Section 1.3. Section 1.4 mentions a number of
applications.

1.2. WHAT CAN THE COMPUTER DO?

Computers in general can do a number of different things. The list
we are going to make may lie beyond the capabilities of any one computer,
but there are single computers that can do several of the things listed
below. The more kinds of jobs we wish to have the computer do, the less
efficiently it will be able to do any single job. On the other hand, if we
only wish the computer to be able to do a few jobs, it may be able to do
each in less time. In other words, more diverse requirements for the
machine result in its taking a longer time to solve a given problem.
Examples of tasks that various computers can do follow.

Mathematical Problems

Solutions can be found for linear equations, linear differential equa-
tions, matrices, partial differential equations, polynomials, and so forth.

Simulation

An important function of a computer is to act as, or to create, a model

of an experimental or practical situation. This can be done in two
fashions:

REAL-TIME SIMULATION. Here, whatever should happen in a laboratory
or in the field must appear to happen at the same rafe within the computer.

ScaLED siMuLATION. Here the rate of time of simulation within the com-
puter may be foreshortened, so that what would normally take a week or
a month to transpire in the field would happen within a few moments in
the computer. Or, conversely, the computer may perform in the period of
an hour what happens within a split second in actual practice.

Both these forms of simulation are very important, and great pains
may be required to get the proper scaling (ratio of computer time to
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actual time). An example of real-time simulation may help the reader
visualize what is meant.

Take the case of a nuclear reactor. Of course, the computer does not
simulate the physical characteristics of the reactor—it does not look like
it, nor does it in any physical sense act like the reactor. What it does do
is produce numbers which represent the energy being generated by such
a reactor. The operator of the computer can then note at any moment
the state of the reactor and his own capacity to control it as limited by
his reaction time. He can find out how the reactor would operate, for
instance, if the control rod were fully withdrawn and the reactor went
critical. In the field the reactor might blow up; the computer responds
by producing a very large number. If the operator at any time wished to
examine closely what was happening in a short period of time, he would
use scaled simulation instead of real-time simulation.

Control

One of the great accomplishments of computer science is its enabling
computers to control things. Not only can a computer control processes
and movement outside itself, but it can also control itself!

Some of the areas of control follow.

Processes. Information is supplied to a computer about the functioning
of, say, a chemical plant by describing in quantitative form the pressure,
temperature, rate of flow, and other data. The computer can then, by the
various formulas incorporated within it, determine what adjustments
should be made in each of these variables so that the processing is carried
on under the proper environmental conditions. It will send back infor-
mation in the form of currents and voltages or mechanical movements in
order to provide compensations in such things as actuators, valves, relays,
heating elements, and so forth, and thus effect a control of the processes.
The use of such devices and computations provides precise chemical mix-
tures to produce the delicate fibers required for some of the inexpensive
but beautiful fabrics manufactured today.

MoveMmeNnT. By the same means—by reporting to the computer infor-
mation on location and rate of movement—we can have the computer
produce outputs that control movement. An example of such control can
be found in the new ‘“electronic elevators’’ which have computers that
operate to schedule them during periods of even the heaviest traffic in the
world’s largest skyscrapers. Also, the mechanism that enables the much-
talked-about guided missiles to reach their targets is a calculator which
can compensate for the various physical phenomena which impinge upon
the missile as it flies its path.
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Itserr. The ability of the computer to control itself enables it to follow
a given course of action until it has found a particular kind of result and
then to adjust its behavior accordingly. The ability to make decisions is
what makes the more advanced computer particularly effective.

Record Keeping

One of the sections of a computer which we will discuss in more detail
later is its memory or storage facility. Some computers can store large
amounts of information in a small physical volume and in a form quickly
accessible to the computer. The computer can insert and withdraw infor-
mation from storage within an extremely short time. This enables the
computer to be used for tasks such as keeping track of large inventories
for commercial installations or of the entire accounts receivable or
accounts payable of a vast organization.

Construction of Tables

Modern computers can perform many arithmetic operations in
extremely short periods of time. This computational speed makes it prac-
tical and, nowadays, customary to use a computer for the calculation of
mathematical and physical tables. The computer exercises control over
itself by continuing to change the various look-up variables it uses in
calculating the entries for a table.

Language Translation

Because of its ability to store large amounts of information, a big
computer can be and is used to translate from one language to another.
In order that this translation be more than literal, various complex rules
of syntax and grammar must also be stored in the memory of the com-
puter. At the present time it is possible to translate foreign languages by
computer for less than it would cost for a human to translate them. But
this is so only when the input cost is not included. That’s the catch! It is
almost as expensive to have an operator enter the material into the
machine as it is to have a person translate it!

The high-speed computer is being used now on the immense job of
compiling and indexing each and every word in the recently unearthed
Dead Sea Scrolls. Many of the scrolls are merely fragments. With this
index containing every context in which a word appears, it is possible to
do the heretofore unapproachable job of reconstructing these fragments
into cogent texts; this work is now in progress.
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Function Plotting

The output of a computer can be displayed in graphic form. Thus, in
addition to the normal output of the computer which might take the form
of printed records or tables or the control of physical phenomena, output
can be obtained on a visual basis.

Synthesis and Analysis

An important form of drudgery taken over by the computer calls upon
its ability to find the functional relation that exists within raw data. The
computer can find the curve which most closely fits given data as long as
it is provided with some criterion (such as ‘“‘least squares’’) for evaluation.
It can go even further than that—it can optimize variables existing in a
given problem. This is done for many power companies. A power com-
pany has several generators, power lines, and busses; at any time during
the day there are different loads on the different lines connected to the
generators. Several different makes of computers have been put into use
for the power companies to calculate which generators should be running
and at what per cent of their maximum rate.

Limztations

It might appear that the computer is a modern magic genie. Press the
button and the imp ferrets out your problem and solves it. Not so! There
is much hard work involved in systematizing and translating the problem
into the computer’s limited language and in “telling’’ the computer just
what and when to do things. This will be clarified in the next two chapters.

1.3. HOW DOES IT WORK?

What the computer does to the information it receives is called process-
ing. Processing is defined by enumerating the operations which are so
classified.

One function of the computer is to store ¢nformation. Computers have
provision for temporary storage as well as for long-term storage.

The computer is capable of altering the information. This is done in
two ways, known as editing and arithmetic (discussed further below).

The computer is able to move information about. Movement takes
place from the input device to the computer, from the computer to the
output device, and within the computer to the various sections of the com-
puter where storage, editing, and arithmetic take place.
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Arithmetic—What Is It?

Because we are all so familiar with how arithmetic is done, it may be
difficult to put into precise terms what we require of a computer when we
wish it to do arithmetic. For that reason space is devoted here to an
explicit statement of what is meant by arithmetic in general.

Arithmetic can best be described in terms of symbols. Symbolically,
arithmetic may be represented as “a ® b = ¢’ where ® represents one
of the four arithmetic operations (addition, subtraction, multiplication,
or division) and a, b, and ¢ are information elements acceptable to the
computer. The computer can deal with certain elements only. These
restrictions will be discussed subsequently.

Arithmetic can be considered as a mapping relationship. For any two
acceptable elements, a and b, and a process, ®, a third element is deter-
mined, c. The relationship is referred to as mapping because one dimen-
sion (c) is used to represent three dimensions (a, b, ®).

We are more familiar with maps representing a three-dimensional
locality in two dimensions. On such a map a building is represented by a
dot or square. This symbol represents all the floors and ceilings and the
roof and basement of the building; it also represents the pipes and the
sewers below it and maybe even the subway station below them. Thus,
all these things are “mapped” into one symbol. This is called a many-to-
one mapping or relationship. Each of the many items (floors, ceilings,
and so on) we map into one symbol (the dot or square); and conversely,
the symbol stands for many different height levels.

Arithmetic is a many-to-one relationship. Thus the elements 3 and 5
and the process of addition yield the resulting element 8; the elements 4
and 4 and the process of addition yield the element 8; the elements 2 and
4 and the process of multiplication yield the element 8. There are many
different possibilities or combinations of choice for the elements @ and b
and the process ® that would yield the same result, 8. It may be said
that these various combinations are mapped into the element 8.

Many-to-one relationships exist when there are many combinations of

elements and processes that have but one resulting element associated

with them, and, conversely, when one result is associated with many dif-
ferent combinations of elements and processes.

Arithmetic—How I's It Done?

The mapping view may be simplified a little if we fix a value in the
process dimension and say that for a given process, any two elements may
be mapped into a third element. Thus two dimensions (the numbers) are
mapped into one dimension. This mapping can be performed by the use
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of a table. To compute by this method would require four tables, one for
each of the processes of arithmetic.

Let us examine how a table would be composed to form addition. At
the head of each column would appear one of the numbers to be added;
along the side of the rows would appear another list of possible numbers
to be added. One would perform addition by finding the column headed
by the first number to be added and the row bearing the label of the
second number to be added. The sum would be found where these two
intersect. Such a procedure could be followed in the adding of small num-
bers, but think of the size of the tables that would be required to add the
numbers used in arriving at the national budget!

The other method of performing arithmetic is to incorporate some
rule or procedure for generating the result within the machine. This rule
would not depend upon the size of the elements a and b and hence would
not impose size restrictions upon the machine.

The Elements Used tn Arithmetic

When the elements a, b, and ¢ discussed above are restricted to the
integers, the numbers used in counting with signs attached, the computer
is called a digital computer. When the restriction that the elements be
integers does not exist, that is, when the elements used may be “real”’
numbers or even the complex numbers, the computer is called an analog
computer. Chapter 7 discusses bases and counting, and the concept of
integers is developed there. The above definition is quite precise, but it
does not transmit the practical limitations and advantages of each system.

The outstanding quality of the integers is discreteness: there is a big
gap between the values of any two consecutive elements which are used
by a digital computer. Analog computers use real numbers which have
the property of continuity: between any two elements it is always possible
to find another element. There is no guarantee, of course, that the analog
computer can distinguish this intermediate element from its neighbors.

As an example, consider the input to a computer to be a shaft rotation.
The angular position would be read by the computer as one of the ele-
ments a, b, or ¢ above. For an analog computer the shaft could rotate to
any angular position without restriction and hence could occupy an infi-
nite number of positions. For a digital computer the shaft could stop
only at discrete (distinct) positions. This input would be similar to a
rotary switch with positive detents at a number of positions so that the
shaft can assume only one of the positions for which there is a detent.
Increasing the range of the digital computer would consist of increasing
the number of switch positions for one rotation of the shaft or of gearing
several shafts together. No matter how much the number of positions
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was increased, these positions or position combinations would still be
countable and not infinite.

Editing—What Is It?

One phase of editing is the removal or addition of information to data.
For instance, the computer might deal with an employee’s pay of $40.00
as 0004000. Before this is written out in the final document, the initial
three 0’s must be removed and a decimal point inserted between the 40
and the 00. Similarly, it may be desired to print out the date of trans-
action, even though this was not included in the input data to the com-
puter. This information may be entered into the computer once each day
and then printed out with the other information as desired.

The second phase of editing is translation. Information is often han-
dled within the computer in the form of code numbers or letters. Thus,
an item in an inventory problem may be referred to in the data-handling
operation of the computer by a part number. When the computer writes-
out information about this part, it must refer to it by name rather than by
number. Similarly, during the calculation of the payroll of an employee,
he may be referred to by clock number rather than by his name. In
writing out his paycheck, it is necessary to refer to the employee by his
name. The computer does this task of interpreting as part of the editing.

1.4. WHAT JOBS ARE COMPUTERS USED FOR?

In Section 1.2 a computer’s functions have been discussed. In this
section we will classify computer applications, some of which were men-
tioned earlier.

Commercial

High-speed computers can be used for all kinds of accounting and
bookkeeping applications; notable among these are accounts receivable,
accounts payable, payroll, and inventory. In these applications it is cus-
tomary to keep the full records within the computer. At any time, at the
accountant’s discretion, a status report can be made giving the present
standing of the company. During normal operation periodic reports are
produced for the various accounting and executive branches of the

company.

Scientific

Any engineering or scientific enterprise runs across many applied
mathematical computational problems, such as the solving of differential
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equations, matrices, or simultaneous equations. When a computer is
available, it can be used to solve these problems.

The computer can be used as part of experimental situations. It can
act as a model in either of the modes discussed previously—real-time or
scaled-time operation.

The computer can be used to control and monitor experiments by
incorporating relays and mechanical switches, thermostats, and so forth.
A complete experiment can be automatically performed.

Industrial

Computers find application in industries wherever long, tedious, and
repeated calculations must be made. Such use arises in design problems
where complicated formulas are involved or where solutions by approxi-
mation are necessary. Trial-and-error methods can be ‘programmed’’ on
an automatic computer, so that the computer will work without human
assistance until it reaches the solution, at which time it will stop and
announce its mission complete.

In industry there is also much use for a computer as a control and
simulation element.

Government

One important application of a highly accurate, very compact and
durable computer is in the missile guidance field. Here the computer must
be sufficiently accurate to determine the compensations required for the
various forces acting upon the missile, compact enough to fit into the
small space allotted to it within the missile, and hardy enough to with-
stand the extreme temperatures and forces of acceleration applied to the
missile before it reaches its target.

Air traffic control is an application where the human being has already
reached his maximum performance. Here the problem concerns a number
of airplanes approaching a landing field at the same time, each having a
limited amount of gasoline and therefore able to stay aloft a limited time.
A definite landing schedule must be allotted to each. The path of each
plane must be assigned and monitored, so that as it circles the field it will
not collide with other airplanes. Also, there is a take-off schedule for
planes departing from the field which must be adhered to as closely as
possible. Further, when emergency landings become necessary they must
be given first priority and the schedule adjusted accordingly. When the
problem reaches the size of that encountered at an airport as congested
as La Guardia, for instance, it is impossible to remedy the situation with
human operators alone within the time required for the safety of the air-
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planes aloft. Additional traffic-control personnel do not seem to help—
they only get in each other’s way.

Still another application is in the early warning systems which gather
information from throughout the continent to determine what friendly
and enemy airplanes are in the area and what defense measures should be
taken if enemy airplanes are sighted. Interceptors must be dispatched
and monitored, anti-aircraft alerted, and so forth.

Logical and Tactical

The areas of operational research, linear programming, and game
theory have become sophisticated disciplines which require advanced theo-
retical background. Here, problems of marketing, logistics, and warfare
can be solved on a mathematical basis but with complicated formulas

best solved by trial-and-error technique. Hence they lend themselves to
computational methods.

Statistical and Analytical

Computers can be used for complicated analyses of experimental,
psychological, or sociological data. Multidimensional techniques of han-
dling such data, which formerly took months of hand computation, can
be done in a short time on a computer. It is also possible to connect the
computer directly to the source of data.

1.5. ANALOG vs DIGITAL

In order to bring home the practical differences between analog

and digital computers, a brief mention will be made of some of these
distinctions.

Quality of Information

The analog computer uses information which is continuous; that is,
between any two possible readings, another reading can always exist. The
digital computer uses discrete information, and it is possible to have two
input readings between which no other input computer reading is found.

Kinds of Units
It might be profitable to mention some of the kinds of units which

might be used by each type of computer. If electricity were the informa-
tion-bearing medium, an analog computer would examine the amplitude
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of the voltage; a digital computer would examine the spacing and arrange-
ment of pulses that exist above a given minimum voltage. In considering
weight, an analog computer would derive information from total weight,
whereas a digital computer would consider the number of objects with a
weight greater than a given minimum. With rotation, as considered previ-
ously, the analog computer would use an angle; the digital computer
would consider the number of steps required to make that rotation.

Processes

The digital computer can perform directly only the processes of arith-
metic. The analog computer can also differentiate and integrate directly.

The Limat of the Size of the Numbers Handled

With a digital computer, the size of the numbers dealt with is limited
by the number of digits which comprise the largest datum. In an analog
computer the limitation is due to the range of linearity of the components.
Amplifiers have such limitations. A linearity range of ten thousand to
one is large, but this must be compared with the smaller digital com-
puters which can handle with ease numbers like 9,999,999,999 (not quite
ten billion).

Accuracy

The digital computer may be provided with means for automatically
detecting some types of errors it could make. The analog computer is
limited by the effective noise present in its amplifiers; this noise deter-
mines the smallest increment in signal which can be positively recognized.
The analog computer is also limited by the stability of the circuits which
comprise it as it is subjected to power-line variation, environmental
changes, and age. Component failure haunts both camps!

Decisions

The digital computer can make binary, ternary, and multiple-branch
decisions and can alter its behavior accordingly without intervention.
The analog computer depends entirely on diodes to make simple yes-no
(binary) decisions. It is limited to elementary decisions which it makes
on a digital basis.



FIRST PRINCIPLES AND
DEFINITIONS

This chapter will acquaint the reader with the first principles of
computers, and it will introduce a large amount of terminology.

Each technical discipline has its own jargon; someone becoming
acquainted with a new field will often have difficulty because its terms
are completely alien to him or because a common word is used in a new
and special sense. For this reason several references to glossaries are
given. A comprehensive glossary (to which the reader is invited to refer
frequently) has been compiled by the author and appears in Appendix A.
The glossaries from which this one was compiled are listed there.

The definition of terms is emphasized because each represents a dis-
tillation of the principles encountered. Establishing a precise usage of

terms early in this book permits later development to flow at a more rapid
and even pace.

2.1. STRUCTURE

The structure of the computer, the interconnection of the various com-
ponents, the choice of the components, and the plan of operation of the
computer are determined by several factors. The three factors that most

12



SEC. 2.1 ®= STRUCTURE 13

influence the structure of the computer are language, storage, and
arithmetic. ’

Language

Language is the form or means by which information is communicated.

The language used by the computer is not the same as that used for
communication between human beings. The efficiency of the computer
is greatest when the language used for manipulating information and per-
forming arithmetic is one that conforms to the properties of the compo-
nents used to construct the computer. The structure of machine lan-
guages is discussed in Chapter 8. It is important to note here that the
machine language is different from human language and therefore poses
the problem of translation.

Translation is necessary to change the information from human lan-
guage into machine language. Direct translation from human language
to machine language is often complicated and costly. Therefore, one cus-
tomary sequence of operation is to translate humsan language into an
intermediate language used by equipment in direct communication with
the computer. A second translation is then made between this equipment
and the computer.

The typewriter can be used to communicate with the computer. An
operator uses a specially constructed typewriter such as that described in
detail in Chapter 15, and performs the operation of translating English
language data into key strokes. The key strokes are translated into
machine language within the typewriter.

Sometimes a further intermediate step is inserted. An operator may
interpret English language into key strokes which are translated into an
intermediate language, and the information is temporarily stored in a
punched card in the form of punched or unpunched holes (an unpunched
hole being no hole at all). Equipment that reads the hole positions in the
card is then attached to the computer, and the information is translated
into machine language for computer consumption.

Magnetic tape is also used for temporary storage after translation of
data. Here the information is transcribed into the intermediate language
upon the magnetic tape and is retrieved by the computer using suitable
magnetic reading devices.

Of course, taking information from the computer and putting it into
an output medium such as punched paper tape or magnetic tape is the
complementary process and is also required in most systems. Equipment
which puts information into the computer or receives information from
the computer is lumped into one category referred to as input/output
equipment, or simply in/out equipment, or even more simply I/O.
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Storage

Devices that hold information temporarily or permanently for later
recovery are called storage. Such devices are sometimes classified by the
length of the normal storage period. Long-term storage is called a mem-
ory; intermediate storage is referred to as a buffer; short-term storage is
called a register. The quantity of information stored in a device is usually
proportional to the time for which it may be stored. The memory holds a
large quantity of information; the buffer holds a moderate amount; the
register holds just enough for current use. The kind and quantity of such
storage has an influence on the structure of the computer and its capacity
and efficiency.

Arithmetic

Arithmetic is explicitly defined for the computer as addition, subtrac-
tion, multiplication, and division of the integers. The means used to per-
form arithmetic is related to the structure of the computer. A machine
performing arithmetic using a table look-up will be constructed quite
differently from one generating the answer by direct construction.

The arithmetic operation is also dependent upon the computer lan-
guage and the arrangement of the data within the computer.

2.2. DATA STRUCTURE

The data handled by the computer almost invariably represent human
language data. Since the data we use in communication can be broken
down into words and characters, we might expect that the computer’s
internal language would lend itself to a similar breakdown.

Characters

The character is the smallest unit of the written, English-language
word. The word is the symbol for the unit of written-language intelli-
gence. The character is the ‘“atom” from which the “molecular’ words
are formed. Two kinds of characters may be considered—numbers and
letters. Both may be used in human-language coded information. Thus,
5U4 is a human-language code for a particular type of vacuum tube and
is composed of numbers and letters.

Machine Coding of the Character

Presently the computer is not able to recognize or manipulate the
written number or letter symbol. Therefore, it uses its own set of symbols
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to compose and represent these characters. The set of symbols used by
the computer to represent the written symbol is called a code. The sym-
bols the computer uses to compose this code conventionally consist of
“yes” or “no’” information. Information of this sort bears a similarity
to the properties of the devices used to fabricate a computer.

The most popular, reliable, economical, and rapid components used
in computers have two stable states and are hence called bistable devices.
Such devices as relays (energized—unenergized), gas tubes (conducting—
nonconducting), magnetic cores (magnetized in one of two directions),
and flip-flops (a pair of vacuum tubes or transistors, one and only one of
which is conducting) are examples of bistable devices.

A piece of “yes-no’’ information is called a BInary digiT, often con-
tracted to “bit.” \

The machine character code for the written character symbol is most
often constructed of bits. Machine character codes which have five pos-
sible “yes-no’’ positions are called five-bit characters. The principles of
construction and manipulation of the machine codes and languages are
discussed in Chapters 7 and 8. Machine character codes for written char-
acter symbols are simply referred to as machine characters.

Words

Machine characters are assembled to form computer ‘“words’’ which
are not usually the same as written-language words. They are the unit
multiples of machine characters. Some computers are restricted to han-
dling words of a fixed size and are called fixed-word-length computers;
others not having such restrictions are called variable-word-length
computers.

FxEp worp LENGTH. All transfer, processing, and editing of data or
arithmetic in a fixed-word-length computer is done with groups of char-
acters of fixed length.

VARIABLE WORD LENGTH. The groups of characters manipulated are not
fixed in length. Some means of distinguishing the end of one word and the
beginning of the next is required. Distinction may be made by

1. the position of this information with respect to the rest of the data,
2. a special symbol between the two words that delineates them, or
3. a space or blank between the words.

In such a computer a part number may be a 20-character word and the
part type or classification may be a one-character word.

The variable-word-length computer does have a maximum length
which no word can exceed, determined by the physical structure of the
computer.
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The Block or Blockette

It is handy to have a unit of information larger than the word. Such
a unit is called a block (or sometimes a blockette). A block in a fixed-
word-length computer consists of a fixed number of words. Thus a 12-
word block in a computer having a word size of ten characters will consist
of 120 characters. In a variable-word-length computer a block of informa-
tion is again of fixed length. Since the words are not of a fixed length, the
block must be designated in terms of characters. Thus, a variable-word-
length computer could also have a block of length 120 characters.

Field

When space is not at a premium, it is desirable in a fixed-word-length
computer to use one word or a multiple of words to represent each ““pack-
age” of information. Sometimes space is scarce and it is required to pack
the information as closely as possible. The result is that packages of
information may overlap from one word to the next. Thus, a 12-character
part number would require two words in a fixed-word-length machine of
word size ten; therefore eight character spaces would go to waste in the
second word. Often another package of information of eight characters,
such as the number of the department making the part, is inserted. A
package of information that is a fraction (proper or improper) of a word
length is referred to as a field.

A field might be considered to be a variable-word-length word in a
fixed-word-length computer.

Block
A

Twelfth word First word
r A A

N f

Characters
10 9 4 3 2 |

A AR A A
AU TR AR

Bits
FIGURE 2.1. Data structure.

Figure 2.1 shows a 12-word block with ten-character words and four-
bit characters. The first (right-hand) word contains field A of five char-
acters. Field B spans two words.
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2.3. STORAGE
Memory (Long-Term)

The memory may be used to store large quantities of information.
It is handy for holding such things as reference tables; it can store vast
amounts of information required during processing; it can accumulate
information until enough is collected to be sent to the output equipment;
it can be used as an integral part of the machine, as in bookkeeping or
inventory applications.

The entire inventory of a large company may be kept in a large mem-
ory. Each day the contents of this memory may be adjusted by subtract-
ing withdrawals and adding new items received. The output required of
a computer for this application consists of various records needed by
management and orders for items in insufficient supply in the inventory.
These records may be produced directly from memory.

Memory is rated, as are other types of storage, by the number of words
or the number of characters that it will hold.

Buffers (Intermediate)

In large computers where the processing of information constantly
requires reference to the memory, it would often be inconvenient to stop
processing in order to take out or put information into the memory. To
prevent this kind of slowdown, an intermediate storage unit, often called
a buffer, is used. Big blocks of information can be transferred quickly
from the memory to the buffer or from buffer to memory without detract-
ing from the processing in the main computer. The input or output opera-
tion can go on between the input or output equipment and the buffer
 without interfering with computer operation.

Registers (Short-Term)

Information must be quickly available to the computer during proc-
essing. A word or field of information is held in a register while it is
operated upon; the operation performed may be arithmetic or editing.
A word or field which is operated upon, or with, is called an operand. Two
numbers are added together directly from registers.

Registers operate much like a roundhouse in a railroad yard. They
take the data (locomotives) out of storage (yard houses) and get them on
the right track.
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The length of a register is a single word for a fixed-word-length com-
puter. In a variable-word-length computer it must hold a word of the
maximum length used in the computer. The time required to place infor-

mation in the register or to take it out of the register is called one word
time.

Address

A storage medium of any consequence will be able to store a plurality
of pieces of information; thus some means must be available to refer to
the site of a particular datum. An address is the label for the physical
location within the memory where the information is stored. Each storage
position has a unique address. Directions can be given to the computer
to find information or to store information by reference to the address.
The address is a set of coordinates defining a memory cell. In practice it
is usually a multidigit number.

Access

The means by which information may be entered or withdrawn from
storage is referred to as access. The sequence in which this is done classi-

fies memories into three types: (1) serial, (2) arbitrary, or random, and (3)
random sequential.

SERIAL. The information is entered into or withdrawn from memory in
a prescribed sequence for a serial memory. The addresses must be exam-
ined in a fixed sequence. If a datum is stored in the middle of a serial
memory, then all preceding data must be reviewed before the desired
information can be extracted. Information is stored serially on magnetic
tape since it is written on or read from the tape in a fixed order.

ARBITRARY. A memory which does not require a fixed sequence of refer-
ence is called arbitrary. Although “random” is the more prevalent term,
“arbitrary”” better conveys the idea that access is independent of the
previous choice of address and does not imply that this or any other choice
of address is determined by chance. Information is available in the same
length of time regardless of where it is stored in the memory. Thus infor-

mation stored in any array of cores is immediately available by reference
to its address.

ARBITRARY SEQUENTIAL. Arbitrary sequential memory requires two coor-
dinates of reference to locate information. One coordinate of reference is
found immediately, whereas the other must be searched for sequentially.
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Such is the case with the magnetic drum memory, where a choice of heads
and tracks is made immediately but the finding of the information on the
track awaits the rotation of the drum and therefore is sequential.

Access Time

Access time refers to the time required to insert information into or
retrieve it from the storage medium. For arbitrary storage, access time
is fixed; no matter where the information is, the time required to enter or
withdraw it does not vary substantially. For sequential storage the access
time depends upon the relative location of the information desired.
Maximum access time is the time required to retrieve information stored
in the position where it is most difficult to locate. (In a tape this would be
at the other end of the tape.) The average access time is the time required
on the average to remove information. (In the case of the tape this would
be the time required to go halfway through the-tape.)

Memorizaiion and Remembering

There is a definite similarity between the computer’s memory and our
own. Memorizing material is quite different from recalling it. Think of
all the trouble we went to in high school to memorize that poem. How
many times we read it over, saying it out loud, even writing it down.
~ Stop a moment and try to recall it and back it comes (maybe).

The components used for memory (long-term storage) today are
almost entirely magnetic and their properties can be spoken of as a group.

Entering information into a memory location must destroy the infor-
mation previously stored at that address. Two pieces of information can-
not occupy the same storage location at the same time. (Some authorities
believe that the human memory has so many virgin addresses that it is
never necessary to use an occupied location.)

To “remember” the information is a different story. Remembering
may or may not destroy the information. When the recall process annihi-
lates the information, a computer has a destructive read-out. When
remembering does not affect the memory the computer has nondestructive
read-out. '

Word Time

The word time for a register is the amount of time required to with-
draw or enter one word into the register. The word time for a magnetic
drum memory is similarly defined and is discussed in Chapter 13.
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2.4. ARITHMETIC

The method by which arithmetic is performed depends on a number
of things. Most important of these is the coding of information. A writ-
ten number symbol is represented in the machine by a fixed binary code
(such as 0100 for 4). The code that is chosen for each number will affect
the manner in which arithmetic is performed. The rules of performing
addition with the coded numbers depend on the coding. The coding used
depends upon whether arithmetic or some other function, such as editing
is the primary consideration.

Subtraction, multiplication, and division can be done using only
addition and one other machine function, complementation. However,
there are different ways these three processes can be composed, and the
speed and functioning of the computer will depend upon the method of
composition.

Logic

The computer consists of electronic components—tubes, transistors
resistors, diodes, capacitors, and so forth. These components are com-
bined to form logical elements. These logical elements, in turn, are com-
bined to make functional units which perform more complicated logical
functions. Functional units and logical elements are then grouped
together to carry out one of the computer’s arithmetic or editing opera-
tions. These larger configurations that perform a single computer opera-
tion are called operational units. The computer is composed of over-
lapping operational units.

The way in which the logical elements and functional units are associ-
ated to do the arithmetic and processing required of the computer is
termed logic. The method of associating the units together actually com-
prises the method of reasoning of the computer and therefore can be
reasonably referred to as the logic of the computer.

The coding, the logie, and the logical building blocks comprise a team
and each must be chosen to assist the other.

Speed

Historically and currently the speed of processing and of performing
arithmetic in the computer depends for the most part on the access time
of storage in the computer. This includes access time to registers, buffers,
and the main memory.

Arithmetic time is vitally affected by the time required to do addition.
Addition time depends on the system of coding used and the logic used
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for addition, which, in turn, is interrelated with the choice of components.
The register word time affects the addition time because operands and
intermediate results must be entered into and withdrawn from registers
during addition.

The time in milliseconds or microseconds or in word times specifies the
speed of addition. In most modern machines, addition is independent of
the numbers being added. The time required for subtraction, multiplica-
tion, and division depends on the addition time, and on the logic used.
These processes are rated in word times, addition times, absolute time,
or by a formula. A formula relating the size of the digits in each operand
for multiplication and division is often required to determine the time
necessary for these processes. This makes more difficult the estimation of
the computer time required to solve a problem. Hence, time estimates
for computation must sometimes be done on an average basis.

The editing speed is also dependent upon storage speeds.

2.5. TIMING

Timing here refers to the rate at which the ‘““microscopic’’ processes
in the computer occur. It is not the word or character but the bits used
to code each character that interest us now.

Form of the Information

Characters coded in the form of “yes-no’’ information are convention-
ally represented electronically by a train of pulses. The presence of a
pulse indicates a ‘“yes’’ and the absence of a pulse indicates a “no’’ (or,
less frequently, the reverse). The time at which the information-bearing
waveform is examined to determine if a pulse is present or absent is called
the bit time. If we examine the waveform over a sequence of bit times,
we are able to read the character from the code represented by the pulse
train.

Rate of Handling Information

The reciprocal of the interval between the two bit times is the pulse
repetition rate or the bit rate of the computer. It is also referred to as the
clock rate.

The clock rate is the frequency or rate of handling pulses which are
the coded representation in electronic form of the characters comprising
the information to be processed. PRR is used to abbreviate the term
pulse repetition rate or clock rate.
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Synchronism

This is a term applied to the relation to one another of the periods
allotted to the operations performed by the computer. Multiplication
and division may be of variable duration. If a fixed time is allotted for
each such function, the computer is termed synchronous. This fixed time,
of course, would have to be the largest time required for any operation to
be completed. Enough time must be allotted to complete the longest
operation. If the computer completes an operation before the time allot-
ted, it waits until the period has completely expired.

This type of operation is inefficient since time is frequently wasted
just waiting for the allotted operation period to elapse. Still, it simplifies
the design and construction of the computer as a whole and may result in
a cost saving in the initial purchase of the equipment and in increased
ease of programming.

If, on the other hand, the computer starts the next operation immedi-
ately after the completion of the current operation, the computer is termed
asynchronous. This type of operation increases the initial cost of the com-
puter, but increased efficiency may result in more profitable use of the
computer.

Some computers fall between these two extremes, doing some chores
synchronously and others asynchronously.

2.6. MEANS OF INSTRUCTING THE COMPUTER

It would not be wise to design a computer which could only do one
problem unless that was all that would ever be required of it (missile
guidance, for example). To make a computer versatile, it is necessary to
break down a problem into tasks. These tasks are unit operations which
the computer performs. The original problem solution can be assembled
with these tasks. Other problems can be tackled as they arise. A sequence
of tasks is chosen to solve the largest universe of problems.

Tasks which are subdivisions of a problem are called instructions,
commands, operations, or orders (used interchangeably in the text). The
sequence in which these instructions are performed is called the routine.
The person who sets up the sequence of commands is called the pro-
grammer or coder. What he does is called coding and programming. The
program is the entire activity required to solve a problem on the com-
puter; the coding reflects the sequence of operations performed by the
computer. Chapters 5 and 16 are devoted to the techniques of coding
and programming,

Here is a good place to pause a moment to note the prevalent ambigu-
ous use of the term “code.” We first encountered this term in connection
with the language used within the computer, Here “code’” conveyed the
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machine representation of a human-language symbol. As now encoun-
tered, ““code’” means a symbolic representation, which calls for a machine
order or instruction. This instruction code may take two forms: the
human-language instruction code is a letter and/or number combination
that conveys to the coder or programmer the instruction to be performed
at a given relative time by the computer; the machine language transla-
tion of the instruction code or the “coded code’’ is the machine language
datum that causes the computer to perform the instruction desired by the
coder or programmer. To illustrate this, the instruction code for the
instruction Add for the Datatron 205 is 74; the coded code or machine
language instruction code for Add for the Datatron 205 is 0111 0100.
More detail on this point appears in Chapter 4.

The routine composed by the coder may be stored within the memory
of the computer, just as the information or data to be processed are
stored. The computer can then “get its orders” by referring to its mem-
ory; it is said to be internally programmed. In all other cases the com-
puter is said to be externally programmed.

2.7. CHECKING

Information is manipulated, edited, and moved about from place to
place within the computer. It is of prime importance that this informa-
tion be kept correct at all times. Information may be damaged at any
time during processing or transfer by the dropping of a pulse or the pick-
ing up of an extra pulse. Such damage must be detected at the earliest
opportunity. A detected error should be corrected if possible, or the solu-
tion so far completed discarded as worthless. There’s no sense in finishing
the problem with an error present, is there?

Checking Arithmetic

When one number is added to another the result may be checked by
subtracting one of the numbers added from the sum. The result should be
the other number. To check we perform the complementary arithmetic
process. Here we refer to addition and subtraction as complementary;
multiplication and division are also complementary An example is shown
in Figure 2.7.1.

Problem Check Problem Check
2319 10060 2319 6
- 47741 —2319 47741 1
T0060 7741 10060 7
FIGURE 2.7.1. Checking by performing FIGURE 2.7.2. Casting out nines.

complementary arithmetic,
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An old method of checking arithmetic which you might remember
from elementary school is known as “casting out nines.” This method
may be found in an arithmetic book or a text on number theory. An
example is given in Figure 2.7.2.

Information Corruption

In transferring information, one of the bits may be corrupted and a
zero misread as a one, or a one misread as a zero. The coding used may
offer a means for checking the information. Checks are of two kinds.

Error-DETECTION copING. The corruption of one bit of such g, code can
be detected. The machine will recognize this type of corruption by the
presence of a forbidden code.

ERROR corrEcTION. By means of more elaborate codes, not only may
the presence of an error be detected, but also the exact bit which was
corrupted. The corruption can thus be completely eradicated.

PROBLEMS

1. Draw a block diagram showing the various language translations which might
take place in entering data into and retrieving data from the computer.

2. Show how the message below might be entered into a variable-word-length
computer using asterisks as separators; into a fixed, ten-characters-per-word
computer without spanning two words with one field.

(a) Felt brake-drum cover 39R1.
(b) Azimuth 39.17, elevation 72.38.

3. (a) Draw a triangle illustration of the hierarchy of the computer. Include
functional units, operational units, circuit elements, logical elements.
(b) What is computer logic?

4. Do and check by casting out nines and by complementary arithmetic:
(a) 258 X 381 (b) 109,153 =+ 3851 (c) 3457 — 1085

- Contrast long-term, intermediate, and short-term memories for (a) size,
(b) name, (c) use, (d) access.

()]

Contrast the ways in which access is made to each kind of memory.



THREE

SPECIFYING THE COMPUTER
FOR THE PROBLEM

3.1. INTRODUCTION

In this chapter business applications are emphasized. We discuss
what happens from the time a company discovers that there are problems
that might suitably be solved by a digital computer installation to the
time when that installation is working satisfactorily on the problems.

There are five major phases in the procedure, each of which is dis-
cussed in a separate section of this chapter. We may list the phases as
follows:

1. State the problem in such a way that the applicability of computer
methods may be determined.

2. Make an initial analysis, setting forth in a general way how a com-
puter would solve the problem, and go on to determine the com-
puter characteristics that the problem requires.

3. Decide whether the computer should be bought, leased, or con-
structed. A consideration of the important features of design and
construction enters here.

4. Analyze the application of the chosen computer to the problem—
this is similar to the initial analysis, but is pursued to greater depth
and a specific computer is kept in mind.

25
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5. Develop operating procedures, and set the computer to work on g'
the problem! ‘

Of course, a project of this size—establishing a computer installation—
is one that requires the skill of several people of specialized and diverse
backgrounds. People will set up and run the project. Therefore, through-
out this description, the reader should bear in mind the great amount of
consideration needed for the proper acquisition, training, and utilization
of personnel and consultants. This item is frequently neglected in the
planning with the result of considerable delays in getting the installation
into operation and sub-optimum performance once it is started.

Note also that along the way valid reasons may appear for abandoning
the use of an automatic digital computer; at this point management must
choose the path to be taken. '

3.2. THE PROBLEM

A computer system (by “system” we mean the computer and its
assoclated equipment) may be required to solve a single problem, or a set
of problems of a similar nature, or problems that are dissimilar in nature
and which make quite broad demands upon the computer.

We will consider the case where the kind of problems to be solved is
known.

Initial Statement

A simple statement of the problem gives three of its features: the
output required, the input data supplied, and the method of processing.
The following three questions must be answered for the initial statement
of the problem: (1) What results are desired and what form will the results
take? (2) What kind of information is necessary in order to solve the

problem? (3) What must be done to the information to get the output
results?

Other Requirements
Other features that must be considered before a system can be pro-

posed are speed, cost, accuracy, and pre- and post-problem processing.

SpEED. How fast must information be processed in the computer? How

quickly must results be produced? How fast must the input mechanism
be able to “consume” the data?

Cost. The cost of the equipment may be broken down into several fac-
tors: the initial cost (purchase price); installation cost; the normal cost of
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operation, including the salary of the personnel in attendance while the
machine is solving the problem; computer maintenance. If maintenance
interferes with normal operation, it can become an expensive factor. The
cost of space for housing a large computer is considerable. The tempera-
ture and humidity of this space might have to be controlled, requiring
air conditioning. For large vacuum-tube computers the normal electrical
facilities are inadequate, since they consume a large amount of power.

Accuracy. Errors can arise at several points in the computer solution of
a problem: the input, the translation, the processing, the movement of
information, or by an incorrect program or insufficient word size.

The znput introduces errors because the transcription is done by
human operators. Even with uncommon diligence it is impossible to
enter or type vast amounts of information without an occasional error.
In some installations it is common to enter the data twice and check the
places where inconsistencies arise.

Translation, transportation, and processing of the data, once they have
been properly entered into the computer, are constantly verified by the
use of error-checking and error-correcting codes.

The programmaing is checked for correctness by comparing the results
of a trial run-through. A sample problem done on a hand calculator is
compared with one done by the computer.

The word size of the computer can limit the accuracy of results. One
instance is astronomical calculations, which depend on the difference of
two large numbers. If the two numbers are identical in their first ten
digits, a ten-character word machine will show a zero difference between
the two numbers; what is needed here is either a machine of larger word
length to give the required number of digits, or double-precision coding
which furnishes twice as many digits in the answer at a small sacrifice in
computing speed.

The accuracy and precision required must be weighed against re-
sources. The customer must decide if he can afford to pay more to
decrease the possibility of errors, maybe errors that he accepts currently
in a nonautomatic system.

PREPARING THE DATA FOR THE COMPUTER. Often the input data must be
handled manually or by other machines before it is entered into the input
equipment to the computer. The form the original data take may not be
a human language and may require preliminary translation before sec-
ondary translation into the machine input language. The items listed on
a sales slip must be put into a standard format before thay are fed into a
computer for inventory control. The information must then be punched
into cards or paper tape, or written into a similar medium for the input
equipment translation.
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Sometimes processing such as sorting or ordering is required before
data enter the computer. For example, entering items into inventory may
require the corresponding records to be sorted in order of part number,
50 as to match the master inventory tape kept in part-number order.

Another type of pre-processing is editing—necessary for some com-
puters that require full computer words. Thus, “40 hours’” must be
written as 00040000, because blank spaces are not tolerated by this
computer.

The method of collecting and transmitting data is also considered to
be pre-problem processing. The original source of the data, the means by
which the data are collected, and the means by which they are transmitted
and received by the equipment depend on the needs of the input equip-
ment. For instance, for automatic distillation of gasoline from crude oil,
information is collected by transducers on the oil and gasoline tanks, on
the flow meters, and on the temperature and pressure gauges. This infor-
mation is converted into telemetering signals which are transmitted by
long telegraph lines to the computer site. The computer is not intended
to serve only one oil field—it processes information from many fields.
The data are then converted into the input language of the computer.

PosT-PROBLEM REQUIREMENTS. Not only the answer to the problem, but
also the form in which the answer is written is important. The last state-
ment is a pun, because information can be placed on “cut forms” or
““continuous forms.” Continuous forms consist of long reels of paper on
which the output information is printed and possibly aligned. A continu-
ous form may be later cut into individual records. Cut forms are used for
telephone or utility bills and are single documents sent to the subscriber.
In any case, the relative position of each word on the form, called format,
may be very important. If the format is wrong, the clock number might
appear as the amount on the employee’s pay check!

Editing and sequencing are other kinds of post-computer processing.
Thus, items which leave the computer in order of part number might
require sorting by the purchaser’s name. Or perhaps the output docu-

ments must be separated into batches (e.g., pay checks to be distributed
to each department.)

3.3. PROBLEM ANALYSIS

A sample problem is used to illustrate how a problem is worked
through its initial analysis. The inventory system of a large company
using a computer with punch card input and output is examined. A
description of the problem precedes the analysis.
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Problem Description

Reduced to barest essentials, the inventory problem is to determine
(1) by how much the stock on hand was depleted yesterday, (2) what
new items were received yesterday, and (3) what orders for stock should
be issued today. This is shown diagrammati-
cally in Figure 3.3.1.

A mathematical approach to inventory con-  Stock _Stock

. : decrease increase

trol sets the reorder point and reorder quantity
by usage, item cost, storage cost, reorder cost,

shortage cost, and average fime to procure the Computer
item. When and how much to reorder is a system
function (ideally) of how often an item is

withdrawn from stock, its cost, the costs asso- l
ciated with stocking the item, the cost to the Order
firm for not having any of the item on hand, information

and the time it takes to get the item. These FIGURE 3.3.1.
calculations are done on a periodic basis; the
method used does not concern us here. Suffice
it to say that the results of these calculations
are now stored in the computer.

With the proper constants in computer storage, the whole problem
consists of examining and storing the proper portions of the stock-change
information and producing the output information.

The inven-
tory system.

Systems Analysis

Tor our sample problem we have a computer with a sequential storage.
To enter information efficiently, it is necessary to order (sort) it before-
hand. It is most efficient to take it out in the order produced.

The job of the system analyst is to set up the general methodology for
handling information and getting it into and out of the computer. His
emphasis is on input and output and pre- and post-processing. The ana-
lyst makes a diagram of the system like that in Figure 3.3.2 (a typical
punched card system diagram).

Document Flow

The documents that come from various departments of the company
are in handwritten form (See 1, 2 in Figure 3.3.2). They must be trans-
lated onto punched cards. They are then put in the proper input sequence
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FIGURE 3.3.2. A computer-tabulator inventory system.

(3, 4). The stock withdrawal cards (6) and receiving cards (6) are sorted
by item number (7, 8). These cards are merged together, the stock cards
being placed behind the corresponding receipt card (9). This merged
batch of cards is now placed in the card reader, the computer input device
(10). The computer (11) reads the first set of item cards. It scans its mem-
ory sequentially until the item record is found. Calculations are made to
see if an order must be issued. If so, an order card is punched (12) contain-
ing the item number, description, quantity to be ordered, price each, total
price, and vendor. After all the cards have been read and the order cards
punched, the summary records are produced (13) to keep management
informed of the inventory situation. Summary records might list back-
ordered items, overshipped items, emergency-status items, and out-of-
stock items. ‘

Before any order is printed, all the items to be purchased from the
same vendor should be grouped together. This is done by sorting the
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order cards by vendor instead of by item as produced (14). The name and
address of each vendor are kept on a vendor card in the vendor file (15).
The sorted order cards are matched with the vendor file. Infront of eachset
of order cards for one vendor is placed the proper vendor card (16). This
stack of interleaved vendor and order cards (17) is placed into a tabulator
(18) which prints the orders (19) to be mailed. Each order contains the
vendor’s name and address and the items to be purchased from him. The
stack of order and vendor cards must then be sorted (20) to separate the
two kinds of cards. The vendor cards are replaced (21) by a collator into
the vendor file. The order cards may be filed and compared with the
incoming orders if desired.

Calculations

Each datum on the output document must be accounted for. It may
arise from direct transfer from an input document; it may be an edited
input datum (output $40.00—input 00004000); it may appear automat-
ically on all output documents (order card punch to distinguish order
cards from other types); it may be calculated from input and stored data.

For inventory we will discuss one of the required calculations. The
symbols used are:

H = quantity now on hand

W = quantity withdrawn from stock

R = quantity received

P = reorder point (reorder when stock falls below P)

@ = reorder quantity (reorder enough so that @ will then be on the
shelf)

N = quantity for new order (difference between reorder quantity and
what is now on hand)

Now to calculate N we have that
if P<H-W+R N = 0, (do not punch output card)
andif P2 H— W+ R N=Q+P—-—H+W-—-—R

Notice that W and R are input data, H, P, and Q are stored data, and
N is an output datum.

Data Flow

When all the required calculations are performed and the edited infor-
mation is collected, the data flow can be planned. During this phase, the
origin and destination of each piece of information must be determined
as well as the sequence in which the processing will best be performed,



32 SPECIFYING COMPUTER FOR PROBLEM ® CHAP. 3

together with the decisions required at each step of the processing. This
stage of data processing is discussed in detail in Chapters 5 and 16.
The programming is done after the data flow is determined.

Coded Routine

The data flow is usually specified as a number of tasks done in se-
quence. Each task in the data flow can then be converted into one or
several program steps. Thus in the data flow the statement, ¢ Calculate
the order quantity V,”” will become several commands for computer oper-
ations in the routine.

Both the data flow and the programming are different for different
computers; they can be examined only in a preliminary manner in the
initial analysis since a choice of computer has not been made.

3.4, THE COMPUTER

Buzld, Buy, or Lease

With the general specifications of the required computer now at hand,
the decision to be made is threefold: should we build, buy, or lease the
equipment? To most firms not specifically in the computer business, the
choice narrows down to buy or lease. Since leasing offers a tax advantage
and a choice of newer equipment when it becomes available, the question
may be settled on a fiscal basis. However, buying is usually cheaper than
leasing. Further discussion of this important topic is inappropriate to
this volume.

The next steps apply when construction is the chosen course of action.
Otherwise the steps of Section 3.5 follow.

Design

The computer design is affected by a number of factors. Some of these
are imposed by management and some by the restrictions of the physical
installation. Other restrictions are imposed by specific problems that the
machine will solve, by the general requirements for the predicted use of
the computer, and by the sequence in which the component choice is
made—e.g., the choice of transistors over vacuum tubes means that low-
voltage power supplies and components are also used.

Limiating Factors

Some of the limiting factors have been discussed previously. One of
the main problems, of course, is price. This enters the realm of computer
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design when the costs of designing the equipment or buying it outright
must be evaluated and compared. In any case, the cost of using and main-
taining the equipment must also be considered.

The space available for the equipment, the power supply, and the
environment may prove limiting factors in computer design. Training the
operators and programmers is another consideration.

Specific Problem Requirements

The conditions which must be met to perform the problems quickly
and accurately will now be discussed.

SpEED. Depending on the structure of the problem, the point at which
handling must be most rapid might be the input, the output, the processor,
or the access to the memory. Thus, in the inventory problem, the bind
will come on the input equipment because it is necessary to get informa-
tion most rapidly into the computer. Processing requirements are few,
and very fast access to the memary is not required.

In a scientific problem the calculations may present the greatest need
for speed. In a sorting problem, access to the memory is the main concern.

Accuracy. Accuracy can be achieved by increasing the number of digits
per word or per item in the calculations and by making frequent positive
checks.

Caracrry. The limitations in capacity can be felt in problems such as
inventory and record keeping when the number of items to be kept track
of becomes large. Capacity then refers to the amount of storage available.
One can also refer to the capacity of the system by the number of docu-
- ments it can accept information from or produce as output in a given unit
of time (such as 300 checks per hour in an automatic banking system).

General Requirements

In a general-purpose computer one has the problem of designing equip-
ment for maximum versatility. Because it may be called upon to do so
many jobs, it may be used for a large percentage of the full day.

VERrsaTILITY. Versatility can take many forms. When applied to input
or output equipment it refers to the number of different pieces of equip-
ment which can be tied into the system. Thus a system can have data
entered by means of a typewriter, punch card reader, punched tape reader,
a magnetic tape unit, or by direct keyboard entry. Output versatility
can be specified similarly.

Versatility also applies to the kind and number of commands the com-



34 SPECIFYING COMPUTER FOR PROBLEM ® CHAP.3

puter can perform. If alarge number of different instructions are available
to the programmer, he can construct programs with greater ease.

The concept of versatility also applies to the type, amount, and acces-
sibility of available storage. A large quantity of storage can be in the
form of slow-access memory. The ability to obtain information quickly
can be furnished by the presence of a fast-access buffer memory system.
This allows information to be taken out of the slow memory in big chunks
and placed into the buffer for quick reference. Separate storage facilities
may be available for different kinds of data and for the program as sepa-
rate from the data.

There are other special features which add versatility to the computer.
One example of such a special feature is the display medium. Some com-
puters have facilities for displaying the contents of many of the registers.
There may also be alarm displays to attract the operator’s attention and
wake him up if emergencies should arise.

Dury Factor. The fraction of time a computer is in working order and
could be used to solve a problem is termed the duty factor. This is inter-
related with the maintenance time required for the computer. It is cus-
tomary that a general-purpose computer be active or its services called for
a large part of the day. If it is not usable when needed, the duty factor
suffers. ;

Design Factors

The design of the computer requires consideration of components,
language, and logie.

ComPoNENTS. In choosing the components one must weigh several char-
acteristics. Cost is usually most important, unless the computer is being
developed for military use, where other specifications such as environment
or reliability take precedence. Speed may necessitate the use of com-
ponents and circuitry capable of fast action. Of course, reliability of the
components will affect the reliability of the computer. Because so many
components are required, and the probability of a machine failure is a
product of the number of components and the probability of failure of
each component, it is necessary to use components which are extremely
reliable. Environmental conditions impose further restrictions upon the
components. The designer can compensate for component mortality by
error-detecting circuitry, information redundancy, duplication of logic,

and multiple-level logic system, but he must always be aware of the threat
of multiple component failure.

LANGUAGE. The machine language used internally by the computer must
incorporate a means for checking the data to insure accuracy of results.



sEC. 3.4 = THE COMPUTER 35

Sometimes a machine language is chosen to give maximum calculation
speed at a sacrifice in the speed of input and output translations. This is
the case with scientific problems, where few data are put into the machine
but many calculations are made. The opposite is true in business appli-
cations. Here many data are handled but little calculation is done. Then
the choice is for a machine language that is easy to translate.

Logic. The logic, the interrelation of the functional units, is determined
mostly by the kind of functional unit used, the components that comprise
these units, and the machine language. There is still some latitude left to
the ““logical designer.”

Computer Construction

The designer and fabricator of the computer have at their disposal
two methods of construction. For simplicity and quick maintenance, a
modular unit which may be quickly replaced and used interchangeably
is most frequently used. With such modular construction the designer
may use plug-in units, turret design, “ Tinker Toy ”’ units, printed circuits,
or other kinds of packages. It is still possible, though, to consider seriously
a unified construction if few computers are to be produced.

There is also a choice as to whether the subassemblies are purchased
or assembled by the manufacturer or subcontractor.

3.5. ANALYSIS FOR THE SPECIFIC COMPUTER

It is now assumed that a computer has been designed and constructed
and is to be incorporated into the data processing system. We must
re-evaluate the initial analysis with the specific computer in mind. This
will be discussed in the same order as in Section 3.3.

System Analysis

What modifications of the system analysis are required for the chosen
computer?

ForMm oF THE paTA. Is the former assignment of data to each document
still correct? It might be necessary or desirable to incorporate in one
document the information previously stored in several documents. Or,
conversely, it might be necessary to separate into several records what
was formerly on one input source document.

InpuT. The way the information is entered into the computer must be
re-examined. It may be found desirable to use an intermediate storage
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medium such as punched cards. Pre-computer editing may now be neces-
sary. The time factor should be reconsidered. Should information be
entered immediately or should it be accumulated and entered when a
sufficient quantity is on hand?

Processixe. The input requirements have been firmed up. Now what
editing is required within the computer to obtain the necessary output?
Determine what calculations are to be made, in what order they are to
be made, and how they should be broken down into steps to correspond
to the facilities available within the computer.

Ourpur. The kind of output equipment unit to be used is determined.
The number of such units must be set. Thus, once the speed of input and
processing is known, it is possible to foresee the number of paper tape
punch units required to handle the full output required of the machine.
The format control necessary so that placement of information in the
output documents will be correct is set up for the output equipment.

Physical Document Flow

The system analysis makes it possible to plan the flow of documents
through the peripheral (pre-processing) equipment into the input unit,
through to the computer input, and thence into the files. The flow of out-
put documents is now planned as they leave the computer and go through
the peripheral equipment to the ultimate *“consumer’ of the documents
and reports. The kind of documents used and the quantity required in
each operation is now stated. The format, and the rate of handling of
each document is determined.

Calculations

The basic nature of the problem has not changed since the initial
analysis; therefore the calculations required will be the same.

Data Flow

The sequence of entering the data into the computer from the docu-
ments is determined from the document format. The jobs done upon the
data and the order in which the jobs are performed are decided in laying
out the data flow occurring within the computer. A flow chart of the data
flow is prepared just before the programming is done. This procedure is
discussed in Chapter 5 and a simple flow chart is shown in Figures 5.4.2
and 5.4.3.
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Programming

Now we can make a program of detailed instructions to the machine
to be used in working out the specific problem or set of problems.

3.6. COMPUTER OPERATION

We have reached the final phase: putting the computer into operation.
We have just about solved the problem on paper; now it is time to find
out if our solution can be put into practice.

Computer Construction Debugging

Before the computer becomes part of a system, it is necessary to find
out if it is working properly. All kinds of things can happen between
computer design and the working computer. Because of human failings,
errors in wiring are inevitable. Since it is impossible to predict where these
errors will occur, it is necessary to ferret them out after the computer is
constructed. There will also be errors in the logical design, and possibly
even in the circuitry although one would expect that circuitry problems
would have been eliminated in the laboratory. Often circuits that work
well on the bench present unpredictable difficulties when interconnected
together within a machine. Only with the close cooperation of engineer
and technician can these random problems be uncovered and (hopefully)
eliminated.

Program Debugging

Of course, before any errors in a program can be discovered, it must be
presumed that a properly working computer is on hand. Again, through
human failings, it is possible to construct a program into which errors have
crept. At the end of the problem solution, for example, it may be found
that the total price calculated for an item is incorrect. Possibly the cause
is that the unit price or the number of items was not properly provided.
It is then necessary to find out whether the programmer happened to use
the part number instead of the unit price, or the shipping address instead
of the number bought. Program debugging is more complicated when
done with a newly designed computer, since reliability of the circuits used
in the computer is not a foregone conclusion. It is difficult to separate
programming faults from computer wiring faults.
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Operating Procedure

With a properly working computer and program, it is next necessary
to outline instructions to the operating personnel. It is important to
determine whether a single operator will be able to insert punched cards
in the input, take out punched cards from the output, get the printing
paper aligned properly on the printing mechanism, operate the control
console, and so on. (What should the operator do first and when can he
sit back and relax?)

Change-over

In a scientific problem such as solving a set of differential equations
there will be no change-over necessary. Here it is a simple matter of con-
verting a problem into a program, entering the program and problem into
the computer, and then running the problem on the computer. On the
other hand, if a computer is to take over the handling of the entire inven-
tory of a manufacturing plant, it cannot do this all at once. Thirty or
forty people might be engaged in doing the inventory process manually
and all the records they are working on cannot be transcribed in the wink
of an eye. It is therefore necessary that the machine take over a little at
a time, a step requiring much thought and consideration. The employees
who have been working on the tasks now to be done by the computer must
also be considered. '

Systems Operation and Modification

With the computer and program working, the operating procedure
set up, and the change-over completed, some difficulties may still arise.
““Special”’ cases which were formerly handled by human judgment may
again arise, and some method of handling these must be devised. What
happens when the automatic inventory system orders 50 items and 60 are
shipped, billed, and invoiced by the vendor? However, if the system oper-
ates without a hitch for a few weeks after the change-over, it is usually

evident that the system is acceptable and any difficulties that might arise
will be minor.

PROBLEMS

1. Make an analysis flow diagram to encapsulate Sections 3.1 and 3.2 showing the
processes and decisions necessary to decide whether or not a computer is
needed and what computer to buy.
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2.

Make an operational flow diagram of how a problem is set up for the machine
to solve.

Make up a checklist form a special-purpose computer manufacturer may use
to determine the specifications (capacity, etc) required by his client. Devise a
scale to go with it to rate each specification.

Draw a document flow chart for a payroll system. Include inputs for employee
time cards (have a block there for this and other inputs to be punched into
punch cards), new-employee data, changes in employee data. The outputs
are the employee’s checks, his deductions, receipts, the payroll journals, and
the tax journals. .

Add to the payroll system a means for labor distribution. One employee can
charge his time to several accounts; the computer then accumulates the cost
for each employee (time X rate) for each account. This is then printed out
by department onto a labor distribution journal.

Consider a computer to handle accounts in a savings bank. The first run
enters deposit and withdrawal data onto the computer memory. All with-
drawals must be previously checked by the teller on the spot to prevent the
account from being overdrawn. The second daily run prints a journal of all
activity. The third run calculates the interest accrued and adds it to the
account.

Draw document flow diagrams for the savings bank system. How are new
and canceled accounts handled? Is input to the system required to be in
order? k
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THE FLOW AND CONTROL
OF INFORMATION

4.1. THE PLAN OF THE COMPUTER

Let us take another look at the computer organization. An
enlarged pictorial representation appears in Figure 4.1. The input records
(1) are fed into an input translator (2). Information from the record is
stored in the buffer (3) until called for. It is then transferred from the
buffer into the memory (4). Here it is available for processing at the
request of the processor unit (5). Processed information may be trans-
ferred to the output buffer (6) during periods when the processing unit is
otherwise engaged. Information may be translated by the output unit (7)
into the output record (8) at the convenience of the output unit. Notice
that there is another buffer (9) between the memory and the processor,
in order to make information more quickly available to the processor so
that it can work at its own rate. .

The last functional unit in Figure 4.1 is the control unit (10). It is
this unit that coordinates the activity of the computer both internally
and in regard to the external stimuli (input data) and responses (output
records). It must keep track of the scheduling of operations [note the
clock in (10)], and it must communicate with each unit [the loudspeaker

40
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in (10)]. The schedule of activities is available to the control unit in the
form of the program. It may be referred to in the memory (for internally
programmed computers) or externally [the clipboard (11)].

You will remember that the program is a series of commands. Most of
these commands are for the computer to manipulate information in some
way; reflexive commands apply to the computer only, such as “srop’ or
“LOOK FOR ANOTHER COMMAND AT ____!”” This chapter is concerned with
information-processing commands; reflexive commands—those which

|

Program

FIGURE 4.1. Organization of the computer in pictorial form.

augment the operation of the computer but do not affect the data directly
—are discussed in the next chapter.

' The specific processing tasks the control unit performs are now soberly
delineated. The control unit directs the procurement of the information
from its source as referred to in the command under consideration. It
supervises the processing of the information and any checking operations
while the information is transported from one section of the apparatus to
another. When only a portion of the source information (fraction of a
word) is processed, the control unit must determine that this portion is
correct in quantity and position. Lastly, the control unit directs the proc-
essed information to a destination.

T v
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4.2, OPERATION OF THE CONTROL UNIT

The purpose of the control unit is to oversee each operation of the
sequence of computer operations required to solve the programmed prob-
lem. To study these operations, we must break down this sequence into
the smallest possible unit. This unit is called the order.

The order (also called command, operation, instruction) is a label
describing what the computer is doing during a given period in its oper-
ation. Each order specifies where the information is to be obtained, what
happens to it, and where the information will go when its processing is
complete. Sometimes the source and destination of the information are
permanently associated with an order. It is only necessary to mention the
process (see the shift orders below) to convey the source and destination
information to the control unit.

The cycle of operation of the computer for a given problem is deter-
mined by the sequence in which the orders are performed. The machine
cycle is divided into a number of time periods known as steps. The step
is the time period required to perform an order (any order).

To each step in the cycle of operation of the computer is assigned one
and only one order. On the other hand, an order may be used for many
steps. Thus the add operation may be performed several times in the
machine cycle but, if the add order is specified at a given step, no other
order can be performed at that step.

The length of time required to perform a given order, the step time,
may be fixed or variable, according to whether the machine is synchro-
nous or asynchronous.

The complete sequence of operations for a given problem, the specifi-
cation of an order for each step, is a routine. The making of routine, the
assignment of an order to each step, is called coding. Special training is
given (usually by the computer manufacturer) to those whose task it is to
write these routines.

4.3. COMMUNICATION BETWEEN THE PROGRAMMER
AND THE COMPUTER

How does the control unit know, or how is it told, what order to asso-
ciate with what step in the computer operation? There are three chief
methods by which the programmer can communicate this information to
the computer.

Permanent programming is used when the job to be done by the com-
puter is immutable; it will never have to do anything different. The pro-
gram is hence permanently wired into the computer. Such computers



sEc. 4.3 s COMMUNICATION TO THE COMPUTER 43

have no versatility, since they have but one program and so can solve but
one problem. Only special-purpose computers designed to do a specific
task and do it most efficiently have this permanent kind of programming.
Permanent programming provides short-cuts for machine solution of a
single problem which would not be possible with general-purpose com-
puters. An example of permanent programming is found in the guided-
missile digital computer. It will never do a different job!

External programming is so called because the program is set into the
machine by adjustment or manipulation of wires of components which
are physically part of the computer but are not part of the computer
memory. The most popular means for effecting such programming is the
plugboard. At the completion of the operation assigned to a given step,
a signal appears at a connector or hub of the plugboard numbered to
correspond with that step. This output is connected by an external wire
to the input hub corresponding to the next order desired in the pro-
grammed machine cycle. By wiring from the program-step output hub
to a given order input hub, this order is associated with this step. The
actual information flow takes place through the plugboard or program
board. The routing of information is therefore directly available to the
programmer. He can decide the flow of information for each problem by
the placement of the wires on the program board. The control unit is the
agency by which these program instructions are interpreted to the com-
puter, causing it to carry out the proper commands.

A simplified program plugboard is illustrated in Figure 4.3. There
is only one hub for each program step number, but there are several hubs
for each order. All the hubs for one order are connected together so that
each order hub may be wired to several step hubs. The signal which
accompanies the completion of the order specified at step 5 energizes the
step 6 hub. The step 6 hub may be connected to any order hub to cause
that order to be done next.

A big advantage of the plugboard is that it may be removed from the
machine and immediately replaced by a different plugboard previously
wired to do a completely different job. A number of large and complicated
programs may thus be kept on hand ready to be used at a moment’s notice.

Switches can also be used to direct the flow of information into one of
several paths. A separate rotary switch can be used for each step. Each
of the switch positions then specifies one of the possible orders available
in that machine. No external inserts are necessary. There are no plug-
boards to be mislaid. A plugboard might have wires pulled loose causing
the computer to function improperly, and it would take valuable time to
track down the trouble and fix it. But with switches, set-up time is
required whenever a different program is used, and the switch settings
must be scrupulously checked each time the program is changed.
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Punched paper tape can specify the sequence of orders by the place-
ment of the holesin the paper tape. Each time the paper tape is advanced,
a new order 1is set up to be performed by the computer. This is called
external programming only if the paper tape is reread each time a new
machine cycle occurs to process new data. If the information on the paper
tape is read and stored within the machine and this stored information is

Step. ; Command Step. Counter

0 o~ —~O0—0—0—0—0 Read TUl 0o 0—0—0—0—0—0
i Read TU2 i o c1> c2> 2 c8'J 1%
2 Write TU3 2

3 Write TU4 3 © > o 2 g 1%
4 Add 4 o/‘\o—j—o—§—o——o
5 Subtract 50 o o o
6 Multiply 6

70 Divide 70

8 o Shift A 8 o ‘
90 Shift B 90

100 Shift C i0 o

1o XAC it o

2 o XBC i2 o

13 o XAB i3 o

14 o XBA 14 o ,

50 Jump 15 o 1%281%

FIGURE 4.3. A simplified plugboard showing a sample problem wired in.

referred to as the program, this is internal programming—because the
external source, the tape, is not used during the computer operation, but
rather its stored image.

Internal programming is the most modern, rapid, and versatile method
of machine programming. The entire information associating orders with
steps is entered and stored within the memory of the computer. The pro-
gram is no longer physically accessible to the programmer as in the plug-
board. But it is completely available to the machine and, in fact, may be
altered by the machine. This ability of the machine to alter the program
is indeed useful. It makes the machine extremely adaptable. Since it
already possesses the ability to make decisions, the machine can adjust
its behavioral pattern to the situation by treating itsinstructionslike data.
In processing these commands, a new sequence of operation is developed
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which the computer then follows. It has thus modified its own behavior!
The machine examines the successive memory locations the program is
stored in to review the program sequentially.

4.4, THE REGISTER

The register is a unit which stores information temporarily during
processing. In the course of a single operation, several numbers may be
manipulated. It is necessary to have some place to hold these data as
they are shuttled about.

Characters Bits Exit
"0" line sEvﬂ‘i*T'g'h ey ' switch
O -
S L T e
Information e line
line in Shift
Waste
basket
FIGURE 4.4.1. Representation of a serial-bit serial-character register.
Bits
3 ; o—
o 7 —
ﬁf)—__o_— >
i =)
Entry V Exit
: : Characters :
Information ’ switch racter swifch Information
line in ] line
Zero's Waste
basket

FIGURE 4.4.2. Representation of a parallel-bit serial-character register.

The register illustrated in Figure 4.4.1 consists of a number of storage
cells. Each of these cells stores one character of an information word.
Each character is further subdivided into bits.

The register shown in Figure 4.4.1 is a serial-bit serial-character regis-
ter. A word is inserted into such a register a bit at a time.

A parallel-bit serial-character register is shown in Figure 4.4.2. Here
the bits of each character are entered simultaneously and the word is
entered a character at a time.
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The register has means for moving the information from one cell to
» the next, called shifting. The register has an entry switch which permits
or refuses the entry of information. It also has a two-way exit switch
which permits or refuses the exit of information. If the exit switch is
closed, information may move out towards its destination; if the switch
is open and information is moved by the shifting operation, the informa-
tion is pushed into the “waste basket’”” and is destroyed. The shifting
operation, with the exit switch open, will eliminate information character
by character, starting with the first character pushed out.

Register A, source Register L, destination

[x[1]2]2]5[3]4]4[5]5] [+[el7]7[8[8[9]9][0[O]
Before

Glalals[5 i [2[2[3]——=[3]4]4a[5[5]+[6]7[7]8]
During

[+ T2]21313]4T4]5]5] [+t [2[213[3]4]4[5]5]
After
FIGURE 4.4.3. Transferring a word from A to L.

The operation of moving a word from a source register to a destination
register is pictorialized in Figure 4.4.3. The top line shows the registers
before any action has taken place. In the “during’’ phase, the right-hand
five characters at the destination register have been shifted out (into the
“waste basket’’); the left-hand five characters of the destination register
have moved to the right-hand side; the right-hand five characters of the
source register have moved into the left-hand side of the destination
register; 0's or blanks or other characters are moved into the source regis-
ter on the left-hand side. The bottom line of Figure 4.4.3 shows the
registers after completion of the operation; the number previously in 4
is now also in L.

In order to control a register, it is necessary to control the exit switch,
the entry switch, and the shifting process for that register.

The register is hooked into the system as illustrated in Figure 4.4.4.
Here you see the information appearing on a common line. Register A,
which we will suppose is the source register, has its exit switch closed
connecting the output to the main line. It has its shifting process acti-
vated so that the information will be pushed through it and out the closed
exit switch into the main line. Register B is the destination register. Its
entry switch is closed, allowing information to pass through it. The shift-
ing process is activated for that register so that information can be moved
along it. Its exit switch is open so that old information in the register will
be pushed through it and out into the waste basket.
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Note that in Figure 4.4.4, the entrance switch to register A is closed.
This allows the information coming out of the exit switch to go through
the main line and re-enter register A through the entrance switch. Thus
you see that if a complete word is to be transferred from register A to
register B, that word can be re-entered into register A. At the end of the
operation, the word which originally was in register A alone, is now in
both register A and register B. This accounts for the ability of the com-
puter to maintain information in a source register while transferring that
information elsewhere.

> z Zero line

Information line

FIGURE 4.4.4. Register interconnection for a transfer of data from A to L.

Information is withdrawn from or entered into the memory in the

same fashion via the main information line. The ability to duplicate a’

datum from a register to memory or from memory into a register is anal-
ogous to the duplication of information from one register to another.
This discussion is an oversimplification of memorizing and remembering;
the details are discussed in Chapter 13.

4.5. STORAGE OF INFORMATION AND INSTRUCTIONS
IN COMPUTER MEMORY

The memory of the computer may be thought of as a number of
pigeonholes, each with a label (referred to in computer parlance as its
address). Each of these pigeonholes or locations may hold a quantity of
information. In general, this quantity of information is one word. A word
thus stored at any location can be used as an operand in any process the
computer is capable of performing. Any word may be examined by the
control unit for use, either as an order or as a datum. Only certain combi-
nations of characters are recognizable by the control unit as proper orders.
It is up to the programmer to be sure that all words examined by the
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control unit are admissible orders and that the control unit is not examin-
ing a location for instructions where a data word is stored.

An instruction word can be used as a datum. It is by this kind of
handling that the computer is capable of altering instructions. On the
other hand, it is not desirable to examine a datum word for use as an
instruction. If such an occasion arises (by accident), the operation called
for by the datum word, if it is an admissible combination of characters,
must be carried out by the control unit. This almost invariably results
in altering valuable information stored in other locations in the memory.
If the word is not an acceptable operation code, the computer grinds to a
halt. Neither alternative is a happy one. It is up to the programmer to
prevent such “accidents’ by seeing to it that only instructions are stored
at locations examined by the control unit.

If we were able to examine each word in each memory location, we
could not tell whether a word was an instruction or a datum. We could
only tell whether a given word was capable of being used as an admissible
instruction.

The arithmetic process is characterized as the mapping of two num-
bers (or operands) and a process into a third number. For a given arith-
metic operation, the computer must know where to find the two operands
and where to store the results of the operation. It must, of course, also
know what operation is to be performed. In some computers the operands
and the result may all come from or go into registers. In other machines,
part of the instruction word includes memory locations of both operands
and the location in which the result will be stored.

Computers are classified by the information the instruction word car-
ries. The command specifying the kind of processing the computer must
do is part of the instruction word in all address systems. Single-address
systems have only one other piece of information in the instruction word,
the address of one operand. The location of the result and of the other
operand used for the order are not part of the instruction word. These
Jocations are usually specific registers permanently associated with the
order. The next instruction word is stored at an address one greater than
the address of the order being done, i.e., after performing the command
at location 497, the computer uses the word stored at 498 as the next
instruction.

The “1 + 1” address system instruction word is the same as in the
single-address system except that it additionally contains the address of
the next instruction. Here “+1" shows that the address of the next
instruction is included in the instruction word.

Another popular system is the three-address system. The instruction
word indicates the location of both operands and the destination of the
result but not the next instruction, which is at the successive location.
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Other possibilities exist: two-address system—specifying the two oper-
ands; 2 + 1—two operands and the next instruction; 3 4 1—two oper-
ands, the result, and the next instruction.

The three-address system has the advantage that a program can be
crowded into a few steps. Only one three-address order is required to
take two numbers from memory, add them, and replace the result into
the memory. The one-address system requires three orders to do this.
On the other hand, a single order in the three-address system takes longer
to perform and sometimes time and effort is wasted. In adding a string
of numbers, for instance, the three-address machine will place the result
of each addition into the memory. The result will have to be withdrawn
again for the next addition. It is quicker and more efficient to store the
intermediate results in a register.

For any internally programmed computer, the instruction word or
order must always contain the process to be performed, usually contains
the memory location of at least one operand, and sometimes contains addi-
tional information pertinent to the order. This information must use no
more characters than those contained in one word—the same length as
for a datum. This is simple to achieve and some computers store two or
more instructions in a single word.

4.6. ILLUSTRATIVE MACHINE*

It is much easier to explain and to understand the operation of com-
puters in general by postulating a computer with certain characteristics
and rules. The machine we will use to illustrate these principles will incor-
porate some of the features of several machines on the market. There is
no feature in this machine that is not present in one or another currently
available computer. We refer to this machine familiarly as the Polyvac.
Since it has its roots in many computers, it is polygenic (or polygenetic) ;
because it incorporates many attributes of the other machines, it is a
variform automatic computer. Thus this polygenic variform automatic
computer is called the Polyvac.

The Polyvac has several one-word storage registers. These are called
the A register, the L register, and the Q register; the symbols, A, L, Q, are
associated with these registers. The machine has a drum memory with a
capacity of 1000 words. The memory is referred to as M in orders to be
described, and a memory location is designated by MMM.

The Polyvac is a single-address machine with a ten-character data

* This section and several that follow are devoted to an explanation of the char-
acteristics of the illustrative machine, the Polyvac. The more advanced reader may
find it sufficient to refer to Appendix C, in which the Polyvac’s characteristics are
summarized.
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and/or instruction word. This is illustrated in Figure 4.6.1. The first
three characters of the instruction word, PRO indicate the process
requested by the order; the next three characters MMM indicate the
memory locations of one operand. The next four digits CBXX are not
used in the simple order. The Polyvac data word has ten characters—a
sign and nine digits. The character on the extreme left is the sign.

The implementation of the programming lies in the repertoire of com-
mands. A minimum number of com-
mands is basic to all machines. Addi-

[13{7]2]8]5]4]1]1]3] Data tional commands facilitate editing, which
is a fundamental activity of a computer
for commercial applications. Other com-
mands help in scientific computers whose
application requires many repetitive
operations.

Our illustrative machine combines
the commands used for commercial
and scientific applications, which explains the large number of instruc-
tions available. Although not all are used in the sample programs dis-
cussed, they are covered in the exercises at the end of Chapters 4, 5
and 16.

The order is completely described by specifying the source, route, and
destination of the information and what processing is done en route. To
describe these commands several methods may be used: the mnemonie, *
the order code, the symbolic description, and the written description.

The mnemonic for the Polyvac is a set of three letters, which is an
abbreviation of the command to be performed. The letters are chosen for
easy recall of the order description. For instance, the letters XAM are
used to describe the transfer order which takes information from the A
register and places it in the memory. The “X’’ indicates that a transfer
process is taking place; “A’’ indicates that the A register is the source of
the information; “M”’ indicates that the memory is the destination for
the information. '

A code number is usually associated with each order. This is the
number the programmer puts down on his code sheet (the list of steps
and the instruction code orders associated with each). This will later be
transferred into machine language and will be stored in the memory as
the official process number that the machine reads and uses to select the
proper switches to open or close. In the Polyvae, to simplify the program-
ming discussed in the next chapter, the mnemonic and the instruction

[PIRJOIMIMIMICTBIX]X] Command

FIGURE 4.6.1. The polyvac data

and command struc-
ture.

* See Glossary.
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code coincide. Examples of instruction code numbers for three machines
are given below:

Add order, Polyvac Mnemonic: ADD Code: ADD
Add order, Univac I Mnemonic: —— Code: A00
Add order, Datatron Mnemonic: AD Code: 74

A symbolic description sometimes conveys the process performed by
the computer more vividly. The order, XAM, might be written symboli-
cally as

XAM (A) —mM

The parentheses distinguish between the content of a register or memory
location and the actual register or memory location. “(A)”’ indicates the
content of register A. The destination “M’’ does not have parentheses
about it above because it is the memory location M that is the destination
of the information, not the content of that memory location. The arrow
(—) indicates the movement of information. The symbolic description
graphically shows that the content of the A register is copied into loca-
tion M.

A fourth method of describing the order, used at the beginning of the
section, is to discuss what occurs during performance of the order.

For order description intended primarily for the programmer, the
intermediate steps in the process are often omitted. As an example of
this, the add order is

ADD: (A) + (M) — A

Here, to the content of the A register is added the content of memory
location M, and the result is then placed in the A register. To perform
this order, the information in memory location M is first placed in the L
register. The operands are then taken simultaneously from theirregisters
and added in an accumulator. From there the result is placed in the A
register: The above process works simply by specifying the order code
or symbolic description but the programmer must be aware of how.
Otherwise he might store a datum in the L register which would be
destroyed in the course of the ADD order.

The Polyvac has a memory of one thousand words. Each word loca-
tion is referred to by an address which ranges from 000 to 999. This cell
number is represented by M (the three-digit number MMM in the order
description).

The Polyvac has three addressable one-word registers. If it is desired
to specify a register as a source or destination in an instruction, the regis-
ter’s address is used in “M”’ instead of a number from 000 to 999. The
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address of the A register is 00A; of the L register, 00L; of the Q register,
00Q.

Some of the orders will now be described. A complete list for reference
is found in Figure 5.7, page 76.

TrANSFER ORDERS. If the first letter of an order is an “X,”’ a transfer is
to take place. The second letter indicates the source of information and
the third letter indicates the destination in the order code. The contents
of the two registers concerned are illustrated before, during, and after a
typical register transfer order, XML 00A in Tigure 4.4.4. This requires
transfer of the word in 00A (the A register) to the L register.

The following transfers are defined: )

XAM: (A)— M XML: (M) —L
XMA: (M)—A XQM: (Q) —M
XLM: (L) — M XMQ: (M) —Q

In these transfer orders the information at the source is always preserved;
the information at the destination is always destroyed, because new infor-
mation replaces the old in a destination register. The information is pre-
served at the source when it is a register by using the method previously
described, replacing the information at the beginning of the register as it
is passing out of the register.

SHIFT 0oUT. It is sometimes necessary to process information within a
register—to round off numbers and to adjust decimal points. The *shift
out”” command moves the word with respect to the register, but maintains
the order of the characters within the word. The “shift out’’ commands
have a direction associated with them—the direction in which the word
moves in relation to the register. As the characters at the end of the word
reach the end of the register, they pass out and into the waste basket.
This is the reason for using the term ““shift out.” During this command
the register is caused to shift in the proper direction but neither of the
switches, exit or entrance, is connected to the information line. No infor-
mation is entered from the main line. To make up for the information
shifted out or destroyed, “zero’’ characters are entered into the ‘“source”’
end of the register. After the shift-out operation, valid characters will
still occupy the register.

The kind of operation performed (shifting) is indicated by the first
letter of the command word; the direction of the shift is right or left, if
the second letter is R or L, respectively; the register to be shifted is deter-
mined by the third letter, A or L. The place in the command usually
reserved for the operand address (M—there is none associated with this
command) is used to indicate how many characters are to be shifted. To
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§hift the é register Iiight three characters, the command is SRA003.
Four shift orders are given below.

SRA: 0—5A
SLA: A<=0
SRL: 0—1L
SLL: Le—o

Notice here that the “M” indicates that M digits have been shifted.
Since the symbolic description shows that 0’s are put into one end of the
register, it is evident that M characters are pushed out. The direction of

Register A‘
Eli12]2]313]4]4]5]5] [+]oJofo[1]2]2[3]3]4]
Before After

FIGURE 4.6.2. The shift out order, SRA003.

the arrow shows the direction of shifting. The order SRAQ03 is illustrated
in Figure 4.6.2.

END AROUND sHIFT. Sometimes in a shift operation it is preferable to
have the digits leaving one end re-enter the register at the other end.
This is done when information is transferred from one register to another.
But in that case, the full word is simply replaced in the register. It is now
desired to move the beginning of the word to the end of the register and
replace the end of the word in the beginning of the register (which has
been vacated). This is termed end around shift, because the characters
that leave one end go around and re-enter at the other end. The number
of characters moved externally—those which pass out one end and in the
other—is given by M ; the number of characters which are shifted within
the register is therefore 9— M. Four end around shift orders are

ERA: (A) —> A
ELA: A< (A)
ERL: (L)—1L
ELL: Le— (L)

The “E” is for end around shift; the other two letters are used as in the
shift-out order. Notice the arrow indicates that the characters leave one
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end of the register and enter the other end and the direction of the shift.
The M again indicates the number of digits to be shifted. The order
ERAO003 is illustrated in Figure 4.6.3.

Register A
fHlt1212]3]3]4]4]5]5] [+]4fs]s]1]2]2]3]3]4]
Before After

FIGURE 4.6.3. The end around shift order, ERA003.

Lone sEIFT. The long shift might be thought of as an end around shift
using two registers. It is indicated as

ISR  (A)—>L; L)—A

The word in the A register is partially shifted into the L register and at
the same time the word in the L register is partially shifted the same num-
ber of characters into the A register. This is shown in order LSR004 illus-
trated in Figure 4.6.4. This order is associated with multiplication, which

Register A Register L
1+1112]2[3]3[4]4]5]5] Before |+[6][7]7[8]8]9]9]0]0]

Iolofololi[2[2[313] After [¥[4l4[5]5[6l7[7[8]8]
FIGURE 4.6.4. The long shift right order, LSR004.

is discussed below. Some computers other than the Polyvac use a shift
out for a long shift. This is shown symbolically as
ISR (non-Polyvac): 0——L; (L) — A

AritaMETIC. What the programmer must know about arithmetic is delin-
eated in the order description as listed,

ADD: (A) + (M) — A

SUB: A — (M) —A

MUL: (M) X (L) + (A) — AUL
DIV: (A)/(M) — Q, Remainder — A
ADA:  (A)+|(M)]— A

SBA:  (A) — |[(M)| — A

The mnemonics for the first four are self-explanatory; the third letter, A,
in the last two mnemonics indicates they are used for adding or subtract-
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ing absolute values. The start and finish of a sample machine addition
are shown in Figure 4.6.5.

In the multiplication order, it should be remembered that the product
of two ten-digit numbers is a 20-digit number. Therefore, the product
will occupy two registers. The product will be found with its most signifi-
cant half in the A register and its least significant half, the units, tens, and
so forth, digits in the L register. “A \U L’ symbolically conveys the use

Register A Memory location 139
[+ToloJoJof3]0]]2]5] Before [+]OJOJO[O[1]2[3]4(5]

[+]o]oJo]oT4]2]4]7[0] Atter [+]OJOJOJOT1[2]3]4]5]
FIGURE 4.6.5. The addition order, ADD139.

Memory location 773 Register A Register L
Before [FJOTO[T [T [T [T [1[1]1] [+]ofoJ2]2]2]2[2]2]2]
After [H[{OJOI I MTITHT1] [+]o]o]Jo]2]4]6]9]1]3] [+]5]5]5]3]0]8]6]412]

FIGURE 4.6.6. The multiplication order, MUL773.

Memory location 401 ‘ Register-A Register Q
Before [+]OJOJOJOJO[5]i[0]0] [*F[o]JoJO[0J0[3[5]9]5]

Atter [+]0JoJ0JoJ0[5]1]0[0] [+]ofo]ooJoJoJo[2]5] [+[o[ofofofo[o[7[0]O]
FIGURE 4.6.7. The division order, DIV401,

of two registers.. An example is shown in Figure 4.6.6. Here MUL773
requests the computer to multiply the content of memory location 773 by
the content of register L, add it to the content of the A register and
place the result in the combined A and L registers. A long shift is some-
times required to adjust a decimal point at the end of the multiplication.

A division order generates both a quotient and remainder. The sup-
plementary quotient register, Q, is used to store the quotient; the remain-
der is to be found in the A register. A sample division order is shown in
Figure 4.6.7.

4.7. THE CONTROL OPERATION

Let us take a brief look at the over-all picture of what happens during
the first few steps of a program. Let us assume that the program and the
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data have been loaded into the memory. When the start button is pressed,
the first instruction word is taken from memory location 000 and is placed

into the control register, C. This register stores the instruction word for

reference during the processing of that instruction. The process to be per-
formed (PRO) is examined and the proper switches are opened or closed—
the flow of information is set up so that the operation will take place as
required. Next, if required, the operand location, M, is used to obtain the
operand from the memory or addressable register. When this is com-
pleted, the requested operation is set into motion. While it is taking place,
a control counter that keeps track of the step number of the instruction
being performed is advanced by one. It now contains the location of the
next order. (In the case under consideration, this is 001.) This location
is used to procure the next order from the memory and to store it in C.
Upon completion of the original process (the one at 000), the new instruc-
tion word in Cis examined. The same sequence of events is then repeated.
When the process listed in the instruction word is STP, the computer will
stop operating and wait for further instructions from the keyboard or
manual entry unit.

As an example of the very simplest operation, consider how the com-
puter might be programmed to add two numbers, X; and X,, located at
500 and 501 respectively, and to put the result into location 502. The
programmer’s list would be:

Step PRO MMM Ezplanation
000 XMA 500 X;—A
001 ADD 501 X +Xo—A
002 XAM 502 X + X — 502
003  STP - "%

PROBLEMS

1. The process of making a coded routine for a computer is analogous to many
other activities we, or other specialized personnel, do in pursuing vocations or
avocations. FFor instance—

(a) Devising a dance with fundamental dance Jorms.
(b) Composing a musical piece with notes.

(¢) A shop project such as constructing a bookease.
(d) Finding your way to a friend’s house.

In each case, distinguish clearly between steps and orders in the analogy
with the computer program. Show how each such entity should be defined.
What are the similarities and differences between the program and the analogy
—for instance, the notes which the composer uses vary in two qualities, tone
and duration (any others ?) while the commands differ in only one specification.
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3.

4.

7

(W}

Make up a typical routine for at least (c) and (d). Show in all—(a) through
(d)—where loops might exist. Create at least three more analogies and repeat
the analysis for each.

. Of what kinds of devices is the register composed? Conjecture on the com-

position of a register.

For the programmer’s list on p. 56, what part of the listing is contained in
each command word? What do the four instruction words look like? (Fill
up each word on the right with 0’s.) For each address system below,

(@) 14+1 (Mb) 2 (¢c) 241 d) 3 (e) 3+1

(1) show what the instruction word might look like;

(2) rewrite the list on p. 56;

(3) write the instruction words corresponding to the list above, in order.

Let’s incorporate another register, the Z register, into the Polyvac. Examine
the top third (I) of Figure 5.7 and augment it with orders to accommodate the
7 register.

. Go through Figure 5.7(I) and augment the orders as would be required by a

2- and a 3-address computer. Amalgamate the orders whenever possible, e.g.,
include a shift with a transfer, if you can. Include orders for the Z register.
With U, V, W, X, Y, and Z respectively at 500, 501, ... 505, code these
operations:

(a) U — W —> 506 (b) VX — 507 (¢) Y/Z —> 508

() (Y/Z)(U — W) + VX—>509 (e) (UV — WX)(Y — Z) — 510

€ (UV + W)/(XY — Z)—>511 (g) (Z+ (UV — X)/YW —> 512
(h) X(W(U + V) + Z) —> 513

Assume that U, V, ... Z are stored in a fashion which requires correction by
shifting before use: U, W, and Z should be shifted right three characters,
V and X right two characters, and Y right one character. Do Problems 6(a)
through 6(h) above, shifting the result once to the left before storing.

Do the preceding problem using the 3-address code which you devised in
Problem 5.



FIVE

CODING

5.1. THE TECHNIQUES OF CODING

The method or system for assigning orders to each step is impor-
tant not only to the programmer, but to the computer designer, the user,
and the prospective purchaser of the computer. The designer who is aware
of the needs of the programmer can improve the design of the computer
so that coding will be easier and the routine itself shorter. The prospec-
tive user who knows how to program and code a computer is aware of its
limitations and also its advantages over other machines. He will not
require it to do problems done more easily on other machines. On the
other hand, he will be aware of the unique coding facilities it affords. The
buyer will know how his problem will fit in with the capabilities of his
contemplated purchase.

For the computer to perform a given task, the programmer may choose
a routine that will excel others for one of many reasons. He may compose
a routine because it is the quickest and easiest to construct, even though
it takes longer to run. He may compose a routine that takes the least
amount of time to run. He may compose a routine which checks the
results for accuracy and consistency of information at many points along
the way, and consequently takes longer both to compose and to run. The
routine may require the machine to stop and deliver intermediate results
which the operator may check against a simple problem he has done by

58
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hand calculation, providing a check of the routine rather than the results.
The routine may have to meet various physical limitations. The capacity
of the memory of the computer, the type of orders the computer can per-
form, or the number of program steps available to the programmer present
limitations to coding.

After a certain amount of experience, the programmer will understand
the relationship between the problem at hand and the computer available
to do the problem. This involves two kinds of knowledge. The first con-
cerns the computer. The programmer must be fairly familiar with its
capabilities and limitations. The second concerns the programmer’s
experience in converting a problem into a routine. He must be able to see
how the problem can be subdivided into small sequences of steps or calcu-
lations that can be considered as a programming unit.

Some routines are composed of groups of operations to do a specific
task or calculation, such as taking a square root. This group can be
regarded as a unit and is called a subroutine. The square-root subroutine
consists of a set of commands performed upon the number contained in a
given memory location yielding, on completion, the square root of that
number. Subroutines can be further divided into portions called cycles,
loops, or iterations, which are performed many times during one subrou-
tine. Adding a group of numbers together is a loop that could be used to
compose an integration subroutine. The hierarchy of programming is: a
library of programs, the program, the routine, the subroutine, the loop,
and the command (the atom).

The experienced programmer sees the problem as a number of familiar
subroutines and a number of unfamiliar tasks. If he can discern all the
subroutines that can be used for a given problem and computer, then he
is a good programmer for that machine and that type of problem.

The designer must be aware of how to build the computer so that it
can perform routines and subroutines with facility and with as few pro-
gram steps as possible.. This requires that he be familiar with some of the
techniques involved in programming and coding. It also requires that he
be familiar with commands facilitating programming and with the “logi-
cal” structures within the computer associated with flexible program-
ming (such as cycle counters, discussed at the end of this chapter).

5.2. THE FLOW DIAGRAM

The large routine is divisible into smaller sections. Perhaps these sec-
tions may be classified as subroutines; on the other hand, they may be
unfamiliar to the programmer and may simply be tasks for which a pro-
gramming procedure must be set up. The programmer starts with the
single concept of the problem the machine must solve, and from it he must
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develop the many hundreds of steps which a large program requires.
This is an immense job and requires some plan of action to coordinate the
programmer’s efforts. An intermediate approach towards constructing a
program is setting up a “flow diagram.” This diagram indicates what
happens to the information being processed at different intervals. These
intervals may cover one or several program steps.

The flow diagram may be compared to a block diagram, familiar to
the engineer as an approach to understanding the makeup of electronic
equipment. Such a diagram shows the connections among various large
sections of the equipment and enables one who is unfamiliar with the
equipment to visualize the interrelations of the large functions of the
machine. He is then able to study in more detail the operation of one
function within a designated section of the equipment. Similarly, the flow
diagram is a means for visualizing the program by breaking it down into
functional units and indicating the interrelation between these program
units as well as the way they correspond to the different sections of the
problem.

A typical flow diagram may be seen in Figure 5.3.3, page 65. Each
geometric form represents a different process to be carried on by the com- -
puter and facilitates the reading of the flow diagram. These geometric
forms have not been standardized, although some consistency does exist
among programmers. The common symbols and some extra ones used by
the author are described in the paragraphs which follow.

The Function Boz

The function box illustrated in Figure 5.2(A) is a rectangle used to
indicate arithmetic functions or the transfer of information from one sec-
tion of the computer to another. Note that in the box is written the func-
tion to be performed. An arrow enters the box from the box representing
the last operation performed by the computer. An arrow leaves the box
proceeding to the box representing the next function to be performed.

Comparison

When a comparison is to be performed, it is indicated by a diamond
or rhombus, illustrated in Figure 5.2(B). Within the rhombus are the two
words to be compared; a colon between them indicates the order of com-
parison. An arrow enters the box from the last operation performed and
there are several lines leaving the box, representing the different results
that can be obtained from the comparison of the two words. In doing
“a:b,” the line with the ‘>’ on it indicates the condition “a > b.”” The
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—> 2% +3y —> (1) Sequential

{A) Function Box
2 (2) Concurrent

@ = (E) External Process
>
(B) Comparison ES EOT Stop

M Error End of  Computation
stop tape complete
—_— | i+t — (F) Stops

(C) Instruction Modification : :

(G) Subroutine
(D) Reentry Loops

Rate of pay = R;
Deduction =D;

- (H) Label
FIGURE 5.2. Flow-chart symbols.

lines are the alternate routes the program will take as a result of the com-
parison. In a comparison all alternatives must be provided for.

Instruction Modification

When an instruction used in another part of the program is modified
by the computer, the modification is shown in the flow diagram by a
rectangle with an extra line on its left-hand side, asshownin Figure 5.2(C).
Within the box is indicated the index or address that is changed. If the
index or address is increased by 1, this is indicated by

i+ 1—2¢
which is interpreted as “Z 4+ 1 should be used now wherever ¢ appears.”’

The index or address that is changed may be inserted in a little circle
placed on top of the rectangle to call attention to the modification.
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Re-entry Loops

When a flow diagram grows large, it is often inconvenient to draw a
line from the end of a routine to the point at which the flow re-enters the
program; these lines would only complicate the diagram. Therefore, a
given series of steps may end with a circle with a number in it, indicating
to the reader that he should look for a similarly numbered circle to
re-enter. This is shown in Figure 5.2(D).

External Processes

During the course of the program, information may be read into the
computer from outside sources, or may be rewritten as output onto mag-
netic or punched tape. To set this off from the rest of the flow chart, a
rectangle, two sides of which have been curved, is used asin Figure 5.2(E1).
Some computers can communicate with the input or output equipment
and simultaneously perform calculations. This is indicated by an arrow
going to two places—the in/out operation and the next processing opera-
tion as in Figure 5.2(E2).

Stop

Several things should cause the computer to stop: an error may be
detected in operation, such as arithmetic which does not check; the input
or output operation may be unable to continue—for instance when the
magnetic or paper tapes run out in the input or output equipment; the
computer is done—it has finished the computation. All these are indi-
cated by triangles with an arrow leading into them. Inside the triangle
the cause of the stoppage is indicated. An arrow may lead out of the box
if the equipment is to be started up from this point. Examples are shown
in Figure 5.2(F).

Subroutines

Sometimes a subroutine has been programmed elsewhere and/or flow-
charted elsewhere. The entire subroutine may be represented by a hexa-
gon with a process to be performed written inside. As in the function box,
one arrow leads in and one leads out to indicate the sequence of opera-
tions. This is illustrated in Figure 5.2(G).
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Labels

Along the flow of information, little flags may be drawn in which are
indicated prevailing conditions useful for the reader to know, but not
essential to the flow of information. These little flags are connected to the
flow of information by dashed lines. The flags are rectangles with one of
their corners missing. There is no arrow entering or leaving these labels.
A label is illustrated in Figure 5.2(H).

5.3. CODING THE ADDITION OF A SET OF NUMBERS

Let us suppose that we have a very simple problem to solve on our
Polyvac. In the memory at locations 100 to 149 there are 50 numbers.
It is desired to add these numbers together and to place the sum in mem-
ory location 150.

The programmer first makes the flow chart and then finds the steps
that would make a proper program. Since we are not familiar with the
flow chart technique yet, we will first work out this program and then see
what the flow chart should be to go with it.

First, get the first number (in memory location 100) in position so that
the next number may be added to it. The add operation adds the number
at a given memory location to what is stored in the A register. Therefore,
the first number should be placed in the A register. Our first step is stored
at address 000 (or simply 0) and is listed as

Step Process Operand Description

0 XMA 100 X, — A
The first three columns contain information to be entered into the
machine; the last column helps the programmer keep track of what’s
going on. When the start button is pressed, the control unit takes its
first instruction from the location 000. This command transfers the first

number (X;) from location 100 to the A register in preparation for addi-
tion. The next order is (omitting the column headings):

1 ADD 101 X+ X,— A

This order adds the second number (X;) to the first number and stores
this partial sum in the A register. The next order is

2 ADD 102 24+ X3— A

where “Z" is used to indicate the sum of previous numbers which is
located at A. Step 2 adds the next number to the sum-so-far and places
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this new partial sum back into the A register. The additions continue
until all the numbers have been added together and the result stored in
the A register. The step which adds in the last number is:

49 ADD 149 2 4+ X;0— A

Now, all that is left to be done is to place the result into the memory loca-
tion 150. The next two orders are, therefore,

50 XAM 150 = — 150
51 STP ... ¥

Our completed program appears in Figure 5.3.1.

Step Process Operand Description
0 XMA 100 X;—A
2 ADD 102 X1+ X)) +X;— A
48 ADD 148 X +Xe+ ... + X)) +Xpp—> A
49 ADD 149 (X1+X2+ +X49) +X50—'>A
50 XAM 150 SUM — 150
51 STP e W

FIGURE 5.3.1. Program (long) to add fifty numbers,

The flow chart for this program appears in Figure 5.3.2. It uses a
separate box for each addition which takes place, and is self-explanatory.
The method described above is very simple to understand, to code,
and to use. But where the problem involves the addition of, say, a thou-
sand to even five thousand numbers, you can see how the programmer

X;—=A  =(A)+ XA ()4 Xy Al — — — =l (A)+ Xs5>At> (A)—-150

FIGURE 5.3.2. Flow chart—add fifty numbers (long).

would get tired of writing down the same order at each step. Not only
that, this routine requires more steps than there are numbers to be added.
This means that the routine, which is stored in the memory, uses up many
valuable memory locations. The whole routine may be simplified if we
use the technique of modifying the operand address as described below.

An order for processing has a specific operand address as part of the
instruction word. To allow this order to be re-used, the operand address
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must be changed according to some simple rule (if the operands are stored
sequentially, which is customary).

The computer will perform an order. It will then modify the address
of the operand as it appears in that order. It will then go back to the step
in the program where the order is called for and perform the order using
the address it has just modified. This is fine, except that somewhere along
the line we must be able to get the computer out of its rut and make it
stop. We know how many operands must be processed. We check the
number of times the process was done after each operand is processed.

When first
used =101

2 3

|
|
(100)+A (5 )4 >{(A1+{i)+A P41

(A)—~150

FIGURE 5.3.3. Flow chart, address modification to add fifty numbers.

An easy way to do this is to check the operand address. Whether the last
operand has been processed is determined by examining the operand
address in the processing order. When the operand address in that instruc-
tion is the address of the last operand to be used, this loop is complete.

We now have a method for getting the computer to repeat a process
with different operands and to stop the process when the last operand has
been processed. This is best illustrated by use of the flow chart.

The flow chart to perform the problem of this section by address modi-
fication appears in Figure 5.3.3. From the start circle we go to the first
box. Here the first number (stored in memory location 100) is put into
the A register. Next we go to circle marked “5.” This is for re-entry into
the system at a later date and no action by the computer takes place here.
In box 2 we add to the A register the content of address z. The ¢ is a vari-
able index which indicates that the operand address keeps changing. The
first time that it is used, 7 is 101. This is indicated in the label on the flow
chart. After the add order has been done, the operand address is changed
in box 3. Here the variable index 7 is increased by 1. Before we go on
adding, we check to see if we have used up all the addend numbers by
comparing the newly adjusted index with 150. When the memory loca-
tion used in box 2 is 149 (the last addend location), then the newly adjusted
index will be 150 and we have completed our processing; if 7 is less than
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150, we continue our processing. These two eventualities are shown as
the two arrows leaving the comparison box, box 4. The third alternative
should never arise unless an error occurs and so the error stop for “>.”
If processing is to continue, we leave box 4 by the arrow with the ““less
than” sign adjacent to it. This arrow leads to re-entry loop 5. That
means that we go back via the circle marked “5”’ and follow the process-
ing flow as before. We do another addition, address modification, and
another check to see if we are done.

If we have finished our processing, 7 is equal to 150 and we leave the
comparison box by the “equal” line. Then, all that remains to be done
is to put the result in memory location 150 and stop the computer. These
operations occur in boxes 6 and 7 respectively.

In order to implement this flow chart with a suitable program, it is
necessary to propose a few more orders for the computer.

5.4. FURTHER ORDERS

To perform the decision-making functions by which the computer may
alter its own behavior some new orders are defined.

The comparison order compares the content of register A with con-
tent of the memory location M. The order is also used to compare the
content of register A with that of another register. This is possible
because the registers are addressable. Two examples of the comparison
order are

CMP309 (A):(309)
CMPOOL (A):(L)

The result of the comparison is stored in a single-character register,
called a comparison box. This box has three possible states. The plus
state (P) indicates that the content of register A is greater than the other
comparand (that with which it is compared). The equal state (E) indi-
cates that the content of register A is equal to the other comparand. The
minus state (M) indicates that the content of register A is less than the
other comparand. The setting of this comparison box is used in conjunc-
tion with the jump orders discussed below.

The jump order tells the computer whether to look for its next instrue-
tion in the next memory location I + 1 as it normally would, or to look
for its next instruction in memory location M. .This depends upon the
setting of the comparison box. The four jump orders are listed here,

JOP: (A)> M)=M, (A)>» M)=I+1
JOM: (A)<M)=M, A)«M)=I+1
JOE: (A)=M)=M, (A)=M)=I+1
UCJ: =M
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The jump-on-plus order (JOP) indicates that the next instruction will be
found in location M if the comparison box is set to P. The next instrue-
tion will be found at memory location I + 1 (where I is the memory loca-
tion of the present instruction) if the comparison box is not set to P. M'is
the comparand of the comparison performed most recently. The address,
M, following the double arrow (=) is where the next instruction is located.
The jump-on-minus order (JOM) is similarly interpreted: the minus refers
to the M in the comparison box. Jump-on-equal (JOE) is used to test
for an E in the comparison box. The unconditional jump order requires
the computer to examine the content of M as its next instruction without
any if’s! :

The comparison box is also set by the results of an arithmetic order if
an S is placed in an auxiliary position of the instruction word. It is set to
plus (P) for a positive result, minus (M) for a negative result, and equal
(E) when the result is zero. The conditional jump orders apply as above.
JOP then means jump to M if the box is set to P, and to I 4 1 if not set
to P.

The stop order tells the machine to stop. The machine must be manu-
ally started after a stop order. It may be started using as the next instruc-
tion that which is located at M, or it may be started from the beginning
of the program. This is determined by which start button is pressed.

STP: ("% Stop; go to M
when restarted

5.5. ANOTHER ROUTINE TO ADD 50 NUMBERS

Now that we have the orders necessary to implement the flow chart
of Figure 5.3.3 we can make up a routine to perform this task. You may
follow the completed routine shown in Figure 5.5. The first box after the
start circle requires that the content of memory location 100 be loaded
into the A register. This is done by the order stored at 000.

Step  Process  Operand  Description
0 XMA 100 (100) — A
Box 2 requires that the next number be added into the A register. The

label tells us that the first time this order is used, that location will be 101.
This is done by

1 ADD 101 4+ @—A

The underline under the operand location indicates that this location will
be modified later in the routine. The “Z” indicates the sum accumulated
so far. Box 3 indicates that the variable index 7 is to be increased by 1.
This comprises the address modification just discussed. In order to add
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1 to the address, known as a tally operation, the A register must be used.
The result of the tallying will appear there.

While the address modification is taking place, it is necessary to store
temporarily the sum that we have accumulated. This is done by

2 XAM 150 3 —s 1580

Now the order to be modified is placed into the A register. We have stored
the program steps at memory locations corresponding to the step number.
The add order, step number 1, will be found at location 001. It is placed
in the A register for modification by

3 XMA 001 (001) —> A

Next, 1 is added to the address portion of the order. To do so, a number
is used that, when added to the instruction, will increase the address sec-

tion by 1, but not affect the rest of the order. Such a number is stored,
say, in location 50 as

050 000 001 0000

The tallying operation which adds 1 to the operand location in the add
order (001) now in the A register is ;

4 ADD 50 t+1—¢

Have all the numbers been added? To determine this, the add order with
the modified address is compared with a similar order for which the
address is 150. After the last number is added, the order is, “ADD 149.”
When modified this becomes, “ADD 150.” A dummy “order”’ is used
for the comparison. This is its sole purpose. It is never examined by the
control unit as an order and is called a dummy since it is really not an
order. Our dummy will be stored at 51,

51 ADD 150
The add order is compared with the dummy by
5 CMP 051 1:150

This compares the address in the just-modified add order with 150 to
determine if all the numbers have been added.

The result of this comparison is stored in the comparison box as P, E,
or M. It remains there until another arithmetic or comparison order is
performed. Before we use this result, the modified order is replaced at its
original location (001), -

6 XAM 001 (A) — 001
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Also, before continuing we withdraw the partial sum that we have accum-
ulated and place it back into the A register.

7 XMA 150 Z—A

Now completely prepared, we go back.and do another cycle of addition
and address modification (steps 1 to 7), if the result of the comparison is
favorable; that is, if the new 7 is less than 150. M is stored in the compari-
son box if the additions continue—the ““less than’’ condition. To go back
to the add order (001), we do

8 JOM 001 1 < 150 = 001

If the problem has been completed, the comparison box will be set to E
(not M) and the computer will look at memory location 009 for the next
order. This is a stop order.

9 STP A

Notice that the completed sum is stored in location 150 back at step 2
(002) of the last addition cycle. Therefore, nothing has been left undone—
there is no step required for box 6 of the flow diagram, Figure 5.3.3.

Here, in Figure 5.5, is the completed program together with the tally
and sentinel.

DEscripTION
Boz Step Process Operand Symbolic Verbal
1 000 XMA 100 (100) — A Take first number.
001 ADD 101 SUM + (z) — A Add next number.
3 002 XAM 150 SUM — 150 Store sum.
003 XMA 001 001) — A Take add order.
004 ADD 050 (A) +1— A Modify add order.
4 005 CMP 051 (A):(51) Check if done.
006 XAM 001 (A) — 001 Replace add order.
007 XMA 150 (150) — A Replace sum.
5 008 JOM 001 1 < 150 = 101 Start new cycle.
7 009 STP . w Stop when done.
050 000 001 Tally
051 ADD 150 Sentinel

FIGURE 5.5. Program, add fifty numbers, address modification.

5.6. CYCLES OR LOOPS

When a process is performed a number of times with different oper-
ands, it is called a cycle or loop. These arise many times in the course of
programming.
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Sometimes the same cycle or subroutine is called for several times
during the course of one routine, and it is then possible to make use of the
same set of program steps. This is discussed in Chapter 16 on advanced
programming.

Now let us consider the construction of a cycle. The number of data
to be processed corresponding to the number of cycles to be done is known
and is called the cycle criterion. The location of the first data word is
known, and it is assumed that successive data are stored in successive
locations. Some command (or commands) is required to be performed
upon the contents of several addresses. This prototype command will
simply be referred to as PRO. This command, PRO, might stand for
addition or comparison, and so forth.

The first step in the subroutine will start at some location, say S. The
command at S is to process the first datum word,

S: PRO &,] Process X;

Here the memory location of the first data word is indicated by [Xi].
The square bracket means “the address of.” By this means we can con-
struct the program before knowing the exact memory assignments for the
data. The variable index i is called the cycle index. When a variable loca-
tion appears in a routine, it will be underlined. The address will be
altered later in the program.

Having processed our data word, we must now alter its address. To

do this, our partial result must be stored temporarily. Let us store it in
memory location M,

S+1 XAM M Store partial
result at M

The processing order must be brought into the add register.
S+2 XMA S “PROX) — A
It must then be altered or tallied,
S+38 ADD [1] = {4+ 1—4

Here “[1]” means the address where “1” is stored, in proper form to
modify the address. Note that [1] is a fixed address, but [X/] is a variable
address because of the index 7.

Next, we must find out if the processing of the data is complete. Such
is the case if the cycle index has been increased often enough so as to equal
the cycle criterion N. Here N is the number of data words to be processed.
To check this, the memory location specified in the order at step S (modi-
fied each time the order is used) is examined. This order, now in the A
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register, is now compared with the cycle criterion dummy (simply indi-
cated as [N]),

S+4 CMP [N] 2:N
The dummy is really
[N] PRO [Xx]

Since further processing may be done, the processing order is replaced in
its former location, S,

S+5 XAM S “PROX,” — S

The partial result is withdrawn from the memory and replaced into
register A,

S+6 XMA M partial result — A

We are now ready to continue processing, if there is more to be done. To
find out what the story is,

S+7 JOM S i<N=8; i=N=8+8

A complete prototype program is shown in Figure 5.6.1. Notice that the
eight steps, S through S + 7 are repeated for each datum, X, to be
processed.

Step Process Operand Description

S PRO E(;]. Process X;.

S+1 XAM M, Store results at M,.
S+2 XMA S Take process order.
S+3 ADD [1] Modify process order.
S+4 CMP [N] Check for end of process.
S4+5 XAM S Replace process order.
S+6 XMA M, Replace partial result.
S+7 JOM S Start new cyecle.

SH+8 Start new routine.

FIGURE 5.6.1. Prototype subroutine.

Cycle Index Registers

Cycle registers, often referred to as cycle counters, index registers, or
B—boxes are used to facilitate the construction of cycles. These, together
with a number of appropriate orders, simplify immensely the task of mak-
ing up a program. These extra registers are used for keeping track of the
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number of times each cycle is done. There are nine cycle registers in the
Polyvac, and they are referred to as CY1 to CY9.

The cycle register works like this. When an order is withdrawn from
memory and a number is present in the C portion of the order, the content
of the cycle register corresponding to that number is added to the address
portion of the command. For example, suppose the order being with-
drawn from memory is, “Add the word at location 100,” and suppose
that cycle register number 1 has 17 in it. Then 17 will be added to 100 as
the order is given to the control unit. “ADD 117" is the instruction which
will be performed if the stored order is ADD 100 1, and 17 is in cycle
register 1. The content of the memory location from which the order was
drawn is unaffected. The unaltered add order “ADD 100 1” is still found
there.

Each of the cycle registers is addressable: CY1 through CY9 are
the addresses of cycle registers 1 through 9. To move the three least
significant digits of the A register to cycle register 3, we use the order
XAM CY3.

The cycle register is also used to initiate a jump. This will become
clear in discussing the extra orders used to implement the cycle register.

The first order transfers the address portion of the memory location
listed in M into the tally register.

XMI: (M) — CYI

Here I refers to the number of the cycle register called for. Since the cycle
register only modifies the address portion of the instruction word, only the
first three characters transferred are stored in CYI—the units, tens, and
hundreds digits. A number may also be entered into the cycle register
directly from the program. This is done by

XPI: M — CYI
This command inserts the number M into cycle register I. Note here that
M does not have parentheses around it. This indicates that M is the

number to be put into the cycle register and not (M) (the data word stored

in location M). Information can also be withdrawn from the cycle register
by

XIM: (CYI) —M
To use the cycle register for tallying we have
TMI: (CYI) - 1—CYI (CYI) >0=M
CYD) =0=I+1

This order subtracts 1 from whatever is in cycle register I. It then checks
to see if the cycle register has become zero. If not—that is, if there is
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still a positive number sitting in the cycle register—then the next order
will be found at location M. When the cycle register contains zero, the
next instruction is found in the next memory location, I 4 1. This order
makes it possible to tally down (subtract 1 from the memory location of
the operand) and at the same time determine if processing is complete.

To tally up, a number is used to determine when the tallying operation
is finished. This number, to be useful, must be stored in another register—
the Q register is used for this, since it is the least used of the registers.
This does not interfere with normal operation except when multiplication
and division are required. In that case, tally up must be avoided. The
tally up order is

TPI: = (CYI) +1— CYI (CYI) > Q=M
CYD) =Q=I+1

In this order, 1 is added to the content of the cycle register. If the num-
ber in the cycle register is then smaller than the address portion of the
word in the Q register, the next order is found in memory location M.
When the content of the cycle register and the content of the address
portion of the Q register are equal, the next order is found in the succeed-
ing memory location, I + 1.

To facilitate the use of the Q register for tally operation, we may use

XPQ: M—Q

Note again the absence of the parentheses around M, indicating that the
number M is inserted into the address portion of the Q register. Some-
times the following order is helpful:

XIQ: (CYI) —m Q

It requires that the content of cycle register I be inserted in the address
portion of the Q register.

Prototype Address Modification using the Cycle Registers
Let us see how these orders facilitate our prototype processing. First,
zero must be entered into cycle register #1,

Step Process Operand C Symbolic
S XP1 0 0 — CY1

Then the number of data words to be processed is inserted in the Q
register.
S+1 XPQ N N—Q

The first operand is processed.
S+2 PRO [Xi1] 1 Process Xi4s
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This location is determined by adding the content of the cycle register to
the address in the processing order. This is indicated by 1 in the cycle
register column to the right of the operand column. The first time around
it is desired to process the first operand. Therefore, the address of the
first operand is used in the processing order. After the process is per-
formed, the cycle register is checked.

Step Process Operand C Symbolic

S+3 TP1 S+2 t<N=S+2
First, 1 is added to (CY1). Next, (CY1) is checked to see if it is equal to
the number stored in the address portion of the Q register. If not, process-
ing continues by jumping to the location of the processing order, S -+ 2.

When processing is completed, the rest of the program continues. The
whole program appears as Figure 5.6.2.

Step Process Operant% o Description
S XP1 000 Clear tally.
S+1 XPQ [N] Enter sentinel.
S+2 PRO [Xi] 1 Process next number.
S+3 TP1 S+2 Tally and recycle.
S+4 ... Start new routine.

FIGURE 5.6.2. Subroutine with tally up.

To tally down, the program would run just a little differently and one
step shorter (three steps in all). The first thmg we do is to put the cycle
criterion N into cycle register 1.

S XP1 N N — CY1
Next, we process the operand,
S+1 PRO Xi]—-11 Process X4

Notice here that the nominal address used in this order is one less than
the address of the first operand; when the content of the cycle register is
added to this, the result the first time is the address of the first operand
used, Xy. Next we adjust the cycle register,

S4+2 TMI1 S+1 t1>0=8+1

We subtract 1 from its content. The next time around, instead of adding
N to the data word location, we will add N — 1. That means the data
word address will decrease by 1. The second time around we will use the
next-to-the-last word; the third time around the (N — 2) data word, and
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so on. This tally order says that if we have not finished processing, we
should go back to the process order at location S + 1. The last time
around, there is 1 in the cycle register. The processing is performed on
X, because [X;] — 1 plus 1 in the cycle register yields [X,]. AtstepS + 2,
the cycle register is tallied down to 0 which brings a finish to this loop.

We are then ready to perform the rest of the program. This whole
prototype subroutine only takes three steps as shown in Figure 5.6.3.
Notice that for both cyeles using the cycle register, only two instructions
are used for processing any but the first operand.

Step Process Operand C Description
S XP1 N Sentinel — Tally.
S+1 PRO XiJ—-1 1 Process next number.
S+2 TM1 S+1 Tally down, recycle.
S+8 i ieecese iR Continue program.

Figure 5.6.3. Subroutine with tally down.

When this method is applied to the problem of adding a set of numbers
examined earlier in the chapter, the resulting program is as llustrated in
Figure 5.6.4. The flow chart for this figure is also Figure 5.3.3., for the
information flow has not been changed by the simplification resulting
from the use of the cycle register.

Step Process Operand C Description

000 XPQ 049 49— Q

001 XP1- 000 0— T

002 XMA 100 (100) — A

003 ADD 101 1 (A) 4+ (@101 +39—>A
004 TP1 003 Tally up, recycle.

005 XAM 150 Result — 150

006 STP w

FIGURE 5.6.4. ‘‘Add fifty numbers" using tally up.

5.7. SUMMARY

. A repertoire of computer orders has been acquired (except for the
input/output orders to be introduced in Chapter 16). These are listed
and symbolically described in Figure 5.7.
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Mne- Mne-
Type monic  Symbolic Description | monic Symbolic Description
I. Transfer XAM A)— M XMA (M)—> A
XLM O)— M XML (M)— L
XQM (Q— M XMQ (M) —> Q
M M
Shift Out SRA 0— A SLA A«—20
M M
SRL 00— L SLL L«—0
M M
End Around Shift ERA (A)— A ELA A«—(A)
M M
ERL (L)—L ELL Le— (L)
Long Shift ISR (A)—L;L)—L
Arithmetic ADD (A) + (M) — A ADA (A) + |(M)]—> A
SUB (A) — (M)—> A SBA (A) — |[(M)|—> A
MUL (L) X (M) + (A) DIV (A) + (M)—Q
—>AUL Remain — A
II. Decision CMP (A): (M) STP =M
JOP (A >M)=>M JOE A)=0M)=M
A PM)=TI+1 A) = M)=1+1
JOM A)<M)=M UcCJ =M
A4 M)Y=I+1
Cycle XMI (M)— CYI XPI M — CYI
XIM (CYI)— M XPQ M—Q
TMI (CYI) —1—CYI |TPI (CYI) +1— CYI
(CYD) >0=M CY) < Q=M
CY) =0=>1I+4+1 (CYID) = (Q)=I+1
XIQ (CYI)—Q
III. Input/Output* LOD (PT)— M ULD (M) — PT
PT)—/ M +1 M+1)— PT
(PT) — 999 (999) — PT
= 000 =I+4+1
RED (PT)— M PUN (M) — PT

* For description see chapter 16.

FIGURE 5.7. Polyvac commands.
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The technique of programming, together with the tool of the flow
chart, has been explained. The program is built with coding units called
routines, subunits called subroutines, and cycles or loops composed of
individual steps. The method of constructing the subroutines with nor-
mal orders and with the convenience of the tally orders was shown.

The technique using the tally and the cycle register should bring home
to the designer the importance of one or more supplementary cycle regis-
ters. This is the area where the needs of the programmer and the user
are reflected in the work of the designer. At a very slight cost in equip-
ment and engineering development, a tool of inestimable power is given
to the programmer and the consumer. This kind of predictive engineering
can often ‘“sell” a computer.

PROBLEMS

1. With U, in 100, U, in 101, ... Uy in 199, and V;, W, X;, Y;, and Z; in
200 + 7, 300 + 7, 400 + ¢, 500 + ¢, and 600 + %, respectively, code the
following problems making flow diagrams first.

(a) Ui — W,—->700+’b

(b) V;X; —> 700 4+ ¢

(¢) Yi/Z; —> 700 + ¢

(d) (Ys/Z:)(Us — W3) + (Ys — Z;) —> 700 +14
(e) (U;V,; - W.X,)(Y. - Z,') —> 700 47

) —UJ;%Z — Zi—>700 + i
UV — X; ;
@ Zi+ — 337, > 700 + ¢

(h) Xs(Wo(U; + Vi) + Z;) — 700 + ¢

2. Recode the above, this time aligning the operands and results as below.
Result: Shift one place left when stored.
U’s, W’s, Z’s: Shift three places right before use.

V’s, X’s: Shift two places right before use.
Y’s: Shift one place right before use.

3. Make a routine to solve
CoXi+ConXi+ ... +CXi+Co =Y,

where the X’s are stored in locations from 200 to 299 at 200 + 7; the Y’s are
to be stored at 300 + 7; and for n = 9, the ten C’s are stored at 190 + =.
Note that for computational simplification the above formula may be written
as

Xi( e Xt'(CnXi + Cn-—l) + Cn—‘z) + [Rpep + 01) + Co = )7;‘

4. The Newton-Raphson method for finding the square root ¥ of X by iteration
requires an initial guess for U, say ¥,. Further approximations of Y, Y1, are
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based on the current approximation, ¥;. Using this relation

Yi+1 =Y;+ % (’i‘g“ - Yi)

Let us store a best-guess factor b at [b] and a test factor ¢ at [¢]. The latter is
used to stop the computation when (Y1 — ¥;) < ¢ The former makes a
best-guess Yy = bX.

Devise a routine to find the square root of the numbers stored at 100 to 199,
returning the answers to these locations. Flow chart first!

When a complicated function of a variable is to be used, it may be stored in the
computer as a table. Consider Y; = F(X;) with

0<7<99 and [Yi] = 200 + 3.
Further, let X;.; — X; = AX for all 4, so that
X; = X, + :AX.

Store AX and X, at 300 and 301, say. Now for any given value of X, say
X it is desired to find Y, if X, is within the range of X, i.e., if

X & X & Xoun

In such case a linear-mean interpolation formula is used to find Y, viz.
Y Y + AX (YiH-l = ﬂ)

where X, £ X € X

Devise a routine which will (a) determine if X, lies within the tabled values,
(b) find the closest lower tabled value to X, X,, (c) determine if X, is tabled,
viz. Xo = X, for some n (then no interpolation is necessary), (d) otherwise
calculate Y, by the linear interpolation. Enter 99 ... 9 as the answer for Xa
outside the range of X. The routine should look up X’s stored between 400
and 514 and store the answers at the address from whence X’s came. Flow
chart first!

Find a series approximation for y = sin X. Set this up as a subroutine with
the proper testing and scaling factor in appropriate locations. Flow chart first!
Incorporate the square root subroutine (Problem 4) into a routine to find,
for ten values of W (call them W/’s),

X+VWF VW + Z
Y

Devise a routine to solve a quadratic equation using the formula
+ '\/bf — 4aic;
20«;‘

for one hundred each of a;, b;, and ¢;; ; one word for the real and imaginary
parts of each root. This will require a different loop according to whether
there is an imaginary part to each root.

R =

X = —
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MACHINE ARITHMETIC

6.1. INTRODUCTION

The processes of arithmetic are represented by the mapping
a ® b = ¢. The result ¢ can be found either by looking up the two oper-
ands in a process table, or by using the two operands to generate the
result by some rule incorporated within the machine.

A computer is able to add, subtract, multiply, and divide. Usually,
it is much too expensive to incorporate complete tables to generate these
functions within the machine. It is, therefore, desirable to find a means
of generating the result once the computer is aware of the two operands
and the process to be performed. It turns out that if the machine is capa-
ble of performing addition, complementation, and shifting, then subtrac-
tion, multiplication, and division can be synthesized. This chapter will
discuss how a computer performs arithmetic by using sequences of addi-
tion, complementation, and shifting.

Our discussion of arithmetic proceeds by examining first how the
human performs each process and then how the machine can most easily
and economically perform the same process.

The decimal system is used in all the examples—because it is familiar
to us and makes the explanation easier. The reader should therefore keep
in mind that although a machine may not deal with decimal numbers,

79
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the numbers that it does use will be handled in a manner similar to that
discussed here.

Although these methods are typical and representative, this chapter
does not pretend to be an exhaustive treatise on current machines.

6.2. ADDITION

How do we normally do addition? It seems like a very simple ques-
tion but the answer is hidden in a whole habit structure that we have
built up. Let us start from a simple case and reconstruct the action.

One-Digit Addition

When you or I add two one-digit numbers, we refer to our “mental
addition table.” If we were to write out such a table, it would appear as
in Figure 6.2.1. Thus, to add 5 and 4, we do something mentally anal-

0 1 2 3 4 5 6 7 8 9
ol o1 |2 |3 |4 |5 |6 |7 |8 |o9
1|12 |3 |4 |5 (6 |7 |8 |9 |oc
2|1 2|3 |4 |5 |6 |7 |8 |9 |oc|1C
3134 |5 |6 |7 |8 |9 [oc]|ic]|e2c
4l 4|5 |6 |7 |8 |9 |oc|1ic|2c/| 3C
5!5 |6 |7 |8 |9 {oc|1c|2c| 3c]| ac
6|6 |7 |8 |9 |0C|1C|2C|3C|4C | 5C
7] 7 (8 |9 |oc|lic|2c|3c|ac|sc]| e

-8 8 |9 |oc|1c|2c|3c]|4c|sC|6C| 7C
9]l 9 |oc|1c|2c|3c|4c|5sc|6c| 7c| sC

FIGURE 6.2.1. Add table, no carry.

ogous to looking down the 5 column, across the 4 row and finding the
answer, 9. Of course, this is done as a single mental association. Since 5
plus 4 is the same as 4 plus 5, it does not matter whether we enter the
table with the row or the column first. Similarly, to add 7 and 6, we enter
the table and find the result, 3, with a C next to it. The table has been
set up for many-digit addition, and the C here indicates a carry. For use
with a one-digit number the 3C is interpreted as 13.

Many-Digit Addition

Next, let us see what happens when we add numbers of more than one
digit—for instance, add 1244 to 3456. TFirst, examine the right-hand digit
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of each number. Enter the addition table and note that 4 and 6 make 0
with a carry. The 0 is written down as the right-hand sum digit. The
next digit of each number (proceeding to the left) is added. Mentally we
say, “5 + 4 and 1 from the carry makes 10.” This is equivalent to enter-
ing the “carry-sum?” table, a table to be used in adding two digits if the
previous addition yielded a carry. Such a table appears in Figure 6.2.2.

0 1 2 3 4 5 6 7 9
01 2 3 4 5 6 7 8 9 0C
1|2 3 4 5 6 7 8 9 oCc | 1C
213 4 5 6 7 8 9 oC | 1C | 2C
34{ 4 5 6 7 8 9 0C | 1C | 2C | 3C
4 15 6 7 8 9 0C | 1C | 2C | 3C | 4C
5| 6 7 8 9 0C | 1IC | 2C | 3C | 4C | 5C
6 | 7 8 9 0C | 1C | 2C | 3C | 4C | 5C | 6C
708 9 oC | 1C | 2C | 3C | 4C | 5C | 6C | 7C
819 oC | 1C | 2C |38 | 4C | 5C | 6C | 7C | 8C
9 loc|1c|2c |3 |4C | 5C | 6C | 7C | 8C | 9C

FIGURE 6.2.2. Add table, carry.

Entering this table we see that 5 plus 4 is 0 and a carry is created. We
can proceed down the line (to the left) in the same manner using the
appropriate table, according to whether the last addition has produced a
carry or not.

It is left to the reader to analyze into its component parts the process
of adding several one-digit numbers together and the more complicated
problem of adding several many-digit numbers together.

Machine Additions

Let us see how a machine can be constructed to add two many-digit
numbers. The first approach is to construct a machine that functions
exactly as a human. It would consider each pair of digits and find the
sum in one of the two built-in addition tables. It would add the digits in
pairs, proceeding from the right-hand side of the numbers consecutively
towards the left. Because the digits are added one after the other, this is
called serial addition. Many machines currently use serial addition and
function well where speed is not of the essence.

To hasten the addition process it is better to add all digits simultane-
ously; the only obstruction to such a process is the creation of the carry.
In Figure 6.2.3 appear two numbers as one might add them normally.
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In Figure 6.2.4 the digits are added simultaneously, using the table of
Figure 6.2.1; the carries created are noted underneath. Let us now add
in the carry and see what happens. When the carry is added to the 9 in
Figure 6.2.4, another carry is created. The new sum has been written in
the line below, and the carry is indicated one line further down. The

3456

1244

4690 First sum
1 First carry

3456 4600 Second sum
1244 1 Second carry
4700 4700

FIGURE 6.2.3. School board addition. FIGURE 6.2.4. Simultaneous digit addition
followed by successive
carry additions,

complete process consists of (1) the initial addition—adding each pair of
digits by use of the non-carry add table to get a partial sum and (2) the
finishing process—adding in the carries generated by (1) until the com- -
plete sum is obtained. Each time a new carry is created in this “finish-
ing” operation, it must be added into the sum-so-far. This may continue
down the line (to the left). It is conceivable that there will be almost as
many steps to the ““finishing’’ operation as there are digits in the numbers

3456

1244

4690 First sum
1 Carry

4700 Final sum

FIGURE 6.2.5. Ripple carry.

we are handling. If there are many 9’s in the “unfinished” sum, this
“add and carry” will seem to ripple down the line. This is sometimes
referred to as a carry ripple. The processing by this method has really not
shortened the over-all time.

It is desirable to find a method of adding all the digits of two numbers
together simultaneously, and then in a single step to effect the complete
carry operation. The use of a simple rule will make this method possible.
Let us add our two numbers of F igure 6.2.4. This is done in Figure 6.2.5.
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Note the carry underneath the 9. The rule we are going to use to expedite
the carry is, “If a carry is to be added to a digit which is not a 9, that
digit is increased by 1 and written below; if the carry is to be added to 9,
then the 9 is changed to a 0 and the carry process is applied to the next
digit to the left.” Two more examples are shown in Figures 6.2.6 and
6.2.7. :

4321098 . 919435
478902 89565
4999990 First sum _ 998990 First sum
1 Carry 1 1 Carry
5000000 Final sum 1009000 Final sum
FIGURE 6.2.6. Ripple carry. FIGURE 6.2.7. Ripple carry.

A machine based on the rule considered above is able to perform addi-
tion by two operations; corresponding digits of the addend and augend
are added simultaneously using a single built-in adding rule; the carries
generated by this operation are then applied to the “unfinished” sum
and the result, the sum, is then obtained.

To add several numbers together, the machine must perform several
additions. The first two numbers are added together (including carry of
course), the next number is added to this result, the succeeding number
is added to this result, and so forth. This is accomplished by program-
ming the successive additions.

The human adds several numbers together in a different way. He uses
his memory for a temporary storage operation. The reader may find it
useful to work out how he adds a sequence of single-digit numbers; from
this he can then work out the rules for adding several many-digit numbers.

6.3. SUBTRACTION
Manual

Two single-digit numbers are subtracted by using mental subtraction
tables, such as illustrated in Figures 6.3.1 and 6.3.2. Notice that it is
important in either table to look up the minuend in the column (vertical)
and the subtrahend in the row (horizontal), because in subtraction it is
important which number is being subtracted from and which number is
being subtracted with. Thus, 3 from 5 is 2, but 5 from 3 is —2. A certain
amount of symmetry still remains, though.

When a larger number is subtracted from a smaller number, a borrow
is created. The value of the difference is the same as though the smaller

S
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Minuend

Subtrahend 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 9B | 0 1 2 3 4 5 6 7 8
2 sB|oB|0 |1 |2 |3 |2 |5 |6 |7
3 7B | 8B | 9B | 0 1 2 3 4 5 6
4 6B | 7B | 8B | 9B | 0 1 2 3 4 5
5 3B | 6B | 7B | 8B | 9B | 0 1 2 3 4
6 4B | 5B | 6B | 7B | 8B | 9B | 0 1 2 3
7 3B | 4B | 5B | 6B | 7B | 8B | 9B 0 1 2
8 2C | 3B | 4B | 5B | 6B | 7B | 8B | 9B 0 1
9 1B | 2B | 3B | 4B |5B| 6B | 7B | 8B | 9B 0

FIGURE 6.3.1. Subtraction table, no borrow.
Minuend

Subtrahend 0 1 2 3 4 5 6 7 8 9
0 9B [ 0 1 2 3 4 5 6 7 8
1 8B | 9B | O 1 2 3 4 5 6 7
2 7B | 8B | 9B | 0 1 2 3 4 5 6
3 6B | 7B | 8B | 9B | 0 1 2 3 4 5
4 5B | 6B | 7B | 8B | 9B | 0 1 2 3 4
5 4B | 5B | 6B | 7B | 8B | 9B | 0 1 2 3
6 3B | 4B | 5B | 6B | 7B | 8B | 9B 0 1 2
7 2B | 3B | 4B | 5B | 6B | 7B | 8B | 9B | 0 1
8 1B | 2B | 3B | 4B | 5B | 6B | 7B | 8B 9B | 0
9 OB | 1B | 2B | 3B | 4B | 5B | 6B | 7B 8B | 9B

FIGURE 6.3.2. Subtraction table, borrow from previous digit.

had been subtracted from the larger. With two single-digit numbers, the
borrow is interpreted as a minus sign.

To perform the subtraction of two many-digit numbers, it must be
first noted which is the larger. The value of the difference is obtained by
subtracting the smaller from the larger. The sign of the difference is
obtained by noting whether the minuend or subtrahend is larger.
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To Subtract the Smaller Number from the Larger Number

One begins by examining the right-hand digit of each number. The
subtraction table is entered by finding the larger number in the column
and the smaller in the row. The value of the difference is recorded as the
rightmost digit of the difference. The next digit to the left in the minuend
and subtrahend is now examined. The table to be entered depends upon
whether a borrow has been created in the previous digit subtraction. The
borrow or no-borrow table will be used. (This is analogous to the carry or
no-carry table used in addition.) The borrow-subtraction table is illus-
trated in Figure 6.3.2. The two-digit subtraction continues toward the

4791
1234

3557

FIGURE 6.3.3. School board subtraction.

left. The proper table is entered, depending upon whether or not the
previous subtraction has created a borrow. This is clear when we examine
a typical problem as in Figure 6.3.3, together with the tables in Figures
6.3.1 and 6.3.2.

Machine

There is no reason why a machine could not be constructed to perform
subtraction in the same manner as done by a human being. As with the
human method for addition, it would require the incorporation of tables
within the machine. With the use of the process of complementation
described below, subtraction can be reduced to addition.

The 9’s complement (or simply complement) of any digit is defined as
the difference between 9 and the digit. Thus, the complement of 3 is 6.
The complement of a number consisting of more than one digit is the com-
plement with respect to 9 of each digit considered separately. Thus, the
complement of 71 is 28. It is necessary to specify “9’s” only when con-
fusion might arise. In the computer, the complement of a number is taken
with respect to the full word length of a register. For a number in a ten
digit register, for instance, all ten digits of the word must be comple-
mented. Thus, if the number to be complemented is 47, it is stored in
the register as 0000000047, and its complement is 9999999952.

Let us see how the complement can be used in subtraction. First, it

must be noted that when two words are added and the sum is greater than

e e —
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the capacity of the register, only the last digits corresponding to the word
length of the register will be stored in the register. The computer will
perform such an addition as shown in F igure 6.3.4. Call W the largest

Ten-digit register

9876543210
8765432109
18641975319 Correct result
8641975319 Machine result

FIGURE 6.3.4. Big word addition.

word which can be stored in the register. Then
W =999 ...99=10" —1 (6.3.1)

where N is the word length in digits. The word W 4 1 or 10% is recorded
in the register as 000 ... 0. Any word larger than W will be recorded
incorrectly. Thus W + 1+ A4 or 10” + A is stored in the register simply
as A.

Suppose it is desired to subtract S from M , that is, ind M — 8. We
will use the property of the register just mentioned—namely, that the
quantity 10¥ + M — S is stored as M — 8. This may be stated as

M—-8S=~M-S8+4 107 (6.3.2)
where “ =’ means “recorded as.” This is restated as
M—SzM—S+(W—I—1) : (6.3.3)
Or, rearranging,
M—SzM—}-l—i—(W—S) (6.3.4)

Let us remember how we construct the complement of a word, say S.
We subtract each digit of S from 9 to form the corresponding digit of the
complement. The complement of Sis 99 ... 9 — S or 10¥ — 1 — Sor
W — 8. Then M — § is found by adding (W — 8) to M and adding 1 to
that. In words, non-negative subtraction can be performed by adding the
minuend to the complement of the subtrahend and then adding one more.

Machine Example

Let us see how the machine would do the problem of Figure 6.3.3. To
the minuend is added the complement of the subtrahend; to this result is
added 1. This is shown in Figure 6.3.5, using a ten-digit register. The
overflow—the eleventh digit to the left—cannot be stored, of course.
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The means by which “adding one more” is performed is derived from
the fact that a valid non-negative subtraction by addition always causes
an overflow. Subtraction is performed by using the relationship of (6.3.4)
above. It leads to the result shown in (6.3.3) which is always larger than

0000004791 Minuend 4791
-+ 9999998765 Subtrahend complement 8765
1 0000003556 Partial difference 3556
0000000001 Add one more —>1
0000003557 Difference 3557

FIGURE 6.3.5. Machine subtraction FIGURE 6.3.6. Machine subtraction sche-

by addition. matic representation.

W 4+ 1 or 10" for all M > S. This overflow is the indication that a num-
ber larger than W was presented to the register. It can be used to cause
the computer to add the extra unit.

Machine subtraction may be represented more schematically, as in
Figure 6.3.6. Notice that it is not necessary to write the full ten-digit
word. :

Subtrahend Larger Than Minuend

Sometimes the problem is to subtract a larger from a smaller number.
The human must determine whether this is the case. He then subtracts
the smaller from the larger, attaching a minus sign to the difference, as
in Figure 6.3.7. The machine can be constructed to do exactly the same

35 ’ —71 Larger
— '_7_1 if_) Smaller
—36 —36

FIGURE 6.3.7. Subtraction with negative ~FIGURE 6.3.8. Machine subtraction with
difference. larger subtrahend, L.

thing using a comparison operation. This test fixes the sign of the differ-
ence. The value of the difference is found by machine subtraction of the
smaller number from the larger. This is shown in Figure 6.3.8. This is
also done when M = 8.

An alternate machine method is to disregard the sign and perform the
required subtraction by complementing the subtrahend and adding it to
the minuend. When the subtrahend is larger than the minuend, the dif-
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ference will be stored in the accumulator as the complement of the answer,
as in Figure 6.3.9. A negative or zero is evidenced by the absence of an

35
+28
63 Complement of
difference

FIGURE 6.3.9. Machine subtraction with larger subtrahend, II.

end around carry. When it is desired to write out the difference, it may
be complemented and the minus sign affixed when it is transferred to the
output equipment.

6.4. MULTIPLICATION

One-Digit Numbers

As before, a table can be constructed for multiplication whereby the
multiplier and multiplicand are looked up and the two-digit product is
found.

Many-Digit Multiplication

The human being performs multiplication by using many mental
memory locations in a manner which would be difficult for a machine to
duplicate. Since the machine method is entirely dissimilar, it would not
serve much purpose to put into words for the reader what he has been
doing by rote for, lo, these many years.

The reader may find a challenge in trying to put into words the simple
problem of multiplying two numbers.

Machine Multiplication

Multiplication may be interpreted as repeated addition. Thus, 24 X
378 means to perform additions using 378 as the addend. We have to be
careful here when we state how many additions are to be performed.
These statements are both correct:

“Add 378 to 0, 24 times”
“Add 378 to itself, 23 times”
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A simplification can reduce the number of additions required. Multi-
plication by powers of ten can be done by shifting to the left a number of
positions equal to the power of the number. Thus, 598 X 100 is 59,800.
The shift-left order of most computers introduces zeros on the right-hand
side of the register.

An example of machine multiplication is shown in Tigure 6.4.1. At

Multiplier register Multiplicand register Product register

123 (1) 598 (1) 0000000 (1)

1 598

122 (3) 598 (2)

1 598

121 (5) 1196 (4)

1 _598

120 (7) 1794 (6)

12 (8) 5980 (8) 5980

1 7774 (9)

11 (10) 5980

1 13754 (11)
59800

10 (12) 73554 (14)

1 (13) 59800 (13)

i

0 (15)

FIGURE 6.4.1. Multiplication of 598 by 123.

the start, the multiplier and multiplicand register hold their respective
numbers, and the product register has been cleared to zero. The multiplier
is tested to see if the rightmost digit has been cleared to zero (1). It has
not. The multiplicand is added once to the product register (2) and 1 is
subtracted from the multiplier (3). The multiplier is tested for zero again.
Another multiplicand addition (4), multiplier tally down (5), and zero
test are done. This continues (6), (7), until after (7), the right-hand digit
of the multiplier is zero.

Now the multiplier is shifted right and the multiplicand left (8). More
sets of multiplicand additions, multiplier tally downs, and zero tests are
done (9), (10), (11), (12) until the rightmost multiplier digit is zero.
Another shift operation is done (13).

The operation continues like this; the process is complete when the
multiplier has been tallied down to zero (15). The answer, the product, is
in the product register; the multiplicand, now shifted, is in its register; and
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the multiplier has been reduced to zero. Notice that the multiplicand
has been shifted once less than the number of digits in the multiplier.

Notice that the number of additions required is only six. In general,
the number of additions is equal to the sum of the multiplier digits.

6.5. DIVISION

There is some similarity between manual and machine division.
Again, an explanation in words of the manual division procedure would
not clarify the machine process. However, it would pay the reader at
this point to take pen in hand and do a simple long division problem
noting, at each step of the way, what he is doing,

Machine Division

Many computers have a rule in the division process that the divisor
must be larger than the dividend. In that case it is up to the coder to
make sure that the divisor s larger—otherwise the machine will stop in
the middle of the problem. Such a rule assures simple and foolproof opera-
tion. We shall consider a computer with such an operating requirement.

Division is performed by a sequence of repeated subtractions, tests,
shifts, and tallies. Separate registers are allotted to the divisor, the divi-
dend, and for totaling the quotient. A sample problem is illustrated in
Figure 6.5.1, division of 6759 by 21100.

The divisor, 21100, is stored in the divisor register (not shown). The
first step, step 0 which is not shown, is to verify that the divisor is larger
than the dividend: This being the case, the divisor is realigned by shifting
it once to the left. Thus in our example 2110 will now be used for the subse-
quent subtractions required for division. To do these subtractions the
machine uses the method of complementation and addition—a fact which
does not affect the present explanation.

The 2110 is subtracted from the dividend, 6759, in step 1. The differ-
ence, 4649, is tested to determine if it is positive or negative. Since it is
positive, this subtraction indicates that 6759 contains at least one multi-
ple of 2110. The subtraction has been tallied or counted in the quotient
register, which now holds the partial quotient, 1. The subtract, tally, and
test procedure is repeated twice more. At the end of step 3, three sub-
tractions are completed without the dividend register going negative; the
quotient register stores a 3; the dividend register has 429 in it.

In step 4, a fourth subtraction is made. It causes the dividend register
to go negative. This means that too many subtractions have been made.
Although 6759 contains 3 X 2110, it does not contain 4 X 2110. The
dividend and tally registers must be restored to their readings at the end
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Dividend Quotient
register register Description
6759 0
~2110
4649 1 (1) First Subtraction
—2110
2539 2 (2) Second “
—EEO_ TFirst
429 3 (3) Third “ Series
—2110 .
98319 4 (4) Fourth *
+2110 and Overflow
429 3 (5) Quotient Restoration
4290 30 (6) Shift
—2110
2180 31 (7) First Subtraction
—2110
70 32 (8) Second Second
—2110 Series
97960 33 (9) Third *
+2110 and Overflow
70 32 . (10) Restoration
700 320 (11) Shift
—2100
98600 321 (12) First Subtraction | Third
+2100 . and Overflow }Series
700 320 (13) Restoration
7000 3200 (14) Shift
—2110
4990 3201 (15) First Subtraction
—2110
2880 3202 (16) Second
—2110 Fourth
770 3203 (17) Third “ Series
—2110
98660 3204 (18) Fourth “
+2110 and Overflow
770 3203 (19) Restoration

FIGURE 6.5.1.

Division.

91

What happened

6759 > .1 X (21100)

6759 > .2 X (21100)

6759 > .3 X (21100)

6759 < .4 X (21100)

6759 > .31 X (21100)

6759 > .32 X (21100)

6759 < .33 X (21100)

6759 < .321 X (21100)

6759

6759

6759

6759

6759

>

>

>

<

.3201 X (21100)
.3202 X (21100)
.3203 X (21100)
.3204 X (21100)

.3203 X (21100)
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of step 3. This is accomplished by adding the divisor to the dividend
register and tallying down the quotient register (instead of tallying up).
Step 5 looks the same as step 3. The difference is that the test procedure
has been completed and a new series of subtractions will soon start.

Before that, shifting takes place; both the dividend and quotient regis-
ters are shifted to the left. This multiplies the remainder and the quotient
by 10 and is equivalent to dividing the divisor by 10. This allows the next
quotient digit to be tallied. Shifting left places 0’s into the right-hand
side of the register.

The second series of * subtraction, tally, and test” takes place in steps
7 through 9. The minuend is the remainder of the last series multiplied
by 10; the subtrahend is the divisor. The third subtraction causes the
dividend register to go negative. It and the tally are restored in step 10.
A shift left then takes place for the quotient and dividend registers.

Further series of “subtraction, test, and tally”” are continued. When
the number of series completed equals the number of digits in the divi-
dend, the division may be considered finished. This is arbitrary, however,
and depends on the machine. Here the dividend of the sample problem
contains four digits; division is finished after four series are done. The
division stops after the fourth restoration, step 19. The quotient has been
tallied in the quotient register; the remainder is left in the dividend regis-
ter. We have not bothered with decimal points or significant digits, but
the programmer must be constantly aware of them. '

Machine Division, Second Method

There is another method of performing division which eliminates the
need for restoration of the dividend register in the subtraction process.
It is best explained by referring to an example; TFigure 6.5.2 illustrates
this method.

Here it is desired to divide 560 by 3100. After alignment and testing
a first subtraction is performed in step 1. Since the dividend register did
not go negative, another subtraction may be made. This is done in step 2.

The second subtraction results in an overflow of the dividend register,
indicating that the dividend register now contains a negative quantity.
Instead of restoring the dividend register and the quotient register, this
step is omitted.

Step 3 consists in shifting the dividend and the quotient register. But,
now, instead of subtracting the shifted divisor, it is added. Since we have
reversed the method of processing, we must also reverse our tallying; we
tally down. .

Step 4 demonstrates what has happened after the first addition. The
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dividend register is increasing and thus going in the positive direction.
On the other hand, the quotient register has been tallying down.

In step 5 the second addition causes the dividend register to change
signs. Here, changing signs indicates that the determination of this quo-
tient digit has been completed. In the simple problem illustrated the
answer has now been reached. In the quotient register is the quotient, 18,
and the remainder in the dividend register is 2.

Dividend Quotient

register register Description What happened
560
_310 .
250 1 (1) First Subtraction 560 > .1 X (3100)
—310
9940 2 (2) Second = “ 560 < .2 X (3100)
and Overflow
+31 20 (3) Shift
9971 19 (4) First Addition 560 < .19 X (3100)
+31
0002 18 (5) Second Addition 560 = .18 X (3100)

FIGURE 6.5.2. Division, second method, example.

In problems involving large numbers, the quotient will have more than
two digits. The division process will alternate then between subtraction
and addition. The tallying process will alternate between tallying up and
tallying down.

This method eliminates the need to restore the dividend and quotient
registers. Comparison of the two methods shows that the shorter method
depends on the problem and is determined by whether alternate quotient
digits or their complements are larger. However, the average of a large
number of division problems there is a definite saving with the second
method.

More equipment is required to do division by the second method, and
the additional cost of the machine must be balanced against the small
saving in time.

PROBLEMS

1. In the fashion of the examples of this chapter, show in detail how machine
arithmetic is done on the following cases:

e ST
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(a) 98765 + 43210

(b) 98765 — 43210

(c) 43210 — 98765

(d) 43210 X 98765

(e) 43210 <+ 98765 (First Method)
(f) 43210 + 98765 (Second Method)

. Derive a formula for the machine time required for multiplication in terms of

the number of digits of the multiplicand or multiplier using A for the add or
subtract time, S for the shift time, 0 (nothing) for the digit check time, X;
for the digits of the multiplicand, and ¥ for the digits of the multiplier.

Do the same for division for both methods.

Multiplication of X by 28 (for example) can be done by subtracting the
multiplicand twice from zero, shifting the multiplicand X to the left and
adding it three times to the product-so-far. This yields 30X — 2X = 28X.
Show how this could be built into a machine using a chart similar to Figure
6.4.1, accurately describing same.

- Derive a time formula for Problem 4 using the method described in Problem 2.




SEVEN

NUMBER SYSTEMS
AND COUNTING

7.1. INTRODUCTION

The concept of counting and numbers is easy to grasp intuitively
and to use in everyday situations. A more intensive examination of this
concept is in order before we attempt to investigate automatic methods
of calculating. This will help us understand the functioning of the com-
puter, which depends so heavily on numbers and counting.

The most primitive people are able to use the principles of counting
in their daily dealings with one another. Some of the higher animals
especially primates, can distinguish among different numbers. Here it is
noted, then, that the concept of counting and its use does not depend on
mathematical justification. However, we are interested in installing a
counting system into a computer and so we must be aware of these mathe-
matical foundations.

The concepts of group and individual essential to numbers and count-
ing are now discussed.

Groups

Number is the property of a group, set, or plurality of individuals.
The property of fiveness is common to a bunch of five bananas, a com-
95
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mittee of five senators, or the sides of a pentagon. The delineation of the
group depends, for its clarity, upon the delineation of the individuals or
units that are the members of the group. The boundary distinguishing
one individual from another must be clear.

In the examples of the last paragraph, the name of the group and the
name applied to the members of the group can become confused. The
group of senators is called the committee. It is this group, the committee,
that has the property of fiveness if the committee consists of five senators.
The name of the five-sided figure is the pentagon; the group with the
characteristic of fiveness is “the sides of the figure called the pentagon.”

The individuals encountered are of two types. The primary or ele-
mentary unit cannot be subdivided without losing its identity. Thus,
neither the senator, the banana, nor the pentagon side can be cut up with-
out losing its identity as a whole senator, banana, or side. On the other
hand, a secondary unit, such as the committee or bunch, can be divided to
form two committees or bunches. These secondary units must be defined
further by some delineating property such as “the committee on finance
for the Eighty-first United States Congress”” or “the bunch of bananas
I just bought.” This delimits the secondary unit so that it cannot be par-
titioned without losing its identity. This applies to tertiary groups, which
are groups whose members are groups of primary units, and to even
higher groups which have as members lower-order groups.

In the banana business, a “‘stem” is the term applied to an ensemble
of bananas that grew on the same branch of the banana tree. A stem will
have several bunches or “hands” as the banana, merchant calls them.
A hand is a group of bananas growing from the same point on the branch.
Here the “stem,” “bunch,” and “banana’ are the names respectively of
a tertiary group, a secondary group, and an individual.

Two stems of bananas may contain twelve hands which, in turn, com-
prise a total of three hundred fifty-eight bananas.

The person with an accounting background will recall his experiences
with subtotals (secondary groups), totals (tertiary), and grand totals
(fourth-order groups).

Philosophy and Definition

The concept of the individual is one with far-reaching consequences.
Would you expect this idea to have ramifications in biology, law, and
ethics? The definition of the individual is important in every phase of
life. Here are a few examples.

The biologist is concerned with distinguishing a live individual from
its dead environment. He must determine whether a virus should be
included in the definition of live individual. '
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The lawyer is interested in delineating the individual from the environ-
ment too. If you swallow an apple, it will become part of you in a short
time. If you swallow a diamond, it will never be absorbed by your body.
Can you see the legal implication? '

When is a human being first to be thought of as such? Is it at the
moment of conception? of birth? or some time in between? This is a
case, you will note, of determining when there is one and when there are
two individuals. This is a moral, religious, philosophical, and legal prob-
lem, and on it hinges society’s jurisdiction over the new being.

In any case, let us consider a group composed of a single delineated
individual. We do not consider the individual, but the group which he
comprises. The group of people who wrote this book has but one mem-
ber—namely, me. A group of this sort is said to have one member.

Counting

When a secondary group can no longer be divided and maintain its
identity, it is a group of one. Such groups are unit groups having but one
member. They have in common only the aspect of “oneness.” Such a
concept presupposes an adequate definition of the individual. The concept
of two can be visualized operationally as the process of “adding one”
applied to an already established group. “ Adding one”’ consists of open-
ing the group boundary and inserting a new valid member within it. The
group is now a group of “two.” The concept of three is similarly described
operationally as the process of augmenting the group of two by one more
individual or “adding one” to a group of two. The extension to further
numbers is immediately apparent. The successor of group A is the group
obtained by “adding one” to group A. Thus, 4 is the successor of 3.

The process of “adding one’ is acceptable on an intuitive level. When
another person walks into the room, the group of people in that room has
increased by one. Similarly, when another fruit is picked from the tree,
it is “added” to the basket.

The essential points in understanding numbers are the delineation of
the individual and the process of “adding one’’—the concept of successor.
Note here that all the numbers used in counting can be generated from
these two concepts. These numbers—the ones used in counting—are
called natural numbers. Possibly this term was applied because these
numbers sprang up naturally without any theoretical background.

7.2. NATURAL NUMBERS

Man first became aware of the importance of counting many thou-
sands of years ago and, in so doing, made use of the ‘“natural numbers.”
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When communication between people first appeared, it was a necessity
to communicate in terms of quantity. Men wanted to keep track of their
animals, wives, and food—to count their wealth. A different symbol was
used for each natural number. At this stage both the symbols and the
counting process were limited. People conceived of counting only to a
limited number—mainly because they did not need to count further. The
Mayans could count up to twenty. They had a symbol for each number
and a symbol which represented any amount over twenty. Such a system
of counting with a symbol for each number is called a baseless system.
This is contrasted with systems with bases to be discussed later in the
chapter. A parallel to the baseless number system is found in the Chinese
language. The Chinese use a different symbol for each spoken word and
hence for each concept. They do not have an alphabet, which is in a sense
the language equivalent of a base system. This explains why no practical
Chinese typewriter is available today.

All the natural numbers can be generated by the process of “adding
one.” Also any two natural numbers can be “added”’ together. “Add A
to B” means that the process of “adding one” is to be applied to the
number B a number of times equal to A. We must find the successor of
B, the successor of the successor of B, and continue to find successors
until this has been done 4 times. The result is the sum of 4 and B. Thus,
add 3 to 5 means find the successor of 5, 3 times: the first successor of 5
is 6; the second successor of 5 (the successor of 6) is 7; the third successor
of 5 (the successor of 7) is 8, the result of adding 3 to 5. The process of
adding two natural numbers is termed “closed.” This means that if any
two natural numbers are added together, the result is another natural
number. In general a set is said to be closed with respect to a process if,
when this process is performed on two members of the set, the result is
also a member of the set.

7.3. NEXT LOGICAL STEP

We have discussed the method for increasing the size of groups. Next,
it would seem natural to find a method of decreasing the size of groups.
This concept was not completely thought out historically until more logi-
cally advanced concepts had been developed. To maintain a logical flow
of ideas, we shall next consider the process opposite to “adding one’’ and
call it “taking one.” Thus, “adding one” changes the group from 5 to 6
and “taking one” changes the group from 6 to 5. Of course, what we are
now defining is subtraction. But the stumbling block arises when we wish
to apply the “take one” process to “1.” What happens when we take
one individual from a group of one? Well, we are left with nothing. The
concept of zero is very difficult for people to accept. After all, if there are
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no individuals, how can there be a class? The property of zero can be
applied to ‘“no apples” just as well as “no senators.” In the case of zero,
the philosopher’s question, “ What is there zero of 7’ The whole argument
seems rather esoteric, because we are all so familiar with manipulating
“gero.” But it was an uphill fight for the proponents of zero!

To go one step further means to apply “taking one” to ‘“zero.” This
generates negative natural numbers, indicated by adding the minus sign
to the natural numbers, thus: —1, —2, —3, and so on. Somehow this was
easier to grasp than the zero concept. It could be put into more practical
terms. Merchants and shopkeepers understand the notion of profit and
loss or credit and debit. To them, the sign indicates the direction of the
passage of goods or money—whether it was owed the merchant or whether
he owed it to someone else.

The “taking one” process generates all the negative natural numbers.
The entire set of numbers thus formed, the positive and negative natural
numbers and zero, makes up what is known as the integers.

The natural numbers are not closed with respect to subtraction. But
the integers are closed with respect to both addition and subtraction.
This means that the sum or difference of any two integers is itself an
integer. A basic property of the digital computer is that it deals only
with integers. This might appear as a severe limitation, but by means of
scaling and programming, it is able to handle decimals and fractions.

Multiplication and division are derived from addition and subtrac-
tion. Multiplication of A by B is defined as the addition of A to zero, B
times. Zero is used here because otherwise the definition would have to
be stated as the addition of A to itself (B — 1) times—somewhat unwieldy.
3 % 5 means adding 5 to O three times. Notice that the natural numbers
are closed for multiplication—the product of two numbers is itself a natu-
ral number. After a simple rule for dealing with signed numbers is incor-
porated (learned in high school as “g, plus times a plus is a plus,” “a plus
times a minus ... ,” and so on), it is also found that the integers are
closed to multiplication.

Division is defined a bit circuitously. A divided by B requires that a
number be found such that, when it is multiplied by B, the product will
be A. It is seen by examining a few problems in division that neither the
natural numbers nor the integers are closed with respect to division for
the quotient of two integers is not always an integer. Thus, 5 divided by
3 does not yield an integer. The digital computer can do division only by
giving as an answer a quotient and a remainder. Thus, the computer
says that 5 divided by 3 is 1 with a remainder of 2; it can answer only in
terms of integers. ‘

The process of division generates what are called rational numbers—
all numbers which can be expressed as the quotient of two integers. By
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further algebraic manipulation, the irrational numbers, such as 4/2, can
be generated. Such numbers were accepted historically long before the
concept of zero was accepted. In ancient Greece old Pythagoras found
that 4/2 was the hypotenuse of an isosceles right triangle with unit sides.

7.4. BASES AND BUNDLES

Now that we have a system of counting and further, a system of inte-
gers and a symbol for many of them, we find that we are still limited. In
order to use a variety of numbers, we require a large vocabulary of sym-
bols to represent these numbers. To remove this limitation, a system of
counting using a base was developed. To pictorialize this concept, we
will think of combining units in bundles or packages.

The Principle of Bundles

To represent a number by means of bundles, we must first fix the size
of the bundle. We will illustrate this by first using a bundle of size twelve.
Twelve is chosen because it will divorce us from the decimal system which
we are now used to (the word “twelve’ does not carry the decimal impli-
cations of another number such as thirteen), but it will also be familiar to
us because of the English system of counting in dozens.

We now have a bundle of size twelve. We will therefore count in
dozens. To represent a number, say seventeen, we will first count out a
unit of a dozen and see what is left over. In this case we will have 1 dozen
plus 5. To represent the quantity thirty-two, we would count out our
bundle of a dozen twice and have seven units left over. Thus, thirty-two
will be represented in our “dozen” system by 2 and 7, or (27),,, where
()12 indicates a base of 12 and (' )» would indicate the base B.

This system of representing a quantity by a number of bundles and
the number of units left over works fine, but we are limited when we get
to larger numbers. We must improve our concept of bundles.

The concept can be elaborated by compounding it. Thus, having con-
sidered bundles, we can conceive of “bundles of bundles.” Now, if our
original bundle size was called a dozen, the “bundle of bundles” would
then be a dozen dozen, or what we call a gross.

We can apply this principle by examining the given quantity and
counting out bundles of twelve. When we have twelve of these bundles
of twelve, we have made up a gross. We continue to count out our bundles
of twelve until we can no longer make up such a bundle. Our quantity is
then broken down into grosses, dozens, and units. Thus, the decimal num-
ber three hundred five is represented as 2 gross, 1 dozen, and 5, or (215)..

The principle may be compounded further and we may discuss “a
bundle of bundles of bundles” which, in the example, would be a dozen
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gross or in the garment trade, a great gross, and further to “bundles of
bundles of bundles of bundles,” or gross gross and so on, as you may well
imagine.

The size of the bundle is called the base. In our example the base is
twelve. Compounding of the base is actually raising of the base to a
power. Thus, a dozen is (twelve)!; a gross is (twelve)?; a great gross is
(twelve)? and a gross gross is (twelve)*.

Any natural number except 1 can be used as a base in a counting sys-
tem. We arefamiliar with the use of ten as a base and have a specific name
for the system using it—the decimal system. A common base used in
most digital computers is the number two and the system is called the
binary system. The system of twelve used above is called the duodecimal
system.

7.5. DECIMAL SYSTEM

We are all familiar with the decimal system, which uses as a base the
number ten. The various bundles are formed by taking the powers of ten.

To simplify our terminology, instead of referring to a bundle of bun-
dles, we will simply call this a 2-bundle. Similarly, a bundle of bundles
of bundles will be called a 3-bundle. In the decimal system a 2-bundle
refers to hundreds (10 X 10, or 10%), a 3-bundle refers to thousands
(10 X 10 X 10, or 10%), and so on. In general, in the decimal system
n-bundle stands for a bundle with 10" units.

Now a quantity can be written in the decimal system by placing at
the right the number of units left over after all the bundles have been
made up. The next digit to the left will represent the number of 1-bun-
dles that are left after making 2-bundles. The next digit to the left indi-
cates how many 2-bundles are left over after making up 3-bundles, and
SO on.

In such a fashion the number 3467 is used to represent the quantity
defined by

3-1034+4-1024+6-10* + 7
or 3000 + 400 + 60 + 7
One may wonder why, of all the admissible bases, the base ten was chosen.
One can conjecture that since we possess ten fingers, this may have some-

thing to do with the origin of this base. Also, the term ‘“digit” was
derived from the Latin word for finger.

7.6. OTHER BASES

Since we now realize that it is possible to write numbers with any base
and know how to interpret these numbers, we can translate a quantity
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written in any base to the decimal system. For example, if we know that
the base being used is 8, we may translate the number 743 into the decimal
system by the rules of the previous section. Thus, (743)s means

3+4-847-8
or 3 + 32 + 498 = (532)1

Note that the subscript and parentheses in “ (743)g tell us that this num-
ber is written in the base 8. : ‘
Observe now that in using any base B, there is a separate symbol for
each of the quantities, 0, 1, ..., B — 2, and B — 1. The quantity B is
always represented in a system of base B as 10. That is, in a system of
base B, there is no single symbol for the quantity B; it is always repre-
sented by the two-digit symbols 1 and 0 combined as “10.” In the deci-
mal system there is no single symbol for ten ; it is always written as 10.
Similarly, in the octal system (base 8), there is no symbol for eight; it is
written as 10. The only digit symbols used in the octal system are 0,
1,...,6 and 7. Conversion from a system of any base B, to the decimal
system may be accomplished as done in the example above. To write
this in mathematical terms, consider the number N , whose digits are,
from right to left, by, by, ..., and written as bny bn_y, ..., by, bo. In the
base B, this number stands for the quantity, * '

bo+ b1B' + b,B>+ - -+ + b, ;B*1 + b, B

This provides a rule for conversion from a system of any base B to any
other base B’. In the example below, B is five and B’ is seven:

EXAMPLE:
Convert (324)5 to base 7.

Addition,
(324)s =4 4+2-5+3-5-5 [= (89)10] | base seven

= (4)r + (13); + 3 - (34),* 135

= (97 + (13): + (135); 13

&= (155)1 _4-

155

Check: (155)7 =54 65-7 4+1-7-7 = (189)10
* Multiplication base seven: 5 - 5 = (34);.

Note the addition on the right in the base seven; we say “5 plus 3 plus 4
is fifteen, put down 5 and carry 1” and so forth.

n
* For the mathematically oriented, N = X b;B*

1=0



sgc. 7.6 = OTHER BASES 103

There is another method for conversion which is valuable, especially
for conversion of numbers of base ten to another base. Below the number
468 base ten is converted to base seven.

7| 468

66

9
1

MIW =2}

‘Read up along arrow.

The method uses the principle of making 1-bundles and finding the
remainder in units, and then making 2-bundles of the 1-bundles and find-
ing the remaining 1-bundles and so forth.

The first step is to make as many 1-bundles as possible. Divide 7 into
468; the result is 66 with 6 remaining. There are the 66 1-bundles in 468
with 6 units left over. Next, divide 66 by 7. The result announces that
there are 9 2-bundles in 465 with 3 1-bundles and 6 units left over. The
last step shows that there is 1 3-bundle in 465 with 2 2-bundles and so on,
remaining. Thus, 465 is 1236 in the base 7.

The successive quotients are listed under the previous quotients; the
remainder is listed at the right of the dividend; the divisors are continued
until the last quotient is no longer divisible by the base; the result is read
by following the arrow.

7.7. THE BASE TWO—THE BINARY SYSTEM

The base two is most important to understand in the study of com-
puters. The reason is that electronic devices are available which have
two possible stable states, called bistable devices. Examples of such
devices are the relay which can be energized or de-energized, the magnetic
core which can be saturated in either of two directions magnetically, and
the multivibrator circuit for which one tube (or transistor) may be con-
ducting and the other nonconducting.

For any given number system there are symbols for every quantity
not exceeding one less than the base. This means that for the base two
there are symbols only for the quantities zero and one: 0, 1. Of course,
these two symbols can be used to represent the two possible states which
might exist in bistable devices and are sufficient for the purpose.

A binary number of any size consists only of 0’s or 1’s; each digit of the
binary number is either a 0 or a 1. This binary digit, either 1 or 0 has a
special designation. It is called a bit. A five-digit binary number is
thus called a five-bit number.

Any quantity can be represented in the binary system if sufficient bits
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are available. To put it a different way, every decimal number has a
binary equivalent.

The binary number may be translated into the decimal system by

TABLE 7.7 BINARY NUMBERS AND THEIR DECIMAL EQUIVALENT TO FORTY-NINE

Decimal Binary Decimal Binary
0 000000 25 011001
1 000001 26 011010
2 000010 27 011011
3 000011 28 011100
4 000100 29 011101
5 000101 30 011110
6 000110 31 011111
7 000111 32 100000
8 001000 33 100001
9 001001 34 100010

10 001010 35 100011
11 001011 36 100100
12 001100 37 100101
13 001101 38 100110
14 001110 39 100111
15 001111 40 101000
16 010000 41 101001
17 010001 42 101010
18 010010 43 101011
19 010011 44 101100
20 010100 45 101101
21 010101 46 101110
22 010110 47 101111
23 010111 48 110000
24 011000 49 110001

using the method of the previous paragraph. Thus the number (1001101),
stands for

14020+ 1-2241-2940-2940-2541-28

1 + 4 + 8 +64 = (T
and consequently represents the decimal number 77. Similarly, by the

method of the previous section, a decimal number may be converted into
the binary system. To convert the number 77 into its binary equivalent,
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1

we perform the process below. The first few steps are shown separately:

2| 77 |1
2| 77 1 38 [0
2| 77 |1 38 |0 19 |1
2[7_7| 38 19 9
Start 1st Division 2nd Division 3rd Division
277 1
38 |0
19 (1
ot
410
2 |0 = 1001101
1
Complete

A list of the binary numbers from 0 to 49 appears in Table 7.7.

Binary Arithmetic

A table could be constructed for binary addition, but it would have

only four entries:

0+0=0 O041=1

1+0=1 14+1=10

or
+10 |1
0|1
1 1|10

Here is an example of binary addition:

13:
21;
34:

01101
10101

100010

Subtraction can be done directly,

34:
21:

13:

100010
010101

001101
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or with complements as the computer would do it:

34: 0100010

complement (21): 1101010
add 0001100
carry 1

13: 0001101

Notice that the complement of a binary number is formed by substi-
tuting 1’s for 0’s and 0’s for 1’s.

Multiplication is done by shifts and addition using the multiplication
table:

21 10101
13 01101 x| o1
63 10101 o
21 10101 o
273 10101

100010001 = 256 4 16 + 1 = 273

Let us next divide 150 by 13 after translation into binary. The result
should turn out to be 11,0 with a remainder of 7:

1011 11
110110010110 13[150
1101 13
1011 20
0000 13
10111 i
1101
10100
1101
111

7.8. ARITHMETIC WITH OTHER BASES

Arithmetic in number systems with bases other than two or ten simply
requires tables of addition, subtraction, and multiplication. With a little
practice skill can be acquired. Let us examine a couple of systems with
other bases.

The Duodecimal System

We require two new symbols and names for them. Let us use # for 1_;en
and call it dec (pronounced “deck’”) and * for eleven and call it elf (like
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an imaginary man). We count in the duodecimal system, ““one, two, ...,
nine, dec, elf, ten, eleven, ..., nineteen, decteen, elfteen, twenty, ...,
twenty-nine, twenty-dec, twenty-elf, thirty, ....”

Let us add two numbers:

385%
7946

*645

12

As we add we say, “Six and elf is fifteen; put down five and carry one.
Five and one is six and dec is fourteen; put down four and carry one.
Eight and one is nine and nine is sixteen; put down six and carry one.
One and three is four and seven is elf.”

Subtraction and multiplication follow the same pattern. The prob-
lems at the end of the chapter provide practice.

The Quinary System

We have all the symbols we need for the system of base five. Remem-
ber there are now no symbols used for five, six, seven, eight, and nine.
Let us try multiplication in this system. :

243
324

2132
1041
1334

201442

13

As we multiply we say, “Four times three is twenty-two; put down two
and carry two. Four times four is thirty-one and two is thirty-three; put
down three and carry three. Four times two is thirteen and three is
twenty one. Next, two times three is eleven; put down one and carry one.
Two times four is thirteen and one is fourteen; put down four and carry
one. Two times two is four and one is ten.” After we find the last line
(1334) we add the three lines: “Put down two; one and three is four. One
and four is ten and four is fourteen; put down four and carry one. One
and two is three and three is eleven; put down one and carry one. One and
one is two and three is ten; put down zero and carry one. One and one
is two.”

You see, it’s just a matter of knowing the addition and multiplication
tables.
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PROBLEMS
1. Describe the various systems of measure as multiple-base systems:
(a) English length (b) time (c) angles
(d) fluid measure (e) weight (f) British currency

2.

4.

5.

7.

8.

9'

The Romans had a system of number notation which might be called biqui-
nary, using letters (I, V, X, L, C, D, M). State rigorously the rules for
writing any number in the Roman number system. State the rules for addi-
tion and subtraction in this system. And for multiplication. Translate and
perform, in Roman:

137 791 256
+963 —4908 X32 16(1024

Give several instances in the practical world where the use of (+) and (—)
are obvious with reference to:

(a) time (b) distance (c) magnetism  (d) electricity

How is the assignment of (+) and (—) made? Try to define right and left
without pointing. Refer to the dictionary.

Are the natural numbers included in the integers? What is the difference
between “inclusion’” and a “one-to-one correspondence’’?

Incorporate the concept of sign into the definition of multiplication; of
division.

Think a little more about the concept of the individual as applied to the
human. Characterize the bodily functions in respect to the boundary of the
individual: eating-excreting; inhaling-exhaling. What can be said about the
alimentary canal and the respiratory system in this respect? How would you
define an alien body in regard to the human being?

Give examples of hierarchies of groups (primary, secondary, and so forth)
using

(a) Written-language elements (letters, . ..)
(b) Spoken-language elements

(¢) Field-army elements (soldier, . ..)

(d) Life elements (cell, ...)

Translate to base 10.

(a) (100110011);  (b) (1202121); (c) (313121);  (d) (522415)s
(e) (423132); (f) (381)s (g) (76153)s (h) (817423),
(i) (887#31)11 [# = 10,4 (G) (%#3971)12 [* = 11,]
Translate to systems of base 2, 3, 4, 5, 6,7, 8,9, 11, 12 [# = 1050, * = 11y5]
(a) 95 (b) 371 (c) 4238 (d) 5555

(e) 78137 (f) —1932

Perform on each base (2, 3, etc.) above:

a+b d—c f—a

b+c e+ f b—f
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10. Multiply in each base

bXe aXb bXe
Divide in each base
b/a c/g c/d

11. Make one table each for 4+, —, X, + for the base 6.
12. Show machine subtraction in the base 6 for

(a) 531 — 135 (b) 135 — 531
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MACHINE LANGUAGES

8.1. INTRODUCTION

Let us review the three languages used in dealing with computers.
The original input document and the final reports the machine produces
are written in human language. Intermediate language is used to expedite
the input and output of information. Finally, all the data handling and
processing occurs within the computer in machine language. It is this
machine language which will concern us now.,

The machine language found exclusively in modern computers uses
“yes-no” information—bits. The way in which these bits are associated
to represent characters is called a code and this code constitutes the
machine language.

Codes* are chosen with different aims in mind. One code is con-
structed so that a check is constantly kept on information as it is trans-
mitted from one section of the computer to another; another is chosen to
check processing and arithmetic ; & third, to simplify and expedite the
calculations which the machine performs ; still another is made for sim-
plicity of translation from intermediate or human language into code.
One code may possess several of these qualities.

* The reader might review here the distinction made on page 22 between ‘‘code”
as applied to machine language and “code’’ ag applied to the language representation
that calls forth a given machine order.

110
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The Binary Number System as a Code

It is a common practice in scientific computers, where the task is
mainly calculation, to use the binary number system (discussed in Chap-
ter 7) as the machine coding for information. Human-language code can-
not be translated simply into binary coded words. On the other hand, a
high efficiency in calculation and manipulation results using natural
binary numbers, since fewer bits per word are required than in just about
any other code. But note that there is no character-to-character corre-
spondence between the human-language word and the binary coded word,
only a word-to-word correspondence.

As an example, remember that the number 347 translates into the
natural binary number, 101011011. That may be called its natural binary

"~ code. ;

To determine the number of bits, N, necessary in the natural binary
coded word to translate an N-character numerical human-language word,
the following relationship is used:

ov'-1 < N £ 2V (8.1.1)

Since 256 < 347 < 512 or 28 < 347 < 2°, nine bits are required to encode
347 in natural binary code: ' '

101011011

8.2. BINARY DECIMAL CODES

The difficulty in translation for natural binary coding (the name used
to distinguish the binary number system when used as a code) results
from the absence of a character-to-character correspondence between the
human language and the code. If we sacrifice the efficiency of arithmetic
in the natural binary coding, we may gain by the ease of translation in
using binary decimal codes. A binary decimal code uses binary digits so
that there is a correspondence between a decimal character and a set of
bits. Translation from the human language is done very simply because,
for each character in the human language, one set of bits is substituted in
the machine language. A word of N human-language characters is trans-
lated into N bit sets in the machine language.

Another advantage to setting up this character to bit-set correspond-
ence is that it can be easily adapted to encode alphabetic characters. This
can be done either by using more bits per character or by using two digits
to represent an alphabetic character (see Section 8.7).
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Natural Binary Decimal Code

A unique code using binary numbers is assigned to each decimal digit.
This requires a minimum of four bits; a three-bit code has only eight
possible combinations.

The code using a four-bit binary combination to represent each deci-
mal digit is shown in Figure 8.2.1. These are called natural binary coded
decimal numbers (NBCD) because they use one of the first ten binary
counting numbers as the code for each decimal digit. The other six com-
binations are not used and are called forbidden combinations; when one of
these is observed it is due to an error or an uncorrected partial result in
arithmetie.

Digit Code Digit Code Digit Code Digit Code

0 0000 3 0011 6 0110 9 1001
1 0001 4 0100 7 0111
2 0010 5 0101 8 1000

FIGURE 8.2.1. Natural binary coded decimal.

To code an N-digit decimal number we require N four-bit binary
code sets. The number 347 is thus coded as 0011 0100 0111, Spaces are
inserted between the code sets only for convenience in reading.

The computer is concerned with processing information coded in this
form. How is it able to perform addition with these natural binary coded
numbers? Let’s see what happens when different pairs of digits are added.

Suppose the sum of the two decimal digits is nine or less. The rules
for binary addition work fine. Try adding the NBCD digits 3 and 5 in
Figure 8.2.2.

Using binary rules Destred

0011 1001 1001
40101 <0010 -+0010
1000 . 1011 1 0001
FIGURE 8.2.2. NBCD addition. FIGURE 8.2.3. NBCD addition of 2 and 9.

Next, suppose that the sum of the two digits is greater than nine. The
desired coded result is a coded sum digit and a carry. The result of adding
coded 2 (0010) to coded 9 (1001) should be coded 1 (0001) and a carry.
This is shown at the right side of Figure 8.2.3. The result, using binary
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addition values, appears on the left in I'igure 8.2.3. Note that the result
is a forbidden combination (a code for which there is no corresponding
digit).

If we make a list of all possible digit additions, it becomes apparent
that the forbidden combination is a natural binary number just ten greater
than the proper code. The coding forms a counting system of base sixteen.
The code for the proper sum digit may be generated by subtracting the
code for ten (the decimal base) from the binary code obtained from the
binary addition rules. It is equivalent to adding the binary code for six
(six is the difference between the two bases, ten and sixteen; six is the
sixteen’s complement of ten). This will always create a carry (adding a
number greater than nine to six in a counting system of base sixteen
always produces a number sixteen or larger and hence creates a carry).

TFigure 8.2.4 shows both methods applied to the example of Figure
8.2.3. Notice the carry created by the second method.

Sublracting ten Adding siz Uncorrected Corrected

1001 © 1001 1000 1000

+0010 0010 + 1001 1001

1011 + 0110 10001 + 0110

—1010 10001 10111
0001

FIGURE 8.2.4. NBCD addition of 2and 9 FIGURE 8.2.5. NBCD addition of 8 and 9

and correction. with and without correction.

When the sum of the two decimal digits is sixteen or greater, the sum
obtained by using the rules of binary additions creates a carry, but the
sum digit is not correct. It is corrected by the same means—adding the
code for six. Since a carry was created in the first addition, the correction
does not create a second carry. This is illustrated in Figure 8.2.5 (with
and without correction).

Notice now that if correction is required, the coded sum using binary
addition will generate a carry when a binary coded six is added to it and
not otherwise. A rule by which the computer can determine what cor-
rection is necessary is now stated.

Rule for Adding Natural Binary Coded Digits: Add the two coded
digits using the rules of natural binary addition; if this generates a
carry, or if the result is a forbidden code, add the code for 6 to the
sum of the codes; otherwise the result is correct.
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The three examples cited are done using this rule in Figure 8.2.6.

8+46 9+2 8+9
0011 1001 1000
+0101 + 0010 -+ 1001
1000 1011 10001

+ 0110 + 0110
10001 10111

FIGURE 8.2.6. NBCD addition using the Rule.

8.3. EXCESS THREE BINARY DECIMAL CODE

This code is formed by adding the natural binary decimal coding for
three to the natural binary decimal code of the decimal digit being coded.
This is shown in Figure 8.3.1. It is familiarly referred to as X.S3.

9’s
Digit code Complement code
00011 91100
10100 81011
20101 7 1010
30110 6 1001
40111 51000

FIGURE 8.3.1. XS3 code.

The arrangement of the listing makes it obvious that a digit and its
9’s complement have complementary coding.

. The number 347 is coded in XS3 as 0110 0111 1010.

X33 coding has four advantages: it is simple to translate; arithmetic
may be performed in this code with ease; a digit and its 9’s complement
are complementary in this code; the representation of the decimal digit
zero does not consist of four 0’s—in fact no decimal digit is coded as 0000.

Addition of XS3 Digits

Figure 8.3.2 shows several examples of addition of two XS3 digits and
the correction necessary to obtain the proper sum digit code. Since each
digit code is three more than the natural binary code for the digit,
when the XS3 codes are added using the rules of binary addition,
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the result is a code which is six greater than the natural binary code for
the sum of the two digits. When the sum of the digits is nine or less, the
sum of the XS3 codes is fifteen or less and no carry is generated. To cor-
rect this sum, which is three more than it should be, a binary three (XS3
coded 0 or 0011) is subtracted from it. The diminished result is then three
more than the natural binary code of the sum and is, hence, the XS3 code
of the sum. Examples of this are shown in Figures 8.3.2(a) and 8.3.2(b).
The sum of the codes is six more than the proper binary sum and the

@ 142 ®) 345 © 9+2 @ 849

0100 0110 1100 1011
40101 +1000 +0101 1100
1001 1110 10001 10111
—0011 —0011 +0011 +0011
0110 1011 10100 11010

FIGURE 8.3.2. Addition of XS3 digits with correction.

corrected sum of the codes is three more than the proper binary sum and
is hence the XS3 code of the sum.

Suppose that the sum of the two digits is ten or greater. The sum of
the codes is sixteen or greater. In a four-bit system, X and (X + 16)
have the same code. Let us add A to B. The XS3 code for A and B
respectively is A; and Bj given by

A=A+ 3 (8.4.1)
B;=B+3 (8.4.2)
Add these codes to get a sum Cé.
05 = Aa + B3 (843)
—A+B+6 (8.4.4)

Assume also that there is a carry so that the proper sum digit, C, is

C=A+B—-10 (8.4.5)
C=A+B+6)—6—-10 (8.4.6)
_ As + Ba - 16 (8.4.7)

But because of the property of the four-bit word that X is the same as
X + 16,

C = A4:+ Bs (8.4.8)



116 MACHINE LANGUAGES ® CHAP. 8

The excess three code for the sum digit is called Cs, and

C;=C+3 (8.4.9)
so that

Ci= A3+ B; + 3 (8.4.10)

To add two digits coded in NXS3 whose sum is greater than nine, the codes
are added and a binary 3 (XS3 coded 0 or 0011) is added to the sum. This
is demonstrated in the examples, Figures 8.3.1(c) and 8.3.1(d). The com-
plete rule for XS3 addition may be stated as

Rule for Adding X83 Coded Digits: Add the XS3 codes using the rules
of binary addition; if this generates a carry, add 0011 to the sum;
otherwise subtract 0011 from the sum (or add 1101 and neglect the
carry).

8.4. OTHER FOUR-BIT BINARY CODES—WEIGHTING

There are innumerable four-bit codes which can be set up to represent
decimal digits. The exact number of codes, in fact, is

16-15--- 7 = 16!/6! = 29,059,430,400

This is because any of the sixteen codes can be chosen to represent first
decimal digit; any of the remaining fifteen codes can be used for the next
decimal digit; any of the remaining fourteen codes can be used for the
next decimal digit; and so fourth. Most of these codes do not have a sim-
ple rule of generation. Quite a few codes can be generated by a system of
weights discussed below.

Consider a set of four weights, W,, W, Wi, W1, each of which is an
integer. One of these weights is assigned to each of the four bits of the
code. The decimal digit, D, is encoded as dsdsdad,, where each of the d’s
is either 1 or 0, so chosen as to satisfy the relationship below.

D = d4W4 + d:sWa + dﬁVz + dJ’Vl
6421 System

To demonstrate this principle let us take a system of weights, 6, 4, 2, 1.
The digit 3 is then encoded as 0011 because this is the only set of bits
which satisfies the relationship above. Thus,

3=0X64+0x4+1X2+ 1X1
Similarly, the decimal digit 8 will be encoded as 1010 because
8 =1X64+0X4 + 1X2 +0x1
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However, a difficulty arises when the decimal digit 7 is to be encoded.
It can be encoded with this system of weights as either 1001 or 0111.
In order to have a unique coding for each of the decimal digits, it is nec-
essary to have an additional rule or rules. Such a rule in this case might
be: “If there is more than one acceptable coding for a digit, choose
the coding for which ds = 0.” This would yield a unique coding with
7 = 0111 and 6 = 0110. Using the code we have generated above, the
number 347 translates into 0111 0100 0111 and 891 into 1010 1011 0001.

A weighted four-bit decimal binary code is described by giving the
four weights and additional rules to make the code unique. The rules for
addition of numbers in a weighted code must be derived for each weighted
code. Note that the weights 8421 define the NBCD system.

8.5. FIVE-BIT CODES—DECIMAL BINARY WITH
PARITY CHECK

The need for accuracy in handling all processing within the computer
is paramount. A means is available for protection against the corruption
of the code by the loss or pickup of a single bit. This method requires an
extra bit called a parity bit to be used in the coding of each decimal digit.
This bit is adjusted so that the total number of 1’s in each binary decimal
bit set for the code is even (odd). The parenthetical word indicates that
either “odd”’ or “even’ can be chosen, but once the selection is made it
remains the same for all digits coded. Examine the sixteen possible four-
bit combinations. There are exactly eight which contain an even (odd)
number of 1’s. Therefore, to obtain ten separate codes with an even (odd)
number of 1’s, it is necessary to use combinations of five bits each. One
customary procedure is to use an existing four-bit code and augment it
with a fifth bit to make the number of 1’s in the code even (odd). To
exemplify this, an odd-parity natural binary decimal code is shown in
Table 8.5.1. The final four bits are NBCD; either a 1 or a 0 is inserted in
the initial position to make the total number of 1’s odd.

TABLE 8.5.1 Obpp Parity NATURAL BINARY DECIMAL CODE

Digit P8j21 Digit P8421
0 10000 5 10101
1 00001 6 10110
2 00010 7 00111
3 10011 7 01000
4 00100 9 11001
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Another code of importance is the odd-parity XS3 code of Table 8.5.2.

TABLE 8.5.2 Obp Parity XS3 copr

Digit PSj21 Digit P8421
0 10011 9 11100
1 00100 8 01011
2 10101 7 11010
3 10110 6 11001
4 00111 5 01000

The listing in the table places 9’s complements in the same row. Notice
that the coding of 9’s complements has complementary bits except for the
parity bit, which is the same for both the digit and its complement.

Two-out-of-five Code

Another code which has an extremely good automatic check built into
it, although it is less convenient for arithmetic, is called the two-out-of-
five code. There are ten possible arrangements of the five bits each of
which has exactly two 1’s in it. These arrangements may be set up in a
semi-weighted form as shown in Table 8.5.3. The sum of the weights

TABLE 8.5.3 Two0-0UT-OF-FIVE-CODE

Digit Weight
74210
11000
00011
00101
00110
01001
01010
01100
10001
10010
10100

© 00 IO DB W= O

times codes is equal to the digit to be coded except for 0 (whose weights
total eleven!).
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8.6. BIQUINARY CODE

Biquinary code is a two-out-of-seven bit code. (There are exactly two
1’s and five 0’s in each digit code.) It is a weighted code. Since there are
a constant number of 1’s in the code, it is a self-checking code. By the
same token, no character consists entirely of 0’s.

TABLE 8.6 BIQUINARY CODE

Digit 50 [ 43210 Digit 60 /[ 43210
0 01 00001 5 10 00001
1 01 00010 6 10 00010
2 01 00100 7 10 00100
3 01 01000 8 10 01000
4 01 10000 9 10 10000

The system of weights which defines the biquinary code, Table 8.6, is
5,0/4, 3,2.1,0. A 1is found on each side of the slash. The left-hand 1 is
called the quinary bit; the other 1 is the binary bit. Addition in the biqui-
nary system is not too difficult, because the successor relationship dis-
cussed earlier in connection with addition is defined simply as a shifting
to the left of the binary bit. Thus, in adding 1 to 0, the right-hand binary
bit moves from the 0 position to the 1 position. In adding 1 to 1, the
binary bit moves from the 1 position to the 2 position, and so forth. Add-
ing 1 to 4 moves the binary bit from 4 to 0 and the quinary bit from 0 to 5.
A similar condition applies in adding 1 to 9. The binary bit moves from
the 4 to the 0 position; the quinary bit moves from the 5 to 0 position and
a carry is created.

The qui-binary system is similar in principle to the biquinary system.
The weights used are 8, 6, 4, 2, 0/1, 0.

8.7. ALPHABETICAL CODING

Computers that handle primarily arithmetic problems, such as the
Univac® 1101 or 1103 or the IBM 704, do not have any need to handle
letter-symbol information. In the business world, however, dealings are
between people or organizations and concern goods. People, organiza-
tions, and goods all have names; hence they require the use of alphabetical
symbols. A business computer is as concerned with operations upon
alphabetical data—editing, translating, manipulating, and storing—as
well as arithmetic; sometimes the business computer does little or no
arithmetic.
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‘When information may consist of both numbers and letters, it is some-
times called alphanumeric (or alphameric) information; business com-
puters almost always handle alphanumeric information. How is it coded?

Double-Numeric Alphanumeric Coding

In a binary-coded decimal computer a simple approach to coding is to
use two decimal digits to code letters. This system is used in the Datatron
205. Here the letter b is represented by the number 61, ¢ is represented
by 62, and so forth. When numbers are to be used, they too must be
coded in this double digit system: 0 is coded as 40, 1 is coded as 41,
and so forth.

The Datatron 205 uses the NBCD system. To code a letter into
machine language we do a double conversion:

— 61 = 01100001
If an odd-parity bit is included so that there are five bits per digit we have
= 61 = 1011000001

The double-numeric coding is rather inefficient—ten bits offer 1024
combinations—of these, only 36 (26 letters and ten digits) or a few more
(for $, @, and so forth) are actually used. But the efficiency is traded for
simplicity in logical design and conservation of parts. This may result in
a somewhat cheaper machine with a longer operating time.

Multiple-Bit Alphanumeric Coding

To encode 36 symbols we find that six bits are a minimum. Five bits
offer 32 combinations—not enough; six bits offer 64 combinations—more
than adequate.

TFigure 8.7 shows the Univac® code. The table is arranged according
to a four-by-sixteen array. The “four’ direction is a two-bit portion of
the six-bit code called the zone: the other four bits follow the XS3 pattern.
Tor the zone 00 the XS3 code yields the decimal digits, except in the cases
of the forbidden codes. Thus

000110 = 0110(XS3) = 3

The alphabetical sequence of letters follows the number sequence in the
XS3 code in the increasing zone combinations so that, in terms of binary
representations,

0<1<2<...<A<B<...<Y<Z
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This follows since

000011 (0) < 000100 (2) < ... < 010100 (A) < 010101 (B) < ... <
111100 (Z)

This construction permits comparison of alphabetical information, neces-
sary when alphabetical information is to be in order in listing (then
CONWAY < COOK < COOLEY, and so on).

Zo::3 0000|0001 0010|0011 |0100{0101 OIIQ 0111 [1000(1001 |1010 [1011 {1100 | 1101 | 1110 | 1114
000 [«[-[0[1]2]3][4]5]6]7|8]9]" |8&](
otfersd 1o | |A[B|C|D|E|F|G|H|I |#|¢|@
olw|(Z{1[)[J|K|LIM|{N|O|P|Q|R}|/|%]|?
wlelv e+ ]7]s|TIUlVIW|X]Y|Z|%]|= [peee

FIGURE 8.7. The six-bit Univac® code.

Multiple-Bit Coding with a Parity Bit

To adapt the six-bit code for error detection during data transversion,
one extra bit is necessary. A seven-bit code is easily produced in which
all (English) letters and numerals and many symbols ($, %, and so forth)
are included and which has error-detection properties.

The Polyvac

But for this subsection, the observant reader would discover an appar-
ent inconsistency in the Polyvac description. The Polyvac is said to use
a four-bit parallel-bit serial-character code structure. Yet the program-
ming code uses letters for the commands—how can this be?

We might allow this inconsistency in a machine existing solely to
explain computer principles and programming. However, if we wish to
remedy it we might change the Polyvac to a seven-bit code machine; or
we might change the instruction code. Neither of these is appealing. But
there is an approach that is consistent, and a practical possibility. The
instruction code is really an illusory one—there are keys on the input
equipment for the alphabet. However, these keys do not enter a letter
code; they enter a digit equivalent. Thus the programmer codes the add
order as ADD but when the operator enters this into the keyboard, the
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result is NBCD coded 144 or 000101000100. Similarly, subtract is entered
as SUB, but this results in NBCD 132, or 000100110010, and so forth.

PROBLEMS

1. Write these numbers

3692581470, 7418529630, 0918273645

in the following codes:

(a) NBCD (b) XS3 (c) 2421 -
(d) 742 —1 (e) two-out-of-five (f) biquinary
2. Do this problem
3989
+22912

in these codes:
(a) NBCD , (b) XS3

3. How many are bits required in the natural binary code to represent numbers
up to:

(a) 108 (b) 5-107 () 10°
4. How many decimal numbers can be represented with
(a) 20 bits (b) 36 bits (c) 40 bits
5. Encode into NBCD, XS83, two-out-of-five, 2421, 742 —1, the following
numbers:
(a) 95 (b) 371 (c) 4238 (d) 78137 (e) —1932
6. Find in NBCD and XS3
(@) a+ b (b) a+c ) b+c
d) a+d (e) b+d ) c+d

7. Develop the rules for addition in the 5421 code. This code is the modified
biquinary code and digits five or greater contain a five bit.
8. Do Problem 6 for the 5421 code.
9. What is natural binary coded octal (NBCO)? Code (371)g in NBCO. Code
(1000)10, (1381)10 and (100101111),, into NBCO.
10. Show that NBCO is identical with natural binary. Convert (871)s to ( ).
11. Show how subtraction is done by complementation and addition in the base 8.
Do by this method:
3271
—23178

12. Put “Conway,” “Cook,” and “Cooley” into the Univac® code. How does
this yield an alphabetical order?



NINE

LOGIC

9.1. INTRODUCTION

The term logic as applied to the computer describes the interrela-
tion among the primary building blocks of the computer. It also applies
to the relationship among entities other than those used in a computer.
Since the logic connecting the functional units of the computer is similar
to the logic applying to other entities, it might be well to discuss logic
more generally.

The aim we will keep in mind is an understanding of the interrelation
of the elementary units for the performance of arithmetic, especially, as
well as the editing and transportation of information.

Entities

Various statements may be made about reality as it exists in our
environment. The relationship that exists among these statements and
their similarity to reality is referred to in a philosophical sense as logec.
The validation of propositions compounded from simple statements rests
upon the words connecting the statements. These words are called logical
connectives. One such logic connective is “and.” The proposition result-
ing from the combination of two simple statements and the connective
“gnd” is valid only when each of the original simple statements is valid.

123
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A table of logical connectives and symbols used for them in both symbolic
logic and its computer equivalent, Boolean algebra, appears as Table 9.1.1.

TABLE 9.1.1 LoOGICAL TERMS AND SYMBOLS

Mathematical

Language term Logic Equivalent Boolean
and &, * (dot)
or Vv, 4
not — (bar), ’ (prime) ~ (bar)
neither l
if ... then ... D)

if and only if ... then

Take the two simple statements, “ John is here,”” and,  Mary is here.”’
The proposition obtained from combining these two statements and the
logical connective “and” is, “John is here and Mary is here.” This propo-
sition is true only when both the statements “John is here’’ and *“Mary
is here’” are true. That is, the statement is true only when both John and
Mary are here. This first interpretation of logic deals with statements
and logical connectives.

Letter Symbols

For each of the statements discussed above, we may substitute a letter
symbol. We can also develop a vocabulary of symbols for the connectives.
If A stands for “John is here,” B stands for ““Mary is here,” and “&”’
stands for the logical connective “and,” then the proposition compounded
from these three is written simply as A & B. Since all compound proposi-
tions can be reduced by this method into symbolic propositions, this kind
of logic is referred to as symbolic logic.

Truth Values

Propositions in symbolic form can be tested for validity by substitut-
ing truth values for statements. A statement has a truth value 1 when it is
true and a truth value 0 when it is false. Many books have been written
about the concept of truth. We will refrain from digressing on this topic
and merely remind the reader that an intuitive interpretation of this word
is satisfactory. Here a statement will be said to be true when it corre-
sponds to reality (whatever that means).

A method or set of rules is devised for dealing with truth value of
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statements using 1’s and 0’s to represent these truth values. The set of
rules applying to these statements and the manufacture of the statements
themselves is covered by the study called Boolean algebra.

Boolean algebra contains rules for handling the truth values concern-
ing the connective “and’’:

l1&1=1 or 1-1=1 0&1=0 or 0:1=0

1&0=0 or 1:0=0 0&0=0 or 0-0=0
Notice the similarity between the “ &’ and algebraic multiplication. The
proponents of Boolean algebra prefer the use of algebraic symbols to logi-
cal symbols.

A summary of the three forms of connectives—language, symbolic,
and Boolean—is contained in Table 9.1.1.

Truth Tables

Another way of specifying or defining the logical connectives is to con-
struct a truth table. One column of the truth table is assigned to each of

TABLE 9.1.2 TrutH TABLE FOR & TABLE 9.1.3 TrutH TABLE FOR V

A B A &B A B AV B
0 0 0 0 0

0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

the statements constituting the logical proposition, and the last column
is assigned to the compounded proposition. A value, 1 or 0, is given to
each statement and the resulting truth value of the proposition appears
in the last column. Truth tables for three connectives appear as Tables
9.1.2,9.1.3, and 9.1.4. The first entry in the “and’’ table shows that when
A is false (A = 0) and B is false (B = 0), then the statement 4 & B is
false (4 & B = 0).

TABLE 9.1.4 TrurE TABLE FOR ‘“‘NoT”
A4 a
0 1
1 0
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Pulses

Consider two electrical wires entering a box as in Figure 9.1.1. Let
each of these wires have a voltage which is either below or above fixed
level E. When the voltage on a wire is
below the level E, it will be assigned the
A= "anp" |C=A8&B value 0; when it is above the level E, it
B Box [ will be assigned the value 1. The set of
voltages on the input wires and the associ-
FIGURE 9.1.1. The “and” box. a.tec.i voltages on the outpuf, wire are then

similar to the truth values discussed above.

If the output of the box is determined by
one of the truth tables, Table 9.1.2, 9.1.3, or 9.1.4, then this box can be
said to act in a manner similar to that logical connective.

Let us examine the “and” circuit box of Figure 9.1.1. Suppose the
voltages on the incoming wires 4 and B are as shown in Figure 9.1.2. We
are Interested in the voltages on

these lines at times ¢y, ¢s, ¢5, and . '
These are the bit times referred to
in Chapter 2. At time 4 both the __|IL_

- — ——

M

! i

[

| l A
A and B wires have pulses repre- I : | } .
senting values of 1 on them. To IH IH : I -
conform to the truth table for the i I l | .
logical function “and” of Figure ||| } I |
9.1.2, the output line C' must also { ; : : C-A&B
have a 1 on it at time ¢, (for C = 4 fy P} t3 ta

& B.) Note that the other three . . .

combinations of 1’s and 0’s for the FIGURE 9.1.2. Voltages w:lch. mlitt

presence or absence of pulses at A appaar on the whes /A,
. B, and C of Figure 9.1.1.

or B at the times £, #;, and ¢, of

Tigure 9.1.2 correspond to the other

entries in the truth table for &; the result C is 0 in all three cases (for
C=A&B.)

The &-gate

The &-block can be used like a switch: one signal, called an “enabling
voltage” or “gating voltage,” is applied to the &-block to “throw the
switch”’; a pulse on the other line can pass through the block only if the
enabling voltage is present, that is, if the switch is thrown; if a signal is

absent at the gating input, no pulse at the other input can pass through
the &-block.
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The Mzxer

The V-block is a circuit that simulates the “or’” function and dupli-
cates the “or”’ truth table; for one or more inputs an output is produced.
The V-block acts very much like a mixer except that it is digital. It pro-
duces a voltage on the output line corresponding to the largest input (pre-
sumably, they are only 0’s or 1’s).

Basic Logical Block Symbols

Other “boxes’’ can be constructed producing, for binary inputs (1 or
0), outputs that are a logical function of the input. And this function

AND : OR NOT AND NOT

b ——
- H

> O~
1= 2= O

(a) IRE

(b)

TT

19 5

® — + ® [—(c)
— _ — 7
© T | AND
AND OR NOT NoT [—(d)

= s D

FIGURE 9.1.3. Logical Block Symbols.

corresponds exactly to the truth table of one of our logical connectives.
Assemblies of these primary boxes or blocks can be made to manipulate
voltages in such a fashion as to perform our editing and arithmetic. It is
very useful to have a separate symbol for each basic logical function which
can be realized in hardware. The symbol should be unique and immedi-
ately identifiable regardless of its orientation on a block diagram. It
should also be possible to determine the function purely from the geo-
metrical consideration rather than from information written in the block.
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In addition, the shape of the block should convey which of the lines car-
ries the input and which the output signals so that arrowheads can be
eliminated.

The D symbols proposed by IRE Subcommittee 21.3 on Symbols ful-
fill the above qualifications. The proposed IRE symbols, which will be
used throughout this book, are shown on line (a). Other sets of symbols
which the reader may encounter elsewhere are found in Figure 9.1.3, lines
(b) through (e). For the IRE D-symbols the lower limit of the ratio of the
height—flat side or chord—to the width is 2 (a semicircle); there is no
upper limit. The input lines are always indicated by lines entering the D
normal to the flat side; the output is a line emerging opposite the flat side
and approximately normal to it. The &-function is indicated by drawing
a line parallel to the flat side about 2/3 the width away from the flat side.
The V function requires that a line oblique to the flat side be drawn within
the D from the flat side to the side opposite. The “not’’ function is indi-
cated by placing a little circle either at the intersection of the input line
and the D or at the intersection of the output line and the D.

You see that there is plenty of room in the D to put numbering or
identifying information. An &, V, or “not” block numbered 6 would be
indicated in our discussions respectively by &6, V6, or 6.

9.2. FUNDAMENTAL POSTULATES

There are both theorems and postulates that may be used in manipu-
lating logical entities. Some of them stem from the properties of the enti-
ties and the connectives; others are derived from these properties by
simple steps.

Hereafter in this section the Boolean notation of “A + B’ for
“AV B”or “AorB,”and “A - B” orsimply “AB” for “A & B” or “A
and B”’ will be used because of its prevalence in the computer field and its
brevity in writing.

The first two identities to be noted are

A+4=A4 (9.2.1)
and AA = A (9.2.2)

These identities are verified by examining the truth tables for A + B
and AB. “And” and “or”’ are defined by the truth tables and the proper-
ties (9.2.1) and (9.2.2) are fundamental to these definitions. Thus, A + 4
is true when A is true, and A 4+ A is false when A is false, so that 4 + 4
and A are identical; similarly, AA is true when A is true, and A4 is false
when A is false, so that A4 is identical with A.
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Commudtativity

The meaning of “and’’ and “or’’ does not depend upon the sequence
of the entities that they connect. This is stated as

A+B=B+ A 9.2.3)
and A-B=B-A (or AB = BA) (9.2.4)

This relationship (9.2.3) can be shown to hold by examining the truth
table for ‘“‘or’’ in both cases under consideration. Notice that when the
two entries 4 and B are interchanged, the truth table is unaffected. Simi-
larly, the truth table—or (9.2.4)—for the “and” function is the same if
the entries for A and B are reversed—the ‘“and’ function is true only
when both statements connected by ‘“‘and’’ are true regardless of which
comes first.

A ssoctativity

In relating several entities by using the same connective, it does not
matter how they are grouped. Thus

(A+B +C=4+ B+0) (9.2.5)
(AB)C = A(BC) (9.2.6)

This can be verified by making one truth table to represent the relation-
ships found on each side of the two above equations. The results—final
column of both truth tables—are identical.

Another way to look at it is that the “or” relationship is true when
one or more of the statements connected by or are true. Thus, the “or”
relationship is not affected by how the terms it connects are grouped
together. Similarly, the “and’ relationship is true only when all the
statements connected by “and’’ are true, so that it too is not affected by
the grouping of the terms.

Distributivity

When “and’’ and “or” are used together in the same proposition these
two groupings are equivalent,

A(B + C) = AB + AC (9.2.7)
A+ BC= (4 + B)(A4+0) (9.2.8)

These two identities may be demonstrated by constructing a truth table
for each side of the “ =’ and determining that the last columns of these
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tables are the same. This was done for (9.2.7) in Table 9.2.1. As an exer-
cise the reader should verify (9.2.8) in the same fashion.

TABLE 9.2.1 VErirFicATION OF A(B + C) = AB + AC vusing TrRuTH TABLES

A B C B+C AB+0) AB AC AB + AC

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1
I——Same———'

“Null” and “All”’ Elements

It is handy to have a concept that stands for all definable propositions.
This is the totality of all true propositions. I is the symbol for such a class
and always has the truth value 1. It is equivalent to the “1’’ used by
other authors for the all element. I is used here to avoid confusion with
the truth value, 1. Two rules for the use of the all element I are

A+TI=1I . (9.2.9)
which means, “A or anything is equivalent to anything,”
and Al = A (9.2.10)

which means, “A and ‘anything’ is equivalent to just A.”

Similarly the null class is one which contains no admissible or true
elements and hence always has the truth value 0. Where some authors
might use 0, the symbol A is used here to avoid confusion with the truth
value 0. Two identities involving the null element are

A+A=4 (9.2.11)
which means, “A or nothing is the same as A,”

and AN=A (9.2.12)

which means “ A and nothing are true is the same as nothing is true.”
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“Not”

The truth table for the not function appears in Table 9.1.4. Three
rules for its use are

A+A=1I (9.2.13)

which says ,* either A or not 4 is always true.” We may also say 4 and A
are logical complements of each other. This is the assumption of Aristotle:
logical propositions and their denial form mutually exclusive and exhaus-
tive classes. This is undeniably true for computer logic although it does
not satisfy the more sophisticated philosophers.

Also _
AA = A (9.2.14)
says “both 4 and not A at the same time are impossible.”
A=4 (9.2.15)

says “not-not-A is the same as A.”

Simplification of Logical Statements

To indicate how the above rules are used, consider the expression
(P 4+ Q)(P + R). First let us use the distributivity relation of (9.2.7)
with P + Q for B 4+ C and P + R for A. Then

(P + QP + R) = P(P + R) + QP + R) (9.2.16)
Applying (9.2.7) again to each of the terms of (9.2.16) we have
P+ QP+ R)=PP+PR+ QP+ QR (9.2.17)

The first three terms of the right side of (9.2.17) are then grouped together.
Apply (9.2.7) in reverse this time, and (9.2.17) yields

P+QP+R)=PI+E+Q) +QE (9.2.18)
Applying (9.2.9) to the first term of (9.2.18) we have
I+R+Q =1 (9.2.19)
and by (9.2.10),
PI+ QR =P + QR (9.2.20)
so that
P+ QP+R)=P+ QR (9.2.21)

This procedure might be considered a derivation of the distributivity
relation of (9.2.8).
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9.3. LOGICAL PROPOSITIONS

. It is the purpose of this section to find means for simplifying existing
logical expressions and for constructing new expressions to fulfill given
conditions. This is done by using pictorial representations such as the
Venn diagram, tabular representations such as the Veitch diagram, and
algebraic manipulations such as De Morgan’s laws.

Venn Diagrams

Geometric means may be used to convey the principles of logic. A
rectangle may be used to represent all the acceptable statements, I. The

® - | a0

FIGURE 9.31. Venn diagram FIGURE 9.3.2. Venn diagram
for proposition of proposition
A. AB.

statements of a given kind, 4, can be shown as a circular or other area.
Statements which are not of the same type as A are what is left when the
area A is removed from the rectangle. In Figure 9.3.1 the area inside the
circle represents A and that outside represents A.

Two statement types, A and B, are shown in Figure 9.3.2. The area
which is in both the A circle and the B circle represents AB; the area
within either the A or B circle represents A + B; the area outside both
circles is A + B. Now let us see an application of this simplification.

De Morgan’s Laws

These laws are stated as

AB- A4+ B (9.3.1)
and A +B=AB (9.3.2)

Reverting to our other notation for clarification, notice that 4B means
(A & B) and that AB means A & B. Hence it should be remembered
that the expressions 4B and AB are quite different.

De Morgan’s laws may be derived with Boolean algebra from the ear-
lier postulates, but we shall be content to demonstrate them using the
Venn diagrams of the previous paragraphs.

N
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Refer again to Figure 9.3.2 and notice that the sectioned area, all the
area outside A B, represents AB. This is what is left when A B, the unsec-
tioned area, is removed from the whole, I. In Figure 9.3.3 the vertically
striped area is 4 ; in Figure 9.3.4 the horizontally striped area is B. These

FIGURE 9.3.3. Venn diagram FIGURE 9.3.4. Venn diagram
of proposition of proposition
A. B.
T
17
7 ]
—" /E::
T [
FEH

FIGURE 9.3.5. Venn diagram of proposition A + B. »

are superimposed in Figure 9.3.5; the area which is striped either hori-
zontally or vertically is A + B. This corresponds exactly to AB of Flgure
9.3.2.

The demonstration of (9.3.2) by Venn diagrams is left to the reader as
an exercise.

Let’s take a simple example of this principle. Let I refer to the class
of people; let A represent all those who are rich; let B represent all those
who are males. AB then represents all the rich men; 4B represents rich
women; AB represents poor men; and AB represents poor women.

A + B then represents all those people who are either rich or male or
both. Notice that A + B represents all those who are not (rich or male,
or both); this is the same as AB = poor women. In a similar vein AB
represents all those who are not rich men; this is identical with 4 + B,
all those who are either poor or are women or both.

9.4. BLOCKS AND HARDWARE

Compound Functions

Blocks symbols may be used to indicate compound functions similar
to those discussed above if modifications are added to the notation.
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InmmsIT. When an L touching the flat side is placed on an input line to
the D figure, it indicates that a voltage on that line inhibits or blocks the
performance indicated by the symbol. Figure 9.4(a) shows the inhibit
added to an &-gate. The output of this block is A & B & X. That is,
there is an output only when both A and B are present and X is absent.
In Figure 9.4(b) the line labeled X
inhibits the mixing function. The out-

@ = rapay  Put from this block is (4 V B) & X.
B There is an output from this block
: when either A or B or both are present

(b) 1 E>\ but X is absent.

i / (AVB)&X
Not comBiNaTIONS. The circle can be

(c) A 3 TAB added to the gate or mixer to invert
B an input or output. In Figure 9.4(c)

the 4 input has a circle about it which

() A 4 VB inverts that input. The output of

B this block is therefore A & B. Since

an input signal A prevents any out-

(e} A (avB)&X put, it is often said that A is the in-
B

hibit input of &’3. Similarly, in Figure

A L 9.4(d) the circle around the output
(f) J—AVE causes the output of the mixer to be
B inverted. The output of this mixer

X S is then A V B. The block in Figure
(g) Y F 9.4(c) is referred to as &’'3 (as above)
¢ I to indicate an &-circuit with which an

inverter (or inhibit) is associated; the

FIGURE 9.4, Compound logical symbol in 9.4(d) is referred to as V'4
symbols. where, again, the prime indicates the

presence of an inverter or inhibit.

Brocks wiTH BoTH inhibit AND not. In Figures 9.4(e)' and 9.4(f) are shown
symbols which incorporate both the inhibit and not function or include
two not functions. The reader can verify these diagrams.

Functional Symbols

Very often combinations of logical elements will recur. To facilitate
description, these functional units will be given a unique symbol. This
symbol is usually a rectangle into which a designation letter has been
inserted. The symbol for the full adder, for instance, which is discussed in
detail in the next chapter, is found in Figure 9.4(g). This is a rectangle
with an F in it to show that it has the function of a full adder. The block
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has three inputs and two outputs which are unique to it, with which we
will become familiar in the next chapter.

Hardware

It is necessary to construct hardware, the circuitry and components
which carry out electronically the function represented by these pictorial

FIGURE 9.4.1. Printed Circuit Package of four 4-input &'s mixed by a 4-input V. Cour-
tesy of Computer Control Company, Inc.

symbols. In doing this it is not possible to equate the quantity of hard-
ware required for any single block symbol. The number of components
for a given symbol increases with the number of inputs and the number
of outputs. Also, in general, each tnvert and inhibit function adds to the
components required to realize the given block.

A typical printed-circuit package consisting of four four-input &’s
whose outputs are mixed in a four-input mixer is shown in Figure 9.4.1.

9.5. LOGICAL SIMPLIFICATION
Definition

To simplify a logical configuration means to reduce its complexity or
remove logical blocks without changing the intent or output of the con-
figuration. But simplification really depends on the kind of logic employed
and the design of each logical element. In general, reduction of the num-
ber of terms in a Boolean algebra equation or the number of blocks in a
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logical configuration amounts to simplification, although this is not
always so.

Consider the equation 4 = AI = A(B 4+ B) = AB + AB. Hence,
A is logically equivalent to AB + AB. Obviously in this case the single
term is simpler than the expression 4B + AB. On the other hand,
consider the equality resulting from De Morgan’s law A + B = AB.
Depending on the logical system involved, either one of these may be
viewed as simpler than the other.

Since simplification is a function of system design, our methodology
will be to develop a means for converting from one logical expression to
another, or alternately, to present a number of equivalent logical expres-
sions. The decision as to which of these expressions is simpler can then be
determined from the system concept. If there is no system criterion pres-
ent, the expression requiring the least number of terms will be considered
the simplest.

As an example of the flexibility demanded of the concept of simplicity,
consider the design of a computer using printed-circuit component cards
of a fixed design. Such a card might, for instance, contain 3 &’s of 3 inputs
each and 3 V’s of 6 inputs each. A logical simplification which replaced
3 2-input &’s (requiring 3 3-input &’s on the card) with 1 6-input V would
obviously provide a substantial component saving in view of the existing
card specification. This would not be apparent simply from an examina-
tion of the logical equations without regard to the engineering restraints.

Karnaugh Maps and Venn Diagrams

The Venn diagram is a means for simplifying logical expressions. An
example for a single variable appears in Figure 9.5.1. The universe of
possibilities I is divided into two sets by the line a. These two sets are
labeled A and A and represent a partition according to a single variable
or quality 4.

I
a
A

FIGURE 9.5.1. Single variable FIGURE 9.5.2. Two variable

Venn diagram. Venn diagram.
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Consider now the case of two variables—the Venn diagram in Figure
9.5.2 shows a further partition of the diagram of Figure 9.5.1 by the line b.
Thus b further divides the universe of possibilities I already partitioned
by the line a. The area on one side of line a is now cut by the line b into
two parts AB and AB; similarly, the area on the other side of a has been
divided by the line b into the two components AB and AB.

There is no reason why the area in the Venn diagram must be irregu-
lar. If a square is used for the area representing I, Figure 9.5.3 results.
The lines a and b cut the square into four subsquares which correspond

B b 1
Al aB | AB '
a
AB | AB
FIGURE 9.5.3. Two variable FIGURE 9.5.4. Three variable
Karnaugh map. Venn diagram.

exactly to the areas delineated in Figure 9.5.2. These two diagrams are
equivalent; in fact, the mathematician calls these two diagrams topologi-
cally equivalent. ~ :

Notice in either of the two diagrams that adjacent areas play an inter-
esting role. Examine any two areas in one of these figures. Notice first
that the expression for the combination of two simple areas is found by
connecting their symbolic representation by + (V, or). Thus, when the
areas labeled AB and AB of Figure 9.5.3 are added, the result is AB +
AB. Next, notice that a variable may be dropped or factored from the
expression representing this combination of these two areas.

Take, for instance, the two areas in Figure 9.5.3 on the right-hand side
of line b. The expression for the combination of these two areas is AB +
AB. This is obviously equivalent to simply B. Well, of course this is true,
because before the line a was inserted into the figure, the line b defined
the area on the right side of b as B.

Let us add another variable to the map. In Figure 9.5.4, line ¢ divides
the area defined by I into twice as many areas as there were previously.
It is a little more difficult to represent the irregular area of Figure 9.5.4
in a systematic form.
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The diagram of Figure 9.5.5 is topologically equivalent to that of
Figure 9.5.4. A little imagination must be used to make this diagram
useful. The line a in Figure 9.5.5 clearly cuts the area I in half. The line b
passes vertically through the center of the figure, but this line must also
be associated with the two outside vertical edges. To imagine this more
clearly, line b has been continued as a dashed line in the figure so that it
connects the lines on the outer vertical edges of the figure.

B
(__J;\
4
1/ X
/"\
——7 N\, B
b c__ b c \I ¥ 0 0
_ — — | '
A| ABC | ABC | ABC | ABC 4 D
a \\\ 0 0 %
A| ABC | ABC | ABC | ABC . }
/
a
\ b A //
NNV
N\,
\\__/\<\__,/’ i C

FIGURE 9.5.5. Three variable Karnaugh FIGURE 9.5.6. Four variable Karnaugh

map. map with two entries,

BCD(X) and CD(O).

Line c is similarly defined in the figure by a connecting dashed line.
The reason that we must go to these lengths to define these boundaries is
so that we may associate the proper squares together as being adjacent.
It is immediately clear that the two squares on the left-hand side of the
figure are adjacent to each other: they represent the expression ABC +
ABC, which is hence simplified to BC. However, we should associate the
boxes ABC and ABC together. This is pictorially presented, since we have
associated the left-hand side and the right-hand side of the areas with
line b. Therefore, the two boxes ABC and ABC lie on “opposite”’ sides
of the line b. This is seen to be true because the expression ABC + ABC
simplifies to AC. Again notice in Figure 9.5.4 that the areas ABC and
ABC are adjacent, confirming the legitimacy of our presentation.

To complicate matters further, let us consider a line d which cuts each
of the eight boxes of Figure 9.5.5 as in Figure 9.5.6, forming a total of
sixteen boxes. This transforms Figure 9.5.5 into the conventional Kar-
naugh diagram for four variables of Figure 9.5.6. Here again the bound-
ing lines which are associated together are connected by dashed lines.
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SN ) . —8—E
[T Tx L X
| 1] |
F D 0
11 ]
010 'l o|o0
P } I
_________ S
iy B! |
=1 L )
(i |
0|O { 010
Y I

FIGURE 9.5.7. Six variable Karnaugh map with two entries, ABCDF(X) and ABD(O).

The simple rule to remember is that any two boxes adjacent within the
diagram are candidates for simplification, as are any two boxes at opposite

extremes of the square. In Figure 9.5.6 the two
boxes with X’s in them represent the terms A BCD
and ABCD. The area defined by these two boxes
can hence be simplified to the expression BCD.
The four mutually adjacent boxes in the center
of Figure 9.5.6, each of which has an O in it, can
be double simplified to CD (check me!).
Functions of five, six, seven, and eight var-
iables can be simplified by the use of multiple
Karnaugh maps. In Figure 9.5.7 is shown a
quadruple Karnaugh map for six variables. The
concept of adjacency must be broadened here
'so that squares in corresponding positions in
different maps are considered to be adjacent.
Thus, the two boxes with X’s in them in Figure
9.5.7 simplify to the term ABCDF; the eight
boxes with O’s in them simplify to ABD.

FIGURE 9.5.8. lllustrating
simplification by
adjacency for Kar-
naugh maps.

The principle of adjacency can be visualized by the simple diagra{n
of Figure 9.5.8. The area F is cut by the line z. On one side of this line 1s
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found the area FX and on the other side FX. Taken together these two
pieces form FX + FX = F. The two areas are adjacent now; before the
line x was drawn, the area F was uncut. In combining the areas on either
side of the line z, we reform the area F' and cause the desired simplification.

How to Use the Karnaugh Map

Suppose that we have a function of three variables such as AB +
ABC. We will make a Karnaugh map of three variables using the layout
of Figure 9.5.5. Before simplification can be done we must fill in areas
corresponding to each term of our function. We consider the function
term by term and expand it into the “sum” of terms, each term being the

“product”’ of exactly three variables. Here
B “sum’” and ‘““product’” mean ‘““‘or”’ and
“and.” For instance, the first term of our
example is AB. But AB contains only two
variables. To expand AB into terms com-
1 posed of exactly three variables connected
by &’s we proceed as follows:

FIGURE 9.5.9. Using the Kare 0 — ABI = AB(C'+C) = ABC + ABC

naugsh map to There are boxes in our Karnaugh map

simplify AB +  which represent both ABC and ABC. We

ABC. place a 1 in each of those boxes, as in

Figure 9.5.9. Next we fill in a 1 in our

Karnaugh map corresponding to the term ABC. Our map is now com-
plete for AB + ABC.

To simplify we look for adjacencies. Note that there are two hori-
zontal 1’s which are adjacent and two vertical which are adjacent. The
horizontal 1’s have the line C passing through them and hence the reduced
expression will not contain the variable C. These two boxes simplify to
AB. The vertical boxes have the line a passing through them and so the
variable A may be eliminated between them. These two boxes simplify
to BC.

The whole map simplifies to AB + BC. The fact that one box, namely
ABC, was combined into both terms is quite acceptable.

9.6. EXAMPLES
Symbolic Realization in Logical Elements

Let us again consider one of De Morgan’s laws (9.3.1). The left s_id.e
AB can be realized in blocks as Figure 9.6.1; the right side, 4 + B 1s
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realized with the block composition of Figure 9.6.2. Suppose now we take
a train of pulses as the inputs A and B and see what the outputs are from
each construction. This was done in -Figure 9.6.3. Notice that the two

— A -
7B A+B
p—r B:@—

FIGURE 9.6.1. Logical block for AB. FIGURE 9.6.2. Logical block for A + B.

A
B

1 to t3 14

I S N
L JL
[

B

-
B M J I
[T _JT

FIGURE 9.6.3. Inputs and outputs for figures 9.6.1. and 9.6.2.

A+B

trains used for A and B exhaust the ‘possibilities for combinations of
inputs. The results for AB and A + B are identical as they should be.

Boolean Algebra Reduction

There may be reasons for preferring one type of logical expression to
another, such as a lower cost or more reliable operation for a given logical
block. Hence it is necessary to show the equivalence of logical expressions.
As an exercise of this nature, we shall show that

AB + BC + C4A = AB+ BC + CA

First group the terms,

AB+ BC+ CA =(AB + BC) + CA (9.4.1)

Then by (9.3.2) =AB + BCCA . (9.4.2)
where the overhead bar acts as parentheses. Next, using (9.3.2) again
AB+BC+CA =4BBCC4A (9.4.3)

Now with (9.3.1) applied to each term, 4B, BC, and CA4,
AB+BC+CA=A+BB+0OC+4 (9.4.4)
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and with distributivity (9.2.5), (9.2.6)

AB+ BC + CA = (AB+ AC + BB + BO)(C + A) (9.4.5)
But since BB = B = BI, then

AB+ AC+ BB+ BC =AB+ AC+ BU + 0) (9.4.6)
= AB+ AC + B - (9.4.7)
= AC+ B+ AB (9.4.8)
= AC + B + A)
= AC+ B (9.4.9)

So that (9.4.5) becomes

ABF BC+CA = (AC+ B)(C + 4) (9.4.10)
and with distributivity

= A(AC+ B)+ CAC+ B)  (9.4.11)
= AC+ AB+ AC + CB . (9.4.12)
=AC+ AB+ CB (9.4.13)

9.7. Nor LOGIC

In the past few years a logical element which has good possibilities
of vying for the title of the universal element has gained popularity. The
reason is that it has been realizable in a circuit proved to be reliable yet
simple. This is the nor element. The logical symbol for nor is “}’’ and
it is pronounced ‘‘pierce,” since it was named after the philosopher,
C. S. Pierce. The statement, “A | B’ (A pierce B) is true only when
both A and B are false as is shown by the truth table, Table 9.7.1. The

TABLE 9.7.1 TrutH TABLE FOR THE PIERCE

A B AlB
0 0 1
0 1 0
1 0 0
1 1 0

unstandardized block symbol appears in Figure 9.7.1. The “not’ func-
tion is formed, as shown in Figure 9.7.2, by '

A=414 9.5.1)
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The “or’’ function is formed as shown in Figure 9.5.3 by

AVB=A[B=(AlB)l(A]lB) (9.5.2)
The “and’ function is formed as shown in Figure 9.5.4 by
A&B=AlB=(A|lA)] (B|B) (9.5.3)

Further use of the nor block in logical construction is found in Chap-

ter 10.
A—] ' -
)—MB A——D~A
B_

FIGURE 9.7.1. The pierce block symbol. FIGURE 9.7.2. Not using the pierce.
A ) i

A~ ae N AVB s—] )-8
B—1 - L ‘ |

FIGURE 9.7.3. V formed from the pierce. FIGURE 9.7.4. & formed from the pierce.

AsB

PROBLEMS

1. Simplify by Boolean algebra first:
(a) XY + XY + Y_Z-i— Y_Z _
(b) AB + AC + ABC + ABC
Then do the above with a Karnaugh map. Make D drawings for both unsim-
plified and simplified expressions.
2. Demonstrate with Venn diagrams that A + B = AB
3. Simplify by algebra
(2) (4 + BCYA+B+0)
(b) B@+ R) + P + QR
UV +{U+TW+W

4. Prove the generalized De Morgan theorems

ABC .. N=A+ B+ ...N and
A+B+C+ ...+ N=A4BC...N

5. The logical function ““if A then B’’ sometimes spoken “A implies B” is
symbolized as A D B. The only case for which “A D B” is false is AB.
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This is reasonable and is justified in the literature on mathematical logic.
Make a truth table for A D B and for A C B. (This is the same as B D 4.)

. The function A = B is defined as (4 D B)(B D A). Make a truth table

for this function.

. Replace A = B and A D B by combinations of V’s, &’s and —’s. Define

A D Band A = B using only |’s.

. Show

(a) ADBBDOCO)=4DC

() (ADB)DA=4

() ADBBDOOVICDOA) =1
MADB=0]1=[(4DB)=(40)]
() ADBVC=ADB)VADO0

fH ABDC=(ADCOVBOC)

(8) (AVBC) =(AVB)AVC() =1

. Construct a Karnaugh map with W as the two left columns, X the two middle

columns, Y the two top rows, and Z the two middle rows for:
WXYZ + WXYZ + WXYZ + WXVZ + WXYZ + WXYZ_
+ WXYZ+ WXYZ 4+ WXVZ + WXYZ

.and simplify.

10.

11.

12.

13.

14.

As above, map B
WYZ+ WXZ+ WYZ + WXY + WXZ + WXZ + WXY

and simplify.
As above, map

XYZ 4+ WXZ+ WXY + WXY + WXZ

and simplify.

As above, simplify by Karnaugh maps:

() WYWYZX + WYWYZX + WXZ + WXZ

(b) ZWXZ + WYZ _ . o _

(c) UXY 4+ UXYZ + UWYZ + UWXZ + UWXYZ + UWXYZ
Draw with D blocks before and after simplification.

Simplify with a Karnaugh map:

UV(XY + WXYZ + XVZ) + UV(XYZ + X7) L
+ UV(YZ) + OV(XYZ + XYZ)
Simplify with a Karnaugh map:
UV(WYZ + WYZ + WX) + UV(WYZ + WYZ) o
+ OV(XZ + WYZ + WYZ + WX2) + UV(XZ + WxZ)




LOGICAL CONSTRUCTION

The rules developed in the previous chapter will be put to work
to obtain combinations of functional units which will perform arithmetic
and the editing chores which comprise processing. The first process to be
composed will be that of binary addition. But before this, other func-
tional units are introduced to facilitate this construction.

10.1. BIT STORAGE AND DELAYS
The Bit Storage

From the discussion of codes and number systems it is evident that
the smallest unit of information to be dealt with is the bit. Bistable devices
are capable of storing one bit of information because of their ability to
maintain one of two possible states. Since it is this property that con-
cerns us and not the magnetic or electrical specifications of these devices,
we shall group them in one “logical” category, that of bit storage. The
common name for the familiar form of this device is the flip-flop.

The true bistable or bit storage device has four possible connections
and two possible states. For convenience and consistency, these states
are referred to as 0 and 1. One input line is used to set the device to 0 and
another input line sets it to 1. These lines are called the “to 0"’ and “to 1”
lines, respectively. Two output lines (both of which may or may not be

145
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used or shown on a diagram) may be connected to the device to read its
state. The “1 line” conveys the “1°’ state of the device and the “0 line”’
the 0 state of the device. The method used to “read’” depends upon the
circuitry and the convention of the designer. Thus it is arbitrary whether
a high or a low voltage is read as “1.” This should not concern us, since

P S o T

FIGURE 10.1.1. Bit storage symbols.

we shall consider the rule of reading as integral with the storage device.
We simply say some voltage appears on the “1’’ output line (without
reference to direction or magnitude) if the device is set to 1; a detectably
different voltage appears on the “0’’ line if the device is set to 0.
Logical symbols for bit storage are found in Figure 10.1.1. There is no

standard symbol for them; the left-hand symbol will be used throughout

this book. A single-bit storage is also called a
flip-flop, a bistable multivibrator or just a

- multi. It is set by either a short pulse or a
voltage on one of the input lines; it assumes
~be ., the state corresponding to the input regard-

FIGURE 101.2. Information less.of its preﬁous state; it -ma,intains this state
flow amow.  Until another input causes it to change.

— To clarify the form of information in logical
diagrams, two kinds of arrowheads are some-
times used to terminate the flow of information,

as shown in Figure 10.1.2. Pulse inputs, also called “a-c¢’’ because of their
comparatively short duration, have open arrowheads; inputs emanating
from bit storage devices, where information is maintained for compara-
tively long duration, have closed or filled-in arrowheads and are called
““d-c.” In general, this distinction is not necessary unless confusion might
arise. In this book the direction of flow of information and its form is
usually apparent from the diagrams and no arrowheads are used; hence
arrowheads are omitted except where confusion may arise. They are
necessary with other symbols where the direction of signal flow is not
apparent.

The Trigger

A bit storage circuit can be so designed that it has a common ix.lpuf,.
This input acts to set the storage to the state opposite to that to which it
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is now set: if the bit storage is now set to 1, the input pulse sets it to 0; if
it is now set to 0, the input pulse sets it to 1. Such a device is called a
trigger and is symbolized as in Figure 10.1.3. This is simply a bit storage
with the two inputs connected together. A bit storage can be used inter-
changeably as a trigger or a flip-flop by including two “or”’ circuits in the

To O

Trigger 9" 0
Input
o L
| S Tot

FIGURE 10.1.3. Bit storage connected as FIGURE 10.1.4. Bit storage doubling as a
trigger only. trigger.

connection as in Figure 10.1.4. When connected as a trigger, bit storage
is especially useful in constructing a binary counter.

The Unz

There are circuits which hold information for a fixed time only. These
are called monostable multivibrators, univibrators, or simply uni’s, or
delay flops. Un: is used in this book. The duration that information is
stored in the uni is determined by its circuit elements and is fixed (within
- tolerances) over the range of operation of the equipment. The uni is nor-
mally in the O state; it is set to 1 by a pulse and remains so set for the stor-
age period; it then resets itself to 0. If an attempt is made to set the uni to

X 0 X 0
— | X |

FIGURE 10.1.5. Block symbol for the uni. FIGURE 10.1.6. Block symbol for the
astable multi.

1 again while it is at 1, it usually maintains the 1 setting for the storage
period; but this period is timed from the second setting pulse, not the first.
The symbol for the uni in Figure 10.1.5 contains one input or setting line
and two read-out lines, 0 and 1. It is the same symbol used for bit storage
but the “ X’’ replaces one of the inputs, indicating pictorially that the
uni has only one input. Although it is arbitrary, we will indicate that the
input always sets the uni to 1.
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The Timing Generator or Clock

Figure 10.1.6 shows an astable multivibrator. It is not a storage
device but is used to generate timing pulses at fixed intervals. The pulse
rate depends on the timing constants of the multivibrator. Since thisis a
self-regulating device, it has no inputs and two outputs, 0 and 1. The two
“X’s” at the input sites convey the lack of inputs. Because of the circuit
similarity between astable multivibrator and bit storage, similar symbols
are used for each.

The Delay

A device whose output is identical to its input, except that the output
occurs at some fixed period after the input, is aptly named a delay. This
ideal specification is not usually met in practice, and the degradation of
the output is often proportional to the duration of the delay required.
The delay device is particularly pertinent here because its action on binary
information can be reproduced using bit storage units as covered later in
this section. The symbol for the delay proposed by the IRE Standards
Committee 21.3 and used in this book is shown in Figure 10.1.7. The
input to this rectangle is at the end with the two lines normal to its length.
Information which is delayed travels from the end with lines to the end
without lines; hence arrowheads are not necessary to indicate the direc-
tion of information passage.

—1[|A3 5psec —— \/>

FIGURE 10.1.7. Block symbol for the FIGURE 10.1.8. Block symbol for the
delay. . shaper.

The Shaper

The shaper, for which we shall use the diamond of Figure 10.1.8 for
want of a standard symbol, operates to convert the d-¢ output of a unit
such as the multivibrator into a pulse or a-¢ output. The circuit is a sim-
ple resistor-capacitor differentiator and a diode clipper. The shaper pro-
duces an output pulse only when the bistable device to which it is con-
nected changes states fo the state corresponding to that to which the
shaper is connected. When connected to the 1 output of a bit storage
device, it emits a pulse when the multi changes from the O state to the
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1 state, but no pulse when the multi changes from 1 to 0; when connected
to the 0 output of a multi it emits a pulse when the multi changes from 1
to 0, but no pulse when the multi changes from 0 to 1. This is illustrated
by the timing diagram of Figure 10.1.9 showing a typical shaper input and
output waveform.

wel L[ 1

Ouf

FIGURE 10.1.9. Typical input and output waveforms for the shaper.

Using the shaper, strings of triggers can be coupled together to form a
binary counter as in Figure 10.1.10. Counter logic is discussed in detail in
Section 11.5.

St DSl PO

FIGURE 10.1.10. Triggers and shapers combined to form a counter.

The Binary Delay

A binary delay mentioned above is constructed using only uni’s and
shapers as in Figure 10.1.11, and the waveforms associated with the inputs
and outputs are shown in Figure 10.1.12. An information pulse is entered

10 Hsec 2 Ksec
h—7 1 b X 0
¥ o | b c ; 4

FIGURE 10.1.11. A binary delay using two unis and a shaper.

into this logical circuit at 10.1.12(a). It sets the bit storage Bl to 1. Bl
remains set to 1 for a time determined by the time constant of B1 (here
10 microseconds), as shown in Figure 10.1.12(b) and 10.1.12(b’). When
the time constant of B1 expires, it resets itself to 0. The 0 output of Bl is
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the input to the shaper S2, which emits a pulse of short duration as Bl
switches from the 1 to the 0 state. This pulse is applied to the 1 input of

S S S

FIGURE 10.1.12. Waveforms at

bit storage B3. It is set to 1. It resets
itself 2 microseconds later. The purpose of
B3 is to provide a neatly shaped, uniform
output pulse. In cases where a time con-
stant is associated with uni, it may be
inserted in or next to the symbol of the
uni as was done in Figure 10.1.11.

10.2. THE HALF ADDER

The first logical circuit we will tackle
is the half adder. It adds two binary digits
(bits) and produces a sum and a carry out-

points in the put. It is called a half adder because it does
binary delay, not, provide for a carry from the previous
50-11;- r e set of digits added—it only does half the job

needed for binary addition. The special
‘ symbol used for the logical circuit of the
half adder appears in Figure 10.2.1. This symbol stands for the several
logical units which when combined properly perform the logical function
of the half adder. The H in the box indicates
that it is a half adder; the two inputs, X and

Y, are for the augend and the addend, respec- X S
tively; since addition is commutative (which . H
is added to what doesn’t matter), it is really Y ¢

unimportant whether the addend or augend

is entered into X (or Y); 8 is the sum output FIGURE 10.2.1. ﬁ:d;o:yt:;
and C is the carry output. half adder.

The four possible combinations of augend
and addend bits are shown in Table 10.2.1;
their sum is found below the addition line. The sum and carry which
occur in binary addition are presented in tabular form in Table 10.2.2.
X and Y are used for the two inputs to distinguish between them in
the discussion, although they are functionally interchangeable. From
examination of the table it can be seen that the sum is 1 when either
X or Y is 1, but not both. There is a carry only when both X and Y are 1.
This is put in the form of a Boolean equation by ‘“adding’’ (or) the terms
for which the dependent variable (S or C) is 1, as follows:

S=XY+4+ XY
C=XY

(10.2.1)
(10.2.2)
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TABLE 10.2.1 BINARY ADDITION

Augend (X)
Addend (Y)
Sum

0
0
0

=l= O
O =

151

10

TABLE 10.2.2 TABLE OF BINARY ADDITION

X

= -0 O

Y

0
1
0
1

S c
0 0
1 0
1 0
0 1

These two logical statements can be composed in hardware with basic
logical units, as in Figure 10.2.2.

An alternate Boolean expression for y y
the sums is composed by taking the ex-
pression ““either X or ¥’ whichis X + Y
and excluding the case where ‘“both X and
Y are 17’ which is XY. This is stated as, 4

S=X+ VXY

Then (10.2.3) and (10.2.2) can be com-
posed with basic logical units as in Figure

10.2.3.

One further combination can be

(10.2.3)

madeiacalling from De Morgan’s law
that XY = X + ¥ so that (10.2.3) becomes

S=X+1VNEX+7

:va

X+Y

R

XY(X+Y)

FIGURE 10.2.3. Another half-adder logic.

S

x
<
(3}

FIGURE 10.2.2. Half-adder logic.

(10.2.4)

(X+Y)(X+Y)

(g

FIGURE 10.2.4.

Still another half-adder

logic.
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and (10.2.1) is then

C=X+7Y (10.2.5)
This is realized in basic logical elements as in Figure 10.2.4.

If the pulse inputs to the input terminals of the logic of Figures 10.2.2,
10.2.3, or 10.2.4 are those labeled X and Y of Figure 10.2.5, the S and C
outputs of those figures will be the
S and C of Figure 10.2.5. Hence
the logic of Figures 10.2.2, 10.2.3,
and 10.2.4 may be represented by
X the symbol of Figure 10.2.1. Note
that this confirms that if X and ¥
are used to distinguish the two
inputs, it is immaterial which input
is used for the augend and which
g for the addend.

N I I [ R
..____‘:j_.__:_.._ _.......-_._
<

R am e

¢ 10.3. THE FULL ADDER

FIGURE 10.2.5. Pulse inputs and outputs A full a'd_der LeEElves Ws 1np1%t
' of half-adder logics. the augend bit and the addend bit
and the carry bit produced by the

addition of the preceding bits.

A sample problem of adding two binary numbers is illustrated in
Table 10.3.1. What is done to find one of the sum digits, say the 7th digit
from the right, S;? The ith addend digit from the right, X;, is added
to the 7th augend digit from the right, Y;, and to this the carry from the
previous stage [(z — 1)th], C;_,, is added. Of course, C;_; is 1 if there is
a carry and 0 if there is no carry from the (¢ — 1)th digit addition.

TABLE 10.3.1 ADDING TWO BINARY NUMBERS

01101100
01011010
11000110

Thus, for each sum digit, three binary digits are added, X;, Y;, and
C:i_;. Since this is the case independent of the digit position that we
choose, we will simply call these input digits, X, Y, and C’ respectively.
A device which will produce the sum is a three-bit adder, then. First, two
of the bits may be added, say X and Y; then C’ is added to this partial
sum to complete the addition of the three bits. The full sum is obtained
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from two half adders, H; and H, in “cascade’ as shown in Figure 10.3.1,
using this reasoning.

When does a carry out (C) occur for this “full addition”? A carry
occurs if any two or more of the bits X, Y, or C’ are 1’s. Notice that if a

X——X1 St X2 S2 S
Hi X S
Y———Yi C! ' Y2 2
. ¢ Y F
f ¢ & c

FIGURE 10.3.1. Full adder using two halfadders. FIGURE10.3.2. Full-adder
block symbol.

carry, C, occurs in H; which is adding X and Y (X and Y are both 1’s),
a carry is generated in full addition; also, if a carry, C», occurs in H; which
adds S; and C’, a carry is generated in the full adder [C’ and one of (X or
Y) are 1’s]. The carry C for full
addition results when C; or C,, or

both (X, Y and C’ all 1’s) are 1. X—x{ St X2 s2 S
This is obtained with the logical ¢ | "' | [ H
function €,V C2 which is formed in

Tigure 10.3.1 by the “ or” circuit, c

V1. Thus, the full-adder sum and
carry is realized by two half adders
and a mixer as shown in Figure
10.3.1. The special symbol for the
full adder is shown in Figure 10.3.2.

The reader should study the al-
ternate arrangement for the full adder shown in Figure 10.3.3 to see why
it is equivalent to that of Figure 10.3.1.

FIGURE 10.3.3. Another full adder using
two half adders.

Theoretical Justification of the Full Adder Made from Two Half Adders

Before analyzing the full adder, a truth table is made up as in Table
10.3.2 giving the desired results of binary addition. In the first entry, 0’s
for addend, augend, and carry, result in 0 sum and carry output. If one,
but only one, of X, ¥, and C’ is one, then S is 1 and C is 0, as in entries
2, 3, and 5; if any two of X, ¥, and C’ are 1, then S is 0 and C is 1—
entries 4, 6, and 7. When X, ¥, and ¢’ are all 1, Sis 1 and C is 1—entry 8.

The sum, 8, is 1 for entries 2, 3, 5, and 8. Using “ -+ to connect all
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these terms in a Boolean equation, we obtain the result:

S = XYC'+ XYC' + XYC' + XY (10.3.1)
Similarly, connecting forms 5, 6, 7, and 8 with the Boolean “or’’ we have
C = XY(C'+ XYC' + XYC' + XYC' (10.3.2)

To justify by Boolean algebra the composition of Figure 10.3.3 of the
full adder with two half adders we shall determine the defining equations
for that figure and compare them with (10.3.1) and (10.3.2).

TABLE 10.3.2 SuuM (S) AND CARRY (C) TRUTH TABLE FOR FULL ADDER IN TERMS OF
ADDEND (X), AUGEND (Y) AND THE CARRY FROM THE PREVIOUS DIGIT ADDITION (C')

Eniry Term c'Y X S C
1 C'Yx 0 0 O 0 o0
2 c'Yx 0 0 1 1 0
3 c'Yx 0 1 0 1 0
4 C'Yx 0 1 1 0 1
5 C'YX 1 0 0 1 0
6 C'YXx 1 0 1 0o 1
7 c'Yx 1 10 0 1
8 C'YX 1 1 1 1 1

Call the output of the first half adder, S; and C,, and of the second half
adder, S; and C,. S; and C,; are defined by (10.2.1) and (10.2.2) for the
inputs X and Y as

S, =XY + XY (10.3.3)
C, = XY (10.3.4)

The inputs to H2 are S; and C’. When these are entered into (10.2.1) we
have

Sy = C'S1 + C'S, (10.3.5)
Substituting (10.3.3) into (10.3.5) we have
S, = C'(XY + X¥) + C"(XY + XY) (10.3.6)

To simplify XY + XV, recall that I is composed of all possibilities; for
two variables X and Y then

I = XY+ XY)+ (XY + X7) (10.3.7)
The complement or denial of the variable is defined by
I=Z2+12 (10.3.8)
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Hence it follows that

XY + XV = XY + X7 (10.3.9)
Substituting (10.3.9) into (10.3.6) we have
S, = C'(XY + XY) + ¢'(XY + XY) (10.3.10)
Expand (10.3.10).
S: = C'XY 4+ C'XY + C'XY + C'XY (10.3.11)

Comparing term for term we find (10.3.11) and (10.3.1) equivalently
define the full-adder sum output.
Similarly for C: we have

C,=XY (10.3.12)
Since H2 has S; and €’ as inputs, '
C, =108, (10.3.13)
or substituting (10.3.3) into (10.3.13) we have
C, = C'(XY + X7) (10.3.14)
The output C of I is defined as
C=0C+40C; (10.3.15)

and substituting (10.3.12) and (10.3.14) into (10.3.15) and expanding,
we have

C = XY + C'XY + C'XY (10.3.16)
But v
XY = XYI = XY(C' 4+ (") (10.3.17)
so that
C = XYC' + XYC' + C'XY + C'XY (10.3.18)

which is identical to (10.3.1).

Direct Realization of the Logic from the Boolean Equations

Let us suppose now that our line of reasoning started with the truth-
table definition of the full adder, Table 10.3.2, and then we derived the
defining Boolean equations (10.3.1) and (10.3.2). Can we now compose &
logical design to realize these equations? Each of the terms of (10.3.1)
and (10.3.2) (e.g., XY ', XY, and so forth) can be composed with one
three-input &-gate. These terms are then ‘“added” together with a four-
input V-mixer. The complete logical diagram of the adder then appears
as in Figure 10.3.4.
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Karnaugh Map Simplification

There should be a simpler construction (having fewer blocks). To
investigate the possibilities we make one Karnaugh map each for S and
C from (10.3.1) and (10.3.2) respec-

cy X tively, as in Figure 10.3.5. A lisput
o in the box corresponding to each
term of the Boolean equations. The
first term of (10.3.1) is entry 2 of
YT Table 10.3.2. It corresponds to box
S 2in Figure 10.3.5. The other boxes

E‘

2
' __ of that Figure for which 1’s are
’%{I:D xYc

_ 7, 5y S
5 XYC
Y )
Xyc ) C s
6 — 1
Cl 6 1 8 i 7 | 4
~ 7 5 3 Y 1 7 C
! VA 200
!7|} LYE N N VI
Y
FIGURE 10.3.4. Full-adder logic derived FIGURE 10.3.5. Karnaugh map, sum (S)
directly from defining and carry (C) of the full
equations, (10.3.1) and adder.
(10.3.2).

entered are numbered as in Table 10.3.2. '
Let us start with the carry map, C, of Figure 10.3.5. In terms of the
boxes numbered in that Figure, C is given by

C = Bo + Bs + B7 + Bs (10.3.19)

Now ('’ is given by
C' = B¢+ Bs + B: + B, (10.3.20)
Then C can be formed by subtracting B, and adding Bs to C’ thus,
C=C"—By+ B;s (10.3.21)
Now B, = XY(' (10.3.22)

and By = XY(' (10.3.23)
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However, if we intend to deny (subtract) By, we might just as well deny
B; and B,. That is, since B; does not appear in (10.3.20), the equation for
C’, denying it does not affect C’. Similarly, if we affirm (add) Bs, we might
just as well affirm both B; and Bs. (Bs being affirmed in this equation
for C’.) Since these pairs of boxes are adjacent, one variable is eliminated
as

By + B, = XYC' + XVC' = XY (10.3.24)
and Bs + By = XY(C' + XYC' = XY (10.3.25)
Then we have

C = C' — (Bs+ By) + (Bs + By) (10.3.26)
or c=CXY) + XY (10.3.27)

This is so, for to remove (subtract) an area B from an area A (to perform
A — B) is equivalent to the logical function AB, read “A and not B.”
Recalling De Morgan’s law,

XY =X+7=X+7Y (10.3.28)
Then C=C(X+7Y)+ XY (10.3.29)

To realize (10.3.29), the logic of Figure 10.3.6 is used. X 4+ Y is
formed by V1; &2 uses this input and C’ to form C'(X + Y); XY is
formed with &3; V4 finally forms C = ¢'(X + Y) + XY.

X—1 ) x+y ,
y 2 C(X+Y)
C'—]: N
C(X+Y)+XY

C

FIGURE 10.3.6. Full-adder logic for carry from Karnaugh map simplification.

The Karnaugh for S in Figure 10.3.5 does not permit any simplifica-
tion—no two of the four boxes are adjacent, so that the four terms they
represent must be combined with ‘““or’s’’ to form 8. There is no simple
way to represent S.

However, if we are willing to use C as obtained in (10.3.29), a simpli-
fication may be made. The empty boxes of Figure 10.3.5 represent the

map of C: the crosshatched boxes are then the map for ¢. Notice that S
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can be formed from C by adding box 8 and subtracting box 1, or

S=C—B,+ Bs (10.3.29)

and 8 = C(By) + Bs (10.3.30)

or S = CC'XY + C'XY ' (10.3.31)
From De Morgan’s law recall that

CXY=C0+X+7=0C+X+7Y (10.3.32)

and S=CC"+X+4+7Y)+CXY (10.3.33)

Equation (10.3.33) can be realized as in Figure 10.3.7. V5 forms C’ +
X 4 Y which is one input to &'6; the other input to &’6 is C' (from Figure
10.3.7) and its output is then C(C' + X 4 Y); ¢'XY is formed by &7
which V8 ‘“adds”—these two to yield S.

The logic of Figure 10.3.8 combines those of Figures 10.3.6 and 10.3.7
but uses only eight basic logical units of two inputs each. The numbers
correspond from one figure to the next so that the reader may verify this.

Q

=< X
(3]
n—
+
>
+
—<
()
(o2}
(=]l
R
+
><
+
<

CC'+X +Y)+C'XY

FIGURE 10.3.7. Full-adder logic for sum from Karnaugh map simplification.

cl
X ! X+Y. .
Y > C(X+Y) 4
L C'(X+Y)+XY ¢
ED XY
7 5
X+Y+C' C
Tx+Y+C) gé(xw\uc')ﬂwd s
XY J

FIGURE 10.3.8. Combined full-adder logic from Karnaugh map simplification.
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10.4. NOR ELEMENTS AND ADDERS

In Chapter 9 the nor element was discussed and defined using the
pierce, as follows:
AlB=A4B (10.4.1)

Several logical elements and blocks will now be composed from the nor
element. '

Inhibit (&)
The input X is said to inhibit the input A to a block if the output of

the block is given as AX. It is composed with nors if we recall that 4 =
A so that -

AX = AX (10.4.2)

From the definition (10.4.1)
_ AX=AlX=4X ' (10.4.3)
But A=A]lA (10.4.4)
so that Al X=A]lA)]|X=A4X (10.4.5)

as is shown in Figure 10.4.1.

A—D— To |
AX

X
FIGURE 10.4.1. Inhibit logic

from nors.

0 QOut

FIGURE 10.4.2. Bit storage using nors.

Bit Storage

A bit storage composed of nors is found in Figure 10.4.2. The inputs
to each mor are a setting pulse and the output of the other nor: one input
to § is the setting input s; the other input to S is the output of R called p;
one input to R is the setting pulse r; the other input to R is the output of
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S, called ¢g. S has an output g if

g=slp=3p (10.4.6)
Similarly R has an output P only if
p=rlqg=7q (10.4.7)

The bit storage may be in one of two possible states; there may be an
input pulse applied to either of the terminals. These four possibilities are
now examined.

0 mvepUT DURING O SETTING. Here r = 1 (0 setting pulse), ¢ = 1. Since
there is an input to R (there are two inputs, r and ¢, to R), there is no
output, p; since there is no input to S, there 7s an output q. Thus the bit
storage B reads 0. ;

1 1NpUT DURING 0 SETTING. Here s = 1 (1input), ¢ = 1 (0 setting). When
a pulse appears at s, by (10.4.6) the output at ¢ must cease. For an instant
both p and g are 0. At that point, there is no input to R; this causes an
output to appear at p; since there is already an input at s (and even if it
is later removed) S will remain with no signal output (¢ = 0). The bit
storage now reads 1 (signal at p).

0 veuUT, 1 sETTING. Here r = 1 (0 input), p = 1 (1 setting). When the
pulse appears at r, the output at p disappears. There are then no inputs
to S so that a signal appears at g. This state is preserved after the input
at r is removed so that the bit storage reads 0.

1 ivpUT, 1 sETTING. Here s = 1 (1 input), p = 1 (1 setting). Another
input to S does not affect either p or g.

Univibrator

Two nors and a delay element arranged as in Figure 10.4.3 form the
uni element. Assume that there is a 0 output, ¢. An input on the ¢o 7 line,
8, prevents an output from S (¢ = 0). There is then no input to R (¢ = 0
and p’ = 0) so that there is an output from R (p = 1). After a time
determined by the delay, the signal at p appears at p’ which is an input to
R. This prevents a further output from R so that p = 0. When this hap-
pens, there is no longer an input to S so that an output appears at ¢ (¢ =
1)—the bit storage resets to 0.

Half Adder

Consider now how to build a half adder from nors. Formulas for sum,
S, and carry, C, to be used are: [(10.2.1) and (10.2.2)]

S =XV + XY (10.4.8)
C=XY (10.4.9)
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First (10.4.8) is revised thus:

I=XY+ XY+ XY+ X7 (10.4.10)
XY+ XV =I-XY+ X7 (10.4.11)
S=XY+ XY =XY+ XY (10.4.12)
———
To { !
| |
{ 10 Out
[ |
|
[
| .
|
!
| { { Out
|
I
I
|
FIGURE 10.4.3.  Uni using nors. FIGURE 10.4.4. A half adder using nors.

To put this into nor notation that by De Morgan’s law,

XY + XV = XYX7V (10.4.13)
but XY)XY) = XY | X7 (10.4.14)
so that S =XY|XY (10.4.15)
Recall that
Xy=X\]7Y (10.4.16)
and Xy =X]vY (10.4.17)
Combining (10.4.15), (10.4.16), and (10.4.17) we have
=X|NIEXIlY (10.4.18)
Now X or ¥ can be written as
X=X|X; ¥Y=Y|Y (10.4.19)

so that S can be written completely with |’s as

S—xlnl Ral Mixly (10.4.20)

where the numbers over the |’s stand for numbers of the nor block in
Figure 10.4.4.
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From (10.4.16), the carry C is represented simply by

C=X \IL X) i (Yi Y) (10.4.21)

The complete nor logic for a half adder is found in Figure 10.4.4.

10.5. SHIFT REGISTERS

Registers are composed of many units of bit storage. The attribute of
the register that interests us most is that the content of each bit position
may be shifted simultaneously to the next bit position on command. The
crucial factor here is the timing that allows the bits to be moved without
interfering with each other.

FIGURE 10.5.1. Pictorial representation of bit storage.

Consider three bit-storage units, B1, B2, and B3, as in Figure 10.5.1,
which are part of a larger shift register. The problem is to move the con-
tents of B1 to B2 and of B2 to B3, and so on, at the same time. If the
transfer is attempted sequentially, the transfer of information from B1 to
B2 may set this bit in B2 before the information from B2 is sent to B3,
and so forth down the line. Thus, if B1 is 1, B2 is 0, and B3 is 0, B2 could
be set to 1 to record B1 before B2 is recorded in B3. Then when a transfer
is made from B2 to B3, it will falsely be recorded as 1 (the content of B1).

To assure a simultaneous transfer from one bit storage to the next,
temporary storage is used between each bit storage—an auxiliary device
is used to hold information temporarily as it is passed along from one bit
position to another. The procedure is to place each bit in an auxiliary
device, clear the entire main register, and then move the bit from the
auxiliary device to the mext stage of the main register. There are four
phases to this process then: store, clear, record, and reset the auxiliary
device. '

The auxiliary device may be another bit storage, a delay line, or a
circuit element such as either a capacitor or indicator used as a delay
component.
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First Design

Figure 10.5.2 shows the connection between three bits, B1, B2, and
B3, using delays and &-blocks. The shift pulse is transmitted by either

S - S )T
I Y o e N S e e R

Shift
pulse

FIGURE 10.5.2. Shift register using two delays and two gates per bit.

&1 or &2 depending upon the setting of B1; it is then entered into either
A3 or A4 accordingly. B2 is set either to 1 by A3 or to 0 by A4 after the
delay period. Of course, if B2 is already in the state into which the setting
pulse tries to place it, then nothing happens. Hence the recording opera-
tion also clears. At the same time, &5 and &6 allow B2 to be read out into
A7 or AS8.

Second Design

For an n-bit register, n — I delays may be saved by the logic of Fig-
ure 10.5.3. The shift pulse puts a pulse into A2 if Bl stores a 1; otherwise

B1 B2 B3
| iz _B}—uu~ !
0

0 0

Shift

FIGURE 10.5.3. Shift register using approximately one delay and one gate per bit.

A2 remains empty; the shift pulse, delayed by A5, clears all the bits of the
entire register to 0 (just B2 and B3 are cleared in the figure) ; for bits which
are to be 0, there is no pulse in the delay at the “to 1’ input of the bit
storage so that the bit storage remains cleared to 0. The delay A5 must
be smaller than all the other delays to assure that each bit storage is
cleared before the set pulse passes through the delay.
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Third Design

Another shift-register logic encountered in some designs appears in
Figure 10.5.4. Here, if there is a 1 in bit storage B1, it is entered into an

Bi Al B2 A2 B3
{ 4 i 5 { { ’ i
0 — 0 — 0 - 0 — O '
S
[
t
T .
— e HHE__ o 1J

FIGURE 10.5.4. Shift register using one auxiliary bit storage and one gate per bit.

auxiliary bit storage Al through &4 by the shift pulse s; similarly, a 1 in
B2 is entered into auxiliary bit storage A2 via &6, and so forth down the
line. All main bit storages (the B’s) are then cleared by the clear pulse, ¢
(the shift pulse delayed by A8); the bits in the auxiliary storage are trans-
ferred to the next bit position by the transfer pulse, t (the shift pulse
delayed by A8 and A9)—a 1 in Al is entered into B2 through &5, a 1 in
A2 is entered into B3 through &7, a 0 in Al does not permit t to set B2
via &5, and so forth; all the auxiliary storages (the A’s) are cleared by the
reset pulse, r (the shift pulse delayed by A8, A9 and A10).

Another Design

Logic which acts similarly using units instead of bit storage is found
in Figure 10.5.5. Here the shift pulse sets (or fails to set) each auxiliary

BY A B2 A2, B3
{ 6 1 i ) 1 !

Shift —

FIGURE 10.5.5. Shift register using one uni, one shaper, and one gate per bit.
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storage univibrator depending on whether the content of bit storage is 1
or 0. Bit storage is then cleared by a delayed shift pulse, c. When a uni-
vibrator resets itself (which can happen only after c), a shaper such as S4
emits a pulse which sets the next bit position to 1. When a 0 is in bit
storage, the auxiliary storage uni is not set; after the nextstage is cleared
it remains so because no pulse is generated by auxiliary storage.

Built-in Storage for Shift Registers

The auxiliary storage may be built into the circuit. It is possible to
design coupled flip-flops so that when each is reset to 0, a capacitor is
charged if the flip-flop was previously set to 1; the capacitor is not charged
if the flip-flop was set to 0. This capacitor is coupled to the next flip-flop,
so that its discharge will cause that flip-flop to be set in correspondence to
the previous stage when the clear pulse is removed.

In choosing a shift register logic the designer not only considers the
cost and number of components but also the speed requirement. The logic
of Figure 10.5.2 requires that bit storage be set, at most, once per shift
cycle; the logics of Figures 10.5.3, 10.5.4, and 10.5.5 require that the bit
storage be able to change states twice between each shift pulse.

Magnetic-Core Shift Register

A shift register may be constructed from magnetic-core elements. These
elements consist of a toroid or doughnut of ceramic or plastic material
around which is wound a strip of thin magnetic tape—the doughnut is
“sugared”’ with a magnetic metallic film. Three or more coils are then
wound around the toroid. The magnetizable tape has a very square hys-
teresis loop. This means that although it is possible for it to be magne-
tized to a greater or lesser degree, its threshhold is sharp. In operation, it
can then be used so that it is always in one of the two extreme states of
magnetization. When a current of the proper level and direction flows in
the input or setting winding, it magnetizes the core in a direction which
is arbitrarily called the 1 direction. A core previously set to 0 will remain
in that state or be set to 1, according to whether a current does or does
not flow in the input winding.

A register is composed using magnetic elements by connecting the
input winding of one magnetic core to a second or output winding of the
previous core. Supplementary components discussed below are also
needed.

To shift the information from one core to the next, a shift pulse of
sufficient magnitude and proper direction to set the core to the O state is
applied to the third or shift winding of all the cores. If a core was ina0
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state before the shift current arrives, the shift current in the shift winding
has very little effect on the magnetic flux surr ounding the core; very little,
if any, current is induced in the output winding of the core; no current can
then appear on the input winding of the next core caused by this core. On
the other hand, if the core was in the 1 state, the shift current will clear it
to the 0 state; this causes a complete reversal of flux through the output
winding, inducing a large current there.

Two-Core-Per-Bit Magnetic-Core Shift Registers

The simplest way to interconnect magnetic cores to form a shift regis-
ter, and to solve the auxiliary storage problem, is to use two cores for each
bit required. These are connected as in Figure 10.5.6. Previous to use,

7\
Core Core
2A 2B

I
Shift A Shift B

FIGURE 10.5.6. Two-core-per-bit magnetic shift.

cores 1B and 2B have been cleared. The input to core 1A is the serial-bit
information to be stored. The output winding of core 1A is connected
through a diode (not shown for simplicity) to the input 1B; the output of
1B through a diode to the input of 2A; the output of 2A through a diode
to the input of 2B; and so forth. The purpose of the diode is to allow
current to flow from left to right in the figure and to prevent it from flow-
ing from the output to the input but not from the input to the output,
right to left in the figure. The third or shift windings of the A cores are
connected to the A shift line; the shift windings of the B cores are con-
nected to the B shift line.

Information (1 or 0) is entered into 1A ; shortly thereafter, a pulse sets
all A cores to 0. This induces a current on the 1A output line if a 1 was
entered in core 1A previously and none if a 0 was entered previously; the
1 current is sufficient to set 1B to 1 if 1A was set to 1, but not otherwise.
A little later the B shift pulse transfers the information from 1B to 2A by
the same procedure. This is a full character cycle; the bit has been moved
from 1A to 2A. A new bit may now be entered at 1A.

The timing for a two-core-per-bit register appears in Figure 10.5.7.
The information pulse I, sets core 1A to 1; core 1A is set to O by the shift
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pulse Al; the time during which 1A is set to 1 is indicated in Figure 10.5.7
as 1A1l. When 1A is set to 0, 1B is set to 1 because 1A was set to 1; 1B
remains set to 1 until pulse B1 sets it to 0; in so doing, 2A is set to 1; 1B
is set to 1 for the duration of 1B1. Core 2A remains set to 1 during 2A1.

| N | g
Information A
Input
r_l““ I_jm?’ State of .
, ”m ”AZ ”A3_ e
Shift A
'8t 1'83  state of
ﬂ51 ﬂsz HB3 Gore 18
|
Shift B |
e - 2A3 _Stole of
[ ] l Core 2A

FIGURE 10.5.7. Timing for the two-core-per-bit magnetic register of Figure 10.5.6.

(i —(1e ) ——(en)—(28)—(3n)—38)

L \1/ N \[/ O/

Shift A ShiftB

FIGURE 10.5.8. Symbolic notation for two-core-per-bit magnetic shift register.

No information is entered into core 1A during the second information
cycle because there is no pulse I,. Hence no information is shifted into
core 1B by the A shift pulse or into core 2A by the B shift pulse.

The reader may follow the third cycle using the information-input
pulse I;. This cycle is almost identical to the first cycle.

A convenient symbolic notation for the core register discussed above
is shown in Figure 10.5.8.

One-Core-Per-Bit Registers

A register using only one core element per bit may be constructed as
in Figure 10.5.9. Only one shift input is used. Information shifted out of



168 LOGICAL CONSTRUCTION ® CHAP. 10

each core must be stored temporarily while the next core is being set to 0.
An inductor-capacitor network of the proper time constant (the delay) is
used for this. When the shift current is removed, the current stored in
this circuit (if thes core stored a 1) sets the next core.

Shift —e : .

FIGURE 10.5.9. One-core-per-bit magnetic shift register.

Each core element, with its windings and the inductor-capacitor stor-
age circuit and a diode to prevent a current induced in the input winding
of the next core from setting this core, is packaged as a single unit. Extra
windings can be specified for special applications such as inhibiting and
gating functions. Shift registers composed of such units are reliable, but
often costly and limited in their information-flow capacity (the pulse-
repetition frequency currently permissible is relatively low).

Static Shift Register Operation

No matter what kind of shift register is used, the operation using aux-
iliary storage is similar: set auxiliary storage from main storage; clear
main storage; set next main storage stage from auxiliary storage; clear
auxiliary storage. Thus the circuit details are unimportant—the register
performs the function of storing and moving information.

The Dynamic Register

In a synchronous machine where a register is examined at specific
intervals, it is possible to use a dynamic principle to construct the register.

The dynamic register is like a merry-go-round: the information is con-
tinually circulating; an observer will see the stored word repeatedly pass-
ing by a fixed point in the register. The register consists of a number of
delays, one for each bit as in Figure 10.5.10. The end of the register is
connected back to the input, so that once information is entered into the
register it is continually fed back and circulates through the delays.

Information thus continually passing through delay circuits is subject
to attenuation. It must be frequently regenerated by amplifiers in the
circulation loop. This is not a logical function but rather a circuit neces-
sity caused by the losses introduced by circuit elements, the delay. The
logical designer, strictly speaking, is not concerned with.this non-logical
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function. Amplifiers only mess up the already complicated, logical dia-
grams of many computers, and neither belong there nor aid in the compre-
hension of the machine and so are omitted here.

Figure 10.5.10 includes means for influencing the operation of the
dynamic register. The gate &1 may have a voltage applied to it to read
out the register (without affecting the word stored therein); to enter new
serial information &’2 inhibits or eliminates the old information while &3

. Porallel] [lInput,
information| |parallel
Read out
a)n 3
P HE )
main
information

Shift line
right »@

4

Input
serially 10 12

Shift left

FIGURE 10.5.10. Dynamic register.

passes the new information; both old and new information must pass
through V4 which receives information from either &2 or &3. To enter
information in parallel requires for each bit two gates and a mixer arranged
as &'5, &6, and V7; to shift right one bit.on each circulation, the informa-
tion is shunted past the first bit delay A14 using &9 and V7 instead of the
usual path, &'8, Al4, &'5, and V7; to shift left an additional delay Al0 is
introduced with the aid of &’11, &12, and V13 (since the word is delayed
an extra bit time for each circulation, this amounts to a single bit shift to
the left).

The need for complete synchronization and a fixed word length is
apparent from the discussion. Another practical but not logical limitation
is the destruction of information in the register because of a power line
failure (the circulating information is unable to pass through inoperative
amplifiers).
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Shift-Register Symbol

In the remainder of this book, the rectangular symbol in Figure 10.5.11
will be used to indicate the single-word shift register. The input and out-
put may be serial-character serial-bit or serial-character parallel-bit or
parallel-character parallel-bit or combinations of these. Only the facili-
ties used are indicated in the symbol. The shift line is a long line entering
at one side and continuing almost to the other end—with an arrowhead
internal to the rectangle (a). A number of input lines (b) or output lines

)
[
(== F==—="(c)
= = n
{a)
e )
(e)

FIGURE10.5.11. Generalizedsingle-word FIGURE 10.5.12. Shift register showing
shift-register  symbol serial-character  paral-
showing: (a) shift in- lel-bit output (double
puts; (b) serial-character line) returned to the
input; (c) serial-character most significant digit
output; (d) parallel-char- input to the register.

acter input; and (e) par-
allel-character output.

(c) or one double line emerging from or entering one end indicate serial-
character parallel-bit operation. Inputs (d) and outputs (e) along the long
side of the figure indicate parallel-character inputs and outputs. In Fig-
ure 10.5.12 the input line displaced somewhat from the beginning of the
register shows that the influx of information circumvents the sign position
leaving it stationary in the shifting process. The shift input (the line with
the arrowhead within the box) in this figure carries a train of pulses which
affects all the characters except the sign.

The register symbol is meant to convey a complete unit which con-
tains delays or logic to obtain auxiliary pulses, such as clear or transfer
pulses, for proper operation of the register.

10.6. MULTIPLE INPUT BLOCKS

To study functional blocks and logical diagrams which handle parallel-
bit information, a symbolic convention is adopted that increases efficiency.
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Parallel-bit information is indicated by a pipe—a double line—as the
input or output of any suitable parallel-bit device. Thus the output of
register A is connected to the register B in Figure 10.6.

A connecting junction such as the tee between register A and B is
made so that one side of one pipe has a hole where the connection is made
to the other pipe. A non-connecting junction is seen where the output of

FIGURE 10.6. Parallel-bit logical diagram.

&1 crosses under the output of B—the sides of the pipe from B are not
broken.

Multiple devices can be shown using this convention. Thus &1 is a
set of gates, one for each bit-line of parallel-bit information, and all of
which have a + input. Similarly A2 is a set of delays, each of identical
characteristics and one in each of the parallel bit lines. Also V3 represents
a number of mixers; there is one mixer for each pair of corresponding
input leads. In this case the inputs must be commensurate and there
must be a corresponding member in each pipe; there must be the same
number of lines in each pipe.

PROBLEMS

1. A half subtractor is a device which determines the difference of two bits,
without considering whether a borrow had occurred on the previous subtraction.
Write a truth table for the difference D and the borrow output B (to the next
bit to the left), in terms of the minuend Y and the subtrahend X. What are
the Boolean expressions for D and B? Draw a logic using D-blocks for D and B.
Can you find an alternate expression and representation?

2. The full subtractor is analogous to the full adder, but has the borrow input
(from the previous bit) B’, as well as the minuend ¥ and the subtrahend X.
Write a truth table for D and B, Boolean expressions for D and B, and a logic
using D-blocks. Are there alternate expressions and representations? Tell
how you might use a full subtractor in a computer.
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3.
4.

5.

6.

7.

Construct a full subtractor using half subtractors.

Convert the equations of Problem 1 into nor notation. Develop a half sub-
tractor using nor logic.

Convert the equations of Problem 2 into nor logic. Develop a full subtractor
with nor logic.

Convert (10.3.29) and (10.3.33) into nor equations. Draw nor logic to realize
the full adder.

Draw (on a large sheet of paper) a five-character, four-bit-per-character
dynamic shift register of the type shown in Figure 10.5.10.

Draw a complete five-character, four-bit-per-character shift register of the
type illustrated in Figure 10.5.4. Include gates and mixers for end around shift,
shift out, and transfer in and out. Add logic for shifting, at will, all but the
left-hand character.



ELEYVEN

FUNCTIONAL UNITS

We shall now describe the blocks of logic that perform large
pieces of arithmetic and editing. For each type only a few of the many
possibilities for logical design at the computer engineer’s disposal are
explored, showing how the logical blocks are combined to form these func-
tional units. Many variations exist. The designer must decide what
aspects of each logical design are compatible with, and contribute favor-
ably to, the over-all function of the given computer. His judgment is
based on components already chosen, required speed, capacity, economy,
reliability, and the environmental conditions which prevail. The blocks
discussed now do a large fraction of a computer command. In the next
chapter we will put these blocks together to make units which will do full
orders.

11.1. ACCUMULATORS FOR NATURAL
BINARY COMPUTERS

Accumulators tn General

An accumulator is a device for adding multiple-digit numbers, not just
single digits (this the adder does, the adder being a subunit of the accumu-
lator). The mechanics of the accumulator depend on (1) the coding used

173
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in the computer and (2) the mode of operation—whether addition is done
a digit at a time (serially) or all at once (in parallel).

A complete accumulator consists of a register which holds the augend
(the accumulator register), a register to hold the addend (the addend
register), a register to hold the sum (usually the accumulator register too),
an adder with the logic to produce the sum, and control logic to guide the
operation. A complete order procures the addend from memory, places it
in the addend register, adds it through the adder to the augend, and places
the result in the accumulator register.

The accumulator is so named because successive sums obtained by
adding successive numbers together can be ‘“accumulated’ in its accumu-
lator register. Most accumulators can be used interchangeably for sub-
traction, hence they can also accumulate differences.

The adder for the accumulator depends upon the computer language
and upon whether the computer operates in a serial-character or parallel-
character fashion.

Serial-Character N atural Binary Accumulator

In Figure 11.1.1 a schematic drawing of a serial-character natural
binary accumulator is shown. The “accumulator register’’ is hereafter
shortened to “accumulator’ where
no confusion results. The accumu-

Accumulalor Req. _| lator (so labeled in Figure 11.1.1)

X S feeds the augend into the full adder

_J_Y F F at input X (FX); the addend is

Addend Reg. —¢' € moved from its register into the ¥
[l:m] input of the adder (F'Y); the carry

—aniff from the previous digit is stored

in the delay Al, to be fed in now
with thss digit. The sum output of
the adder (FS) is returned to the
input of the accumulator. Sum digits as they are created are pushed down
the accumulator until the full sum sits in the accumulator.

FIGURE 11.1.1. Serial binary accumulator.

Parallel-Character Natural Binary Accumulator

Figure 11.1.2 shows a parallel-character natural binary accumulator.
There is an adder (F) for each digit of the register word except the sign.
This adder is designed somewhat differently from the full adder because
a number of such adders must operate together and simultaneously. The
structure of parallel natural binary adders is discussed in Section 11.3.

In Figure 11.1.2 the digits of the augend are entered into the X inputs
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of the corresponding adders; the augend bit is entered into the X input of
corresponding adders (i.e., adder F; for digit #5); the carry output C from
each adder is entered into the carry input, C’, of the next adder to left;

T T
i : Accumulator Register
| ] 1 1
— X S |—X S— X S
_;' . c _z' . c _E'Fi C
| T T
f | Addend Register
= 1 1 I

FIGURE 11.1.2. Parallel binary accumulator.

the sum output of each adder is returned to the corresponding accumu-
lator register input.

Serial-Character Parallel-Bit Accumulator

The binary coded-digit serial-character parallel-bit adder and accumu-~
lator is shown in Figure 11.1.3. This kind of logic is associated with com-
puters using languages such as XS3 or NBCD. There is one input line,

L / X{ S1 —I
Accumulator ——%2 S
————% 'y
Xq S
N A

/Yz

Addend <Y§

Yq

1

FIGURE 11.1.3. Serial-character parallel-bit coded-digit accumulator.
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X, X, and so on, for each parallel bit of the digit code as received from
the accumulator register; there is one input per bit, ¥, Y, and so on, to
the adder from the augend register; there is one output per bit, S, S,
and so on, from the adder—this is usually re-entered into the accumulator
as is shown; there is only one carry bit output C from the adder which is
usually returned through a delay to the adder carry input, C’. Coded
decimal adders are discussed in Section 11.5 and 11.6.

Parallel-Character Parallel-Bit Accumulator

With a little imagination a number of coded-digit adders such as those
used in Figure 11.1.3 can be assembled to resemble the logic of Figure
11.1.2. This would ferm a parallel-character parallel-bit coded-digit
accumulator.

11.2. SERIAL-CHARACTER NATURAL
BINARY ACCUMULATOR

Little auxiliary equipment is needed to implement the serial natural
binary accumulator shown in Figure 11.2.1. The first augend bit (binary

Accumulator

M“—EEDI___D__—ED—\T:
0
S

¢ c
s [:I]]j
Addend Register
- NEEREENE

FIGURE 11.2.1. Serial binary accumulator.

digit) is entered from the accumulator register into the X input; the first
addend bit is entered from the addend register into the ¥ input; there is
no information at the C’ input, since the delay was cleared in previous
usage; the sum bit which is produced immediately appears on the main
information line which enters it at the input to the accumulator register;
the carry output bit, C, is entered into the delay.
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The next step (or shift) enters the second accumulator bitinto one of the
adder inputs and the second addend bit into the other; the carry bit from
the previous addition now appears at C'—it has been delayed exactly one
bit time so that it will occur at the precise time the augend and addend
bits enter the X and Y inputs of the adder; the second sum bit then
emerges onto the main information line and appears at the input of the
accumulator register; the carry bit is entered into the now-empty delay.

As each augend bit is shifted out of the right side of the accumulator
register, a sum digit is entered into the left side; the first sum bit is entered
on the first shift operation as the leftmost accumulator bit; as the process
continues, this first sum bit is shifted to the right; on completion, it is at
the rightmost position where it belongs. Zeros may be entered at the left
of the addend register to clear it as addition proceeds, or the addend may
be re-entered instead.

The reader may perceive two problems postponed for later solution:
(1) a carry may occur on adding the most significant digits; (2) the sign
of the sum must be determined from that of the augend and addend.

Carry Storage

It is important that the delay for the carry output of the adder is such
that the carry input will coincide with the next digit input. If the bit
frequency has any tendency to drift,
trouble could arise. To circumvent

this, the circuit of Figure 11.2.2 is Augend bit X S
used. The carry output bit has been Addend bit; Y F
stored in B1. The shift pulse which ¢ c
enters the augend and addend digits

also reads the carry storage by means 5 A4-=2T
of &2. In T microseconds the carry BI

storage B1 is reset; this is done by :
the shift pulse which is entered into

A3, a delay of duration T. The carry
output of F from FC is entered into  Shift
Ad4; it is delayed by 2T microseconds P! [[a3-1 ]

so that it is recorded after Blisreset i URE 11.9.2. Serial binary accumu-
to 0. As long as both delays A3 and ——

A4 of Figure 11.4.2 are smaller than

the bit time, no difficulty arises.

11.3. PARALLEL NATURAL BINARY ACCUMULATOR

This section discusses the principles of parallel binary accumulators
and presents a detailed explanation of three kinds of logic typical to such
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creatures. Many variations have been devised, but this section is not
exhaustive. :

The procedure in the parallel binary accumulator is to add all the bits
simultaneously. Of course, the difficulty discussed in Chapter 6 called the
carry ripple plagues us here: as a carry is added from one digit to the next-
higher-order sum digit, a further carry may be created by this addition;
when this carry is added to the next digit, another carry may be gener-
ated; and so forth.

Parallel accumulators designed with a high-speed carry to circumvent
the carry ripple do not use the full-adder logic of Chapter 10. Instead,
the adding is done directly into the accumulator register which is set up
as a trigger. The carry process is done as a separate operation.

The Question of Carry

In order to exploit all the possibilities for the high-speed carry, it is
essential that we be aware of the alternatives. For a given stage of the
parallel adder there are four possibilities:

1. There is a carry from the previous stage and there is a carry to the
next stage—carry transmission.

2. There is no carry from the previous stage, but there is a carry cre-
ated in this stage—carry generation.

3. There is no carry from the previous stage nor to the next stage.

4. There is a carry from the previous stage and a carry generated in
this stage.

CARRY TRANSMISSION. A carry passes through this stage if either the
addend digit X or the augend digit Y or both is 1.

CARRY GENERATION. A carry is generated in this stage only if the addend
digit X and the augend digit ¥ are both 1.

CasE 4 is covered by the case of carry generation.

CARRY oMiIssION accounts for the remainder of cases.

Multiple-Phase Addition System

The operation of parallel adders can usually be analyzed into four
phases: ‘

1. Form the sum of the accumulator and addend digit (before or after
the carry is considered).

2. Check for carry generation and generate it if necessary.

3. Check for carry transmission and transmit it if necessary.

4. Record carry when present.
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These steps may not follow in just that order but they must be done at
one time or another.

Accumulator Bil-Storage Participation

It is customary to design the natural binary accumulator so that each
bit storage of the accumulator register takes part in the addition process.
Recall that in serial addition, as each sum digit is formed, it is pushed into
the left-hand side of the accumulator register, the left-hand bit storage.
It is later moved down the register to end at the proper place. We could
use this principle in the parallel process: the accumulator digit could be
read out into the corresponding adder of a set of adders; the sum would
then be returned to the accumulator as it was formed.

It is more economical to incorporate each bit storage of the accumu-
lator register into the adder logic. This is done as follows. The addition
logic examines the accumulator and addend bit to determine if or how the
register must be altered to obtain the sum digit; the accumulator bit stor-
age is then operated as a trigger; if it is to be altered (a 1 made a 0 or a2 0
made a 1), it is triggered once; if it is to remain as set (it should be 1 and
is 1 or vice versa), it is either triggered twice or not at all, the latter being
more economical, of course.

Primitive Parallel-Bit Adder

A primitive version of a parallei—bit adder is shown in Figure 11.3.1.
Its action can be analyzed into four
successive steps: +C'

(1) If the addend bit is a 1, trigger
the accumulator bit storage.
(2) Check to see if the addend is 1
and the accumulator bitis 0; if
so, the accumulator was 1 be-
fore step (1) and a carry should 4
be generated to the next stage,
which is then done. 4
(3) The carry pulse from the pre- 1
vious stage checks to see if Al
there is carry transmission.
This pulse becomes the trans-
mitted carry pulse if and only
if the accumulator is now 1. FGURE 11.3.1. First example of a paral-
(4) The carry-in pulse is now re- lel binary adder.
corded—it is used to trigger
the bit storage of the accumulator register.

AD [0 |1
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The first phase is performed by reading out the addend bit. The pulse
on line Al is called the add pulse because it is used to count the accumu-
lator bit. It is applied to &1, and if the addend bit is 1, the accumulator
bit storage is triggered via V2. The accumulator AC is reversed only if
the addend bit is a 1; otherwise, it maintains status quo.

Next, carry generation is checked. A carry test pulse appears onthe
carry line, A2. A carry pulse is generated for this stage only if AD is 1 and
ACis 0. This condition allows the carry pulse to pass through &4 into V5,
the carry output from this stage.

For the third phase, carry transmission, the carry pulse from the previ-
ous stage enters this stage on line C’. The carry entering this stage will be
transmitted to the next stage only if AC is now 1. This is checked and the
pulse C' is transmitted when required through &3 via V5. Notice that it
is conceivable that pulses appear at both &3 and &4, but since AC cannot
be both 1 and 0 at the same time, an output s not possible from both &3
and &4. Thus, one accumulator stage may either generate or transmit a
carry but not both.

The fourth phase records the carry. A carry either generated or trans-
mitted by the previous stage enters this stage via the C’ line. It is delayed
by A6. This delay is necessary because the C’ pulse both tests and counts
AC. If it did both at once, the two would interfere with each other. The
carry check done using &3 occurs before the recording, via V2 delayed by
AG, so that the two do not interfere.

Second Design

Sometimes it is desirable to read out the addend only once during the
first phase—so that it can be used or altered during the rest of the add
cycle without messing up the addition. This requires an extra bit storage
labeled CY for each bit of the accumulator. Figure 11.3.2 shows this logic,
which follows the same steps as the primitive version. '

The first phase pulse A1 tests the addend register AD at &7. A pulse
appears at V2 if the addend digit is a 1; none appears if the addend digit

(H AC , —m 1
c cY 1]
1 <> 2

0 —l 7
A1

A2 Reset 01

FIGURE 11.3.2. Second example of a parallel binary adder.
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is a 0. If there is an output from V2, it triggers AC; only if AC is now set
to 0 does it cause a pulse to be generated via the shaper S1 (the diamond).
When present, this pulse from S1 sets the carry storage CY to 1.

The carry-generate phase is activated by the carry phase pulse A2
which checks the carry bit storage CY via &4 and is passed to the next
stage via V6. .

The carry-in pulse C’ checks the accumulator AC for a setting of 1 by
&3 to determine if carry transmission should occur; if so, it leaves this
stage via V6.

The carry must be delayed before it is recorded so that the testing of
AC by the C’ pulse via &3 is not interfered with by AC changing state
prematurely. This is accomplished by interposing A8 in the path of C’
before it reaches V2 to trigger AC.

Third Method

It is time-consuming to trigger the accumulator bit storage twice if it
~ is going to remain in its present state. This third method provides only
one pulse to the bit storage and that only when the derived result requires
a single change in state. This method consists of three simultaneous
decisions:

1. Trigger the accumulator register bit storage for a carry from the
previous stage or a 1 in the addend bit, but not both.

2. Carry generation.

3. Carry transmission.

The logic for this method appears in Figure 11.3.3. The condition of
either a carry-in (C’) or a 1 in the addend bit storage (X) is constructed

A
v

AC
0
b {
XY A
a X
6 A
¢ o) x+YﬁY
C(X+Y ‘<x
—G C' X
.
Al
{ |0 |AD

FIGURE 11.3.3. Third example of a parallel binary adder.
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in V1 as X 4 C'. The condition that there is both a carry-in (C’) and a 1
in the addend (X) is formed in &2 as XC’. The condition for either carry
or 1 in the addend bit but not both (X 4+ C")XC" is composed by &’3. The
add pulse A1l passes through &'3 only when AC is to be triggered. There
is no hurry to trigger AC, so the triggering pulse is placed temporarily in
the delay A4 until the carry function is performed.

There is a carry generation if both the accumulator register bit storage
is now 1 (Y) and the addend bit storage is now 1 (X); in that case pulse
A1l passes through &5 and V6 to emerge as the carry pulse C into the next
stage.

There is carry transmission if either the accumulator or addend bit is
1 (X + Y) and if there is a carry C’ from the previous stage. X + ¥
formed in V7 permits the pulse C’ to pass through &8 as the condition
C'(X 4+ Y) and then through V8 as a carry-out C to the next storage.

After the carry has been tested for and propagated (transmitted or
generated), the bit emerges from A4 and if it is a 1 it triggers the accumu-
lator register bit storage. :

Other Versions

There are many different logics which have been devised for parallel
binary adders. The reader is referred elsewhere for other treatments
(see references 8 and 29).

11.4. NATURAL BINARY CODED DECIMAL ADDITION

NBCD coding has been described extensively in chapter 8. It is a
machine language in which each of the ten decimal digits has a unique
four-bit code. It has six forbidden four-bit combinations—codes for which
there is no corresponding decimal digit. We now wish to find some means
for adding decimal digits so coded; the result we expect is another coded
decimal digit and a carry bit. Notice we say “carry bit’’ because this is
binary information—carry or no carry.

The inputs to our adder are the four bits of the addend X1, X2, X3,
and X4, the four bits of the augend Y1, Y2, ¥3, and Y4, each noted from
least to most significant bits, and the carry in, C’; the outputs are the four
sum bits S1, 82, S3, and S4 and the carry-out C.

We are first going to add the codes for the decimal digits as though
the codes were binary numbers. If the result is the correct code, all well
and good; otherwise, we correct this result.

We recall the rules developed in Section 8.2 for adding NBCD digits:

1. If the sum is 9 or less, the sum digit code is then correct.
2. If the sum is 10 to 15, the sum digit code is not correct and a carry



SsEc. 114 = BINARY CODED DECIMAL ADDITION 183

has not been generated as required. To correct this, a coded 6 is
added to the sum-so-far producing the correct sum and the carry.

3. If the sum is 16 or more, there is a carry created but the sum is
wrong. Again this is corrected by adding a coded 6.

To do the job, we shall require a set of four full adders to add the
respective bits of each coded digit and the carries from previous bit addi-
tions. We shall need means for determining when the output of this set of
full adders indicates that the decimal sum is greater than 9. And when it
is, we need another set of adders (the correctors) which add a binary
coded decimal 6 to the sum produced by the first set of adders.

¢'——cC'

X,——X F1 S 8 g
' c'

X2 X F2 S X F5 S|——S,
G’ c'

X3 X F3 S X F6 SF——S;
c' ¢ .

Xa X F4 S X F7 S S

Y, Y C Y c

4 B_ L

c

FIGURE 11.4.1. Natural binary-coded decimal adder.

The logic of Figure 11.4.1 does the entire job. The full adders, F1, F2,
F3, and F4 perform the first addition. The carry input F1C’ is the carry
resulting from the previous coded decimal digit addition. For the other
carry bits, the carry output of one full adder is connected to the carry
input of the next full adder, e.g., F2C is connected to F3C’.

To see how sums greater than nine may be detected, let us review
the forbidden combinations which may arise. They are 1010, 1011, 1100,
1101, 1110, 1111. All of these combinations have a fourth bit which is 1;
but so do the codes for 8 and 9 so that this is not a sufficiently distinguish-
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ing characteristic. Examining these forbidden codes again, we note that
each contains either a second or third bit which is 1 which is not the case
for 8(1000) or 9(1001). Together, these characteristics distinguish a for-
bidden code from a correct combination. A correction is also required
when the sum code is an acceptable combination but there is a carry
present. The conditions requiring correction of the first sum (the out-
put of F1, F2, F3, and F4) and the detection of these conditions are now
itemized:

1. Bits four and three of the first sum are both 1, detected by &8.

2. Bits four and two of the first sum are both 1, detected by &9.

3. A carry is produced by F4 for which a 1 is present at the carry out-
put F4C.

For any one of these there is an output from V10. Note that this is also
an indicator of a carry-out for the NBCD adder, so that the output of
V10 is also labeled C.

Now when there is a carry-out, C, we wish to add coded six—0110—to
the sum out of the first adder. We could use another set of four full
adders, but with a few observations we can reduce our requirements:

1. The first bit may only have 0 added to it and is never affected— -
eliminate one full adder.

2.- The second bit may have 1 added to it but there is never a carry
from the first bit—use a half adder H5 for this.

3. The third bit requires a full adder, F'6, since it has three inputs;
the partial-sum bit, the coded-6 bit, and carry-out bit from HS.

4. The fourth bit may only have a 0 added to it but there may be a
carry bit input from F6—a half adder, H7, will do.

The coded-6 input to the corrector (H5, I'6, and H7) is the C output
applied to H5Y and F6Y. The outputs from the natural binary coded
decimal digit adder are the four partial sum bits, S1, 82, 83, and S4 and
the carry C.

Use

The NBCD digit adder is used in serial-character parallel-bit accumu-
Jator as in Figure 11.4.2. The parallel-bit output of the accumulator is
entered into the X inputs of the adder; the parallel-bit output of the
addend register is entered into the Y inputs of the adder; the carry output
C of the adder is returned through a single-digit-time delay to the adder
carry input C’; the sum outputs of the adder are returned to the most
significant digit inputs of the accumulator; both the addend and accumu-
lator registers are shifted simultaneously.




SEc. 11.5 = Tdanr Xs3 ADDER 185
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FIGURE 11.4.2. Serial-digit parallel-bit accumulator.

11.5. THE XS3 ADDER

Addition in XS3 code was described in Section 8.3. One of two condi-
tions arises in adding two XS3 coded digits:

1. If the decimal sum is 10 or more, the XS3 code produced does not
correctly represent the sum, but the required carry is present. The
partial sum is corrected by adding 0011 to it.

2. If the decimal sum is less than 10, again the XS3 code does not
represent the sum, but the carry is absent as it should be. Cor-
rection is made by subtracting 0011 from the partial sum or by
adding 1101 to the partial sum and neglecting the carry which is
generated.

In either of these cases the sum obtained by adding the codes must be
corrected. There are then three steps to be taken:

1. Add the codes using a set of four full adders.

2. Determine the kind of correction required.

3. Make the correction by adding the correction code to the initial
sum’in another set of adders.

The logic to do this is found in Figure 11.5. The nine input bits are
those of the addend X1, X2, X3, and X4, those of the augend Y1, Y2, Y3,
and Y4 and the carry in, C’; there are four sum output bits S1, 82, S3
and S84 and the carry out C. The four full adders, F1, F2, F3, and F4 are
connected as in the last section to add the codes.

The two cases indicating the two kinds of correction are clearly deline-
ated by the presence or absence of a carry F4C from the adder F4. In
other words, add 0011 if there is a 1 at F4C; add 1101 if there is a 0 at I'4C.
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The first bit correction adder can be eliminated if we note that any
correction requires the addition of a 1 to the first bit of the partial sum
first. Hence we can obtain a corrected first bit by inverting the first bit
of the initial sum F1S using 8. Three other full-correction adders are
necessary. .

The second bit of the initial sum F2S is entered at F5X. There is a
correction input when there is a carry on the initial sum; '4C is connected

¢—c
X—X Fi S } Bj
Y,——Y(_C)

¢ c'
Xz X F2 S X F5 Sf——S,
Yo—Y C (Y_Q

c' ¢
X;—X F3 S X F6 S Ss

c' c
Xs X F4 S X F7 S By
A Y C i } Y c

Cc

FIGURE 11.5. XS3 adder logic.

to F5Y. There would be a carry from the first bit correction whenever
the first bit of the initial sum is 1; hence F18 is connected to I'5C’.

The third bit of the initial sum is entered into the third bit correction
adder by connecting F3S to F6X. There is a correction for the third bit
when there is no carry from the initial sum; F4C the output of 9 is con-
nected to F6Y. The carry from the second bit correction is entered by
connecting F5C to F6C’.

The fourth bit of the initial sum is entered into the fourth bit correc-
tion adder by connecting F'4S to 7X. There is a correction for the fourth
bit when there is no carry from the initial sum; F4C from 9 is connected
to F7Y. The carry from the third bit correction is entered by connecting
F6C to F7C'.
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The carry-out for the entire XS3 adder is the same as for the initial
sum, i.e., C = F4C.

Use

The XS3 adder is incorporated into an accumulator in the same fash-
ion that the NBCD adder is. Hence I'igure 11.4.2 is also applicable for
an XS3 serial-digit parallel-bit accumulator.

11.6. COMPLEMENTERS

We've discussed the complement before. Regardless of the number
system, the complement of a digit is the difference between the base and
the digit. When dealing with coded digits, we find that some codes are
self-complementary : the code for the complement of a digit is the comple-
ment of the code for the digit. The XS3 code is self-complementing, so
we may find an illustration of this principle by examining it. The XS3
code for 3 is 0110; the complement of 3 is 6 in the decimal system; the
X883 code for 6.is 1001 ; the complement of the XS3 code for 3 is 1001. Itis
seen by examining the XS83 codes for other decimal digits that it is truly
a self-complementing code. ’

In this section we shall examine complementation of natural binary
numbers, self-complementing codes, and non-self-complementing codes.

Self-Complementing Codes and Bit Complementers

For this kind of complementation it is merely necessary to change
each 1 to a 0 and each 0 to a 1.

If the number to be comple-
mented is in bit storage, it is a Shi Afc'mum,or
simple matter to read out its com- B +‘
plement by reading the O state of . H —|:

the bistable device instead of the

1 state. When this is done the 1 1 ¢ c
reads as a 0 and the 0 as a 1.
Figure 11.6.1 shows logic for Add

using a bit adder for serial-bit Subtract .

serial-character addition and sub- FIGURE 11.6.1. Bit adder and subtractor.
traction for a self-complementing

machine code. ‘“App’’ indicates a

d-c signal present when addition is called for; “suB’’ indicates a d-c sig-
nal present when subtraction is required. B1 is the least significant bib
of the addend-subtrahend register. As the register is shifted through &2




188 FUNCTIONAL UNITS = CHAP. 11

during addition, the addend is transmitted properly through V 4 to the
adder I. During subtraction, the complement of this register is passed
through &3 and V 4 to F. Since a self-complementary code is used, F
is supplied the minuend at X and the subtrahend complement at Y and
produces the difference at S.

Addend
Subtrahend Add  Subiract ‘;’0"‘ .
Register . ] | ccumulaior
L X' Sl 0
Y
Add ¥z 8
Subfract XS3
switch Y, To information
Adder 1iis
X3 53—-
Y3
X4 Sy v
\
1

] [ G C ':I

FIGURE 11.6.2. XS3 coded binary decimal parallel-bit serial-character adder and sub-

tractor.

Figure 11.6.2 shows how an assembly of four such add-subtract
switches (A-S) are used for XS3-coded serial-character parallel-bit addi-
tion and subtraction.

Non-Self-Complementing Codes

The procedure for deriving complementing logic for various codes is
similar. The natural binary coded decimal is the most important of such
codes and we will develop complementing logic for it as an illustration of
the principles involved.

Natural Binary Coded Decimal Complementer

The table of codes for each decimal digit and its complement appears
in Table 11.6.1. We assume that the bit and its inverse are both available,
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TABLE 11.6.1 NBCD DIGIT CODES AND DIGIT COMPLEMENT CODES

NBCD NBCD Dagit
Digit code complement complement
0 0000 1001 9
1 0001 1000 8
2 0010 0111 7
3 0011 0110 6
4 0100 0101 5
5 0101 0100 4
6 0110 0011 3
7 0111 0010 2
8 1000 0001 1
9 1001 0000 0

which is true if the digit is in bit storage. The Boolean equation for the
complement is now obtained. The complement of the digit X which is
coded using the bits X4, X;, X,, X, is C coded using the bits Cy, C3, Cs, C.

From the table we see the com-
plement of an even digit is always
odd and vice versa. Hence the first
bit of the complement will always be
inverted, which we write as

C. =X, (11.6.1)

Again from the table we note that
either the number and its comple-
ment contain identical second bits
which we write as

C. = X, (11.6.2)

The third complement bit (C;) is 1
when the second bit is opposite from
the third in the code, written as

C; = X.X; + X.X; (11.6.3)

The fourth bit of the complement is 1
only when there is a 0 in the second,

Xy Xz X3 X4

D
E%

OCA,

FIGURE 11.6.3. A natural binary-coded

third, and fourth position of the code, written as
. 04 = X4X-3X2

decimal complementer.

(11.6.4)

The equations are realized by the logic of Figure 11.6.3.
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11.7. COMPARISON

The decision-making facility of the modern computer rests for the
most part on its ability to compare two numbers and to choose among
several courses of action according to the results of the comparison.

The simplest and first means devised for comparing numbers was to
perform two subtractions and observe whether the result of either is less
than zero. To compare X and Y, we find X — Y and ¥ — X. We have
these results:

MifX—-Y<O0 then X < Y
@2 ifY—-—X<0 then ¥ > X
B X —-—Y<40andY — X <0 then X =Y

This sometimes requires two subtractions. It is possible to perform a com-
parison in one step using a special comparison logic.

One-Step Comparison Method

This method assumes that the most significant digit of the number is
at the left, as is true with all the natural number systems we have used
and with most of the codes.

When we compare two numbers such as X = 3328 and ¥ = 3319, we
begin at the left and scan the digits, comparing corresponding digits. The
left-hand 3’s are equal, so we are uncertain; the next two 3’s are equal,
and we are still uncertain; next, the 2 in X and the 1 in Y are scanned;
because the 2 in X is greater than the 1 in ¥ we reach the (correct) con-
clusion that X > Y; the fact that the unit’s 9 in Y is larger than the unit’s
8 in X has no bearing on our decision.

In comparing X = 1031 with ¥ = 879, we immediately note that X
has more digits than Y. More precisely, this is equivalent to saying that
there is no bundle for Y of size equal to or greater than the largest bundle
in X. -

Serial-Bit Comparitor

The most important application for a serial-bit comparitor is with
natural binary numbers and binary coded numbers. As long as the digits
are the coefficients of ascending powers of the base in one direction, we
can compare the numbers easily.

Consider any pair of single bits, calling them X; and Y; These bits
are equal if they are both 1 or both 0; X; > Y; if X;is 1 and Y; is 0;
X; < Y;if X;is0and Y;is 1. .
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Our comparison logic should do several things:

If X; = Y, nothing happens—make further comparisons.

If X; > Y, set a bit storage BG indicating this.

If Y; > Y, set a bit storage BL indicating this.

In the latter two cases, further comparisons must be prevented to
preserve the present result.

sl ol

The logic for this is found in Figure 11.7.1. The input lines X and Y feed
in serially, bit by bit, the two num-

bers to be compared. Corresponding _

bits of each pass through &’1 and BG
&'2. The output of &'3 is X;¥;and is ‘
present only if X; > Y;; the output
of &'4 is X.Y; and is there only when
X; < Y;; BGor BLis set respectively
if X; > Y,;or X; < Y,;. When either
BG or BL is set to 1, a voltage at V6
is applied slightly delayed by A7 to
&'l and &’2. This voltage prevents : A
any further bits from passing through FIGURE 11.7.1. Serial binary com.pari-tor
&'l and &'2 which might set the :
unset bit storage of the pair.

Serial-Character Parallel-Bit Comparitor

It is possible to make parallel-bit comparison in two ways, making a
simultaneous sum of all bits at once or serializing the information.

SeriavnizaTioN. The logic of Figure 11.7.2 enables us to perform serial-
character parallel-bit comparison by comparing bits in sequence with four
serial-bit comparitors. The serializing is done by inserting correspond-
ingly longer delays in the lesser significant bits. The delays may be
inserted either to delay comparison or to delay the recording of the results.
The latter is illustrated in Figure 11.7.2. The four corresponding bits, one
from each of the pair of numbers X4 and Y4, X; and Y3, X, and Y, and
X, and Y, are compared in CM4, CM3, CM2, and CM1 respectively.
The result from CM4 (most significant bits) is recorded first without
delay; for ‘““greater’’ the pulse passes from CM4G through V7 and &9 to
set BG; for “less’’ the pulse passes from CM4L through V8 and &'10 to
set BL. The result of the next bit comparison leaves as a pulse from
CM3G (or CM3L), is delayed slightly by Al (or A2), passes through V7
(or V8) and &9 (or &'10) to set BG (or BL) providing that neither BG
nor BL has been set earlier; if either BG or BL has been previously set,
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its output is applied through V11 and A12 to prevent passage of further
results through &9 or &’10. The result from CM2 is subjected to a longer
delay by either A3 or A4; the results from CM1 are subjected to an even
longer delay by A5 or A6. If this character-code comparison has not been

o -t

= 8 *—O
T T
Yi— L—s 1 12 ]

FIGURE 11.7.2. Four-bit comparison logic for serial-character parallel-bit operation using
serialization with A1 = A2 < A3 = A4 < A5 = A6; A12 < A1,

recorded in either BG or BL, the result of further character-code compari-
sons may be entered there; otherwise, further results will be inhibited by
the voltage from V11 through A12 at both &9 and &’10.

SimuLTANEOUS SCAN. The Boolean equations which determine from the
two sets of four (or more or less) bits whether X is greater, less than, or
equal to Y are not difficult either to set up or to implement, but they are
rather too specialized to spend appreciable time on.

-Parallel-Character Comparisons

The reader can see that the principles of either simultaneous scan or
serialization can be used to formulate a parallel-character comparitor. It
is left to him to apply these principles.
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11.8. CODING, DECODING, ENCODING
Encoders

Coding and encoding are often used in the same sense, to mean the
act of converting a baseless input into a binary code or number. ‘Base-
less’’ is used as in Chapter 8 to indicate that there is a separate symbol or
wire for each number capable of representation. Here only one input wire
may carry a signal. The term coding is best reserved for setting a program
into machine program language. An encoder, then, is a device which, for

olo|p|INM|O

O O -

FIGURE 11.8.1. NBCD encoder.

a single pulse or d-c input, produces a multiple pulse or d-¢ output. This
is done using as many multiple-input mixers as there are output bits.
The baseless input is entered into each mixer for which a 1 output is
required. Figure 11.8.1 shows a natural binary coded decimal encoder.
Notice there is an input line in that figure for nine of the ten digits and
that an output may appear on one or more of the four parallel output
lines for one of these input signals. 0 has no input because there is no out-
put for 0—it is coded as 0000 (a failing of NBDC).

A serial-character parallel-bit decimal-to-NBCD encoder might use
the logic of Figure 11.8.1. In a time sequence one of the input lines to the
encoder would have a pulse applied to it corresponding to the decimal
number to be encoded. The four output lines would emit, at that pulse
time, the set of signals corresponding to the NBCD code of the decimal
digit currently being considered.

There is an easier form in which the encoder diagram may be drawn
and presented. This is shown in Figure 11.8.2. One vertical line is
assigned to each digit to be encoded; one horizontal line represents each
bit of the coded output; any one or several of the output lines may have
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a signal on it, depending on the single signal input. The solid triangle at
the junction of an input and output line indicates that this input signal
causes a signal to appear on the output line. For instance, a signal on the
6-input line for the decimal-to-NBCD encoder of Figure 11.8.2 causes an
output on lines B3 and B2 only,
since the 6-line intersects the B3 and

01 23 45%6 789 B2 lines at triangles in that figure.
I B4 An N-character word, parallel-
character parallel-bit encoder would
B3 : 5
Ou require N such encoder units and a

B2 total of 10 - N input lines and 4 - N
»>-B1 output lines. All the characters of
HEURE 1188, Dedmal to NOD gye 0 0cG WIRE b e w2t pnce,

It is also possible to consider an
encoder which translates a multi-
digit decimal word into a binary
word. Since there is no correspondence between the decimal digit and
any set of bits of the binary number, such an encoder is not simply
described. See Problem 13. '

coder.

Decoders

Having several input lines, one or more of which carries a pulse or d-c
signal, the decoder emits a single signal on one of a number of possible
lines. This logic serves an opposite
function to the encoder. Several of

the input lines may carry signals but g;
only one output signal occurs. Since 83— 6
it is a many-to-one device, it is con- B4

structed of &-blocks. A decoder to

translate the single digit 6 from NBCD FIGURE 11.8.3. Decoder for base-
to a decimal is shown in Figure 11.8.3. :;Z;_t‘;‘j;::::
Using only 2-input &-blocks, the logic loss. -

of Figure 11.8.4 is a complete NBCD-

to-decimal decoder.

Figure 11.8.5 shows a simpler representation of an NBCD decimal
decoder. Note that for each bit there is a 1- and a O-input line. The reason
is that it is difficult to show an inverter input to a gate in this representa-
tion; it is much easier to use two lines per bit. There is an output line for
each digit which may be decoded. There must be an input signal at all
the intersections of input lines with the given output for which there is a
semicircle—these are &-blocks. For instance, for a signal on 1_:53 9-output
line there must be an input on B4 (B4 = 0 line), B3, B2, and B1. You see

@ ——— e ST
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FIGURE 11.8.4. Full decoder, NBCD to decimal, using two-input &-blocks only.

that each output line has exactly four intersections with input lines; this
is because NBCD is a four-bit code, and each bit must be accounted for

as either a 0 or a 1.

A serial-character parallel-bit decoder
functions asthe nameimplies. A parallel-
character decoder requires as many de-
coder units as there are characters. The
binary-to-decimal decoder is found in
Problem 14.

Character Detectors

It is often important to determine if
a given symbol is stored in a register.
Thus in multiplication it must be deter-
mined if the multiplier has been tallied
down to 0. This detection is done with a
decoder. The logic of Figure 11.8.3 serves
as an NBCD “6”’ detector, for instance.

B4 B4 B3 B3 B2 B2 B1 Bi
N N RYEAY Q
o o O J
Ay Y Y N
D D v D 8
NN N N 7
VA L .
N Y Ay
Epur ¥ ¥ 6
AYAY N D 5
vanv PV
N_ D Y A A
U ¥ % 4
N NN Y 3
o VARV o
N NN N
L U PV L/ 2
N N N D 1
v ¥ U1
N Y Y N 0
o P ”

FIGURE 11.8.5.

NBCD-to-decimal

decoder.
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Symbols

Character detectors and decoders are represented by a rectangle with
a D in it as appears in Figure 11.8.6(a) and 11.8.6(b); there are several
input lines for the binary coded digit input; the detector has a single out-
put produced when the desired digit is detected, Figure 11.8.6(a); the

Bi— —0
0 —B1
"1 o [ o [ 14 €
B2 B2+ —2 2 —B2.
3 3+

(o) (b) (c)

FIGURE 11.8.6. (a) Detector block symbol. (b) Decoder block symbol. (c) Encoder
block symbol.

decoder has an output for each digit represented in the code, Figure
11.8.6(b). The encoder symbol, a rectangle with an E in it, is shown in
Figure 11.8.6(c).

11.9. COUNTERS

Counters are used to keep track of things—for internal bookkeeping.
Many counters use bases other than two. However, modern high-speed
computers mainly use binary counters and we will limit our discussion to
their study.

The counter was mentioned in passing earlier in the book; the logic
for one is illustrated in Figure 11.9.1. Before use, each bit storage of the
counter is cleared (set to 0) by a pulse applied to the reset line. The state
of each bit storage is shown on the first line under the figure. The first
input pulse to be counted is applied to the 1 input and to the 0 input of
B1 through V4. Bl is thus used as a trigger. Bl is set by this pulseto
what it is not; since it was just reset, it is now 0 and hence it is set to 1
by the first pulse. As listed below each bit storage, the counter then
reads 001. The second pulse sets B1 back to 0; in so doing the shaper cir-
cuit S5 emits a pulse; this pulse is applied to both the 1 input of B2 and
the 0 input of B2 through V6. B2 is set to what it is not and hence is set
to 1; the three bits now read 010. The next input pulse sets B1 to 1; the
setting is then 011. The next input pulse sets B1 to 0; this enters a pulse
into the next bit, setting it to 0; this in turn enters a pulse into the third
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bit setting it to 1; the setting is now 100. As you can see below the dia-
gram, successive pulses cause the bit storage to assume states correspond-

ing to successive natural binary numbers.

B3 B2 B
| { i
g % 0 - 5 0 +Input
6
& *-Resel
Arfter reset pulse 0 o] 0]
Asfter first pulse O 0 1
After second pulse 0 1 (o]
Arfter third pulse 0 1 1
Avfter fourth pulse 1 0 0
After fifth pulse 1 0 1
Avfter sixth pulse 1 1 (0
After seventh pulse 1 1 1
Asfter eighth pulse 0 0 0

FIGURE 11.9.1. Counter logic.

The counter just described is called a scale-of-N counter. In the type
of logic illustrated, N is always equal to 2 where n is the number of stages.
This scale-of-eight counter can store 0 as 000 or 7 in binary form as 111.

When registering 111, the next pulse sets all
three stages to 0 so that the counter next reads
0 in binary as 000; the eighth pulse resets the
counter. Thus the ‘“eight’ in *‘scale-of-eight”’
refers to the number of the pulse which resets the
counter; it really cannot store an equivalent of 8.

The functional block symbol for a counter
appears as Figure 11.9.2. Counting pulses are
entered at + and the counter is reset to 0 by a

In———+ —
C I

Clear R —
FIGURE 11.9.2. Counter
symbol.

pulse entered at R. Each of the N bits may be set to 0 or 1; there are 2n

different possible outputs for a scale of 2.

Foreshortened Counters

A counter can be made to reset “before its time’’ as in Figure 11.9.3.
Here the scale-of-eight counter becomes a scale of six. It counts normally
until it reaches 6. At that time B1 is set to 0 and B2 and B3 are both set
to 1. Only then does &6 have an output, since it performs a decoder func-

S
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FIGURE 11.9.3. Scale-of-six bit storage counter.

tion; this is shaped into a pulse by S7: this pulse is then applied to V1,
V3, and V5, setting B1, B2, and B3 to 0. When the counter reaches 6,
B1 should be set to 0 so V1 can be eliminated.
In The logic of Figure 11.9.3 is represented more
Lrr succinctly by the two blocks of Figure 11.9.4.
R — 6 Core Counters

r _l Core elements may be assembled to make
FIGURE 11.9.4. Scale-of- gounters, too. In Figure 11.9.5 four cores are
six sym-  ysed to make a scale-of-four counter. The

bol. first core is preset (set to 1 before the counter

is used). Each count moves this 1 to the right

one core. A number of shift pulses equal to the number of cores causes
the 1, preset into the first bit, to be shifted out from the last core.
This bit may be re-entered into the first core to make ready (preset) for
the next count of four; this is shown by the dotted line in the diagram.

Count
FIGURE 11.9.5. Core counter.

If this is omitted, the counter must be externally preset for each count of
four it is to make.

The core counter produces a pulse output (a-¢c) when the full scale
count is reached. This is in contrast to the bit storage counter, for which
the count information is available until the next count is entered.
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Multistage Core Counters

To reduce the required number of cores from one per count for full
scale count, several sets of cores (stages) may be used. To count to 12,
seven cores are arranged as in Figure 11.9.6. Each fourth count from the
first stage is used as a shift pulse for the second stage; three such 4-counts
cause the second stage 1 to emerge at the right end of the second stage as

Preset for

count of 10 ﬁ

1
i A 1 .
f;?SSOUni Preset for
of 12 10 and 12

——4
12(or10)
count

FIGURE 11.9.6. Two-stage count of 12 (or 10) using cores.

a 12-pulse. Each first-stage-output pulse is re-entered into the first core
of that stage. &1 and V2 will prevent this re-entry on the 12-count, if
this is desired.

Short Counts

To count to 10 with the multistage counter of Figure 11.9.6, a 1 is
preset into the third core (remember in the previous subsection a 1 is pre-
set into the first core to count to 12). The counter then acts as though a 1
were preset into the first core and two counts had already been made
(this is before the first real count comes along). &1 and V2 are then man-
datory to assure that the first core is not set to 1 on the last count.

A miscount could not be avoided if more than one 1 were stored in the
cores of either stage. When the last count (10) is emitted from the output,
it inhibits the re-entry of a 1 from the output of the first stage, back to
the input of the first stage at &'l. This leaves the first stage empty-
Hence the first stage must be preset. In the figure this preset 1 is entered
at V3.
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The Ring Counter

Bit storage can be combined in the same fashion as the cores to make
a ring counter. Whether core or bit storage logic is used, the counter
resulting is called a ring counter when the path of the 1 used for counting
is ctrcular. There is then one core or bit storage per stage and the 1 is
shifted down the counter. Figure 11.9.7 is a ring counter using bit storage.

LO l—-0 Lo o T—O

Count

@ @ »

FIGURE 11.9.7. Ring counter using bit storage.

The counting pulse tests all the gates; it passes only through the gate held
open by the 1 stored in bit storage; the output sets the next bit storage
and clears this bit storage. The last stage of the counter is returned to the
first stage as it is cleared. Special logic is required so that there is always
one, but only one 1, entered into the counter when the machine is turned
on (or at some other time before use
of the counter).

How counters are used to keep
| train pulse  track of events and messages for
' internal bookkeeping is demon-
strated in the next section which
a’ N pulses discusses a popular application of

Start

the counter.

11.10. PULSE-TRAIN
GENERATORS

Often a train (time-sequential

FIGURE 11.10.1. Pulse-train generator. set) of pulses of a fixed nur_nber 18

required. This may be obtained by

several logics, one of which is shown

in Figure 11.10.1. A start pulse from another part of the equipment is

used to signal the generator when a train of pulses is desired. This start

pulse is also used to reset the counter in case any disturbance has modified
its zero count.

As the operation begins, the start pulse resets the counter C4 to 0; it

also goes through V1 and checks &2 and &3. The count in the counter,
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C4, is fed to the decoder D5 which produces an output when the counter
stores a count of V; since the count is now 0, there is no decoder output.
The start pulse passes through &’2 but not &3 and appears as the first
pulse of the train. This first pulse is also entered into the delays A6 and
A7 (where A6 < A7). The pulse emerges from A6 and sets the counter to
a count of 1. Later the pulse emerging from A7 passes through V1 to test
&'2 and &3. Since the counter is set at 1 for
the second pulse, this pulse passes through

&'2 and into A6 and A7. This continues, the Nf———
counter containing a count less than N during P
the production of all pulses including the Nth Stat L P

pulse. As the Nth pulse emerges from &'2, the
counter contains a count of N — 1; that pulse FIGURE 11.10.2.  Pulse-train
passes through &'2 and into A6 and A7. generator
When this pulse leaves A6, it sets the counter amibl,
to N. The decoder now produces an output
signal which is applied to &'2 and &3. The pulse leaving A7 passes
through V1 to test &2 and &3. It cannot pass &2 because the inhib-
iting signal from the decoder D5 is applied at the other input to &'2.
It does pass through &3 to emerge as a post-train pulse. There is there-
fore no pulse entered into either A6 or A7 this time; the post-train pulse
is the last pulse produced from the original pulse input. The rate at which
pulses appear at the output &'2 is completely determined by A7.

A rectangle with a P in it is the functional block symbol for the pulse
generator as in Figure 11.10.2; S is the start pulse input; N pulses are
emitted from N ; the post-train pulse emerges from p.

Asynchronous Pulse-Train Generator

The logic for another pulse generator is shown in Figure 11.10.3. This
generator gates the proper number of pulses obtained from a pulse source.

by I

FIGURE 11.10.3. Pulse generator, asynchronous.
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FIGURE 11.11.1. Tally up, down
logic.
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A counter determines when the proper
number of pulses has been passed and a
decoder operates the gates.

The astable multi BP is the constantly
running source of pulse. The start pulse
sets bit storage BG to 1. The pulse output
of the astable multi is then applied to the
output line N. The pulses can then pass
through &8 which is “opened’ by the 1
setting of BG. Each pulse which appears
on the output line is counted by the
counter C2. The decoder D3 emits a
signal when the counter records the Nth
pulse. This signal, after a short delay
provided by A4, becomes the post-train
pulse. The post-train pulse delayed by
A5 is used to reset both the counter C2
and the “guard” bit storage BG (so called
because it guards against pulses being
donated by BP until called for by the
start pulse). When the counter is reset,
the decoder D3 no longer senses a count
of N. There is hence no signal at D3N.
The output on line p is thus a pulse which
starts a fixed time (A4) after the count is
reached and ends a short time (A4) later.

There are two objections to the output
provided by this logic: since the astable
multi is not synchronized with the in-
coming pulse, the time at which the first
pulse of the train starts is unpredictable;
the post-train pulse occurs closer to the
last pulse than the next multi pulse would
come, because it must arrive in time to
inhibit further multi pulses. Neither of
these objections militates against the use
of this logic for most applications.

11.11. TALLIES, TALLY
REGISTERS

Recall that during multiplication we
wish to tally down the least significant
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digit of the multiplier. Also, during division, the least significant quotient
digit is tallied up. One (or more) digits sitting in a register may be tallied
up or down with appropriate logic. And with a little ingenuity we can
devise logic which allows the same digit to be tallied either up or down.

Consider a single four-bit digit of a serial-character parallel-bit NBCD
register, as in Figure 11.11.1, containing the digit 5 (coded as 0101) as
indicated by the crosshatching. The tally digit bit storage is set up using
two sets of gates so that it may be tallied up on the signal U or it may be
tallied down on the signal D. In either case, the count pulse is entered
into the least significant (right-hand) bit.

To tally up, the transition of any bit from 1 to 0 is used to generate a
pulse to the next stage up (more significant). The first count, which must
change the count from 5 to 6, triggers Bl from 1 to 0; this generates a
pulse out of S5 which passes through &6 and V7 to trigger B2 to 1; this
is not a 1-to-0 transition, so that no pulse is generated by S8 to be trans-
mitted up. The second count pulse triggers Bl to 1; no pulse is generated
by S5. The third count triggers Bl to 0, which generates a pulse at S5
which passes through &6 and V7 to trigger B2 to 0. This generates a
pulse at S8 which passes through &9 and V10 to set B3 to 0. This in turn
generates a pulse at S11 which passes through &12 and V13 to set B4 to 1
so that finally the digit register is tallied from 7 to 8. The count continues
in the same fashion.

To tally down, the transition from 0 fo I must generate a pulse which
is applied to the next stage on a D signal. Returning to Figure 11.11.1,
NBDC 5 (crosshatched) is tallied down when the first count pulse triggers
B1 to 0; no pulse is generated by S14. The next count pulse triggers Bl
to 1—this is a 0-to-1 transition and so S14 generates a pulse which passes
through &15 and V7 to trigger B2 to 1. This is another 0-to-1 transition,
so that S16 generates a pulse which passes through &17 and V10 to trig-
ger B3 to 0. No pulse is generated by S18. The reader may continue the
tally down as far as he chooses (but don’t go past 0, i.e., 0000!).

In order to be useful, the tally principle must be capable of incorpora-
tion into the complete shift register design. Figure 11.11.2 shows how the
right-hand digit of a register can be tallied either up or down and how a
digit may be entered by shifting it in from the left.

The numbers of the blocks in Figure 11.11.1 correspond to those of
Figure 11.11.2. Hence the tallying feature of the two figures is the same.
The bits of the second-digit bit storage are labeled B21, B22, B23, and
B24, respectively, from the least to most significant. To shift this digit to
the right (into B4, B3, B2, and Bl respectively), the shift pulse SH is
applied to &28, &27, &26, and &25; 1’s are entered into A32, A31, A30, or
A29 if the corresponding bit storages are so set 1. The pulse SH is also
entered into A33. The output of A33 clears B4, B3, B2, and B1 before the
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FIGURE 11.11.2. Register, last bit of which may be tallied up or down.

output of A32, A31, A30, or A29 enters the information from the previous
digit stage.

If it is desired to tally more than one digit, it is necessary to incorpo-
rate recycling logic for the transition of the digit from 0 to 9 and 9 to 0 and
the carry count from one digit to the next.

A register capable of being tallied is indicated by the conventional
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register symbol with an extra tally input at the approximate digit position
of the register which is to be tallied and with appropriate labeling giving
the direction of tally. The multiplier register of Figure 12.5.2 (page 224)
is an example of this.

11.12. HOW FUNCTIONAL BLOCKS ARE
INCORPORATED INTO THE CONTROL UNIT

The functional blocks we have just discussed can be seen in action in
the control unit. An examination at this point of the large relationships

{
Memory Memory
look up
Control |

Register \
PRO, [MmM_[—] Instruction
| counter
1 +
1 ]
D E . Complete
Processing E

unit

FIGURE 11.12. Control unit organization.

which prevail in the control unit serves two purposes: it provides an
immediate application of some of the functional blocks we have just
studied, and it prepares us for a more thorough study of this important
section of the computer to which all of Chapter 14 is devoted. The dis-
cussion which follows serves to introduce the principles for integrating the
funectional blocks into operational units.

The control unit supervises the procurement of a sequence of instruc-
tions. There is a special additional register used to contain the instruction
word as the computer performs the order. This control unit register is
called the control register or, in the case of the Polyvac, simply the C
register. Before the order is performed, it must be fetched from memory—
fetch is the computer term for obtaining an order from memory.

A typical control unit organization is shown in Figure 11.12. The
instruction word is stored in the C register, as shown. The instruction
part of the word at the left, PRO, is the input to the instruction decoder.
There is a separate output from the decoder for each order in the com-
puter’s repertoire; there is one more output from the decoder which indi-
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cates when a forbidden (impossible) combination for an instruction is
stored in the C register. The decoder outputs comprise the input to the
encoder unit; its function is to set up the gates and subunits in the process-
ing unit so that the order specified is performed. Since some of the gates
and subunits are used for more than one order, the encoder is the means
for causing several orders to activate the same gate or subunit.

Not all orders require that an operand be obtained from memory.
Whether this is required is determined from the encoder output. The
encoder directs a memory look-up which finds the operand datum at the
address specified in the M portion of the C register. This is done before
the processor gets to work to do its job.

After the operand is delivered to the processing unit, the information
flow is directed within the paths set up by the encoder. :

When processing is complete, the location of the next order must be
determined. A counter is used to store the location of the this order.
It is tallied up to become the location of the next order. Then memory
look-up is initiated. When the instruction word is located, it is entered
into the control register and another cycle begins.

In the next chapter, we shall examine some of the arithmetic com-
mands, keeping in mind that when the command starts, the path of infor-
mation flow has been determined and set up by the decoder and the
encoder. All of Chapter 13 is devoted to the logic of memories; the dis-
cussion of the arithmetic cycle begins after the operand has been located,
procured from the memory, and placed into a register.

PROBLEMS

1. Construct parallel binary subtractors analogous to the logic of Figures 9.3.1,
11.3.2, and 11.3.3 and explain each.
2. Draw a complementer for the 742—1 code; for the 6321 code; for the two-out-
of-five code.
3. Derive the equations for a simultaneous four-bit comparitor. Construct a
complete logic for such a comparitor.
. Construct a NBCD subtractor using full subtractors.
Construct an XS3 subtractor using full subtractors.
. Construct, using full adders, a logic for 742—1 BCD addition; for 2421 addi-
tion.
7. Show a logie, using full adders and D-blocks, for direct NBCD subtraction
(without complement inputs for the NBCD digits).
8. Construct encoders for XS3, 742—1, and 2421 codes; construct decoders for
them also. Use the matrix (grid) notation.
9. Construct a two-stage scale-of-fifteen core counter. Show how it can be used
to count to twelve.
10. Construct a pulse-train generator as in Figure 11.10.1, but use a ring counter

Al o
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and no decoder. Also connect delays in series instead of the way A6 and A7
are connected. What conditions apply to the series delays?

11. Show in full detail the last three digits of a NBCD serial-character parallel-bit
shift register of the type in Figure 10.5.3, the last two digits of which can be
tallied up. Provide means for preventing forbidden combinations, for carry
from the least significant digit, and for alarm when the register is tallied up
beyond 99 in the last two digits.

12. Devise a parity check device for a four-bit binary code with an even number
of 1’s.

13. Design a decimal-to-binary encoder for the decimal numbers up to 29 (thir-
teen inputs, 10 units and 3 tens).

14. Design a decoder, binary-to-decimal to match that of Problem 13.
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THE LOGIC OF
ARITHMETIC

12.1. INTRODUCTION

In earlier chapters it was mentioned that arithmetic can be done
either by referring to built-in tables or by incorporating within the com-
puter the rules for finding the answer. The second method, discussed here,
finds the answer directly by construction. Arithmetic consists of addition,
subtraction, multiplication, and division. However, these processes as
performed by the computer are all reduced by it to addition, complemen-
tation, and repetition. There are more complicated problems which a.
computer can do. These problems require that the programmer request
the computer to perform a sequence of arithmetic operations. Repeating
or iterating such operations enables the computer to take roots, to inte-
grate, to differentiate, to develop transcendental functions, and so forth.

The functional units which were discussed in the previous chapter are
now assembled, together with other logical elements, into an operational
unit which does a complete arithmetic command. The logic for perform-
ing a given command is not unique; it can be obtained in many ways.
TFor each arithmetic process we will discuss one or sometimes two logical
designs of an operational unit in order to convey to the reader the general
methodology.

208
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Some blocks, such as pulse-train generators, may be common to several
operational units; the same train generator may be used for many arith-
metic commands and for transfers, too, but it is discussed as though it
were a different generator in each application.

The discussion of each command begins after the operand has been
procured from the memory and has been placed in the proper register.
This is signalled by the appearance of an “ST” pulse emitted by the
memory logic indicating that the operand has been procured (STart com-
mand pulse) on the line labeled “ST”. When the command is finished,
the command logic issues a pulse which appears on the line labeled “E”’
(End of order).

Address Systems

The way the computer does arithmetic also depends on the address
system incorporated in the computer. The single-address system has one
of the operands in one of its registers before an arithmetic order is given.
The second operand is obtained from memory. After arithmetic is per-
formed, the result is found in a specified register and must later be trans-
ferred to the memory, if that is where it belongs by a separate order. In
the three-address system, each of the operands must be obtained from the
memory and placed into a separate register. Before the arithmetic order
is completed, the results must be transferred to a memory location. We
can make our descriptions independent of the address system if we assume
that the operands have been placed in registers beforehand and will be
transferred later if necessary. The control circuitry emits a pulse labeled
“ST?” which is transmitted to the arithmetic unit. Our description starts
at the time this pulse reaches the arithmetic unit. Similarly, when the
result of arithmetic has been obtained, a pulse labeled “E’’ emitted by
the arithmetic section of the computer is returned to the control circuitry.

Serial-Character Arithmetic

The descriptions in this chapter apply to serial-character arithmetic.
This means that arithmetic is done by examining the digits of each oper-
and consecutively and not simultaneously. This is the method currently
used in most slow and medium-speed computers and many high-speed
computers. Although parallel-character arithmetic increases the speed of
the machine, it also increases the cost correspondingly. Since current
machines are usually limited by the input/output equipment, often such
a speed advantage cannot be used efficiently. To reiterate, serial-char-
acter arithmetic is studied here mainly because it is typical, straightfor-
ward to explain, and presents a consistent picture of the computer.
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Asynchronous Decentralized Computation

When the control of a process is delegated to a subordinate but tempo-
rarily autonomous control unit used only for a few commands, the opera-
tion is said to be decentralized; if the time allotted for the processing is
not fixed but rather depends on the size of the operands, the operation is
said to be asynchronous. ‘

The description of the asynchronous decentralized computer is tutori-
ally simpler. To understand the operation of a synchronous computer
requires that the reader be familiar with a generalized arithmetic cycle.
On the other hand, the asynchronous computer can use many steps for
the long process of division or a few steps for a simple addition, and both
of these can be combined in a consistent machine. Each substep in one
arithmetic process is hence independent of any other arithmetic process.
This makes the presentation easier to understand and visualize.

Logical Design

It would be nice to have an encyclopedia of the various logical designs
of arithmetic units of the many computers now in use. We shall only
attempt to present one of the myriad of conceivable designs. The purpose
of examining such a logical design is to understand how one arithmetic
unit might work and possibly inspire the reader to look into other current
designs. The logical circuits discussed typify the operating principles but
do not illustrate any one particular computer.

12.2. ADDITION
First Look

As we start our description we find the operands are in two registers.
The augend is in the accumulator and the addend is in another register
assigned to it. The registers are serial by character and parallel by bit.
The number of bits per character need not be specified at this point. The
logic we are discussing would apply equally well if the machine language
were natural binary, excess-three coded decimal, or natural binary coded
decimal.

The main work of addition is done by an adder. For natural binary
numbers the adder is the full adder discussed in Chapter 10; for excess-
three or natural binary coded decimal, a suitable coded decimal adder is
used. There is one input per bit into the adder provided for each bit of
both the augend and addend; there is one output per bit for the sum;
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there is a single output for the carry and a single carry input to the adder.
In the logical diagrams that follow, multiple-bit parallel-bit information
is indicated by a double line. Of course the natural binary language has
only one bit per character but it is included as one of the languages to
which the logic applies.

The principle by which we add numbers was sketched briefly in Figure
11.1.1 and described in Section 11.1. To review briefly, the augend and
addend are each simultaneously “pushed’ into the adder; the result is
“pushed” out the other end of the adder. The carry produced by the
adder is returned through a delay and re-entered with the next successive
digit.

A Little Closer Look

The operands are stored in registers which can be shifted by applying
pulses to their shift lines. If we apply shift pulses simultaneously to both
registers, we shift out successive digits simultaneously, the bits of each
character emerging simultaneously in parallel. We start by entering the
right-hand digits, the least significant characters, into the adder. A sum
digit is produced and possibly a carry. The carry bit is entered into a
delay for temporary storage. We might enter this sum digit into a third
register. However, we can improve the efficiency of operation and con-
serve registers by entering this sum digit into the opposite (left-hand) end
of the accumulator register. That is, the sum digit replaces the left-hand
digit or most significant character which has just been shifted down one
position. In our registers we use the extreme left-hand place for the sign.
It is not shifted during the addition process. The sum digit produced in
the adder is entered into the position just to the right of the sign posi-
tion—the most significant digit place in the number.

The second digit of both operands is now in the right-hand position of
both registers. The next shift pulse moves the second digit from each
register into the adder. If there was a carry stored from the previous
digit addition, it too is now entered into the adder. The first sum digit
which was just placed in the left-hand end of the accumulator is now also
moved one position to the right. The second sum digit is produced and it
is entered into the most significant position which has just been vacated
by the first sum digit. This procedure continues until all the digits of both
numbers have been added. At that time the first sum digit originally
entered into the left-hand end of the accumulator has now been “pushed”’
all the way to the right and rests in the least significant position where it
belongs.

The addend register may work in one of two ways: either the addend
may be re-entered into the register as addition is being performed or zeros
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may be entered into the addend register so that it will be cleared at the
end of the addition process.

I'mplementation

The logical diagram for an adder appears in Figure 12.2. The augend
is stored in the accumulator register AC; the addend is stored in the regis-
ter labeled AD. The adder is labeled A9 and its associated delay is labeled
A4. Each of the registers in an actual computer has innumerable gates
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FIGURE 12.2. Addition logic, serial character.

for switching its input and output. Only the gates necessary to the expla-
nation are shown in this and in the following figures. A pulse generator
P8 is used to generate pulses for shifting the registers. A zero generator is
used to fill the register AD so that it will be cleared by the end of addition.

The shift generator, P8 of Figure 12.2, is started by the start pulse,
ST. It emits a number of pulses corresponding to the number of numerical
digits in the word—nine for the Polyvac. The figure indicates nine shift
pulses emitted on the line labeled “9”’ from P8. These pulses are applied
to shift the accumulator, AC, and the addend register, AD. Both of these
registers have a number of gates at their input and output, only one set
of which is shown for the registers in the figure. A d-c signal, labeled -+,
corresponding to the add order, is applied to the output gates of the accu-
mulator, &1, and the output gates for AD, &2; these gates lead into the
adder A9. The signal which appears on the three lines labeled + is the
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output of the command encoder from signals supplied to it by the decoder
which, in turn, acts upon the instruction code for the add order stored in
the C register as “ADD” for the Polyvac.

Each digit of the augend is entered through &1 into the X input of the
adder A and each digit of the addend is entered through &2 into the Y
input of the adder A by the nine shift pulses, SH.

The sum output of the adder is entered into the main information
line; this signal A9S appears at an input gate of each register; it is entered
only into the accumulator register, AC, through &3 because these input
gates to the accumulator are the only gates connected to the main infor-
mation line which have an enabling signal applied to them. The addend
register input gates, &6, from the zero character generator have a + signal
applied to them, thus allowing 0’s to be entered as the addend is shifted
out.

The carry bit produced on each addition at A9C is entered into A4.
It appears one digit time later as the input to A9C’. As addition starts,
A4 is empty of course, so that there is no input to A9C’.

Each shift pulse simultaneously causes: (1) one accumulator and
addend digit to pass into the adder, (2) the sum digit to pass into the
opposite end of the accumulator, (3) a carry bit to be stored in the single-
bit-time delay A4, and (4) a 0 to enter the left end of the addend register.
After nine such shifts, addition is complete; the post-train pulse appears
at gates &'5 and &7. An overflow is defined as a carry which occurs on
the addition of the last (most significant) digits. If there is no overflow,
the post-train pulse P passes through &’5 into the E line to herald the end
of addition; when an overflow occurs, the post-train pulse cannot pass
&’5 but does pass through &7 to sound the alarm. In this case since there
is no E pulse, the computer stops in its tracks to await further orders.

12.3. UNSIGNED SERIAL-DIGIT SUBTRACTION
Orientation

We are going to discuss subtraction of positive integers (natural num-
bers). That is, no sign is associated with either the minuend or the sub-
trahend. Still, subtraction is not as straightforward as addition, which
was just discussed. If the subtrahend is smaller than the minuend, sub-
traction is done by complementing the subtrahend and adding it to the
minuend. On the other hand, if the subtrahend is larger than the minu-
end, we must complement the minuend and add it to the subtrahend.
This happens when we must do something like subtract 5 from 3. The
difference is a negative number, and some indication must be made to
show that the result is negative.
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Offhand the approach might seem to be to determine which is larger,
the minuend or the subtrahend, but this task involves as much effort as
performing subtraction. There is another way, however. What we do is
assume that the minuend is larger than the subtrahend. We then take the
complement of the subtrahend and add it to the minuend. Call this first
result D,. If our assumption is correct, in generating D, an overflow
should occur. This was discussed in Section 6.3. Then if an overflow
occurs, our answer is correct and subtraction is complete.

On the other hand, if no overflow occurs, the answer D, is not correct—
our assumption was wrong—the subtrahend is larger than the minuend.
It is now a simple matter to correct the intermediate result, D,. The
proper result is the complement of D;. The next step is then to comple-
ment D, and indicate in some way that our result is a negative number.

As an example, consider that we wish to find 17 — 11. Then to 17 we
add the complement of 11, which is 88 and 1 more. Then D, = 1/06
where the 1 to the left of the slash indicates the overflow. This tells us the
difference is 6.

On the other hand, to find 11 — 17 we add 82 (the complement of 17)
to 11 and add 1 more. The result, D;, is 0/94. The 0 indicates no overflow
so that D; must be complemented and a minus sign inserted. To O is
added 05 (the complement of 94) and 1 more. D is hence —06.

Method

Our method consists of three possible steps:

1. Add the complement of the subtrahend to the minuend.
2. Check to see if there is an overflow:
(a) if there is an overflow, the present result is correct and sub-
traction is complete;
(b) otherwise do step 3.
3. Complement the result obtained above, record a negative sign,
and subtraction is now complete.

Implementation

The logic for unsigned subtraction appears in Figure 12.3. The accu-
mulator AC contains the minuend; the register SD contains the subtra-
hend. Al4is an appropriate adder. A5 is the carry delay—there are inter-
vening gates and mixers between the carry output and the carry input in
order to check for an overflow. A bit storage BC is used to determine
which phase of subtraction is under way: the phase designated by C cor-
responds to step 1 above; the phase C applies to step 3 where the result
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of subtraction is complemented. Two pulse generators are indicated, one
for the C phase and the other for the C phase of the subtraction.

The start pulse ST sets the storage-phase bit BC to 0, starts the first
pulse generator, P12, and enters a pulse into the C’ input of the adder A
through V4. This latter step is the end-around carry which is entered
now to save time later on. The minuend digits are entered from AC
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FIGURE 12.3. Unsigned serial character subtraction.

through &1 and V2 into the X input of Al4; the complemented subtra-
hend digits pass through &3 into the Y input; the difference passes out of
the sum output A14S into the left side of AC; the carry bit is entered into
A5. For all but the last digit, the carry bit passes through A5, &6, and V4
and is entered into Al4 at C’ one digit time later because there is no EO
pulse present to inhibit &’6.

After the minuend and the subtrahend complement have been added
and the result is placed into AC, the post-train pulse, EO, emitted by P12,
tests for an overflow. EQ inhibits an overflow pulse from A5 from passing
through &’6. EO allows an overflow pulse from A5 to leave &7 as El,
which passes through V11 as an end-of-order pulse E, since subtraction
is correctly completed if an overflow occurs. If no overflow is present, EO,
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otherwise inhibited by the overflow from passing through &’8, now passes
through as pulse E2 and starts the second phase of subtraction.

The second phase complements the result when M < 8. A second
pulse-train generator, P13, is started by E2; E2 also sets bit storage C
to 1. The 9’s complement of the number now in AC is fed into the adder
at the X input through &10 (C being set to 1) and V2 by shifting AC with
pulses SH2. Nothing is entered into the Y input because no SH2 pulses
are applied to SD. : .

To produce the complement of Dy, we must form W — D; 4+ 1. Enter-
ing the pulse E2 through V4 into A14C’ on the first digit addition adds 1
to W — D, now instead of waiting for an end-around carry to produce
the complement of D,, which is the desired difference D. When this com-
plementing step is complete, P13 issues a post-train pulse, E3, which
passes through V11 to indicate the end of the order.

12.4. SIGNED ADDITION AND SUBTRACTION

Introduction

In practice, the computer deals with addition and subtraction in
almost the same manner. Sections 12.2 and 12.3 are purely of introduc-
tory and academic interest because the practical computer deals entirely
with signed natural numbers—the integers. Whether the computer is
asked to add or subtract, it winds up doing addition—sometimes directly
and other times using complements.

To determine whether to add or subtract we must now consider
whether:

1. The computer is asked to add or subtract.

2. The sign of the first operand—the number in the accumulator—is
positive or negative.

3. The sign of the second operand is positive or negative.

Examining the sets of conditions which might prevail, you will note that
there are eight possibilities—two alternatives in the first case X two alter-
natives in the second case X two alternatives in the third case. The alter-
natives appear in Table 12.4.1. For instance, if both numbers have the
same sign and the process specified is addition, the process performed is
addition: if the operands are opposite in sign and the process specified is
addition, the process performed will be subtraction and the result will
have the sign of the larger number.

The first task of our logical system is to determine from the signs of
the operands and the process specified what process should be performed
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by the computer to arrive at the correct result. From examination of
Table 12.4.1, it is apparent that this table corresponds to the truth table
for the full adder discussed in Section 10.3 if 1 is substituted for 4+ and 0
for —. Then a full adder can be used to determine the process to be per-
formed by the arithmetic section: two of its inputs correspond to the

TABLE 12.4.1 PROCESS PERFORMED, IN TERMS OF THE PROCESS SPECIFIED AND THE
SIGNS OF THE OPERANDS

Process Augend or  Addend or Process Sign of

specified menuend sublrahend  performed result
+ o b + +
+ + — - ?
+ o= + = ?
+ - - + -
- + + - ?
- + - G =
- — + 4 =
— — — — ?
C X Y S

signs of each operand; the third input is the sign of the process specified;
the sum output corresponds to the process the computer should perform.

Results

We know how to produce the results of addition or subtraction but
have not yet ascertained its proper sign. From Table 12.4.1, when the
process performed is addition, the sign of the operand in the accumulator
is also the sign of the result. This holds except when addition causes an
overflow because the sum is greater than the word size, W. In that case
the quantity obtained will be incorrect anyhow.

When subtraction is performed, the occurrence of an overflow indi-
cates that the subtrahend is smaller than the minuend. The result of the
subtraction is therefore correct and the sign of the result should hence be
the sign of the minuend—the quantity originally in the accumulator.

If subtraction is performed without an overflow, then this indicates
that the subtrahend is larger than the minuend. The result must be com-
plemented. It must be given a sign opposite to that of the operand origi-
nally in the accumulator. These four cases appear in terms of an overflow
2 in Table 12.4.2, which the reader should study.
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TABLE 12.4.2 SIGN AND VALUES OF PHASE 1 RESULT IN TERMS OF THE PROCESS
PERFORMED AND OVERFLOW ‘

Process Qverflow
performed Q) Indication Remarks
1 0 X|+|YIS W Sign of result correct
1 1 IX|+1Y|>W Result wrong
0 1 1X| 2 |Y] Sign of result correct
0 0 IX| < Y] Sign of result reversed and the

result must be complemented

A Plan of Action

A block diagram of the approach which we take to perform addition
and subtraction is found in Figure 12.4.1. In box 1, the operands are
entered into their respective registers. In box 2a the signs of the operands
and the process specified are noted. A decision is made in box 2b whether
addition or subtraction should be performed. For addition, box 3a adds

2a

1 - 2b 3a 4a
Store Enter signs + (AC)+ No .
operands of operands operand — AC
—— and process
3b - Yes
(AC)+ complement 6
of operand>AC
4b 5a 5b
No_f§ Complement Reverse |
| AC “{ signs AC E
Yes
E

FIGURE 12.4.1. Plan of action, signed serial addition and subtraction.

the second operand to the accumulator, placing the result in the accumu-
lator. We check to see if an overflow has occurred in box 4a. If not, our
result is correct, the sign of the result is correct, and the E pulse is pro-
duced. If an overflow occurs in box 4a, an error has occurred—the sum
numbers of the added is larger than the capacity of the register. The
computer stops and the operator is informed of the occurrence of an addi-
tion error.
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For subtraction, the content of the accumulator and the complement
of the second operand are added and the result placed in the accumulator.
Box 4b checks to determine whether an overflow has occurred. If it has,
our result and the sign are correct and an E pulse is issued. If no overflow
has occurred, the result must be complemented in box 5a and the sign of
the accumulator must be reversed in box 5b. Then the process is com-
plete and an E signal is emitted.

Implementation

The logic for performing addition and subtraction of signed serial-
character numbers appears in Figure 12.4.2. Still only two registers are
required, one for each operand. As before, the result is returned to the
accumulator. A number of entry and exit gates are required. The full
adder A23 is used to determine the process to be performed from the sign
of the operands and the process desired. The output A23S sets the bit
storage BA’ according to the process to be performed. A6 is an adder
appropriate to the computer language. The pulse generator P4 operates
during the noncomplementing phase, and the pulse generator P20 during
the complementing phase. Bit storage BC stores the information as to
what phase is currently being performed. There are also more gates per-
forming functions such as checking for overflow and determining if the
complementing phase is necessary.

Operation

The start pulse ST sets BA’ and BC to 0 and after a short delay, A21,
it is used to check the process-to-be-performed circuitry.

Process PERFORMED. The delayed start pulse from A21 is applied to the
three gates &1, &2, and &3. These serve as inputs to the full adder A23.
The output A23S sets BA’ to 1 only when addition is to be performed
(regardless of the process requested).

NONCOMPLEMENTING PHASE. The start pulse delayed by A21 also starts
the pulse generator P4, which issues nine shift pulses labeled SH1. These
cause the accumulator and the second operand register to be shifted. The
digits from the accumulator pass out directly through &6 and through
V17 into the X input of the adder A6. The digits pass through &6 since
it is held open by C (BC was set to 0 by ST) and A or S (addition or sub-
traction are called for). When addition is to be performed (A’), the out-
put of the second register is fed directly through &8 and V9 into A6Y.
For subtraction (A’) the complement of the content of the second register
passes through &10 and V9 into A6Y. The result always passes from A6S
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FIGURE 12.4.2. Addition and subtraction of signed serial character numbers, logic.

and is returned to the input of the accumulator. The carry bit is entered
into All. During addition, when there is no El signal present, the carry
bit leaving A1l can only pass through &’14 (not &’15, &16, &17, or &'18)
to be re-entered through V13 into A6C’. At the end of the noncomple-
menting phase, the pulse E1 is produced. It is applied to &'14, &'15, &16,
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&17, and &’18. Other signals, either A’ or A’, appear at these gates. If
an overflow, 2, is produced during addition (A’), it passes out through &16
as an alarm pulse and the computer hangs up; if no overflow occurs when
addition is performed, the pulse E1 passes out of &’18 through V19 as
an E pulse. If an overflow occurs during subtraction (A’), the pulse E1
passes through &17, through V19, and emerges as an E pulse. If no over-
flow occurs during subtraction, the pulse E1 passes out of &’15 to start
the complementing phase.

CoMPLEMENTING PHASE. The pulse from &’15, A’Q, will now be called ST2.
It sets BC to 1, which designates the complementing phase of the process.
It is also entered through V13 into A6C’ to provide the extra 1 required
in complementing. ST2 also starts the complementing phase pulse gener-
ator P20. This pulse generator emits nine shift pulses SH2 which are
applied only to the accumulator. The complemented accumulator output
passes through &21 and V17 into A6X; there is no input into A6Y. The
fully complemented output passes from A6S through &22 to be returned
to the accumulator. It does not matter whether there is an overflow, for
there will be no pulse E1 to test for it. When the complementation is
completed, the pulse E2 is emitted from P20 and it passes through V19
to emerge as an E pulse, indicating that the process is complete.

12.5. MULTIPLICATION

The method the computer uses for multiplication was discussed in
Section 6.4. It consists of performing repeated additions.

Introduction

Multiplication of two computer words can result in a product larger
than either. It is possible for this product to occupy two words. Provision
must be made for this full two-word product. Our register requirements
are, then, one register for the multiplicand, a second register for the multi-
plier, and a double register for the product.

It is advantageous when programming to be able to add the product
of two numbers to the number stored in the accumulator. The accumu-
lator can still be used for storing a part of the product.

Although our apparent requirements are for four single-word registers,
we can double up on one of them so that only three are actually used. As
each multiplier digit is used up one product digit can be entered into the
multiplier register, pushing out the used-up multiplier digit.

To start, the accumulator stores some number which is the result of
previous processing. The multiplicand is in the multiplicand register, and
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the multiplier is in the multiplier register. The multiplicand is added to
the accumulator a number of times equivalent to the least significant
digit of the multiplier. This multiplier digit is no longer of use and can be
destroyed. The accumulator containing a partial product is now shifted
one digit to the right. Its least significant digit is entered into the multi-
plier register and the next multiplier digit is pushed to the right. The
multiplicand is added to the accumulator a number of times equivalent

1 3 i
Compare
Enter last Sigﬁ—ﬁﬁcqnf >0 | Add multiplicand Sub‘rrqcfjfrom
operands multiplier to AC len?ﬁIfﬁsll(iJe;]rlfé(i:air1]'T _)®
digit to B 2
0
5 6
Shift rh. AC digit into Lh. multiplier register Tally multiplier
and 1.h. multiplier digit (0) into AC digits used so far

Check
multiplier
digits used
so far

Some left

None left
FIGURE 12.5.1. Plan of action, multiplication.

to the next multiplier digit. This process continues until the multiplica-
tion is complete. Since multiplication only occurs for nine digits, the
product digits are never used as multiplier digits.

Plan of Action

The plan of action is set forth in Figure 12.5.1. Box 1 indicates that
the operands are first entered into the appropriate registers. In box 2 the
least significant digit in the multiplier register is compared to zero. If it
is greater than zero, the multiplicand is added to the accumulator, box 3.
One is subtracted from the least significant multiplier digit in box 4 and
we then return to box 2. Again the least significant multiplier digit is
compared to zero. Since it is continually being reduced by one, eventually
it is reduced to zero. At that time we enter box 5. The right end, or least
significant digit, of the accumulator is entered into the left-end positiop
of the multiplier register; the left-hand multiplier digit, which is now equal
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to zero as per the test which occurred in box 2, is moved around and
entered into the left-hand digit position of the accumulator. A count is
kept of the number of multiplier digits so far examined. This count is
tallied in box 6. The count is examined in box 7 to determine if all the
multiplier digits have been used. If some digits are still left, we return to
box 2 to examine the next one; if all the multiplier digits have been used,
multiplication is complete and the E pulse is returned to the control unit.

Hardware

The logical circuit for multiplication is shown in Figure 12.5.2. Of
course the first thing we notice is the three registers just discussed. Next
we note the adder A7, appropriate to the machine language of the computer.
The pulse generator P5 is used to shift the contents of the registers
through the adder. The decoder D4 is used to examine the least signifi-
cant digit of the multiplier to determine when it has been tallied down to
zero. This is tested by &'2 and &3. The bit storage BM stores the infor-
mation as to which of the two phases of the process is going on, the multi-
ple addition which adds the multiplicand to the accumulator, or the
shifting of the accumulator and multiplier when the multiplier digit has
reached zero. The digit counter C10 counts the number of multiplier
digits we have used and the decoder D11 decodes this information.

Operation

With the quantities in their assigned registers as discussed above, the
start pulse ST passes through V1 to check the gates &'2 and &3. These
gates will pass this pulse according to whether the least significant digit
of the multiplier is or is not zero.

Suppose that the aforementioned digit is not zero; the start pulse
passes through &’2 to start the pulse generator P5. The nine shift pulses
SH1 from P5 shift both the accumulator and the multiplicand registers.
The bit storage BM is a univibrator, so we can be confident that it is now
in its zero state, M. The content of the accumulator is entered into the
adder through A7X; the content of the multiplicand register is entered
directly into A7Y and also re-entered into the multiplicand register; the
sum digits as they are created are moved out of A7S through &15 and V14
and back into the accumulator. This completes a single addition of the
multiplicand to the accumulator.

The post-train pulse, p, from P5 is sent to the least significant digit
of the multiplier and tallies down this digit. The pulse P5p delayed by
A8 passes through V1 to test &2 and &3. If the multiplier digit is still
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FIGURE 12.5.2. Serial character multiplication.

greater than zero, the pulse passes through &’2 and starts another cycle
of addition by the means just described.

When the multiplier digit becomes zero, there is an output from D4.
This prevents the passage of a pulse through &'2; it permits the pulse
from V1 to pass through &3. This sets bit storage BM to 1 (M) to signal
the start of a shifting cycle. The pulse from &3 slightly delayed by A9
counts up the digit counter C10. It also shifts the accumulator into the
multiplier register one digit to the right, an end-around shift. The digit
passes from AC through &12 into the multiplier register; the zero in the
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multiplier register is passed through &13 and V14 to be entered into the
- left-hand side of AC.

The time constant of BM is such that it resets to zero after the end
around shift has been completed. When it returns to zero, the shaper S19
issues a pulse. This pulse tests &'17 and &18: if all the multiplier digits
have been examined, this pulse passes through &18 and emerges as an E
pulse; otherwise, it passes through &17, entering V1 to start a new series
of additions.

The signs associated with the multiplier, multiplicand, and product
are discussed in Section 12.7.

12.6. DIVISION

Introduction

If division of any two numbers were permissible, we might ask the
computer to divide W by 1. This would require more than W operations
with most methods. For a machine requiring ten microseconds per sub-
traction and with a word length of nine coded decimal characters, this
division (W /1) would take about 1000 seconds! Those who have used a
hand calculator may recall that the same problem arises. When the
machine is asked to do a division like the one above, it just keeps grinding
on indefinitely unless stopped by the operator. In our computer we incor-
porate a rule which the programmer must observe in programming the
computer and which is tested for by the computer, causing the machine
to halt if disobeyed.

The rule for division which the programmer must observe is that the
divisor must be larger than the dividend. Otherwise, a misalignment error
‘will stop the machine.

Division is performed by the following steps:

The divisor is subtracted from the dividend.

The quotient is tallied up for each successful subtraction.

. A successful subtraction is said to occur as long as the difference

remains greater than zero.

4. When the partial remainder goes negative, it is restored by adding
back the divisor.

5. The tally up of the quotient is inhibited when an unsuccessful
subtraction of the divisor from the partial remainder oceurs.

6. The quotient and partial remainders are shifted left after the res-

toration following an unsuccessful subtraction.

The number of quotient digits produced is checked.

When sufficient quotient digits have been produced, division is

terminated; otherwise, the quotient digit count is tallied up.

g9 b

go. 4
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Plan of Action

The plan of action is pictorially presented in Figure 12.6.1. First, box
1, the operands are entered. Next, box 2, the divisor is subtracted from
the dividend. The result is compared with zero in box 3. If it is greater
than zero, the divisor is smaller than the dividend, the programmer has
broken his contract and the machine stops. Otherwise, the divisor is

3
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operands from dividend remainder

with O

Add divisor to
partial remginder

6 ¥

Shift partial remainder
and quotient 1 digit left
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Tally digit
count

Compare
partial
remainder

Subtract divisor from
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FIGURE 12.6.1. Plan of action, division.

added to restore the dividend, box 5. Next, the partial remainder (this
time around, the dividend) and the quotient are each shifted one digit to
the left. The number of times this shift process is performed is kept track
of in box 8. This digit count is checked in box 10. If division has pro-
duced a sufficient number of quotient digits, division is complete and the
E pulse is generated. Otherwise, we pass via circle 1 to box 7. Here the
divisor is subtracted from the partial remainder. The partial remainder
is compared with zero in box 9. If it is still greater than zero, we return
via circle 1 to box 7 for another subtraction. If the partial remainder has
become less than zero, it must be restored. We pass from box 9 to box 5
to repeat a restoration, shift, tally, and digit count check.
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Hardware

Three registers are required, one each for the dividend, divisor, and
quotient, as shown in Iigure 12.6.2, the logical diagram for division. The
adder A5 appropriate to the machine language performs the subtraction.
Three modes of operation are used: subtraction, restoration, and shift
left. Two bit storage units labeled BD1 and BD2 store the information
as to which phase is being performed. Bit storage BL stores the informa-
tion that alignment is correct. Corresponding to each phase, and in the
order mentioned above, are three pulse generators, P3, P16, and P22.

There is also a quotient digit counter C21 and a quotient digit decoder
D20.

Operation

Let’s discuss the operation of the logic diagrammed in Figure 12.6.2.

START OF DIVISION. Once the operands are stored and the quotient regis-
ter cleared, the start pulse ST sets bit storage BL to 0 and through V1
sets BD1 to 1 and BD2 to 0. The start pulse through V1 and V2 starts
the pulse generator P3. The start pulse is also entered through V1, V2,
and V4 into A5C’, as the extra carry pulse required for subtraction.

SuBTRACTION cYCLE. The pulse generator P3 delivers nine shift pulses
SH1. These pulses cause the accumulator digits to be entered via &7 and
V8 into A5Y. The partial remainder created at A5S is moved through
&9 and V10, to be returned to the accumulator.

Carry. The carry bit from A5C is entered into All. One digit-time later
(determined by All) it is applied to &’12, &’13, and &14. During the
time P3 is producing pulses SH1, P3p is absent so that the delayed carry
can only pass through &’12. The delay carry pulse leaving &’12 passes
through V4 and into A5C’ to be added with the next digits. -

OverrLow. The carry bit produced on the ninth digit addition is also
entered into A1l. One digit-time later it appears at &’12, &’13, and &14.
But now the post-train pulse P3p is also present at the input to these
gates. It cannot pass through &’12 since it is inhibited; it passes through
&14 or &'13, according to whether it is a 1 (overflow) or not, respectively.

ALIGNMENT cHECK. If no overflow occurs on the very first subtraction,
we are safe—the divisor was larger than the dividend. But if an overflow
pulse appears at &14, it passes through &15 to issue a misalignment alarm.
For correct alignment, the pulse P3p passes through &’13 to start P16
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for a restoration cycle. Also, the first time around it sets the alignment
storage BL to 1 so that there is no chance that a misalignment signal will
be issued at a later time.

ResTrorATION cYCLE. The restoration-cycle start pulse from &’13 sets the
bit storage BD1 to zero. It also starts the restoration-cycle pulse gener-
ator P16. The restore-cycle pulse generator P16 issues nine pulses labeled
SH2. These pulses shift the accumulator digits through &6 into A5X;
they shift the divisor digits directly through &17 and V8 into A5Y to per-
form addition. The sum digits appear at A5S and pass through &9 and
V10 into the accumulator.

Dreit counT cHECK. When restoration is complete, the pulse P16p tests
&18 and &'19 to check how many quotient digits have been produced.
If division is complete, the pulse passes through &18 to emerge as an E
pulse; if further quotient digits are to be generated, a pulse passes from
&’19 to tally up C21, set BD2 to 1, and start a shift-left cycle.

SuiFT LEFT. The shift-left cycle pulse generator P22 issues eight pulses
SH3. These pulses are applied to the accumulator and quotient register.
Remember that nine shift pulses would shift the contents of a nine-digit
register completely around to where they started; hence, eight shift pulses
shift both registers eight positions to the right, which is equivalent to one
digit to the left. The accumulator digits are shifted out through &23 and
V10, from which they return into the accumulator. When the shift is
complete, pulse P22p passes through V1 to start another subtraction
cycle. :

QuoTiENT TALLY. During division proper, after each subtraction cycle,
the pulse P3p tests &'13 and &14. If subtraction is successful, an overflow
pulse is produced from All simultaneous with the pulse P3p so that there
is an output from &14. This output tallies up the quotient register; it also
passes through V12 to start another round of subtraction. When sub-
traction is unsuccessful there is no pulse from Al1l. The pulse P3p cannot
pass through &14 so that the quotient register is not tallied up after an
unsuccessful subtraction. The pulse P3p does pass through &’13 to start
a restoration cycle described earlier.

12.7. SIGNED MULTIPLICATION AND DIVISION

Multiplication and division of signed numbers is much simpler than
the problem of signed addition and subtraction. The rule for multiplica-
tion is: the sign of the product or quotient of like-signed numbers is positive;
the sign of the product or quotient of unlike-signed numbers is always nega-
tive. At any time during multiplication or division the sign of the two
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operands may be examined and the sign of the result set. The testing to
determine the signs is done by means of & and V logical elements.

PROBLEMS

1. Alter Figure 12.3 by adding D-blocks so that one pulse generator can serve to
replace P12 and P13.

2. Replace P4 and P20 with one pulse generator and D-blocks in Figure 12.4.2.

3. In Figure 12.5.2, replace BM by a multi; what other changes are then neces-
sary? Show the detailed logic of D4, C10 and D11.

4. Combine Figures 12.5.2 and 12.4.2 into one, three-register, add-subtract-
multiply logic with only one pulse generator.

5. In Figure 12.6.2 show how to replace P3, P16, and P22 by one pulse generator.
Is there some way to replace BD1, BD2, and BD3 with a simpler set of bit
storages?

6. Combine Figures 12.6.2 and 12.5.2 into one logic with one pulse generator and
three shift registers.

7. Draw a complete logical block diagram for division using the second method
described in Section 6.5.

8. Simplify the division logic of the above example by using just one pulse
generator.

9. Show a three-register arithmetic logic which can add, subtract, multlply,
and divide for parallel-bit serial-character operation.

10. Show logic for parallel-character multiplication, both binary and coded
decimal.

11. Devise a logic for multiplication using the method described in Problem 4 of
Chapter 6.
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MEMORY DEVICES AND
THEIR LOGIC

13.1. INTRODUCTION

The purpose of storage is to provide a place to keep information
for future use. By now we should be resigned to using information in
binary form. This chapter discusses the operation of devices used pri-
marily to store binary information and the logic required to make possible
the access to this storage.

Earlier we discussed short-term storage—the bit-storage device used
to store a single bit and the register, a fast-access device which stores a
single word. These devices are necessary to, and integrated with, the
working logic of the computer. The memory and buffer, which store large
segments of information, perform supplementary functions, for it is con-
ceivable to construct a computer without them. Computers have been
built that process information only as it is supplied from the outside;
others have been built which directly process data from an intermediate
external storage medium such as magnetic tape, punch cards, or punched
paper tape. Because of the very high speeds of modern computers and
the push for even higher speeds, it is inconvenient, to say the least, to be
tied down by the time that is needed to get data to and from one of these
external sources, The internal memory, with the help of buffers, enables
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big chunks of data to be transferred and stored so that each datum is
easily and rapidly accessible to the computer proper. Internal memory
has a significantly lower access time than external storage and hence
makes for more efficient operation. It is safe to say that any recent com-
puter or any computer now on the drawing board includes an internal
memory of fair size.

Although this book emphasizes logic in contrast to circuitry or com-
ponents, we will pause here a moment to discuss the properties of the
components used to build memories. This is necessary because the prop-
erties of the components determine how they are used to memorize and
remember. The logic required to communicate with the memory is, in
turn, dictated by the properties of the components.

Dynamic Versus Static Storage

Information can be stored in two ways. (1) Using dynamic storage,
an electrical waveform, bearing information by virtue of its shape, may be
preserved in toto by entering it into a delay of some sort. This delay emits
the original waveform some time later without any significant change
other than attenuation and tolerable distortion. (2) Using static storage,
digital information in the form of one of a multiplicity of choices of states
may be stored in a multistable device by setting such a device to one of
its alternate states. Thus a four-position switch may store one-out-of-four
or quaternary information by the way it is set.

Notice that the intent of dynamic storage is to maintain the informa-
tion in its original form. The information-bearing wave phenomenon is
made to persist by interposing a transmission path which hinders its
transit. Itisthe nature of such a device to cause degradation of the wave-
form so that it must be repeatedly amplified and reshaped to resemble its
original form.

Static storage is a mapping of the information into a number of devices
which have as many possible states as there are possibilities for each
‘““piece” of information. Hence, for binary information, bistable devices
are appropriate.

Sections 2 and 3 discuss the logic of dynamic and static memories.
Logic for specific memories is discussed in Sections 13.4, 13.5, 13.6, and
13.7.

13.2. DYNAMIC MEMORIES

From Section 13.1 it can be gathered that dynamic devices are merely
delays with associated amplification or rejuvenation circuitry. The stor-
age capacity of such a medium depends upon the speed of propagation of
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the wave phenomenon through the medium and the length of the trans-
mission path. Electromagnetic waves are but slightly retarded by com-
mon transmission lines; for this reason only information being handled at
high pulse repetition rates (up in the kilomegacycle region) can be stored
(delayed) in the form of electromagnetic energy. Mechanical ultrasonic
vibrations have been used in several computers as the wave phenomenon
to be stored in physical materials. This is discussed below under the spe-
cific title headings.

Right now we will consider the logical principles relating to memoriz-
ing and remembering in delay memories in general.

Logical Principles

The strategy used with dynamic memories is similar to that used with
dynamic registers. Data is entered into the delay and it is caused to circu-
late in the delay by connecting the output (after shaping and amplifica-
tion) back to the input. The difference is only in the length of the delay
used; it must be long enough to store many data words.

Consider the computer with a bit time, ¢ with b bits per character,
and ¢ characters per word. A delay of length T = wcbis can store serially
w words. To make this data accessible, there must be some means for
referencing the beginning of the information. Locating a specific word is
then a question of either timing or counting.

The means for locating a word depends on whether the reference signal
contains supplementary timing information or the timing is done inde-
pendently of the stored waveform. When independent timing is used, the
accuracy of the delay time 7" and of the external timing signals determines
the accuracy with which information may be located. Because of the
small tolerances involved in this kind of system, it would be extremely
expensive to develop circuitry with timing which remains superstable over
any reasonable period of time.

The external timing and synchronization problem can be surmounted
by a single expedient—retime the information after each circulation. This
is called forced external synchronization and is discussed below. The
method using supplementary reference information is described in the
next subsection thereafter.

Forced External Synchronization

Forced synchronization “retimes” the circulating information by
sampling it after each trip through the delay, using a time reference inde-
pendent of the delay line. The regenerated information is then returned
to the delay line.
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FIGURE 13.2.1. Logic, using forced external synchronization, for a delay-line memory.

The logic of Figure 13.2.1 requires a generator B1 whose fixed fre-

quency is maintained accurately. The frequency of this generator corre-
sponds to the pulse repetition rate of the input information and is a frac-
tion of the delay time T. These intervals are held as closely as possible to
their specified value: the bit time of the computer, the bit time for the
memory delay logic (the time constant of B1), and the delay time T
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Since perfect synchronization is impossible, a sampling scheme is used.
The information in the delay, A2, is amplified and shaped by A3. It is the
characteristic of the delay to lengthen the pulses and increase the rise
time of the leading and trailing edges. On the other hand, the pulses gen-
erated by B1 should be sharp and narrow. These timing pulses from Bl
are used to sample the information by allowing a signal to pass through
&4 only during the pulse times of B1l. Thin pulses come out of &4 only
when the timing pulse and the information coincide; there is no output
from &4 for 0 information pulses. The uni, B5, broadens the 1’s so that
they can be sampled the next time around.

During a non-read-write cycle, information passes out of A2 and is
regenerated by A3, &4, and B5; since no inhibiting signal is present at
&'6, the information passes through &’6 and V7 to re-enter A2,

Reaping. Reading can be done only when the desired information word
is passing out of the delay. The time at which this happens is determined
by referring to the address previously sent to the Memory Address Regis-
ter (MAR) by the computer control. The address is the number of the
desired word counting from an arbitrary word circulating in the delay.
The number of bit times counted from the start of the arbitrary reference
bit in a reference word is entered into the bit counter, C8. This counter
was initially set to read O at time ¢ = 0, the start of the reference word
(or t = kT for integral values of k); it counts up the pulses from BI1;
when the total reaches the number of bits, be¢, in a word, there is an
output from the decoder D9. This output from D9 marks the beginning
of each word time. It is used to reset the bit counter and also to count
into the word counter, C10. The word counter keeps track of the num-
ber of the words which have passed since the reference word has passed
by; when the count reaches the word number of the desired word (whose
address is stored in the MAR), the comparator CMP emits a signal.
This is an indication of the equality of the addresses of the currently-
passing and the desired words. The signal from CMP sets B11l to 1.
The 1 output of B1l is applied to &12 and &13. The desired word is
about to pass out of A2 and through A3, &4, and &13, (&13 is held open
by both Bll and the read signal), and into the memory data register
MDR. Pulses from Bl pass through &12 to shift the information into
the MDR. When the last bit time of the word being read occurs, this is
detected by D9 which produces an output at the point labeled bc — 1.
After a slight pause supplied by Al4 to be sure that the last bit passes
through &13, the signal from the be — 1 output of D9 delayed by Al4
sets B11 to 0. The function of Al4 is to make sure that B11 resets after
the last bit of the desired word but before the first bit of the next word.
The return pulse, E, to the computer control signalling the end of the
remember process is also the (bc — 1) pulse delayed by A14.
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WrrTiNG. Writing requires that a specific word be removed from the
delay line “merry-go-round” and replaced by a different word. The iden-
tification of the proper word location is the same as for reading. The com-
parison box CMP issues an equal signal when the word count agrees with
the content of the Memory Address Register. This signal from CMP sets
B11 to 1. Noinformation enters the MDR because there is no read signal,
R; but the word previously placed in the MDR by the computer control
to be stored in the memory is now shifted out by pulses from B1 which
pass through &12. This message passes through &14 now enabled by the
write signal W and by B11 and through V7 into the delay; the old message
in storage is destroyed because it cannot pass &’6 which is inhibited by
&15, since W and the 1 output of B11 are both present at the input to &15.

Addressing Using Supplementary Reference Information

Where it is possible to depend on reference signals ¢nternally correlated
with the information, then the external timing, with its consequent syn-
chronization problems, may be dispensed with. Since the delay line is
essentially an analog device, it can handle several levels of signals. The
timing reference signals can occupy a separate level of the delayed wave-
form. For instance, negative pulses could be used for timing and positive
pulses for 1 information.

Such a system does not find favor among designers, because informa-
tion theory indicates that the full capacity of the delay for binary infor-
mation is not efficiently used. The maximum useful bit capacity of a
delay is a compromise between resolution (rise time), timing, and the
structure (and cost) of the delay; requiring three-level information instead
of two-level to be stored uses this capacity inefficiently and reduces the
number of information words which may be stored.

The logic of Figure 13.2.2 can be used with a self-synchronizing three-
level system. Information in the storage delay A4 is amplified and
reshaped by A5. The extract circuit, block 6, regenerates both the timing
and information pulses. The rejuvenated information passes through &'2
and V3 on non-read-write cycles and is re-entered into A4.

ReapiNG. A second-level reference pulse is present in our system, Figure
13.2.2, between each word stored in the delay and serves to distinguish the
words. The extract block numbered 6 recognizes this pulse and applies it
to the word counter, C7. When the word counter contains a count equal
to the address preset by the computer control into the Memory Address
Register, MAR, the compare circuit emits an ‘“equal’’ signal. This starts
the pulse generator, P8. It issues N pulses to shift the Memory Data
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Register, MDR. The information following the reference pulse is entered
into MDR through &9 which is enabled by the read signal and the
“equal” signal. The next reference pulse adds 1 to the word counter.
This prevents contamination of the MDR from the following word by
shutting the gate, &9. The post-train pulse from P8 tells the computer
control unit to take over by issuing an E pulse.
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FIGURE 13.2.2. Logic using supplementary reference pulses for a delay-line memory.

WriTing. Addressing is the same for writing as for reading. However,
information from the MDR must be written into the delay A4. P8 again
issues shift pulse to the MDR. Because there is no read signal R at &9,
no information enters the MDR; information passes from the MDR
through &1 which has an enabling W signal and an equal signal from
CMP applied to it and into A4 via V3. The old message cannot pass
through &’2 because the combined write and equal signal produces an
output at &10 which inhibits &'2.
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Parallel Storage

The methods just described are for serial storage, since a single delay
line at a given instant can furnish only one bit of information. However,
it is possible to store information in parallel in a number of delay lines as
shown in Figure 13.2.3, a totally parallel system.
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FIGURE 13.2.3. Delay memory logic parallel storage.

Al is a timing delay with a set of timing pulses circulating in it. These
pulses are shaped and amplified by A2. A3 is really a number of identical
parallel delays with a set of amplifiers labelled A4. Each of the compo-
nents associated with these delays is symbolized by a single gate, mixer,
and so forth, which represents a set of such blocks; the double information
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line feeding these sets of components indicates that parallel information
is being manipulated.

Parallel information in A3 is resynchronized by A4 by some method
similar to that of Figure 13.2.2, using the timing pulses emanating from
A2. The non-read-write path is through &’5 and V6. The timing pulses
are used to tally the word counter C7; the comparison block emits a pulse
when the counter and the Memory Address Register concur. For reading,
the parallel bit datum is entered through &8 into the MDR, since &8 is
enabled by R and the CMP equal signal. For writing, the old datum is
blocked at &’5 and the new datum moved from the MDR through &9
and V8 into A3 by the timing pulses from A2 which pass through &11
enabled by W and the CMP equal signal.

Combinations of delays may be used to construct a serial-parallel stor-
age system. The control logic for such combinations is left to the reader
as an exercise.

Kinds of Delay Lines R

This subsection enumerates the kinds of delays which might be used
and their pertinent properties. '

MERrcUrY LINES. For low pulse repetition rates, the information may be
transformed into supersonic mechanical vibrations by a quartz-crystal
transducer. A path of mechanically conductive material is interposed
between this transmitter and the corresponding receiving device at the
other end of the path, which reconverts the mechanical vibrations to elec-
trical impulses. Mercury has a transmission rate of about 57 inches per
millisecond. Mercury is most suitable because of the mechanical imped-
ance match looking into and out of the transducers, which makes for a
high energy transfer. A tank of mercury may be set up with several trans-
mitters and receivers so that several noninterfering delay paths exist
- through it.

QUuARTz CRYSTALS. The mechanical vibrations in the mercury line follow
a straight line until intercepted by the walls of the container where they
are detected. The vibrations in the crystal delay line also follow a free
path, but when they hit an intercepting internal crystal surface they
rebound. The total path may consist of several subsequent internal
reflecting surfaces; the wave is finally detected by a transducer on the last
surface. Reflections from each wall obey the principle that the angles of
incidence and reflection are equal. By having the mechanical vibrations
transmitted through a crystal polygon rebound from say, 15 or more sides,
the path of the vibrations may be made many times the diameter of the
figure, so that a long delay may be packaged in a small volume. The con-
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version and reconversion of energy here, too, results from the piezo-elec-
tric effect.

LuMPED CONSTANT LINES. By using a number of inductors and capacitors
connected together, a transmission line with a low propagation velocity
may be made. The need for a large number of different small components
stems again from the resolution problem and the need to provide for the
possibility of a number of different voltage levels along the line. These
lumped constant delays have inherent losses which prevent the assembly
of very long delays unless amplifiers are used.

MAGNETOSTRICTIVE LINES. Some materials deform when a magnetic field
is applied; such a material under strain in a magnetic field distorts the
field. This pair of principles is used to obtain a delay element. A mag-
netostrictive wire is held firmly between two damping elements (to pre-
vent reflections). A “transmitting” coil encircles one end. When a volt-
age is applied and current flows in the coil, a field is produced which
mechanically deforms the wire. This deformation travels down the wire
45 a strain wave. A transducing coil at the other end converts the strain

wave into an electric pulse; thus pulses are stored in the wire in the form
of strain waves.

MaexETIC DRUM. A channel on a revolving magnetic drum can be used
like a delay. The write head is used as the input; the read head is the out-
put; information read by the read head is then constantly rewritten on
the drum. Only if the information is constantly regenerated can the drum

be considered to be a delay line; otherwise, it behaves like a static storage
element.

Microwave. Experimental computers are being designed which use frac-
tions of a millimicrosecond for bit times. A delay of a few microseconds
can then store much information. X-band hardware is appropriate and
distributed parameter wave guides make acceptable storage devices.

13.3. STATIC STORAGE

This discussion is confined to the storage of binary information. Static
storage requires one bistable element for each bit to be stored. Other
qualities which distinguish static storage elements are now covered.

Volatility

Some elements have a tendency over a period of time to lose the infor-
mation stored in them. This property is called volatility. The Williams
tube, an electrostatic storage device, leaks the charge indicating a 1 from
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one spot (storage element) to another in a matter of fractions of a second.
Frequent regeneration cycles are required to maintain the information
without loss. Historically this was the first high-speed storage device to
find use in automatic computers. Because of its volatility it is no longer
popular as a memory device, since nonvolatile devices are now available.

Devices whose elements are not subject to deterioration in the dis-
crimination between two states over long periods of time—days, months
or years—are called nonvolatile storage elements.

Destructive Read-out

If scanning the elements to retrieve the information causes the infor-
mation to be removed from the elements, they are said to have destructive
read-out. Core memories, for instance, require that each core be set to 0
to be read out. Destructive read-out elements can be used to construct a
nondestructive-remembering memory; in that case the remember cycle
includes a read and a rewrite phase (see Section 13.4 on core memories).

Addressing

The means for scanning the storage elements to insert or retrieve infor-
mation is called addressing. It should be fast, simple, and require as little
equipment as feasible. Although it is possible to use a separate wire to
address each element, such a system is almost obsolete.

Logic

Because a static memory depends upon the three properties of ele-
ments discussed above—volatility, destructability, and addressability—
it is difficult to discuss their logic in a completely general manner.

A Few Static Elements

Core and drum memory logic is discussed in separate sections; other
static memories are currently less popular and are not discussed in detail.
Some of these static elements are described briefly below.

ErEcTROSTATIC STORAGE. A number of ingenious schemes have been
developed for storing a charge on devices closely resembling cathode ray
tubes. These charges are detected by such means as secondary emission.
Devices such as the Williams tube, the barrier grid tube, and the Selec-
tron—each used in earlier machines—are discussed elsewhere (Ref. 10).
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CAPACITOR STORAGE. A bank of capacitors, together with supplementary
diodes, can adequately store moderate quantities of information (a thou-
sand or so bits) for short periods (a few seconds). A capacitor is charged
to store a 1; discharged for 0. It is read by discharging the capacitor; if a
current flows, 1 was stored there; if none flows, a 0 was stored there.

FERROELECTRIC STORAGE. The polarization of a dielectric is affected by
the polarity of the charge to which it has been previously subjected; it is
polarized differently according to the direction of the voltage applied
across it. Bits can be stored on ferroelectric dielectrics by the direction
in which the dielectric is polarized.

TeYRATRONS. Once a thyratron is fired, it remains so until its plate volt-
age is cut off. Information may be stored in a (rather expensive) bank of
thyratrons with one gas tube for each bit. It can be readily scanned for
remembering with no possibility of destroying the data. Memorizing is
done by momentarily opening the plate circuit of the addressed bits to
set them to 0 and then setting to 1 the required bits by firing the associ-
ated thyratrons.

13.4. PROPERTIES OF MAGNETIC-CORE MEMORIES

Magnetic cores for use as memory components are extremely small in
size. Thousands of words of information may be stored in a few cubic
feet. Because of their properties they may be addressed rapidly. Infor-
mation may be memorized or remembered typically in six microseconds.
Although much electronic equipment is required to properly insert (or
withdraw) information into (or from) core memories, they are popular for
most large computers; they are also used for buffers in medium- and large-
size computers. They produce the fastest arbitrary-access memories avail-
able; and core memories are nonvolatile—there is no necessity to rejuve-
nate information between references. _

A common size for units of memory is about four thousand words of
between ten and forty bits per word. Prefabricated complete units of this
size can be purchased for less than $100,000.

Often computers have expandable memories enabling the user to add
units (of about four to five thousand words) so that the increased use of
the computer will not be impeded. This expandable feature makes for
versatility in custom tailoring the computer to the consumer’s needs.

The magnetic core used for memories is normally of a ceramic type.
A powdered mixture of iron salts and clays is pressed into the form of a
toroid (a doughnut) whose outer diameter might be only a twentieth of an
inch. The toroids are fired into this permanent shape. For this reason
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they are called ferrite cores. They should be distinguished from bobbin-
wound cores used principally for shift registers.

If a wire is wound about the core and a current passed through the
wire, a magnetic field is set up surrounding the wire and the core. Part of
this field will pass through the core which, being of low reluctance (offer-
ing little opposition to the magnetic lines of force), will take a circular
path within the core as in Figure 13.4.1. This field presents a magneto-
motive force which tends to magnetize the core to one of two possible
states. The core is designed so that it retains most of the magnetic energy
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FIGURE 13.4.1. Magnetic field FIGURE 13.4.2. Core hysteresis loop.
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contained in the field after the field is removed. Remanence is the term
which describes the ability to store the magnetic energy obtained from the
temporary field; ideal cores are said to have high remanence.

The most important property of the core material is best presented
graphically using the characteristic hysteresis loop. A typical loop
appears in Figure 13.4.2. Here H is the magnetomotive force applied to
the toroidal core by passing current through the coil wound about it; B is
the remanence, the magnetic flux remaining when the magnetomotive
force (mmf) is removed. The desired shape for this loop is called “square”
because, unless a minimum mmf is applied, the magnetic state of the core
does not change appreciably; when this minimum mmf (or more) is
applied, the core suddenly switches to its opposite state. The core thus
has a bistable property. The mmf required to switch the core from one
state to the other, and for which an increase in mmf does not increase the
magnetic flux through the core, is called the coercive force and labeled
H,; the magnetic flux remaining after H. is applied is called the remanence
and labeled Bk.

A core stores a 0 when the residual flux in the core is — Bg; this desig-
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nation is arbitrary. The remanence — B results, of course, from an mmf
of —H. or less. If the mmf, H, applied to the core is increased, the core
is not affected until it reaches the value +H.; at this point the core rema-
nence switches from —Bpg to +Bg. The residual flux when +H, is
removed is then 4 Bg so that the core then stores a 1.

In practice, it is impossible to obtain a perfectly square hysteresis loop.
This is manifest by the top or bottom of the loop not being parallel to the
H axis or by the rounding of the corners of the loop. Hence if the mmf is
increased from 0 to some intermediate point, say +H Jkwith0 <k <1,
there will be some change in flux in the core as shown in TFigure 13.4.2 by
the black wedges near +Bg and —Bz. The merit of a core is judged by
the squareness of its hysteresis loop; the core with the squarest loop has
least variability in its residual magnetism ; this describes the quality of its
performance as a bistable device.

Writing

It is apparent that a bit of information may be stored in a core by
applying to a winding of the core a current of sufficient magnitude and in
the assigned direction. This causes the core to have a remanence corre-
ponding to a 1 or a 0 as desired.

Reading .

There is no simple way to determine the information stored in a simple
toroidal (one hole) core without destroying (at least temporarily) the
information. This is therefore termed destructive read-out. If an mmf
— H. is applied to one winding of the core, there are two alternative possi-
bilities: if the core is set to 1, B will be changed from + Bz to —B r; if the
core is set to 0, B will remain at —Bg. This reading pulse, — H,, will set
the core to 0 regardless of its former state. Another winding on the core
can sense whether there has been a change in the state of the core: a posi-
tive voltage will be induced in such a winding only if the core was previ-
ously set to 1 and the flux changes from + By to — Bg; otherwise, if it was
set to 0, no voltage will be induced in the winding.

Restoring Information

Because of the destructive nature of core readout, magnetic cores are
not immediately satisfactory for a computer memory system. To remedy
this, it is possible to replace the information withdrawn from the core at
some short time later. This is done by applying the delayed and amplified
readout signal to the core in such a manner as to set to 1 those cores
which were so set previously and no others.
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The Structure of the Memory

The memory stores a quantity of information which runs into many
thousands, sometimes millions of bits. Some systematic means must be
used to catalog the information so it is easy to find. Information is manip-
ulated in words; the bits in these words may be examined totally in series,

S
X X2 X3 Sense
1/D Inhibit/Disturb
Y3 . 18
s S S
1/D 1/D
o Y2
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FIGURE 13.4.3. Corner of a core matrix.

all in parallel, or in serial-parallel fashion. An integral multiple of words,
usually one, is stored at a given address.

The arrangement of information in the memory must then be such
that any set of bits is immediately available by the memory control logic;
the location and relation of the set of cores representing the set of bits
depends on the word structure.

The method for addressing a single core or a set of cores is the same:
—H, is applied to a single core or to a set of cores, and it sets the core(s)
to the 0 state. In parallel, the set is read out on the sense winding(s). Let
us speak generally of a set, since a set may have one or more members.
At this point then it requires a separate line to address each set of cores—
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for one thousand words, one thousand separate drive lines are required.
Since a good fraction of an ampere is required on each line to drive the
cores, an amplifier is normally needed for each drive line.

To improve the efficiency of the memory (in terms of the equipment
required) the square property of the hysteresis loop is now invoked. If
two addressing windings are supplied to each core, the core will set to 0
only when the total mmf is — H.. Imagine sets of cores, each representing
a computer word, arranged in a square matrix, 32 X 32, say. A small
corner of such a matrix is found in Figure 13.4.3; each core in the figure

FIGURE 13.4.4, Assorted cores. Cour- FIGURE 13.4.5. A Wired core plane.
tesy of General Ceramics. Courtesy of General
Ceramics.

could represent a set of cores. Passing through each core, there is one row
and one column winding, numbered and distinguished respectively by the
prefix Y and X. There are no #wo sets of cores which lie in the same row
and column; therefore, choosing a pair of coordinates (for this is a coordi-
nate system, you see) uniquely determines a set of cores.

Now, to choose a set without affecting the other sets, a current such
as to provide an mmf of — H./2 is applied to the selected row and column;
in the figure, X2 carries current to produce — H,/2 in the cores along its
length; Y3 also carries current to produce —H./2 in the cores it passes
through. This current (equivalent to —H,./2) is not sufficient to affect
any core storing either 0 or 1 in the selected row or column except the core
through which both X2 and Y3 pass; this set of cores is subjected to an
mmf of —H, and will be set 0 to be read out on the sense winding of each
matrix of the set.

The same method is used to write 1’s into the cores. The lines labeled
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5

FIGURE 13.4.6. A core memory stack. Courtesy of General Ceramics.

X2 and Y3 are each driven with sufficient current to obtain +H./2 in
order to write into the core(s) at X2Y3. '
We have used a two-dimensional system (row and column); it is easy
to carry this principle to higher dimensions. Consider a three-coordinate
system, X, Y, Z. To read a core set, apply a current to produce —H,./3
to one each of the X, Y, and Z lines. Note that some core sets have — H./3
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applied, some have —2H./3 applied, but only one core set has an mmf of
— H. applied to it. Addressing one thousand words in a three-dimensional
system could be done with a 10 X 10 X 10 word array.

Systems of more than three dimensions may be constructed, of course.
The limitation is that each core set for n dimensions must set to 0 for an
mmf of —H. but must not be set to 0 for —(n — 1)H./n. This must be
true of each of the hundreds of thousands of cores required for a memory
of respectable size. The practical limitation to number of dimensions in
which a core memory can be constructed is imposed by the tolerances to
which the cores can be made and the squareness of the hysteresis loop of
the materials used. If, out of many thousands of cores previously set to 1,
all will set to 0 for —H. and none for —(n — 1)H,./n, then an n-dimen-
sional memory can be constructed.

Appearance

Cores of assorted sizes are shown in Figure 13.4.4. When wired into a
plane, they appear as in Figure 13.4.5. A stack of planes as mlght be
found in a small memory is shown in Figure 13.4.6.

13.5. STRUCTURE OF THE CORE MEMORY

The word structure in the memory may correspond exactly to the word
structure in the computer—both may be serial, parallel, and so forth.
Or, they may differ and a temporary storage register may be used to con-
vert from, say, serial to parallel and so forth. We will concern ourselves
here with the memory word structure and not the later conversion, when
it is necessary.

Serzal-Bit Memories

This means reading and writing occur bit by bit, so that each core
must be scanned sequentially.

ApprEssiNG. There is only a philosophical difference between addressing
the memory bit by bit or selecting the word and then examining the bits
in order. In a three-dimensional array, for instance, it is customary for
the word address to fix two coordinates of the cube: this selects one
straight line along which the information bits lie. A 1024-word memory
of 40-bit words would consist of forty frames, each a 32 X 32 core matrix.
32 X wires and 32 Y wires pass through each frame. For each frame we
can make up a pair, choosing one X and one Y wire. A word is chosen by
fixing the number of the X and of the Y wire of this pair. Current is then
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applied to the chosen pair of X and Y wires in each frame of the forty
frames successively. The sequence in which the frame is addressed (cur-
rent applied to the pair) is the sequence in which the bits of the word are
read out.

REeapING. All the sense windings (the computer label for the read wind-
ings) for the cores are connected in series, observing the proper polarities.
The bit to be read out is addressed so that an mmf of — H. appears at the
core, setting it to 0. If it was set to 1, a voltage appears on the sense line;
otherwise none appears there.

WriTiNG. There are four cases which may arise in writing into a core.
These are due to the two possible previous states of the cores and the two
possible desired states. A positive system would write the desired 0 or 1
into the core regardless of the previous state. A second method would
require reading—setting all the bits of the word to 0—Dbefore writing;
then write 1’s only where required. Both of these methods are difficult to
implement. The most common system performs writing in three steps:

1. Read all cores of the selected word (set to 0) by applying — H. to
all of the word bits, either in sequence or all at once.

2. Address with write current (such as to produce +H.) all cores
which comprise the selected word.

3. Apply simultaneously with the second step an inhibit current,
— H./2, through an inhibit winding to all cores (bits) of the word
for which 0 is to be written.

A core thus has an mmf of +H. owing to the addressing current alone
when a 1 is to be written; it has an mmf of +H. owing to the addressing
current and —H./2 due to the in-

hibit current applied to it when a 0 Y

is to be written, so that it remains Sense

unaffected (only +H./2 is applied).

The same principle works for higher- a _
Inhibit

dimensional arrays, as the reader X =y )
may verify. )&J
The core with windings is repre- «

sented as in Figure 13.5.1. Because
the cores are so small in size, the
ampere-turns necessary to produce
H. are small, too; in practice each winding is simply formed by a wire
passing through the core, so that Figure 13.5.1 is a fairly accurate repre-
sentation of the core and windings.

FIGURE 13.5.1. Core and windings.
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Parallel-Bit Memories

A full word is memorized or remembered all at once in a parallel-bit
memory.

AvpressiNg. The 1024 X 40 bit memory discussed earlier is again real-
ized with 40 arrays, each 32 X 32. But now a given X winding passes not
only through all the wires in one column of one frame; it is also connected
to the same column in all the frames. Corresponding X and Y windings
of all frames are connected together; the corresponding bits in each frame
array are simultaneously addressed. Thus to address the word at X2 Y3,
a current to produce —H,./2 (to read) is sent through the X2 windings on
all 40 frames and also to the Y3 windings on all 40 frames.

REeADING. One output wire passes through all the cores in a single frame;
there is one output wire for each bit to be read. In our example there is
one sense wire threading all 1024 cores of each of the 40 frames—40 sense
wires. When the cores are addressed for reading, each of the 40 sense
wires, one from each frame, carries the 1 and 0 message stored in the
memory to one of the bits of a temporary Memory Data Register.

WrrtiNg. The X and Y windings for the word to be written are driven
with current to supply +H./2 to each core on each frame which they
thread. The bits of the chosen word then have +H, supplied. The word
to be stored must be simultaneously entered in complement form into the
inhibit windings; there should be current to supply —H ¢/2 in the inhibit
windings corresponding to the 0 bits and no current in the inhibit wind-
ings for the wires in which 1’s are to be written.

Serial-Parallel

To return to the 1024-word memory, suppose that each word contains,
as in the Polyvac, ten characters, each of four bits. The principles just
discussed may be combined to make up a serial-parallel memory. Each
word is addressed separately by choosing one each of two sets, X and Y,
of 32 windings; the characters are addressed sequentially using a third set
of windings. Each of these ten character windings passes through all the
cores on each of four frames. The four-bit read-out lines pass through ten
frames each: on each bit line appear ten information bits sequentially.
Similarly to write-in, we activate the character lines sequentially and in
synchronism with the four inhibit lines for each character.
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The Disturb Current

Of course, it is not possible to get cores with perfectly square hystere-
sis loops. That is why cores that have been just written have somewhat
different properties from ‘old’’ cores. When g core is subjected to half-
read and half-write cycles (an mmf of —H./2 or +H./2) it recovers to a
somewhat different residual magnet-
ism after each cycle.

Figure 13.5.2 shows a highly ex-
aggerated portion of a hysteresis
loop. A core that has just been set
to 1 has a remanence indicated by
point A. A half-read cycle consists r
of applying and removing —H./2to [T
the core. The remanence follows the
path AFD. This results in a change
of remanence indicated by AD. Such
a change in flux induces a voltage in
the sense winding. When this hap- FIGURE 13.5.2. Portion of exaggerated
pens for a number of cores, a ¢on- hysteresis loop to show
siderable background noise may ap- elfect of disturb current.
pear on the sense line when reading is
performed. Notice, however, that after the first cycle (AFD) succeeding
cycles such as DCE or DKG@ produce only a small change in remanence
and hence little, if any, noise.

If it were possible to subject a core to a pseudo-half-read cycle before
use, the remanence of the core would be at point D and further half-read
or half-write cycles would have little effect. This is just what is often
done in practice. Immediately after writing but before actual reading, a
false read cycle is performed. To distinguish this cycle, it is called a dis-
turb cycle for it disturbs the fresh writing just done. After the disturb
cycle all cores storing 1’s have about the same remanence.

13.6. CORE MEMORY LOGIC

To facilitate our study we shall investigate a typical memory system
first and discuss some possible variations later. The core memory which
might be used in the Polyvac has 1000 words of 40 bits each. It consists
of 40 arrays each 50 X 20. Each word is referred to in parallel—all 40
bits at once.

Previously it has been stated that cores have a destructive readout.
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Most applications require that information in memory remain there after
remembering has been done. Remembering is accomplished by following
each reference to the memory by a cycle that rewrites the datum erased
by readout. This is typical of modern core memories. Recall that in
order to write information the word storage must be previously cleared
by reading. Hence both memorizing and remembering in our design have
a cycle calling for reading followed by writing.

This discussion is divided into several parts. A description of the tim-
ing cycle for both remembering and memorizing includes a list of things
to be done and their sequence. The control logic section describes the
functional units to generate the proper timing. The system layout is then
described. A final section discusses variations.

Remember Cycle

A command requiring remembering is decoded and then encoded by
the computer control. One of the encoder outputs is a read signal. Any
command involving reading begins with such a process.

START READ PULSE. A gated start pulse enters the read circuitry as a
start read pulse. '

CLEAR THE MEMORY DATA REGISTER (MDR). The MDR is a register which
will hold the information when it is read from memory and from which
information will later be distributed to its destination in the computer.
The MDR must be cleared to hold the new word.

ApDREsSING. The address from which the datum is to be read is stored
in the Memory Address Register (MAR). This address must be decoded
into a double baseless system, 50 X 20; this addressing signal must be
maintained for the duration of the reading.

ProBEe. Because of the variability of the waveforms from the cores, espe-
cially at the beginning and end of the reading, a ‘“cleaner’ output is
obtained by sampling the waveform from each sense line at some time
close to the middle of the reading period. Each sense-line output, properly
amplified and shaped, and a probe pulse are both applied to an &-block.
This cleaned-up bit is then the input to the Memory Data Register.

IvLe pERIOD. To avoid undesirable transients signals on the read wind-
ings between reading and writing, and to let the cores settle down to point
A in Figure 13.5.2, the cores are rested between addressing and rewrite.

RewrITE. The location just read from is addressed again, but this timg
the current is in the opposite direction to that used for reading, and it
produces +H. in the cores of this word.
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InmIBIT. For each core from which a 0 was read, an inhibit pulse is sent
to the inhibit winding of that array. The inhibit pulse must overlap the
write pulse at both ends so that these cores cannot possibly be set to 1.

DisturB. Any core which was not inhibited has a 1 written in it. These
cores should be disturbed after writing. This is done by the disturb
pulse which applies —H./2 to all addressed cores shortly after writing is
complete.

REapy. It is no longer.necessary for the memory to communicate with
the Memory Data Register. The datum in the MDR may now be trans-
ferred to its destination in the computer.

[ 1nhibit |
lDisturbI
I Reodyl

0 i 2 3 4 5 6 7 8 9 10 pesec

FIGURE 13.6.1. Core memory read-write timing.

The juxtaposition of the timing pulses is illustrated in the timing dia-
gram, Figure 13.6.1.

Memorize Cycle

The Polyvac commands which call for writing are only the transfer
orders, such as XAM, and so forth. The transfer order, after being
decoded and encoded, calls first for the transmission of the datum to the
Memory Data Register.

-
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START WRITE PULSE. This pulse is received by the memory control logic
after the datum is placed in the MDR. It would defeat our purposes to
clear the MDR at this point.

ReAp ADDRESS. It is necessary to set to 0 each core to be written by sup-
plying it with an mmf of —H.. During this clearing operation the sense
windings are not connected to the Memory Data Register, for then this
would contaminate the datum stored there to be written.

ProBE. No probe is needed.
IpLe pERIOD. This serves the same function as in the read cycle.

WriTE. Now writing can be done from the Memory Data Register into
the cores via the X and Y lines which are addressed with a current pro-
ducing +H./2.

InmBIT. The 0’s to be written require an inhibit current to produce
—H./2 in each such core.

Disturs. For the 1’s which are written, a short disturb pulse producing
—H./2 is passed through the inhibit winding.

WriTE coMPLETE. When writing is finished, the transfer command is also

complete and an E pulse may be returned to the control unit to start the
next command.

Timing Chart

Figure 13.6.1 shows the temporal relation of the timing pulses for a
typical memory. The time scale begins at 0 and is in units of 1 micro-
second per division. The pulses required for remembering only are repre-
sented by dotted lines; solid lines represent the pulses used both for
memorizing and remembering,.

Core Memory Logic

Figure 13.6.2 shows the timing logic. The initiate pulse sets bit storage
B1 to 1; it remains so set for 2 microseconds. This pulse, serving also as
the clear pulse C, is applied to the two delays A2 and A3 and sets the
multi B4 to 1. The output of A3 occurring 6 microseconds later sets B4
to 0. The 1 output of B4 which lasts for six microseconds is the read
pulse R. It starts at the same time as C but lasts longer. The delayed
clear pulse P is the probe pulse; A2 is adjustable so that P occurs at an
optimum time. A3 is connected to A5 and A6. The former determines the
period between read and write; the latter, which is adjustable, determines
the start of the inhibit pulse, I. The multi B7 is started by the output of
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FIGURE 13.6.2. Core memory timing logic.

A6 and maintains a 1 output until the end of writing, as determined by
the output of A8; the 1 output of B7 is the inhibit pulse I, which can be

adjusted so as to completely overlap the
write pulse. The inhibit pulse for each
frame is gated separately for each frame by
the 0-bit information in the Memory Data
Register. Thus, each frame where 0 is to be
written receives current in its inhibit wind-
ing; each frame where 1 is to be written re-
ceives no current in its inhibit winding. The
write pulse is the 1 output of B9. Itis set to
1 by the A5 pulse and reset to 0, 6 micro-
seconds later by A8. The output of A8 is a
2-microsecond pulse, starting when writing
stops. This is the disturb pulse D and also
indicates the end of reference to the mem-

TL

TTTTT

=

m

FIGURE 13.6.3.

Block symbol,
core memory
timing logic.

ory, which accounts for its being secondarily designated as E.
The block symbol TL of Figure 13.6.3 is used to indicate the timing

logic.

System Layout

The system layout of the core memory is shown in Figure 13.6.4. The
cube in the center is the core array assembly which comprises the memory
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proper. The timing and control unit just discussed receives two of three
possible signals from the computer, memorize or remember and start
(“Now!” in the figure). The datum address is stored beforehand in the
Memory Address Register for both read and write. For memorization, the

Done/
Memorize or
Remember

FIGURE 13.6.4. Logic for the core memory system.

datum to be stored has been placed in the Memory Data Register before
the start signal reaches the timing center. The MDR is cleared for remem-
ber by the C pulse from the timing center. Current in the proper direc-
tion is sent from the address register amplifiers through the read/write
switch under the control of the timing center. For read, the sense infor-
mation is entered in parallel to the MDR. The MDR gates are probed by
the timing center probe pulse P.

During the write operation, the datum in the MDR is passed through
the inhibit/disturb switch. Inhibit current is applied to the inhibit wind-
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ing, for which 0’s are to be written, and disturb current to the windings
for which 1’s are written, also through the inhibit windings. Both of these
occur at the intervals specified by the timing diagram, Figure 13.6.3.

When the full cycle is complete, the memory timing center issues a
“Done!” (E) pulse; the computer control then takes over. The computer
control unit may then shift out the datum when needed.

13.7. SOME ADDITIONAL REMARKS ON
CORE-TYPE MEMORIES

This section discusses three other aspects of cores. Core matriz swiiches
are a nonstorage use for cores. Apertured core planes are assemblies of core-
like devices. Deposited core plates are assemblies of cores which can be
fabricated in mass production for use in multiple core memories.

Matrixz Switches

Decoders discussed earlier use &-blocks to obtain an output on one of
many lines for an ¢nput on several lines. There is one &-block required for
each output line.

The core is used like a nor block to function as a decoder. Recall the
&-block decoder of Section 11.4. It is presented here as Figure 13.7.1.

FIGURE 13.7.1, _53_j g—z FIGURE 13.7.2.
& block decoder for B2— 6 6 Inverted block decoder
“6". m B1 fOl' “6".

S

The same results are obtained if the complementary bit is used at each
input and the input inverted as in Figure 13.7.2. This is so because A =
A. Theinput S to the gate may be called a sampling input. Figures 13.7.1
and 13.7.2 operate equivalently.

The core functions as a nor block when the three current inputs are
made —I. (when present, of course), where —I, is the saturation current
required for the core to assume a 0 state. The S input is +1.. Prior to its
use as a decoder, the core is set to 0. Then, if all the input signals are
absent, the S input will take effect and set the core to 1; if any one input
is present the core will tend to remain as set—to be set to 0; since it is
already set 0, no change occurs. The core switches to 1 only when all sig-
nals except S are absent.

The schematic representation of a core decoder is found in Figure
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13.7.3. The preset winding is required to set all cores to 0; the three signal
inputs are the complements of the code desired; the sample input carries
~+1I. at the sample time; the sense line is the output. There will be a cur-
rent at the sense line only when the core
switches from 0 to 1—when it detects the
code. The sequence for a full array of these
matrix switches is as follows:

Preset

Sense g 1. Set all cores to O.

2. Enter the set of signals to be decoded
to all cores; signals are absent only on
the core corresponding to the code
being entered.

FIGURE 13.7.3. Core de- 3. Try to set all cores to 1; only the core

coder For corresponding to theinput coresetsto 1.
“en, 4. The sense winding of only the selected
core produces a read-out current.

Sample

The matrix switch does offer tangible advantages over the coincident-
current method as a means for addressing core memories. Take a small
16 X 16 memory as an example. If it is fed by 256 separate addressing
wires, the problem of half-select voltages and low signal-to-noise ratio is
completely licked; one word is positively selected by current in a single
lead and the 255 other leads carry no current.

The coincident-current matrix switch converts a 16 X 16 input into a
256-lead output or an n X n input into an nlead output. The partial
array of Figure 13.7.4 shows how the bias line is used both to preset and
sample the array. First a bias current of —I, is applied to set all the cores
to 0; then code lines of the code complementary to the desired code are
energized; if the input is X3 and Y2 there will be 7o current on these lines
only; on at least one line of each of other sets there is —I,. Next +1, is
applied to the bias line—only X3Y?2 switches to 1. There is hence an out-
put on the sense winding of X3Y2, which is sufficient to read out the
16 X 16 array to which it is connected.

Here’s the picture, then. To address this 256-word memory, we have:

1. Two sets of bit storage of four bits per set, four input lines per set,
and eight output lines per set.

Two &-block decoders, binary to 16 ways.

Two sets of 16 drivers each.

A matrix core switch with two sets of 16 inputs each and 256 out-
put lines.

5. The memory itself, 16 X 16 X 40 (say).

el o

Note that if the bias current is reversed again after read-out to —I.,
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only the selected core set is reset to 0. This causes a current of the oppo-
site direction to flow in the sense winding of the core just selected. With
additional inhibit logic, this can be used to rewrite the information read
during remember order.

— (Y NT N
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~F |
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X1 X2 X

FIGURE 13.7.4. Part of a core matrix switch.

Other ingenious arrangements have been devised for using core matrix
switches for addressing core memories.

Ferrite Apertured Plates

A solid slab of ferrite material can be designed to act like an array of
cores. Holes are drilled at appropriately placed sites. Data are stored
around the hole in the form of the remanent state of the material which
is left there. The material is set by the current flowing in a wire passing
through the hole. The magnetizing force within the material is inversely
proportional to its distance from the center of the wire. For a fixed value
of current, a critical radius is determined within which the magnetizing
force is everywhere greater than the coercive force, and outside of which
it is everywhere less than the coercive force. If this maximum current is
always observed as a limit, the material surrounding the aperture can be
considered to comprise a core, as it can be switched and yet its state does
not affect the data stored in the surrounding cores.

Since ferrite material is essentially nonconductive, it is possible to
print a conductive winding upon the plate as in Figure 13.7.5. Examine
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the apertured plate shown there and notice the pattern of ridges. On one
side of the plate ridges such as R1, R2, R3, and R4 bound sets of two
holes such as H1 and H2. This area has a metallic plating on it. Consider
the sectioned holes H3 and H4; they are bounded on the top side by R1,
R4, R2, and R7 (not shown) and these are ridges which are not conduc-
tive. It is quickly seen that a conductive path exists along the arrows:
path a from the underside through hole H3 to the top; path b along the
top; path ¢ or ¢’ through hole H4; along the underside, path d; up through

FIGURE 13.7.5. Ferrite apertured plate.

hole H5, path e; along the top, path f, and so forth. Observe that path z
ends at the nonconductive ridge, R6. By using such a pattern the entire
sense winding can be plated onto the apertured plate.

The plate is made by spraying a conductive coating on a ferrite form
which has ridges molded into it. The tops of ridges are then ground so
that the conductive coating is removed and the ridges are no longer con-
ductive. The conductive portions of the plate form a path so laid out that
it weaves up the inside of one hole on the plate and down the inside of the
next. This serves as the double-purpose sense/inhibit winding. IFor read-
ing, if the addressed aperture stores a 1, it produces a current in this
winding; for writing, inhibit current to produce H./2 passes through this
winding when 0 is to be written in this frame, to cancel part of the +H.,
produced by the addressing currents.

Because the read winding threads all the holes in the same sense, the
signal-to-noise ratio is worse than that in core-array systems. For this
reason, the apertured plates are invariably addressed by a matrix switch
such as that discussed in the last subsection. This switch is made from
apertured plates too, so that only one kind of major component is neces-
sary for this kind of memory and addressing system.
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Deposited-Film Memory Plates

A memory has been constructed by depositing a thin magnetic mate-
rial in the form of circular areas on a glass sheet. The circles are about
4 millimeters in diameter and spaced in a square array with 8 mm between
centers. The elements are evaporated in vacuum onto a glass sheet 30
mils thick. Then upon this plate is deposited a layer of insulation, then
a layer of copper. The copper is etched away, so as to leave a grid of
wires lying on top of the matrix of cores; this is one set of windings. The
other windings are deposited in the same fashion in layers on top of each
other. These deposited-core planes seem to have good potential for future
use.

13.8. DRUM MEMORIES

A rotating drum coated with magnetic material can be used to store
information. Binary information is written onto the drum at very small
areas on the drum; these areas may be magnetized in either of two direc-
tions as the areas pass beneath a writing head.

A simplified view of the drum appears as part of Figure 13.8.1. Heads
which can either read or write are disposed longitudinally along the drum.
The periphery of the drum which passes beneath one of these heads is
called a track. Each track contains a large number of cells. Each cell is
a small area where one bit of information is recorded. One hundred cells
per linear inch is a common figure. Thirty or more tracks can be packed
along one inch of the drum parallel to its axis. A speed of rotation of the
drum of 17,500 rpm is being used by one recently released computer.
The pulse repetition rate for the drum is determined by the rotational
speed and the number of cells per peripheral inch; common bit rates range
from 50 ke to 300 ke.

The cylinder is a developable surface, so let us take a drum and slit it
longitudinally, calling the line along which we cut it the 0 reference line.
When it is flattened out, the surface appears as in Figure 13.8.2. The let-
ters indicate the tracks; the numbers indicate the cell on a given track.
Each cell stores one bit; the track stores a series of bits. Information may
be stored on the drum in a serial-bit serial-character fashion as the twelve-
bit word is stored in track A; a twelve-bit word may be stored in parallel-
bit parallel-character fashion as the word using the first cell of E through
P; it may be stored in serial-character parallel-bit fashion using tracks B,
C, and D, and cells 1 through 4. Of course, a drum stores information in
one of these fashions only. Usually the data structure of the memory is
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the same as that used in the rest of the computer. The tracks required to
store a datum are called here a channel. Thus in our example the all-serial
method has but one track per channel in Figure 13.8.2; the all-parallel
system uses twelve (or the number of bits per word) tracks per channel;
the serial-character parallel-bit method shown uses three tracks per chan-
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C register

FIGURE 13.8.1. Polyvac drum logic.

nel; the Polyvac uses a four-bit code and so would have four tracks per
channel in serial-character parallel-bit application to the drum.

Regardless of whether a serial, parallel, or serial-parallel storage sys-
tem is used, the position which one word occupies within its channel is
called a sector. At any given instant there is one word in each channel
which might be read (or written); these words are on the same sector. A
sector is a wedge-shaped portion of the drum.

For drum storage the address for the word to be memorized or remem-
bered specifies two variables: the proper channel and the proper sector
(ensemble of cells) in the channel. The set of heads which is specified is
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arbitrary; the selection (physical or electronic energization of the reading
or writing head for the channel) may take place as soon as the data word
is chosen (i.e., when the control circuitry is “notified”’ of what channel
should be communicated with). The position of words is serial regardless
of whether the bits or characters within the words (or channels) are serial
or parallel; the word location in the channel in relation to the reading
head is a function of the angle of rotation of the drum. If the beginning
of the desired word is not now beneath the reading head, reading must be

P AN

0 N

M / ‘
2 I m Parallel
g 1

H [ A serial

: Y B

F ) Serial Parallel

E \L -

D .

c \

B R L

A N N\

12345678 9101112

FIGURE 13.8.2. Drum track layout—serial, parallel, and serial parallel information.

postponed until it gets there. Reading cannot start until the word is in
the proper position; then it must start.
In procuring a word from memory there are five steps:

Store temporarily the address of the desired word.

Translate the address into a form which can control the search.
Select the channel to read from (write into).

Determine when the proper sector on the drum starts to pass
beneath the selected head.

5. Guide the word being read to the register intended for it.

W 00 Ry =

Writing requires the same steps, except that the last step is to move the
word from the register containing it and concurrently to write it onto the
proper sector of drum.

Drum memories have nondestructive read-out and are nonvolatile.
At the present state of the art, they are cheaper per bit than other mem-
ories. The access time depends upon the speed of rotation, which is limited

—




264 MEMORY DEVICES AND THEIR LOGIC ® CHAP. 13

by mechanical factors. For this reason—speed—cores are preferred if
their price can be met.

The Polyvac Drum

Let us return to our demonstration machine. Because of its size
(small-medium) it falls in a lower price range and would probably use a
drum. We must store 1000 words on the drum. The drum has ten chan-
nels each containing 100 words. This arrangement permits us to use the
first (binary-coded) decimal digit of the operand address to indicate the
channel. The two other digits, then, indicate the sector where the word is
found.

Memorizing and remembering for the drum are the same except for
the function that the magnetic heads perform, i.e., writing and reading
respectively. Both require that the proper address be found first.

The Memory Address Register

The first step is to store the address of the desired word. This address
is transferred from the C register to the Memory Address Register, MAR
in Figure 13.8.1. The register is constructed so that its first digit is acces-
sible to the address decoder to effect channel selection. For memorization
the datum to be stored must also be temporarily placed in the Memory
Data Register.

Address Translation

The first digit of the address portion of the MAR is connected to a
decoder D, Figure 13.8.1: the decoder produces a voltage on one of the
ten channel-selection lines. The other two digits in the memory address
register are applied to a coincidence circuit which determines when the
proper sector is reached.

Channel Selection

Each of the ten sets of heads is fed into the channel-selection unit.
The ten first-digit decoder output lines are also entered in the channel-
select unit. The channel heads corresponding to the first digit of the
address are connected to the output lines.

‘When computers were first conceived, channel selection could be done
at leisure and relays were used. Relay selection takes from one to ten or
more milliseconds. A few hundred thousand selections using relays would
make a considerable dent in the available time for such a computer. Elec-



sEC. 13.8 = DRUM MEMORIES 265

tronic selection may be made using biased tubes, transistors, or core
arrays. Since the circuitry does not concern us here, suffice it to say that
the selector connects the proper set of heads to the read/write switch
R/W).

The R/W switch connects the heads through the read amplifiers to
the Memory Data Register to enter a datum there for Reap; the R/W
switch connects the Memory Data Register through the write amplifiers
to the heads to enter a datum onto the drum for wrITE.

Sector Selection

A counter is used to determine which sector of the drum is approach-
ing the reading heads. Notice it is the sector of the drum approaching the
heads which interests us, for the control circuitry must be alerted before
drum read-out starts.

Referring again to Figure 13.8.1 consider two timing tracks on the
drum: the first, T1, contains a pulse in the last character position of each
word for parallel-bit serial-character operation; the second track T2 con-
tains a single pulse at the last character position of the last word. This
single pulse is used to set to 0 the sector counter. The other pulses are
used to tally up the counter.

Now, just before entering the sector numbered 75, the guard multi,
B3, is set to 0 by the pulse in track T2 corresponding to the last character
of the word sector numbered 74. The counter will be tallied up from 74
to 75 by the same pulse which has been delayed by A. If we desire to read
out the word stored in sector 75, then the last two digits in the Memory
Address Register, MAR, will be 75. These two digits comprise one input
to the coincidence detector CMP; the other input is the output of the sec-
tor counter C; there is an output from CMP only when the proper sector
is found (really, about to be found). This sets the guard bit storage B3 to
1 to permit the next phase.

Transfer from Memory

The output of the selector is one set of inputs to the set of gates, &1;
the output of B3 and the rReAD order, R, are the other inputs to these
gates. The information is thus read into the Memory Data Register at
the proper time in the READ cycle.

The Memory Data Register must be shifted in synchronism with the
information leaving the drum. This may be done with an accurate pulse
generator. A recommended method for obtaining synchronized shift
pulses is to take pulses from a third timing track T3. Since these pulses
are generated at the same time that the information bits are being read,
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the timing pulses cannot fail to be in synchronism with the information
pulses. The timing pulses from T3 are gated through &2 by the 1 setting
of B3.

As the last character of the desired word is entered into the Memory
Data Register, a pulse appears on the timing track, T1. It sets B3 to 0
which, in turn, prevents further information from being entered into the
Memory Data Register which might obliterate what was just entered
there.

The counter is reset after a complete drum revolution by the pulse in
timing track T2. This pulse identifies the first sector, number 00.

Writing onto the Polyvac Drum

Here again, the number stored in the Memory Address Register is
translated; a channel selection is made; the proper sector is looked for;
when the correct sector is found, a coincidence pulse is emitted and the
guard flip-flop, B3, set to 1. The WriTE order together with the 1 setting
of B3 provides the proper information flow: the output of the Memory
Data Register is connected to the channel selection unit; this line is con-
nected through the write amplifiers to the proper set of heads to write
onto the drum. The proper channel has been selected by decoding the
first digit stored in the Memory Address Register. The T3 timing-track
pulses are fed through &2 to the Memory Data Register to shift it, in
perfect synchronism, into the writing circuits which write the information
onto the drum. Both 0’s and 1’s are written onto the drum and all previous
information at that address is entirely obliterated (replaced).

The writing order is completed when the pulse read from the timing
track T2, appearing just after the last character of the word is written,
resets the guard bit B3. This prevents further shifting of information for
this command.

Other Sector-Selection Logic

There are methods of determining the proper timing, some using more
than three timing tracks and some as few as one timing track.

CouNTER TRACKS. One track might be used for each bit of the sector-
identification digits. For Polyvac this would require eight tracks (two
binary-coded decimal digits of four bits each). These tracks have a code,
corresponding to binary decimal code for the sector being entered, perma-
nently written on them so as to indicate the end of this sector and the
start of the next. This code is in machine language, and the number in the
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identification channel is the number of the sector which is about to be
read or written. The output of these tracks (properly shaped) is one set
of inputs to the decoder of Figure 13.8.3; the other set of inputs comes
from the sector designation stored in the Memory Address Register.
When these inputs correspond, the proper sector is coming up; at that
time the decoder emits a pulse to set the guard bit to 1, and reading or
writing then proceeds similarly to the logic of Figure 13.8.1.
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FIGURE 13.8.3. Logic for setting bit stor- FIGURE 13.8.4. Logic to reset counter
age when sector identifi- for missing sector pulse.

cation corresponds to the
memory address register.

ONE-TRACK SECTOR IDENTIFICATION. A method of counting pulses can be
used for finding the desired sector. The sector is identified by counting
the pulses in a special track containing one sector-identification pulse per
sector. If the pulse preceding a sector is missing, this identifies it as the
initial sector, numbered 00. To detect the missing pulse and cause it to
reset the sector-identification counter, the logic of Figure 13.8.4 may be
used. Each sector pulse tallies the counter and is also entered into the
one-word-time delay. The previous pulse emerges from the delay and
enters &1 at the same time that this sector pulse appears, so that there is
usually no output from &1. However, at sector 00 there is no sector pulse;
the delayed pulse is not inhibited at &’1 and hence passes through to reset
the counter.

Other Sector-Channel Combinations

If the 1000 addresses were laid out, because of some limitation in the
drum design, so as to require 20 channels each of 50 sectors, the scheme
for identifying each location would be more complex. A compound
decoder with inputs consisting of all three digits (12 bits) of the address
in the Memory Address Register would be required. It would select the
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¢ FIGURE 13.8.5. A magnetic drum memory assembly. Courtesy of Bryant Computer

Products Division.

: ; channel and also furnish information to the coincidence detector to select
, the required sector.

Appearance

A magnetic drum memory without addressing logic is shown in Figure
13.8.5.
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13.9. BUFFERS AND REVOLVERS

Often core and drum memories are used for specialized purposes and
therefore require specialized logic. The case where they are used as the
main component for buffer storage is now treated briefly.

Core Buffers

Core storage has two properties which make it especially effective as
a buffer: (1) it has fast access; (2) it is asynchronous, i.e., it may be made
available to several units, each with different timing cycles, and with
proper control logic it will adjust itself to the timing of each. A typical
core buffer appears as Figure 13.9.

FIGURE 13.9. A core buffer memory for 144 characters of 8 bits each. Courtesy of Tele-
meter Magnetics, Inc.

INPUT/OUTPUT CORE BUFFERS. An input buffer receives information from
a unit such as a punched paper tape reader or magnetic tape reader. The
buffer stores data in consecutive word positions under the control of, and
with the timing of, the input unit. Words are read out consecutively by
the computer and are placed into the main memory as directed by the
computer control. Memorizing and remembering for buffers is called
loading and unloading, respectively.
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Since consecutive words are referred to in a fixed sequence, the address-
ing logic may be simplified somewhat. The X and Y amplifiers are fed
from X and Y ring counters. The X counter is advanced once as each
word is loaded or unloaded by the control logic until the end of the load/
unload cycle; when the last X word position is referred to, the X counter
resets itself to its first position and advances the Y counter one position.
When the last input word is entered, the X and Y counters both reset and
signal the computer control that the buffer is loaded. The X and Y
counters are connected as multistage counters discussed in Section 11.5.
No memory address register or X and Y decoder is needed, as this
function is performed automatically by the X and Y counters.

The unloading cycle is the same as the load cycle. Each word is
unloaded into the computer memory when unloading is called for by the
computer control unit. The X count is advanced after each word is
unloaded.

In many computers, the loading of the input buffer may be completely
delegated to the input and buffer logic. While the computer is doing cal-
culations the computer control unit signals the buffer logic to load the
buffer. From time to time the computer control unit may check the buffer
to see if it is loaded. When the buffer is loaded, it can be unloaded at the
convenience of the computer control.

Output buffers function in the same fashion as do input buffers. This
extrapolation is left to the reader as an exercise.

MEMORY CORE BUFFERS. Buffers can be used in conjunction with essen-
tially slower memories such as the drum or delay line. Data in a memory
buffer is then much more rapidly available to the central computer. The
buffer can also be used to transfer big blocks of data in a single operation
instead of the many operations required using registers.

Usually the loading of a memory buffer is on a consecutive word basis.
Data from memory are loaded into consecutive positions in the buffer;
each buffer word, however, must be addressable in an arbitrary manner.
Unloading, at the discretion of the program, may be either arbitrary or
consecutive. In the latter case, the data in the buffer are transferred as a
block into the main memory.

When the buffer combines both consecutive and arbitrary access, it
must contain logic both for decoding a specific word address and for multi-
stage counters for sequential addressing.

Drum Buffers

Channels on the drum can be used for the two functions, faster access
and input/output buffering.
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Fast-Access BANDS. Each normal channel on the drum has but one set
of heads. To procure a particular word, one might have to wait a full
revolution; on the average, half a revolution is necessary. By placing
additional sets of heads around the drum, the waiting time can be appre-
ciably reduced. A channel with ten sets of heads will have an average
(and maximum) access time of one-tenth as long as for a normal drum
channel with only one set of heads.

Extra logic is required to determine which set of heads the desired
word will pass under next. Consider how this would work for the Polyvac.
Call the words in the fast-access ring F00 to F99. Suppose 37 is desired;
suppose word I'63 is passing under the 0 reference set of heads. Then F73
is passing the 1 reference set, F53 is passing the 9 reference set, and F33
is passing below the 7 reference set. This is the set which could be
addressed in a little more than three word times. With a counter which
contains the word number of the datum passing beneath the 0 reference
head, the proper set of heads to use (here the 7 set) can be determined
with simple logic. '

OuTPUT BUFFER BAND. Information destined for a slow-output unit such
as a paper punch can be placed in the buffer channel of the drum. The
output logic reads the first digit from this channel and writes it into the
output medium. A counter keeps track of the digits on the drum which
have been written out. This counter is counted up once for each digit.
When the output unit has finished punching a digit, the output buffer logic
is alerted; when the next digit of the word called for appears at the buffer
set of channel heads, it is transmitted to the output unit and so on, until
punching is complete. The control unit is then alerted that the buffer can
be filled again with output data. During the time required to punch one
character the drum usually can make more than one revolution. An input
buffer on the drum functions in the same manner.

PROBLEMS

1. What are some of the differences between magnetic cores used for shift
registers and those used for memories?

. What is half-read and half-write current?

. Why is a square hysteresis loop so important for core memories?

. How is remembering done so as not to erase the recalled information?

. Examine four 10 X 10 core arrays. Draw and describe schemes for storing
and reading out the following: 40 ten-bit parallel-bit words; 40 ten-bit
serial-bit words; ten ten-character four-bit words in serial-parallel fashion.

6. What is the purpose of the disturb current?

7. Show a complete logic for a 100-word (10 X 10) ten-character (X10) parallel

binary memory. Show the eight-bit MAR (using NBCD addressing), the
double decoder (X and Y), the timing logic and MDR.

1 e W N
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Since consecutive words are referred to in a fixed sequence, the address-
ing logic may be simplified somewhat. The X and Y amplifiers are fed
from X and Y ring counters. The X counter is advanced once as each
word is loaded or unloaded by the control logic until the end of the load/
unload cyecle; when the last X word position is referred to, the X counter
resets itself to its first position and advances the ¥ counter one position.
When the last input word is entered, the X and Y counters both reset and
signal the computer control that the buffer is loaded. The X and Y
counters are connected as multistage counters discussed in Section 11.5.
No memory address register or X and Y decoder is needed, as this
function is performed automatically by the X and Y counters.

The unloading cycle is the same as the load cycle. Each word is
unloaded into the computer memory when unloading is called for by the
computer control unit. The X count is advanced after each word is
unloaded.

In many computers, the loading of the input buffer may be completely
delegated to the input and buffer logic. While the computer is doing cal-
culations the computer control unit signals the buffer logic to load the
buffer. From time to time the computer control unit may check the buffer
to see if it is loaded. When the buffer is loaded, it can be unloaded at the
convenience of the computer control.

Output buffers function in the same fashion as do input buffers. This
extrapolation is left to the reader as an exercise.

MEMORY CORE BUFFERS. Buffers can be used in conjunction with essen-
tially slower memories such as the drum or delay line. Data in a memory
buffer is then much more rapidly available to the central computer. The
buffer can also be used to transfer big blocks of data in a single operation
instead of the many operations required using registers.

Usually the loading of a memory buffer is on a consecutive word basis.
Data from memory are loaded into consecutive positions in the buffer;
each buffer word, however, must be addressable in an arbitrary manner.
Unloading, at the discretion of the program, may be either arbitrary or
consecutive. In the latter case, the data in the buffer are transferred as a
block into the main memory.

When the buffer combines both consecutive and arbitrary access, it
must contain logic both for decoding a specific word address and for multi-
stage counters for sequential addressing.

Drum Buffers

Channels on the drum can be used for the two functions, faster access
and input/output buffering.
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Fasr-access BaANDs. Each normal channel on the drum has but one set
of heads. To procure a particular word, one might have to wait a full
revolution; on the average, half a revolution is necessary. By placing
additional sets of heads around the drum, the waiting time can be appre-
ciably reduced. A channel with ten sets of heads will have an average
(and maximum) access time of one-tenth as long as for a normal drum
channel with only one set of heads.

Extra logic is required to determine which set of heads the desired
word will pass under next. Consider how this would work for the Polyvac.
Call the words in the fast-access ring F00 to I'99. Suppose F37 is desired;
suppose word F63 is passing under the 0 reference set of heads. Then F73
is passing the 1 reference set, F53 is passing the 9 reference set, and F33
is passing below the 7 reference set. This is the set which could be
addressed in a little more than three word times. With a counter which
contains the word number of the datum passing beneath the 0 reference
head, the proper set of heads to use (here the 7 set) can be determined
with simple logiec. '

OvuTpuT BUFFER BAND. Information destined for a slow-output unit such
as a paper punch can be placed in the buffer channel of the drum. The
output logic reads the first digit from this channel and writes it into the
output medium. A counter keeps track of the digits on the drum which
have been written out. This counter is counted up once for each digit.
When the output unit has finished punching a digit, the output buffer logic
is alerted; when the next digit of the word called for appears at the buffer
set of channel heads, it is transmitted to the output unit and so on, until
punching is complete. The control unit is then alerted that the buffer can
be filled again with output data. During the time required to punch one
character the drum usually can make more than one revolution. An input
buffer on the drum functions in the same manner.

PROBLEMS

1. What are some of the differences between magnetic cores used for shift

registers and those used for memories?

What is half-read and half-write current?

Why is a square hysteresis loop so important for core memories?

How is remembering done so as not to erase the recalled information?

Examine four 10 X 10 core arrays. Draw and describe schemes for storing

and reading out the following: 40 ten-bit parallel-bit words; 40 ten-bit

serial-bit words; ten ten-character four-bit words in serial-parallel fashion.

. What is the purpose of the disturb current?

. Show a complete logic for a 100-word (10 X 10) ten-character (X 10) parallel
binary memory. Show the eight-bit MAR (using NBCD addressing), the
double decoder (X and Y), the timing logic and MDR.
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8. Show a complete logic for a ten-word ten-character four-bit (four frames,
10 X 10) serial-character parallel-bit core logic. Show the four-bit MAR
(NBCD) and its decoder, the character counter and its decoder, the timing
logic and the MDR (shift register).

9. Show a full 4 X 4 (16 output) matrix core decoder.

10. Consider a 100,000-bit drum memory with the drum making 7200 rpm and
with 100 read/write heads. Find, for (a) 25-bit/word parallel operation,
(b) 40-bit/word serial operation and (c¢) ten-character word, four-bit/
character serial-parallel operation, the following: (1) tracks per channel,
(2) channels per drum, (3) words per channel, (4) maximum, minimum, and
average access time.

11. How many tracks has the Polyvac? How many bits can it store? How many
bits per channel, words per channel, bits per track, sectors?

12. Make a two-dimensional drawing of the Polyvac drum-memory logic, filling
in all appropriate boxes except the Channel Select.

13. Indicate fully the logic required for the fast-access bands of Section 13.9.

14. Describe how information from memory channels of the Polyvac could get
to the output buffer band.

15. Restate the difference between dynamic and static memories.

16. Redraw Figure 13.2.1 to show how a four-bit-per-character parallel-bit
memory would work. Do the same for Figure 13.2.2.

17. Show the complete control logic for a ten-word, ten-character-per-word,
four-bit-per-character automatic load and unload serial-parallel input core
buffer. It is controlled over three lines: start (pulse), load and unload (both
d-c).

18. Do Problem 17 for a memory buffer with selective load/unload cycle (one to
ten words).

19. Show the logic for a memory core buffer as per Problem 17 that may be
loaded /unloaded as a block or may be addressed arbitrarily after block
loadings. :
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THE CONTROL UNIT

14.1. INTRODUCTION

The virtues of the control unit have been extolled in preceding
sections to the extent that the reader may feel it is some magical being
that watches over the computer and manages its affairs. If that were the
case, we would expect it to be made of some special stuff such as flogzstum.
On the contrary, it is of the same stuff as the rest of the computer, logical
building blocks.

I like to think of the computer control as somewhat parallel to human
control. Contrary to common belief, the human control system is decen-
tralized. All information is not monitored at a single center; reflex infor-
mation travels a different- path from observation information. We are
hardly aware that we are walking, sitting, or pronouncing words, because
each process requires only the attention of decentralized automatic cen-
ters; the creative and communicative thought processes get our full con-
scious attention except in emergencies.

Just as the control of many of our automatic activities is decentralized,
so the control of the decentralized computer takes place throughout its
territory; each of the large functional blocks may become autonomous for
part of the operating cycle. The directing aspect of the block can then be
considered to be part of the control function of the computer. Of course,
it is possible to control the computer from a physically central location,
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but then all “stimulus,” “response” and “control”’ messages must be
transmitted to and from this location. Because it makes for simple expla-
nation, the decentralized control unit is discussed in the first sections of
this chapter. It should be remembered that in this kind of set-up, it is
possible to share a functional block with two or more control functions,
although the block appears each time in the discussions as a separate unit
with a different label or designation. Thus the same pulse generator may
be used for both addition and multiplication.

The job of the control unit was outlined previously; it selects the
source and destination of the datum to be processed; it determines and
controls whether a full or partial datum is to be processed; it determines
at what address the next instruction will be found.

Centralized and Decentralized Control

In the centralized control unit, all selection and control functions are
performed by the control unit. The decentralized computer to which we
shall now confine ourselves consists of a main control unit and a number
of autonomous secondary outposts. The main control unit determines
which secondary control unit will conduct and supervise the operation
presently called for and then surrenders autonomy to the secondary con-
trol unit. The outpost takes over until the job is done. It then surrenders
its authority; the outpost can turn over its authority only to the main
control, not to any other outpost.

MAIN conTROL’S JoB. The main control unit in a decentralized control
system does the full dispatching job.

1. It determines the process to be performed and turns over control
to the secondary unit at the proper time.

2. It determines the source and destination of information to be proc-
essed, sets up the proper information flow lines.

3. It determines the quantity of information to be processed.

4. It coordinates the activities of the auxiliary control units, e.g.,
memory access control and process control, may be required on
the same command.

5. It keeps track of the memory location from which each command
was withdrawn and, from this and other knowledge, determines
the location from which the next command should be taken.

AUXILTARY coNTROL’S JoB. The auxiliary control units are built to con-
trol one or a few functions. They start when ordered by the main control
and surrender control to the main unit when their job is done. The auxil-
iary control unit does these tests:
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1. It accepts control upon command from the main control unit

unless it is otherwise occupied.

2. It determines when information is transmitted and processed in

its control cycle.

£ b

It sets up previously arranged paths of information flow.
It determines the timing for each suboperation.
It indicates the completion of its obligation by informing the cen-

tral control unit and surrenders control to the latter.

Communication between the Main Control and the Outposts

The main control unit transmits two different kinds of signals to the
auxiliary control units of the computer. It transmits switching signals
which last for the duration of the order and delineate the path of informa-
tion flow. It also sends short, pulse-type signals to the decentralized con-

trol units in order to start them and
initiate the decentralized processing.

Upon the completion of the order,
main control receives a pulse signal
from the auxiliary control unit con-
cerned. Main control must then pro-
cure another instruction from the
memory and act upon it.

Switching

At key points along possible flow
lines of information, switching mech-
anisms must be posted. These mech-
anisms are set up to determine the
arrival, routing, and departure of in-
formation. Since these routes must
be set up very rapidly, mechanical
switches which were quite popular
in early relay computers are incon-
ceivable for use in modern high-
speed computers. The solution is to
use &-gates. These gates are opened
by enabling or switching signals

C Register
[ PRO |
(LTI
Decoder
Sub. Div,
Add.| * | Mul.

NI

Vi
Encoder

Open E gate
at end of one
addition

Open tally up gate
&160 of Q
register

Open gate 8159 between

accumulator

output and

X input of adder

FIGURE 14.1. Typical decoder-encoder

function in control unit.

emanating from the control unit. One gate may be called for on several
orders but, on the other hand, many gates are usually called for on any
one given order. The method for giving the order to close a circuit is
demonstrated in Figure 14.1. Here we see the decoder in the main control
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unit examining the process portion of the control register to determine
what processing orderis stored therein. The output of the decoder appears
as a voltage on one of the many possible order lines. Since only one
order can be requested at any one step, only one of these lines will be
activated.

It is the encoder that selects the gates which must be activated during
the order. The mixer V1 in this figure is used to energize &159 (for exam-
ple); &159 connects the output of the A register to the X input of the
adder, for division. The path of division order signals is indicated by the
heavy line in the figure. Since the outpost of the accumulator must be
connected to the X input of the adder for the addition, subtraction, multi-
plication, and division orders, the decoder outputs for all these commands
are inputs to the mixer V1 which energizes the gate (&159) which makes
this connection to the adder. Since the division order requires the input
of information from the A register to the X input of the adder, there is a
heavy line emanating from V1. Many other functions are called for in
division, among which, for instance, is the activating of the tally-up input
of the Q register—and another heavy line in the figure indicates this.

TFor each gate which is activated by more than one order in one of the
functional units of the computer, there must be a corresponding mixer to
synthesize an enabling input to this gate.

‘Whereas the decoder consists entirely of &-gates, the encoder consists
entirely of V-mixers—see Section 11.8.

Timing

The auxiliary control unit for any given process usually consists of
one or more pulse generators. One of these pulse generators is started by
an initiate pulse from the central control unit. The ensuing pulses from
the local pulse generator actually cause the movement of information from
one part of the processing unit to another. In transfer or arithmetic oper-
ations these pulses are the shift pulses which are applied to the source and
destination registers to cause information to pass out of one register and
into another. The paths have been set up by the switching voltages dis-
cussed previously.

Often several pulse generators are required for a given order, as was
demonstrated in Chapter 12 on arithmetic. After one portion of a process
is completed, a pulse is emitted which starts another pulse generator to do
another portion of the job. When the full order is completed, the post-
train pulse of the last generator used is transmitted to the centr al control
unit to announce completion of the task.
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Main Control Unit Operation

The general plan of action of the central control unit, discussed in
detail in the next section, is divided into two phases. The first phase is to
set up the flow of information within the functional units and to start the
process going; this is called the exvecute phase. When the order is com-
pleted, the control unit then supervises the procurement of the next
instruction; this is the feich phase.

14.2. PLAN OF ACTION

An internal flow chart is found in Figure 14.2; this chart should not be
confused with the programming flow chart discussed in Chapter 4. The
purpose of this chart is to present visually to the reader the steps and
decisions needed to control the information processing. Since it will be
referred to throughout the chapter, the reader should study it well.

Fetch or Ezecute

Two separate control cycles are distinguishable. The fetch cycle pro-
cures the next instruction from the memory. The execute cycle performs
what is indicated in the instruction just procured. Each activity of the
computer is part of either a fetch or execute cycle. '

Fetch Cycle

Upon determining that thss is a fetch cycle in box 1, we leave by the
arrow labeled F (for Fetch). The next cycle is set up as an execute cycle,
box 2. The address of the next order which is stored in the Instruction
Counter is transferred to the Memory Address Register, and in box 3 the
memory is requested to remember the instruction word. This instruction
word is placed by the memory control into the Memory Data Register,
box 4. The instruction word is transferred to the C register, box 5, adding
the content of the cycle register if required (recall the cycle index register
function discussed in Chapter 5). Return is made to the first box via
circle 1.

Execute

Check whether this is a fetch or an execute cycle, in box 1; it is an
execute cycle so we leave box 1 along the arrow labeled X (for eXecute).
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Set the next cycle to be a fetch cycle, box 6. Is this a stop order, box 7?
If so, stop, box 8, and notify the operator. Otherwise, is this a jump order,
box 9? If so, is there a condition, box 10? If so, is it met, box 11? If there
is a condition (such as ‘“less than’’ on a previous comparison) but it is not
met, we pass through circle 2 to box 12. In box 12 the instruction counter
is advanced by 1 and then the fetch-execute test box entered. For an
unconditional jump (box 10, “No”’) or a conditional jump for which the
condition is met (box 11, “Yes’), box 13 is entered. The address of the
next order in such cases is M, the operand address of this order, which is
now in the C register. Hence the new instruction address must be trans-
ferred from its present position in the C register to replace the present
contents of the Address Counter. After so doing, we return via circle 1 to
box 1 for another fetch-execute test.

For non-jump orders we leave box 9 on the “No” line. Now does this
order require an operand, box 14? If so, the operand address is sent to
the Memory Address Register, box 15. The operand is delivered when
procured by the memory to the Memory Data Register, box 16, and then
transferred to the destination register, A, B, @, or L, box 17. Is that all,
box 18? If not, arithmetic is the only alternative. It is done in box 19.
In either case, return is made via circle 2 to box 12 where the Instruction
Counter is advanced.

If no operand is required, we leave box 14 on the “No”’ line. Then is
this a memorize order, box 20? If so, we leave box 20 on the “Yes” line.
The information to be stored is transferred from the source register to the
Memory Data Register, box 21. The destination is transferred to the
Memory Address Register in box 22 and the datum memorized, box 23.
We return via circle 2 to box 12.

We leave box 20 on the “No? line if this is not a memorize order and
check for a transfer from or to the C register as required for cycle register
assist instructions, box 24 and, if required, perform it, box 25.

The cyecle register is tallied, when required, in box 26. The cycle regis-
ter content is compared with either (Q) or 000 as requested by the com-
mand, in box 27. If they are unequal, go via circle 3 to box 13 to do a
jump; if equal, go via circle 2 to box 12 to tally the Instruction Counter.

Check for input/output operation, box 28, and transfer input (output)
data from (to) the buffer, box 29. Return is made via circle 2 to box 12
and the input/output unit is started, box 30, simultaneously.

If no input/output operation is called for, we leave box 28 by the
“No” line. Only a shift operation could now be required; this is done in
box 31 if this exhausts the repertoire of orders.

Return via circle 2 to advance the Instruction Counter, box 12, and
then do the next fetch operation.
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14.3. FETCH LOGIC
Start Phase

This corresponds to boxes 1, 2, 3, 4, and 6 of Figure 14.2. A test pulse,
T, enters circle 1 to make the first control test (fetch or execute?) in
Figure 14.3.1. The T pulse tests &4 and &5 enabled respectively by the

T
] Test
pulse

U 3 ]
B2 aF s 3p—swr
{ F PF Fetch shift pulses
o |F P—EF
End of fetch shift
Fetch bit storage (5 )E< t
xecute

Instruction
counter

SHF

End of memory fetch pulse
EMF

FIGURE 14.3.1. Start of the fetch cycle.

1 (fetch) and 0 (execute) states of B2. Delayed by A3, the test pulse then
triggers B2 to a state opposite to its previous state.

For the fetch cycle, B2 was set to 1 and the pulse passes &4 to start
the pulse generator, PF. It generates three shift pulses on the line SHF.
These are applied to the Instruction Counter register IC which contains
the address of the next command, to enter it into the Memory Address



sEc. 14.3 = TI'ETCH LOGIC 281

Register, MAR. The postshift pulse, ET, starts the memory cycle. The 1
output of B2, (F), is applied to the remember input of the memory. The
instruction is delivered by the memory as directed by the memory con-
trol to the Memory Data Register, MDR. The end-of-memory cycle
pulse passes out of &6 as the end-of-memory-fetch pulse, EMF, which
serves to start the fetch add cycle register phase.

Add Cycle Register Phase

Remember that before an instruction is executed, the content of a
cycle register may be added to the operand address if there is a nonzero
cycle register digit in the proper position of the instruction word. This
task is now done. The operation is described only for cycle register #1,
but operation of the other cycle registers is similar. This cycle register
phase uses the logic of Figure 14.3.2 and illustrates box 5 of Figure 14.2.

The strategy is to pass the entire instruction word now in the MDR
through an adder into the control register. If a cycle register addition is
called for, its content is added, but only to the operand digits (M) of the
instruction. All instruction words pass through the adder. The cycle
index digit of each must be checked; if it is 0, nothing is added; for a non-
zero digit, the corresponding cycle index must be added. All this is done
“on the run,” so to speak, as the word is being shifted from the MDR
through the adder and fo the control register.

The end-of-memory-fetch pulse EMF starts the pulse generator PC10.
The ten shift pulses SHC shift both the Memory Data Register MDR
and the control register. The first three digits of the instruction word pass
right through the adder A12, since nothing is being entered during that
time at A13Y or A13C’. These three digits go in the X input and out the
S output, without any change. The pulses from PC10 are counted by the
counter C1. When C1 holds a count of exactly 3, the decoder D2 issues a
checking voltage CH. Three shifts have caused the cycle register specifi-
cation digit (the fourth digit) of the instruction word to enter the right-
hand position of MDR. For any digit which appears there the decoder
D3 will emit a voltage on the corresponding line. Only when cycle register
#1 is specified will the 1 output of D3 be present. It is applied to &4 to
allow the CH pulse to pass through &4 and to enter A13, which provides
a delay of a single digit time. By then, the fifth digit of the instruction
word is in the right-hand position of the MDR. It is the fifth, sixth, and
seventh digit of the instruction word to which the cycle register content
is to be added.

Before the fifth digit of the instruction word is moved from the MDR,
the pulse from A13 emerges to set BC1 to 1. The 1 state of BC1is simply
called BC. This signal BC is applied to &6, &7, and &8. &6 allows three
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shift pulses SHC to shift CY1 completely around, also entering its con-
tent into &7; &7 passes the content of CY1 through V11 into the Y input
of the adder A; shift pulses SHC are also entered through &8 to tally the
counter C9. The detector D10 determines when three pulses, starting
from now, have been used. It issues a pulse which is entered into All.
The purpose of All is to make certain the “third’’ shift pulse finishes its
job. The output of A1l sets BC1 to 0 and resets the counter C9.

During the time when the fifth, sixth, and seventh instruction-word
digits are entered into the X input of the adder, the content of the cycle
register is being entered into the Y input of the adder. The modified
instruction passes out of the S output of the adder into the control regis-
ter. During the eighth, ninth, and tenth pulses from PC, BC1 is set to 0
so that the cycle register is not affected.

The instruction in the MDR has been moved to the C register, having
had only the operand address altered by the quantity in the cycle register.
The cycle register itself is unchanged.

The post-train pulse EC from PC signals the completion of box 5,
Figure 14.2. The next operation is found at box 1 of that figure; it is to
see if the next cycle is fetch or execute. The pulse EC is actually returned
to the logic of Figure 14.3.1 as the test pulse T to start this check.

14.4. JUMP ORDERS

We now discuss boxes 7 through 13 of Figure 14.2. A jump order
directs the computer to do no processing of data but rather to look for
another instruction. Sometimes this instruction will be found at the next
instruction location (I 4+ 1); at other times the new instruction will be
found at a totally different location. In Figure 14.4 the output of the
process decoder D13 for use in jump and stop orders is applied directly to
_a number of gates.

For non-jump and non-stop orders, the decoder feeds the gate encoder
E14. The outputs of E14 open the gates required to set up the informa-
tion flow for the given order. Also, a number of “start’’ gates indicated
in the insert send signals to “start the specified command” to locations
in the processing unit concerned with the command. These gates perform
the functions illustrated by boxes 14, 20, 24, and 26 of Figure 14.2.

The job performed by the logic of Figure 14.4 consists largely of a
series of tests to determine if the next instruction is found at M or (I + 1).

After the fetch-execute logic has determined that this is an execute
cycle, it issues an X (for eXecute) pulse. This pulse tests the series of
gates on the left side of Figure 14.4. &1 corresponds to box 7 of Figure
14.2; it has as inputs the X pulse and a possible stop signal from the
decoder. For a stop order, the X pulse passes through &1 and causes an
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alarm to arouse the attendant, if possible, box 8, Figure 14.2. Since there
is no other destination of the output of &1, the computer, as it were, falls
asleep—nothing further happens until the attendant intervenes.

The tests of boxes 8, 10, and 11, Figure 14.2, are all done at about the
same time. Let’s see how. In Figure 14.4 the X pulse tests &2, whose
other input is the decoder output for an unconditional jump (UCJ). This
pulse passes through V3 and emerges as a RIC pulse. This pulse initiates
the Replacement of the content of the Instruction Counter by the operand

location found in the control register. In other words, the location of the
next instruction is now in the operand portion of the control register. To
direct the memory to look up the instruction at that location it is neces-
sary first to transfer that number into the instruction counter.

To do this, the RIC pulse starts the pulse generator, PJ4. This gen-
erator emits seven pulses. These pulses cause information to be shifted
from the control register into the Instruction Counter (IC). This counter
is a three-character register. No matter how many characters are entered
into it, only the last three can possibly remain there; all the rest go into
the “wastebasket.” The operand portion of the instruction is located in
the fifth, sixth, and seventh positions of the instruction word. Seven shift
pulses will then place this portion of the instruction word in the Instruc-
tion Counter. Since a new instruction word is about to be procured, it is
not important that the C register is out of kilter—that the information
has been moved around to an abnormal position.

The post-train pulse labeled EJ from the pulse generator PJ4 will now
be used to make another fetch-execute test; hence it is also designated as
a T pulse as it enters the logic of Figure 14.3.1.

Recall that the comparison box is set to M (less than), E (equal to),
or P (greater than) as the results of a previous comparison order. The
box has four outputs: M, M, P, P. The equal condition E is indicated by
M & P.

The decoder output for a jump-on-plus (JOP) order is applied to &5.
The plus (P) output of the comparison box, only the outputs of which are
shown, is also applied to &5. The execute pulse, when it tests &5, will
cause an output only for the JOP order and when the comparison box
indicates the corresponding P (plus) information. The pulse from &5
passes through and out of V3 as an RIC pulse and starts the Replacement
of the content of the Instruction Counter, so that the next order location
appears there, as described earlier.

A similar situation exists for the jump-on-minus order (JOM). The
line for this order is applied to &6 together with the minus condition (M)
of the comparison box. The X pulse passes through &6 only for this con-
ditional jump (JOM) when the minus condition is met (M is present at
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&6). In that case the X pulse passes from &6 through V3 and emerges as
an RIC pulse.

The jump-on-equal order (JOE) requires a gate with four inputs. This
is because the comparison box consists of two bistable devices and the
equal state is indicated by the zero output of both of them. The equal

condition is thus indicated by P and M from the comparison box. The

four inputs to &7 are hence: JOE, P, ﬁ, and X. If the equal condition
exists when the jump-on-equal order is called for, the X pulse passes
through &7 and V3 and emerges as an RIC pulse which starts the replace-
ment of the instruction counter. There is one more kind of input to V3.
This arises from the tally orders TM1 and TPI. For TM1 when the cycle
index register stores a number greater than zero, it is desired to jump to
the memory location specified in the tally-down instruction. This is dis-
cussed in Section 14.7 describing the tally-down order. Should the result
of inspection of the cycle index register show that it does not store zero
on this order, we start an RIC cycle. This is indicated for cycle register
#1 on Figure 14.4 by the line labeled 1Z’ which enters V3 directly.

The next instruction will be procured from the location stored in the
instruction counter after it has been tallied up if the conditional jump
conditions have not been met or if this is a non-jump order.

For the jump-on-plus order, &8 determines when the condition is not

met, for then the line labelled Pis energized. The X pulse passes through
&8 and V9 and emerges a CIC pulse. This pulse Counts the Instruction

Counter. It is applied to the tally input of the instruction counter and

adds 1 to its content. The instruction counter then holds the correct
address of the next instruction. The CIC pulse is also a T pulse. Remem-
ber that the T pulse tests the fetch-execute logic to determine which cycle
is next. When it determines that the fetch cycle is next, it will use the
proper address which is now in the instruction counter to find the new
instruction.

The X pulse tests &10 and will emerge from it only when a jump-on-
minus condition is called for but not met. The output of &10 passes
through V9 as a CIC pulse.

The jump-on-equal condition is denied when either line P or line M is
energized. These alternatives are determined by V12 whose output is
applied to &11. A pulse emerges from &11 when the equal condition is
called for but not met. It passes through V9 and emerges as a CIC pulse.

When the cyecle index test order is called for, as described in Section
14.7, and the cycle index register contains 000, a pulse is returned to V9
to cause a CIC operation as shown in Figure 14.4.

The pulse E emitted on the completion of a non-jump order also passes
through V9 to emerge as a CIC pulse. For then it is also necessary to
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tally up the instruction counter and use its content to find the next
instruction. The 1Z line entering V9 arises from the tally orders and is
discussed in that section.

14.5. MEMORY REFERENCE ORDERS

All orders requiring reference to the memory including the arithmetic
orders come under this classification. This discussion covers the boxes
numbered 14 through 18 of the flow chart, Figure 14.2; arithmetic, box 19,
was covered in Chapter 12.

All memory reference orders start when the control unit determines
that the order to be performed requires memory reference and a pulse is
used from the encoder start gates called a Memory Reference Start pulse
(MRS) (see the insert of Figure 14.4).

Strategy

The strategy is now outlined below:

1. Enter the operand address M into the Memory Address Register
without affecting the arrangement of information in the C register.
Start the memory look-up.

When the look-up is complete, transfer the datum from the Mem-
ory Data Register to its destination.

4. Send an end-of-distribution pulse ED to the central control.

ol

Logic

The MRS pulse entering Figure 14.5 starts the memory reference pulse
generator PR. The purpose of this pulse generator is to produce pulses to
transfer the operand location in the control register to the memory address
register, replacing the content of the instruction register in order. PR
issues a set of ten pulses, SHR, which are applied to the control register
and shift its content around completely. After being shifted, the instruc-
tion word will then appear as before. In so doing, the operand location,
a three-digit number, is transferred to the Memory Address Register. Itis
all right if the right-hand digits of the instruction word pass through the
memory address register and out the other side, as long as the digits after
the operand address are not entered into MAR. This operation is con-
trolled by a counter and decoder. The counter C2 counts the shift pulses.
The decoder D3 issues a signal L as long as the count in C2 is less than
but not equal to seven. The signal L which is applied to &1 therefore
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allows only the first seven characters to enter MAR. The shift pulses
SHR are gated by &4 to which the signal L is applied. Only seven shift
pulses pass through &4 to MAR so that after the proper address is entered
there, it will not be moved out.

The memory search is started by the post-train pulse from PR labeled
ER. This pulse is applied to the S input of the memory. The memory
knows that it is to recall information because the voltage MR is applied
to the Remember input R of the memory. MR is the 1 setting of bit
storage  BMR which is set to 1 at the beginning of the remember cycle
and reset to 0 by pulse SM which is issued when the desired datum is
stored in MDR.

When the search is completed and the datum found, the memory
stores it temporarily in the memory data register MDR. The memory
logic also emits, from the E output, the pulse SD indicating that the
search is complete. This pulse is labeled SD because it Starts the Data

transfer from the memory to its destination; it starts a second pulse gen-
erator labeled PD. The purpose of this generator is to Distribute the

information from the memory to its destination. The pulse SD also sets
B10 to 1, which applies a voltage DIS to all the gates which must be
open while the information is DIStributed.

In the case of orders such as XML, ADD, MUL, the information is to
go to the L register. We shall examine this situation. Shift pulses SHD
from PD are applied to MDR through &5; they are applied to the L regis-
ter via &6 on the DIS part of the cycle and when XML, ADD, MUL, and
other orders requiring the operand in the L register are called for. The
path between MDR and the L register is set up by &7 on the DIS cycle
and L register operand orders. The ten pulses, SHD, can now maneuver
the information into the L register.

After a simple remember order where a datum is transferred from the
memory to the L register only (such as XML), the memory reference
order is completed. Therefore, the post-train pulse ED of pulse generator
PD passes through &8 and emerges as an E pulse, indicating the end of
this order. In the case of arithmetic orders, the pulse ED passes through
&’9 to start the arithmetic process called for. Since this is an inhibiting
gate, the pulse will not pass to start arithmetic on an order such as XML.

14.6. MEMORIZATION AND TRANSFER ORDERS

Both memorization and transfer orders are in the same form: the oper-
and portion of the instruction word contains the desired destination.
Since the registers are addressable, register destinations must be sifted
from the memory destinations to prevent an incorrect look-up in the
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memory—there is no memory location corresponding to a register address.
This description covers boxes numbered 20 to 23 in Figure 14.2.
In Figure 14.6 decoder D1 detects a register destination address. Its

00A
D{ ooL |2
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c
Register !P R OJM M M! [

T
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10— SHM
’J SM
7
SHM

CM —{ DM 10

XAM
etc.

FIGURE 14.6. Control for memorize and transfer orders.

output is used to inhibit memorization and enable register transfer
operation.

Strategy

The strategy required for these types of order is outlined:

1. Determine whether this is a memorization or transfer order.

2. For memorization enter the operand address from the control
register to the memory address register ending with the order in
the control register in its original form.

3. For transfer orders, set up the route to the destination register.
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4. Transfer one word from the source to the destination—in the case
of memorization, the destination is the memory data register.

5. Request memorization of the datum in the MDR at the address
in the MAR.

6. The transfer orders end with step 4 and the memorization with
step 5.

The start of both types of order in Figure 14.6 is signalled by an MMS

« pulse; for both, it starts the pulse generator PM. The decision for the

type of order, transfer or memorization, is made by D1; it examines

MMM in Figure 14.6 and it energizes one of the lines 00A, 00L, or 00Q

for a transfer. These lines are mixed by V2, which then produces an out-
put on the line labeled r for any transfer order.

Memorization

The plan here is to enter MMM into the Memory Address Register
and to enter the datum to be stored from the source register into the
memory data register. When this is complete, we may start memory
memorizing.

On both types of orders the source register, (A, Q, or L) is shifted by
the ten pulses, SHM ; the ten shift pulses SHM also pass through &’5 to
shift the datum into the memory data register when tau is absent.

The control register is shifted completely around by the ten pulses
SHM, which pass through &’6, but only seven characters pass through
&"7. Bit storage B8 is set to 1 at the beginning of the order by the MMS
pulse; it remains so set for the first seven SHM pulses. The counter CM
counts the shift pulses SHM; the decoder DM produces an output on the
seventh pulse which is shaped by SM and resets B8 to 0. This removes
the enabling signal from &4 and &'7, which prevents the last three char-
acters of the control register from entering the MAR. Remember that
the memory address register is a three-digit register so that only MMM
ends up in MAR.

Everything is now set for memorization; the memory is notified by the
post-train pulse EW from PW which passes through &'9 that it is to start
its job. The write signal is applied to the memory at the Write input
W by the decoded command which is either XAM, XLM, or XQM.

The end pulse from the memory is also the end pulse for the memori-
zation orders.

Transfer

The operation of the transfer logic when operating with the order
XAMO00Q can be followed in Figure 14.6.
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The pulse MMS starts PM. Notice that &'4, &’5, &’6, and &’7 are all
inhibited by the presence of the tau pulse so that the memory is in no way
affected by this order. Shift pulses SHM are applied to the A and Q regis-
ters through &10 and &11. The word passes from the A register to the
Q register via &12 held open by 00Q; for memorization it would other-
wise pass from A through &’13. The datum from the A register is also
re-entered into the A register.

This is all there is to the transfer process. Therefore, the post-train
pulse EM from PM is the end-of-order pulse for transfer orders. It passes
through &14 for those orders only when tau is present.

14.7. TALLY ORDERS

This section discusses three orders which affect the tally register and
index cycling in general. These are the tally-up and tally-down orders,
representing boxes 26 and 27 of Figure 14.2, and the order to transfer
information from the program to the tally register, box 25 of Figure 14.2.
The use of these orders has been described in Chapter 5.

Tally-Down Orders

We shall discuss as representative of TMI, the order TM1. This order
requires that the content of CY1 be reduced by 1; then the content of
CY1 is compared to 0; for (CY1) > 0 we jump to the address M; for
(CY1) = 0 we go to I 4 1 for the next order. Only CY1 (not CY2, and
so on) is examined here.

The pulse STD indicating the start of the tally-down order TD1 is
applied to the tally-down input of the register CY1 in Figure 14.7.1.
The content of the register CY1 is thus reduced by 1. All the digits of
register CY1 are decoded simultaneously in parallel by the decoder D1.
It issues a constant voltage output on the 0 line only when the content of
CY1is 000. The pulse STD is also applied to the delay A2. This delayed
pulse STD is applied to &3 and &’4; these gates contribute pulse outputs
1Z and 1Z’ which respectively indicate that cycle register 1 (CY1) con-
tains zero or does not contain zero. Only one of these pulses appears: the
1Z pulse becomes the count instruction counter pulse, CIC, of Iigure 14.4
after it passes through V9 on that diagram; the 1Z’ pulse becomes a reset
instruction counter pulse, RIC, after it passes through V3 of Figure 14.4.

Tally-Up Order

Only the operation of CY1 is examined on order TP1. If a ta,lly-up
order is called for, a pulse appears on line STU in Figure 14.7.1. This is
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applied to the tally-up input of the register CY1. It is thus used to add 1
to the content of register CY1. The comparison circuit CMS5 is constantly
comparing the least significant three digits contained in the Q register
with the content of register CY1. If they are equal, a voltage appears on
the equal line emerging from CM5. This voltage is applied to &6 and &7’
The tally-up pulse STU is also applied to the delay A8. After register

STU
Start tally up

Q register

Q |
i W
Comparitor CM5 Herdl =l
Cycle @7

count
up
Cyl l
Cycle |
count | -
down ’ g _txere
* Zero decoder D1 1z I 'l’_ g Egb’[’]‘;‘e'r“"“c“on
l
(CY1)=000 '__.__1 )_R_IE ______
-l Reset instruction
STD [ L’ counter
Start tally down L __________

FIGURE 14.7.1. Logic for the tally-up and tally-down orders.

CY1 has had a chance to be tallied, this pulse tests &6 and &7’ to deter-
mine whether the content of register CY1 is equal to the content (three
least significant digits) of the Q register. For equality, the pulse 1Q is
emitted by &6; for inequality, the pulse 1Q’ is emitted by &'7. These
pulses are equivalent to the 1Z and 1Z’ pulses and perform exactly the
same action as the latter in Figure 14.4.

Transfer-From-Program Orders

A number which is written in the program by the programmer can be
transferred into cycle register 1 by means of the XP1 order; similar orders
are used for the other cycle registers. Of course, the number entered into
the cycle index register does not come directly from the program; rather,
it comes from the instruction information after it has been stored in the
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control register. This is a simple transfer operation from the control regis-

ter, but instead of inserting the operand address into the memory address
register, it is transferred to the cycle register called for.

The start of a program-to-cycle-register transfer is signalled by a pulse

labeled SPC in Figure 14.7.2. It starts the pulse generator labeled PP,

which issues seven shift pulses la-

beled SHP. These shift pulses shift

; both the control register and the
ﬁ cycle register. The gate &1 in

SHP SHP / Figure 14.7.2 allows information
- Cycle index to pass from the control register to
—1° T{—GHF ;egls_;grd . the cycleregister. The cycleregister
pP pecified in
the order only holds three characters; the
B—EP characters MMM of the instruction

word are the characters in positions
five, six, and seven in the C register.
Hence it is possible to shift seven
characters from the C register into
the indicated cycle register and then have the desired characters MMM
stored there.

Since the content of the C register will no longer be used, it is permis-
sible to leave the C register in a condition where the characters are not
in their original position. The post-train pulse EP emerging from the
pulse generator PP indicates the end of this type of order. It is the test
pulse T which causes a new order to be fetched and placed in the control
register.

FIGURE 14.7.2. Logic for transfer-from-

program orders.

14.8. THE SHIFT ORDER

The input/output orders represented by boxes 28, 29, and 30 of Figure
14.2 are omitted in this chapter because all of Chapter 15 is devoted to
them. The shift orders, box 31 of Figure 14.2, are now analyzed.

Figure 14.8 illustrates a number of shift orders. The reader should
recall that the shift orders do not change data but merely alter the posi-
tion of a datum relative to the register which contains it, as discussed in
Chapter 5.

For All Shifts

The pulse generator PS of Figure 14.8 is started by the shift start
pulse SS. It issues nine shift pulses, not all of which may be required for
a given shift command. These shift pulses are applied to shift pulse gates
of all registers but are only entered into the register within which a shift
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is required. The number of pulses used so far is counted by the counter
C1l. These pulses are delayed slightly by the delay A2 which is required
to be certain that the shift pulse being counted has already done its work.
The output of the counter C1 is compared with the operand location of
the C register by the two comparison circuits included in CMS3.

LSR
H w T m 9
[PIR{OEMIM{M] | 4
LTI _£RA
LM (1 than M) 14_ELA
Shift ess than
count CM3
ChmpuTef —LCM (less than complement M) l A Register I:
HER Lsr |
<M—7
Shift
c0|.'m'rer Ct r-{ 9
ELA
+ R LCM 13 i1
s . —LSR
12 —ERL
Count 15| ELL
delay
- —
SHS LSR\:
ERLS <m
—FES
ELL
9 P LCM
Shift
PS pulse
ss—Is generator SHS
FIGURE 14.8. Control of the shift orders.
Right Shift

Let us see what happens on a Eypical right shift order such as ERLO003.
This order requires the shifting of the L register three places to the right
and re-entering the digits on the left of the L register.

The order begins when the pulse generator PS is started by the Start

Shift pulse, PS issues shift pulses SHS which go to gate &5. They pass
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through this gate, for it also has an ERL signal and a less-than-M (LM)
signal. This LM signal is produced by CMS3 as long as the count in C1 is
less than MMM. The pulses SHS pass from &5 through V6 and shift the
L register. Information passes out of the L register through &15 held open
by the ERL signal, through V12 and back into the left side of the L regis-
ter. After each shift, 1 is added to the counter C1 by shift pulse SHS
slightly delayed by AlS. When the count stored within C1 is no longer
smaller than the number stored in the operand location of the control
register, the voltage LM (less than M) is no longer produced. In our
example, after three pulses have shifted the L register there will no longer
be a voltage on this line labeled LM. Further pulses can therefore no
longer pass through &5 and V6, and hence can have no effect on the L
register. After nine shift pulses are produced by the pulse generator PS,
it produces a post-train pulse signalling the end of this order.

Long Shift Right

This order requires that information be shifted out of the L register
and into the A register, and at the same time the information from the
A register is transferred to the beginning of the L register. Here the shift
pulses SHS from the pulse generator PS are applied through &5 and V6
to the L register and also through &7 and V8 to the A register. Informa-
tion from the L register passes through &9 and V10 into the beginning of
the A register; information also passes out of the A register through &11
and V12 into the beginning of the L register. A count is kept by C1 as
before and only sufficient shift pulses are supplied to both registers as are
specified by the content of the operand location of the C register.

Shift Left

A shift to the left (ELA or ELL) is performed in this machine by shift-
ing to the right a number of times equal to the complement of the desired
number of shifts. The complement is taken in terms of the number of
characters exclusive of sign which can be stored in the register—in our
case this is 9.

To perform the order ELA005, the shift pulses are fed into &13, which
is enabled by the shift-left order and the complement output of CMa3,
LCM. This comparator compares the content of the operand location of
the control register with the counter C1 and issues a voltage as long as C1
contains a count less than the complement of M—as long as there is a volt-
age present on the line labeled LCM. The shift pulses therefore pass
through &13 and V8 only until the A register has been shifted left the
proper number of times. In our example, to shift the A register left five
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times, we shift the A register right four times because four is the comple-
ment of five with respect to nine, the number of characters exclusive of
sign stored in our register.

The information in the A register for the ELA005 order passes through
&14 held open by the ELA signal and then through V10 to return to the
left side of the A register.

Shift-Out Orders

It is left to the reader to determine the logic required for the shift-out
orders such as SRA, and so forth.

14.9. CENTRALIZED CONTROL

Some computers control the operation of individual functional units
from a central location. In a decentralized computer, switching voltages
come from a central point but timing pulses come from a pulse generator
at the site of the functional unit. For a centralized computer, timing
pulses are sent to all functional units. These pulses are controlled by
switching voltages which also emanate from the central unit.

For this discussion two kinds of timing pulses will be circulated to all
units: character pulses labeled 7 delineate the beginning of nine character
times; there are ten character times in each word, and the last character
time is issued on a line labeled w. There is only one w pulse per word so
that it may be thought of as a word pulse. The voltage pulses issued by
the central computer may last for varying periods during the operation
of a given command in the computer.

Order Subdivision

An asynchronous centralized computer can be aided to a great extent
by an asynchronous substep generator. It is appropriate to call the time
division of a step a substep. This substep generator divides each instruc-
tion into periods whose duration may vary from one command to the next
and from one substep to the next.

The substep generator might consist of a counter CS and a decoder
DS, as shown in Figure 14.9.1. The counter tallies the number of substeps
so far performed; the decoder issues a voltage on one of its several lines,
the line corresponding to the number of the substep now being performed.
The decoder output is maintained on the appropriate line for the entire
duration of the substep. The counter is advanced at the end of the i’th
substep by a pulse Ei returning from the functional unit involved and
indicating that it has performed its subfunction. One command may con-
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FIGURE 14.9.1. The centralized control unit.

sist of more or less substeps than another. This is implemented by the
ability of any functional unit to reset the substep counter instead of tally-
ing it. After the substep counter is reset, it begins next time with the
initial substep which is numbered 0.

Typical Subsiep Sequence

A typical sequence of substeps for a centralized computer control will
now be discussed. The first three are common to all instructions, for they
are used in the fetch activity. '

SusstEP 0. The instruction counter stores the address of the next instruc-
tion. The content of the instruction counter is transferred to the memory
address register during this substep.

Susstep 1. During this period the memory takes over and performs &
function of obtaining the datum stored at the location listed in the mem-
ory address register. It places this datum in the memory data register.
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SussTEP 2. The datum, which is the new instruction, is transferred from
the memory data register to the control register.

Since the substeps which follow are different for different instructions,
let us examine what happens in the multiplication process. Substeps 3,
4, and 5 are used for memory reference.

SusstEP 3. The operand location is transferred from the control register
to the memory address register to start the memory reference process.

SussTEP 4. The memory control logic is directed to place the operand in
the memory data register.

SussTEP 5. The operand is transferred from the memory data register to
the L register where it will be used.

SusstEP 6. Multiplication begins.

Control System

Figure 14.9.1 shows some of the features of a centralized control sys-
tem. The counter CS is the substep counter. It is tallied by inputs from
V1 which occur at the end of a substep, as determined by the particular
function that it involves. The counter CS is connected to the decoder DS,
the substep decoder. Notice that the first three substep lines specify the
first three suboperations of the fetch cycle common to all orders. The
process portion of the C register is connected to the process decoder DP.
There is one line emanating from DP for each possible process which the
computer can perform. The substep order encoder EO has numerous
inputs. One set of these inputs is all the possible process-line outputs of
the decoder DP; the other set of inputs comes from the substep decoder
DS. The output of the encoder might be broken down in terms of both
substeps and processes—for instance, one line bears the labels MULS3,
ADD3, XMLS3, and so forth. The suboperation corresponding to this line
is common to the multiplication order, the addition order, the transfer
order, and so forth, on the third substep. Another line is labeled MULA4,
ADD4, XMIL4, because this suboperation is common to all these orders
on the fourth substep. Notice that the line labeled MUL6 does not have
any other labels attached to it. This is because what is done for the multi-
plication order on substep 6 does not coincide with that done for any other
order.

Another encoder EG is required to take the output of these subopera-
tion lines and compose them into the control voltages for the individual
gates within each functional unit of the computer. Thus, the gate &372
may be called for by MULG6, DIV7, XML4, and so forth. This additional
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encoder performs the function of mixing these signals as required by the
individual gates of the centrally controlled computer.

Centrally Controlled Multiplication

Before discussing centrally controlled multiplication specifically, let
us review what the multiplication process should achieve. Starting from
the right-hand multiplier digit, we examine each multiplier digit succes-
sively. The multiplicand is added to the content of the accumulator regis-
ter a number of times indicated by the multiplier digit under considera-
tion. After each addition the multiplier digit is tallied down. When the
multiplier digit becomes zero, the proper number of additions has been
performed. The multiplier and the multiplicand are each shifted and the
next multiplier digit examined.

The number of multiplier digits which have been examined is kept
track of and when this number is equal to the length of the multiplier,
multiplication is complete.

We shall now examine what happens on suboperation MULG for the
centrally controlled computer which is illustrated in Figure 14.9.2. The
description of Figure 14.9.2 starts when the last word pulse w of the previ-
ous step passes through &1, which is enabled by the signal MULS5, the
multiplication suboperation which precedes this one. This w pulse coming
out of &1 passes through V2 and sets bit storage B25 to 1. The 1 state of
B25 and the multiplication substep signal MUL6 are combined in &3,
whose output is z; MUL6 and the 0 state of B25 are combined in &4 to
yield the signal az. The w pulse on substep 5 also resets the multiplier
digit counter C22 to a count of 0.

The first task of multiplication is to test the least significant digit of
the multiplier; this digit is examined by the decoder D5. The decoder
issues a signal only when this multiplier digit is zero. In that case no addi-
tions are to be performed until a shift of the multiplier and the accumu-
lator has been made. On substep 6 the first word pulse w tests &6 and &'7.
For a non-zero digit this pulse passes through &’7 and sets B25 to 0. The
output & then exists at all the appropriate gates. The case where the
multiplier digit is 0 and the first » pulse passes through &6 and does not
pass through &'7 is discussed in a later paragraph.

The succeeding character pulses = which come along pass through &8
(upper right hand corner), since the f signal is present there. They go
through V26 to shift the accumulator register through &9 into the X
input of the adder A10. The character pulses = also pass through &11 to
shift the multiplicand register through &12 into the Y input of the adder
A10. The multiplicand is also re-entered into its register. The sum output
S of the adder A10 passes through &13 since E is present there, and
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through V14 and is entered into the accumulator ACC. The single-char-
acter delay line Al5 is inserted between the output A10C of the adder and
the input A10C'. Overflow detection has been omitted from the diagram
for simplicity.

The next « pulse, which comes directly after the nine character pulses
, passes through &16, enabled by &, to tally down the multiplier register.
The least significant digit of the multiplier must then be checked. In order
to allow the register to quiet down after it has been tallied down, a small
delay is supplied by A17. The » pulse delayed by Al7 is then applied to
&18 to check the least significant multiplier digit.

If the w pulse does not pass through &18—if the multiplier digit is not
zero—nothing happens at this pulse time. The next set of character pulses
coming in on the line labeled = cause another addition of the multiplicand
to the partial product to take place by passing through &8 and V26 to
shift ACC. The = pulses also pass through &11 to shift MLD. The next
» pulse tallies down the multiplier register again through &16 and then
checks the multiplier digit through A17 and &18.

When the omega pulse finally passes through &18—when the multi-
plier digit has been tallied down to O—the omega pulse continues on
through V19 and V2 to set the bit storage B25 to 1. This causes a u volt-
age on all the appropriate p lines. This same w pulse going through &16,
Al17, &18, and V19 is also passed through &'20 as a single shift pulse SH
if all the multiplier digits have not been used for multiplication. Whether
all the multiplier digits have been used is determined by the decoder D21
which examines the counter C22, continuously, to see if it stores a count
of 9. If multiplication is not complete, the pulse from V19, delayed by a
small delay A23 inserted to be sure that the full pulse has passed from
&'20, is applied to the counter C22 to record the fact that another digit
of multiplication is being performed.

The single shift pulse SH is applied to the accumulator through V26
and to the multiplier register directly. This brings the latest product digit
from the accumulator into the left-hand side of the multiplier register
through &27, since a p signal exists at &27; it also shifts the next multi-
plier digit into the right-hand side of the multiplier register; the last multi-
plier digit which has just been tallied down to 0 is entered through &28
and V14 into the left-hand side of the accumulator. Nothing further hap-
pens during the ensuing character times. The next word pulse « checks
&6 and &7 to determine whether or not the new multiplier digit is 0. If
it is not zero, a new cycle of additions is initiated when the w pulse passes
through &'7 and sets B25 to zero.

If the new multiplier digit is zero, the » passes through &6, V19, and
checks the gates &'20 and &24 to determine if all the multiplier digits have
been used and, if not, to issue a SH pulse to perform a one-digit shift.
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This may happen at the beginning of multiplication too; if the least sig-
nificant digit of the original multiplier is 0, the first « pulse will cause a
shift by passing through &6, V19, and &’20.

. When the decoder D21 registers the fact that the count in C22 is 9
(all the multiplier digits are used), the  pulse which is testing &’20 and
&24 will then emerge from &24 to indicate that multiplication is complete.
It is therefore labeled an E pulse. '

PROBLEMS

1. Examine the Polyvac orders in Figure 5.7 and determine which (if any) were

not covered in the figure and explain how they might be included in the

Plan, Figure 14.2.

Review the two-address order system. Remake Figure 14.2 for that system,

explaining the changes.

3. Review the three-address system. Make a chart of three-address orders
arranged as in Figure 5.7. Determine combination compare-and-jump
orders such as

2

JOE (My): (My); (M) = (M) => M,
(M,) # (M) =141

where M,, M,, and M; are the operand addresses in the order. Redo Figure
14.2 for this three-address system.

4. Expand the logic of Figure 14.3.2 to include three cycle registers instead of
one.

. How might the cycle registers be used in a three-address machine?

- Redraw Figure 14.3.2 for a three-address system where all three operand
addresses are similarly augmented by the content of the same cycle register.
Illustrate for CY1 only.

7. Draw a complete logical diagram for the comparison order for a one-address
system using functional blocks and D-blocks. Use the accumulator register
and one other register for the comparands.

8. For a three-address system show the complete logic for implementation of
compare-and-jump orders.

9. Discuss jump orders in the two address system.

10. Redraw Figure 14.2 for a two-address system.

11. Consider the addition to the Polyvac of a memory buffer which can hold ten
(or more) words. Propose additional orders for block transfer of information
from (to) the main memory to (from) the buffer and for reference to the buffer
by the computer. Propose a buffer block symbol (which would include timing
logic). Considering the buffer as a functional block, draw a complete logic
for implementing the block transfer and buffer reference orders.

12. The memory reference order description (Section 14.5) omits the eventuality
of using an addressable register as the operand. Redraw Figure 14.5 providing
for this possibility.

(=23, 8
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13. Redraw Figure 14.6 to include the A, Q, and L registers and the adder, and
show how the memorization and add orders are integrated. Use gates
liberally.

14. Add two more cycle registers to Figure 14.7.1 and show common connections.

15. Using 7 (character) and w (word) pulses show detailed centralized logic like
that in Figure 14.9.2 for

(a) the shift orders

(b) memorization orders

(¢) memory per reference orders
(d) jump orders

(e) the tally orders

16. For a centralized computer show logic for parallel-bit serial-character
(a) addition, unsigned
(b) subtraction, unsigned
(c) signed addition and subtraction
(d) division .
17. Draw a complete arithmetic unit for XS3 numbers using Polyvac specifica-
tions and centralized control.



FIFTEEN

INPUT AND OUTPUT-
EQUIPMENT

15.1. INTRODUCTION

I have always had great admiration for the veterinarian who must
diagnose the ailments of his patient without any discussion with him (or
it). Similarly, I have great respect for my wife’s work in the field of psy-
chotherapy. Here the communication is present but is for the most part
unilateral—the patient talks but the therapist, if he sticks to the rules,
does not advise. Maybe this is why I am always somewhat surprised
when I see the operator communicating with the computer. This is almost
bilateral communication. At least the questions are usually answered
politely by the computer. Still, the operator is obligated in determining
the difference between a “well’’ answer and a ‘“sick” answer. We shall
now briefly study first the principles of communication with the computer
and then the detailed procedure.

Communication between the Human and the Computer

The human can communicate directly or indirectly with the computer.
Indirect communication involves an intermediate medium such as mag-
305
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netic tape or punched cards and requires additional equipment to trans-
late to and from this intermediate medium.

DIRECT COMMUNICATION. Information can flow between the computer
and the human by means of the operator’s console. Information is entered
into the computer by means of switches on the console or by using the
inquiry typewriter. Information is received from the computer in the
form of visual displays or audible alarms. An intermediate human-lan-
guage document may intervene; that is, one human may have written a
document which a second human transcribes directly to the computer.
This is still considered direct communication. Similarly, when the com-
puter writes out information into the inquiry typewriter which the human
can then read, this is also direct communication.

INDIRECT COMMUNICATION. Because of the great mismatch in speed
between human input and computer consumption, an intermediate stor-
age medium is often desirable. There are many places where information
can be distorted in this type of operation. Consider the following steps
which might occur: a human document is prepared which takes the form
of a sales slip or inventory record; the human document is read by a
human operator; the operator transcribes the document into key strokes
in the transcribing unit; an intermediate machine document is prepared
by the transcribing device; at a later date the machine document is tran-
scribed by an input device; the information is thus submitted to the
computer. Each of these steps is subject to error. A similar chain exists
in indirect output communication from the computer to the human
consumer.

One means of eliminating a number of these steps and the consequent
errors is found in proposed systems of character recognition. By this
means the chain described above might be reduced to the following: the
human prepares a human document, using machine-recognizable charac-
ters in a special transcribing mechanism—the human document is hence
also the machine document; it is inserted into document-reading equip-
ment and the information is conveyed to the computer.

Instrument or Process Communication

When the computer is used to control a process or an instrument, it
must collect data on which to base its calculations. Sometimes these data
can be collected directly. Information thus supplied must be in a digital
form: the temperature limit is either exceeded or not; an item is at one of
several points or is in one of several areas.
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Purpose of Communication

Two kinds of information are exchanged in the communication proc-
ess: (1) data and (2) control information. Obviously, data to be processed
must be entered into the computer and the results, to be useful, must be
produced by the computer. Information fo the computer for directing the
processing of the data can be classified into two kinds: the program infor-
mation consists of a set of long-term operational directions; short-term
control information is entered directly from the operator’s control panel.
There is but one kind of information from the computer. Long-term con-
trol information is not produced by the computer. Short-term control
information is produced by the computer and arises only as the result of
exceptional operating conditions. Examples of exceptional conditions
which are reported directly by the computer are interruptions, distortions
in information or directions, data for which special handling has been
detected, and inconsistencies among the data.

Intermediate Media

The media discussed here are the most popular ones, punched paper
tape, punched cards, and magnetic tape. Some of the properties of the
media and reasons for preferring one medium over another are now
advanced. '

ACCESS INTO AND OUT OF THE COMPUTER. Punched paper tape can be
read by scanning the information as it is moved over some interpretive
device. The speed at which information on the tape can be scanned
restricts its use as an input medium. Transfer of information into paper
tape requires that the information be punched mechanically into the tape
and that the tape be moved and then stopped at the next character posi-
tion. This severely restricts the rate at which information may be entered
into paper tape. For punched cards, information can be entered and
retrieved in much larger blocks. This increases the speed of communica-
tion via this medium. Magnetic tape may be communicated with most
rapidly using currently available equipment. Here no mechanical opera-
tion is performed upon the tape for either writing or reading other than
the moving of the tape; the physical state of the tape is affected, or sensed,
using electromagnetic fields so that there is no speed limitation from that
quarter.

PERMANENCE. Information stored on any of these media is permanent as
long as the medium remains intact. Magnetic tape has the great advan-
tage that it may be reused (erased).
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Cost. This refers to both the media and the equipment. The paper tape
equipment and paper tape are by far the cheapest means of intermediate
storage. Punched cards are next in cost. The price of magnetic recording
equipment and tape is much higher and the reusability of this medium
compensates in only a small measure for its increased cost.

SEQUENCE-ABILITY. The punched card has a definite advantage where it
is necessary to put records into sequence before they are read by the com-
puter. Sometimes this sequence-ability is an advantage on the output,
too. In the inventory example discussed earlier, punched cards are pro-
duced in order of item number corresponding to the item which is in short
supply. It is later desirable to sequence them in terms of the vendor so
that only one purchase order need be issued to each vendor.

Specific equipment requirements will be discussed in the sections that
follow.

15.2. DIRECT COMMUNICATION

Direct communication in the modern high-speed computer is restricted
to “conversations’’ between the operator and the computer which occur
during the course of computer operation. This need arises in several kinds
of situations which are outlined in Table 15.2. It would be well to refer
to this table often during the description. The reader might also get a
preview by examining Figures 15.2.1and 15.2.2, where drawings of operator
panels of two current machines are shown.

Machine Stop

When the machine grinds to a halt, the operator must determine why
and must remedy the situation if it is not due to some component failure.
The latter is the worst case, because if the machine has really broken down
it is probably in no condition to tell us so; the operator must determine
this by a process of elimination. Usually the machine’s cessation for
causes other than component failure will be made highly evident by
buzzes, bells, alarms, or flashing lights which hopefully will arouse the
operator. It is also customary for the computer to display the reason for its
sudden stoppage without being asked. One of a number of lamps corre-
sponding to various conditions becomes lit. The cause might quite rea-
sonably be the completion of the computer’s task—a programmed stop.
It might also be a breakpoint stop. This is a program device which enables
the programmer to cause the machine to stop after it has completed an
appropriate portion of its calculations. This allows the operator to check
the program and results before restarting it.
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The equipment may stop because of an error in transferring data. A
parity check of the kind discussed earlier might reveal a distortion of the
data. An arithmetic error determined by a programmed check also causes
the machine to stop. A common type of I/O (abbreviation for input/out-
put) equipment stoppage arises when the paper runs out in the printing
equipment, or the reel of input or output tape expires. This simply
requires the attention of the operator to remedy the situation. One more
kind of stoppage occurs when the numbers manipulated are too large or
too small for the registers causing an overflow condition.

Oscilloscope
iT 1T ZA\
[ Stop ] I Compute ] —
1A 1A 47 5F 5F 5F 1
One Manual Stand Stand By| | (1]
Normal | Operation| Input By Operate [To Operate
iT iT 3A 3A 5T 5T
Start Clear Fill Execute Power Power
Counter |[Instruction|Instruction| On Off
Break Break Break Break ;
Point Point Point Point | -6 Bit | Transfer
32 16 8 4 Input Control
1A 1A 1A 1A 1A 1A

FIGURE 15.2.1. Central console panel of LGP30. Courtesy of The Royal McBee
Corporation.

One indication of a component failure is the presence of none of the
normal indications for stopping. Often a component failure will cause a
computer to continue to run indefinitely instead of stopping—another
reason why such failures are hard to detect.

In Table 15.2 direct communication is outlined. The kind of informa-
tion communicated appears in the first column; in the second and third
columns (labeled F) the form and type of information emanating from the
computer is detailed; in the fourth and fifth columns (labeled T') the form
and type of information which may pass fo the computer is detailed; in the
sixth column (labeled 4) auxiliary controls for aiding the flow of informa-
tion are listed. In the first row, start-stop information is analyzed. The
kinds of displays or alarms are itemized in the third column of row 1, and
these correspond to what was described in the preceding paragraph. The
kinds of stops that the machine displays for the operator are programmed
stops, breakpoints, data errors, and so forth. In the figures which follow,
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typical control panels are illustrated. Each type of button or display has
a symbol next to it. This symbol corresponds to the listing in Table 15.2.

The reader will notice that the entries in this table completely classify
all the buttons, controls, lights, and so on which appear—at least those
appearing on the operator’s panels presented in Figures 15.2.1 and 15.2.2.
These Figures should be referred to as examples of the descriptions which
follow.

Start-Stop

The operator can communicate start-stop information to the computer
by means of push buttons. These commands are listed in the fifth column
of Table 15.2. They instruct the computer to “Start,” *Continue,”
“Reset,” “Clear,” or “Stop.”

The auxiliary control for the start-stop operation is listed in the sixth
column. A breakpoint switch may be used to stop the computer at a cor-
responding step in the program. The continuous/step operation switch
allows the operator to choose between continuous or normal operation
and single-step operation, the latter being very useful in checking out
programs initially.

Data in Registers

During normal operation, data are being shifted about within the com-
puter at an extremely fast rate. Since the eye is capable of responding
only to changes which last a sixteenth of a second or more, it is impossible
for the operator or observer to follow these rapid changes taking place
within the computer as they are displayed on the control panel. However,
if the computer stops for one reason or another, the information in each
register is then static and the display can be examined without difficulty.
The display usually corresponds exactly to the binary coding used within
the machine. Thus, in an XS3 machine the presentation consists of four
lamps for each character, one for each bit. Each bit is usually displayed
on an individual neon lamp which, with a little squinting, is clearly visible.
When a parity bit is used in the machine language of the computer, it is
usually omitted from the display. A parity error when detected is dis-
played in the start-stop display.

Sometimes it is desirable to enter information into a register directly
from the operator’s panel. Different computers do this in different man-
ners. The Burroughs 205, for instance, has a separate button for 1 and 0
for each bit of each register; the operator may change the state of any bit
in any register simply by pressing one button. The Remington Rand F ile
Computer has an inquiry typewriter whereby the operator may type
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information into the desired register. Other machines require that a regis-
ter be cleared and information entered a character at a time from an
auxiliary numerical keyboard. Still others have means whereby 1’s or 0’s
may be entered, a bit at a time, into the register.

To conserve area, it is often possible to use the same display lights for
several registers. A register selector switch, as in the Remington Rand
Solid State Computer, determines the register being displayed.

Operation

Lights on the panel may indicate what operation is in progress at the
moment—iwhether the fetch or execute phase of the operation is under
way, what step in the program is being worked on by the computer, and
what substep in the process is under way. This information is changing
rather rapidly and so it is primarily useful when the computer stops. It
then indicates where the computer has halted and enables the operator to
evaluate the possibility of reprocessing some of the data, going ahead
from here, or starting the whole problem from the very beginning.

Buttons or switches may be used to initiate a fetch or execute phase
of the operation or to initiate any given substep.

Input/Output Unit

The operator’s panel provides a central location where the operation
of each of the many possible input/output units may be monitored. The
units available to the computer may be shown there, as well as the time
when each is actually processing data. Failure or stoppage of an I/0O unit
and the cause can also be indicated.

Buttons or switches may be used to start, stop, or make available to
the computer, each I/0 device and to bring the equipment to the proper
portion of the data.

By means of auxiliary switches, the particular I/O units for a program
may be chosen; characters to be suppressed on input or output may be
chosen; the format for input or output may be selected; operation on a
single-step or continuous-running basis may be selected.

Power

During start-up and shut-down of the computer, various switches
must be turned on or off. Often voltages must be applied in a sequence.
This too can be indicated on the operator’s panel. The presence and
absence of proper voltages can be indicated on this panel. Meters or lamps
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indicate proper voltage levels. Some of the terms which apply here are:

a-¢ Voltages, On and Off,
d-c Voltages, On and Off,
Filament Voltages, On and Off,
Standby Condition,
Operating Condition.

Test

Preventive maintenance is the key to successful functioning of most
computers. At some time outside its operating period, the computer is
put to work under test conditions. These test conditions may consist of
lowered operating voltages or may be special test programs. In any case,
they require indications and controls which would not normally be used
under operation conditions. These test controls vary widely from com-
puter to computer.

15.3. INDIRECT COMMUNICATION TO AND FROM
THE COMPUTER

Communication between the computer and I/0 equipment is called
indirect when the information is stored in an intermediate medium before
entry into or after removal from the computer. For input the human
enters information into an intermediate medium such as punched paper
tape. This is later read by the input equipment and passed on to the com-
puter; similarly, the computer via output equipment punches paper tape
which is later interpreted by means of a tape-reading typewriter.

We shall now examine the means by which information passes between
the intermediate information-carrying medium and the computer. The
general scheme of things is recorded in Figure 15.3.

Let us examine the generalized flow of information from the input
medium to the computer. The flow is similar in the output direction, but
it simplifies the explanation to consider only the input flow.

The Input Mechanism Unit

Information is obtained from the input medium by the input mecha-
nism. This may be a mechanical, optical, magnetic, or other transducing
mechanism. It almost always involves some kind of mechanical motion
imparted to the input medium. Information that is derived from the
input medium is stored temporarily in the input mechanism register.
This register is often restricted to one character. The input mechanism
control oversees the operation of taking one character of information from
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the input medium and storing it in the input mechanism register. This
requires the control and synchronization of the mechanical motion of the
input medium with the information retrieval and transfer. These three
items—the input mechanism, the input mechanism register, and the input
mechanism control—are incorporated in one unit called the input mecha-
nism unit. This is the kind of unit which is sold in a single package by a
manufacturer of I/0 equipment. This much equipment is the minimum

. unj
\nput/output meim/m—s%{ ’Iﬁ)_u_nif\xﬁbg_ffer U,
— / { N\ COMPUTER
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mechanism| | Mechanism register buffer buffer
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FIGURE 15.3. Relation of the input/output to the computer.

that the computer design engineer deals with when incorporating the
purchased item into the computer.

The Input Unit

More and more buffering equipment is required as the difference in
speed between the input/output equipment and the computer becomes
more disparate. The amount of buffering is set forth by the designer. In
Figure 15.3 we shall look at the situation in which the greatest disparity
exists and the maximum buffering is needed.

The next unit includes an snput register and an tnput unit control to
form what is called an input unit. Physically, the package consists of the
input mechanism and electronics which are housed in a single cabinet.
On signal, the input unit control causes the input mechanism control unit
to fill the single-character register with one character. Then the input
unit control transfers this character to the input register. The input unit
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control then sends another signal to the input mechanism to fill its single-
character register, thence taking that character and entering it into
the input register. This continues until the input register is completely
loaded, as determined by the input unit control. The input register is a
single word in length.

The Input Buffer Unit

The next superstructure is the input buffer unit. When the input regis-
ter has been filled, the input buffer control causes each word to be taken
from the input register and loaded into the input buffer. When the buffer
is full, the buffer control unit will have fulfilled its task and will emit a
signal to the computer control to indicate this.

Let’s look down the line, from the computer’s view this time, to see
what happens. The computer control issues a signal to the input buffer
to reload. The input buffer directs the input unit to put a data word into
its register. The input unit directs the input mechanism to put a char-
acter into the input mechanism register. The input unit control then puts
this character into the input register. Input unit control continues to call
for input characters until the input register is loaded. It then returns a
signal to the buffer control, indicating that the input register is full. The
buffer control takes over and loads a word from the input register into the
buffer. If the buffer is not yet full, another signal is sent to the input unit
control which, in turn, calls upon the input mechanism control. When
the buffer is completely loaded, the computer is informed.

The Control Buffer

Still another buffer may exist, this one in the computer. It is called a
control buffer. It is controlled by both the computer and the input buffer
control. When the input buffer has been completely loaded by the pro-
cedure outlined, it then places the information into the control buffer.
This buffer is then accessible to the computer at the rate of information
usage that the computer is accustomed to.

As stated before, this is a general outline. For a small computer most
of these intermediate steps are omitted. A small computer, for instance,
might have the input mechanism unit under direct supervision of the com-
puter control. Thus, once the input mechanism register is loaded with
but one character, the computer control directs the transfer of informa-
tion from the mechanism register into the computer. You can see that in
general this is a highly inefficient practice, especially if the computer is
fast. Any time taken away from its computing tasks detracts from the
accomplishment of its most useful job.
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How this is put into practice will best be seen in the next section on
the punched paper tape input. :

15.4. PUNCHED PAPER TAPE INPUT EQUIPMENT
General
Before examining the details of the tape reader mechanism unit, let
us see how the paper tape reading situation fits into the over-all plan out-

lined in the previous section. A piece of punched paper tape is shown in
a tape reader in Figure 15.4.1. As you can see, information appears on

- ~<——Direction of tape feed
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\ Slot in masking tape
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FIGURE 15.4.1. Reading of punched paper tape. Courtesy of Ferranti Ltd.

this tape at the hole sites where holes may or may not have been punched
into the tape. A character consists of a crosswise row of hole sites. Hole
sites are spoken of to indicate that this is where a hole may exist if the
particular bit is to be a one, or where paper will not be removed if this bit
is to be a zero. The characters are placed along the length of the tape. To
read information from the tape, the character rows must be scanned
sequentially. Notice in the figure that each character row has a small hole
punched in it. Called a location hole, this hole serves to indicate the pres-
ence of a significant character and also as a mechanical means for grasping
and moving the paper tape.

The tape is moved through the reading station of the paper tape
reader, and all of the hole sites for a given character are examined simul-
taneously to determine where a hole exists. Then the information,
which is read either mechanically or photoelectrically, is entered into the
single-character register. This register consists of a set of bit storage ele-
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ments. The general scheme can be followed on Figure 15.4.2. Unit con-
trol then causes this character to be dumped into the word register in the
paper tape reader unit. When it has been placed there, the unit control
issues a signal to the reader control. The reader control in turn initiates
the movement of the paper tape so that the next character row to be read
is under the reading station. This continues until the one-word register
is filled. Then the paper tape reader unit control issues a signal to the
punched-paper-tape-reader buffer control to indicate that a word of infor-
mation is ready to be transferred. Buffer control takes over to move the

Punched
paper
// tape
{(
Single
churgct‘rer P —
register
Paper tape rg_sle One word
reader L register Control
- / - buffer
J L /
Y / s I
1 Reader Ve Lo
/ control / Ve [ |
/ s | } |
Tape reader AN / ___ll__l_l'__
mechﬁ.’,}'sm PPT unit | Buffer Computer
L control T T control [ ||~ control
Punched Paper Tape Reader Unit Punched Paper Computer

Tape Reader Buffer

FIGURE 15.4.2. A typical arrangement for reading punched paper tape.

datum from the register into the buffer memory. When the buffer mem-
ory is loaded under the supervision of the buffer control by a series of the
processes described above, it is entered into the control buffer. In the
case in Figure 15.4.2, the control buffer is a channel of a magnetic drum
within the computer. After the information from the buffer memory has
been loaded into this channel, the buffer control issues a signal to the com-
puter to indicate that information is now stored in the magnetic drum
memory, accessible to the computer at its leisure.

The computer can put out a request for information and then go ahead
and do useful processing while new input data are being gathered. At
some later time the computer will find input information ready to be
processed in the control. As it starts processing this information it can
put in a request for more input data, thus making the best use of available
time.
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Description of a Typical.Paper Tape Reader—the Ferrant: Typé TR5

A complete tape reader mechanism consiéts of a tape feed, an optical
projectiod system, reading and location photocells, and a character stor-
age device. A photograph of the complete unit appears as Figure 15.4.3.

RN

FIGURE 15.4.3. The Ferranti Type TR5 Paper Tape Reader. Courtesy of Ferranti Ltd.

TAPE FEED MECHANISM. The motor power for the tape reader unit is
derived from an electric motor geared to a differential gear. The two out-
put shafts of the differential gear are called the clutch shaft and tape drive
shaft (or simply drive shaft). These are concentric and appear respectively
on the left and right of Figure 15.4.4. The drive shaft is the prime mover
for the paper tape and by contact friction causes the tape to go past the
reading station. Situated so as to inhibit the motion of each of these
shafts is one brake mechanism for each shaft. The brake mechanisms are
actuated by a bistable device so that either one of the brakes is energized,
but not both. Now, if the left-hand brake, the clutch brake, is energized,
the clutch shaft cannot rotate. The drive shaft receives the full energy
supplied by the drive motor. The drive shaft moves in friction contact
with the tape, causing the tape to move past the reading station. At a
moment’s notice, simultaneously, the drive brake may be energized and
the clutch brake de-energized. This does not affect the rotation of the
input shaft, but it does immediately stop the drive shaft; the motion is
transferred to the clutch shaft.

The tape, which is being read at 300 characters per second, is stopped
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FIGURE 15.4.4. Tape feed mechanism, paper tape reader. Courtesy Ferranti Ltd.
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FIGURE 15.4.5. Brake mechanism, paper tape reader. Courtesy Ferranti Ltd.

in the space of one character by the arrangement illustrated in Figure
15.4.5. The adjusting screws indicated in the figure permit braking in

minimum time.

OpricAL READING sYSTEM. The optical system is disposed on either side
of the reading station. Above the tape is a small electric lamp which is
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FIGURE 15.4.6. Cut-away views of TR5 tape reader, (a) with lamp in reading position and
(b) with lamp assembly moved up. Courtesy Ferranti Ltd.

focused by a cylindrical lens. Light passes through a slot in the masking
plate as shown in Figure 15.4.1. The size of the slot determines that only
one row of information at a time is read from the tape. On the other side
of the tape a number of small photocells are placed. These cells receive
light only if there is hole at the hole site corresponding to that photocell.
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The relation of the reading station to the rest of the I/0 equipment is best
seen in Figure 15.4.6.

THE TAPE MECHANISM CONTROL. The information from the first photocell
PCl1 is applied to the 1 input of the first bit storage element B1; the other
photocells read into their bit storage units. This is shown in F igure 15.4.7.
Photocell PCO is the one which reads the location hole. It sets bit storage
BO to 1 for every character scanned. When BO is set to 1, the shaperS8

PCH

‘_@-‘ Bii Paper tape unit register
== }=Dofo to buffer
r 0 =

I

"Data ready"
B;’,:iffir to buffer
PCT input
r 0 i_ Paper tape reader
PEQ BO r B10 Paper tape RDR
mechanism unit
f 9 gk @ Brake
¥ 0 i solenoid

“Let's have another word"-Buffer ‘
Clutch
STH b solenoid

FIGURE 15.4.7. Logic for the paper tape reader.

issues a pulse, r. The pulse r tries to reset all the bit storage elements,
B1 through B7. If information is coming from the photocells, the cor-
responding bit storage will not be reset and will remain in the bit storage
after the reset pulse r has lapsed; if the photocells are not receiving infor-
mation, the bit storage elements will remain reset to 0 after the reset pulse
disappears. Erroneous transients are thus erased.

The reset pulse is also entered into the delay A9. This delay sets the
bit storage element B10 to 1. This state of B10 is amplified by the current
amplifier A11 which applies current to the brake solenoid and tends to
stop the tape.

Now the tape unit control circuitry takes over. The reset pulse,
delayed by A9, tallies the counter C12 which is connected to the
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decoder D13. The tally pulse delayed by Al4 is used to check the decoder.
This is the way it determines whether the tape unit register has been filled.
If further characters are to be added to the register, the pulse from Al4
passes through &’15 and V16 as a new start pulse, ST1, which immediately
resets B10 to 0. This removes the current from the brake solenoid. The 0
state of B10 is amplified by A17 which applies current to the clutch sole-
noid. This action happens so fast that the motion of the paper tape is not
interfered with; if consecutive char-
acters on the tape are to be read,
the tape moves continuously.

The pulse from A9 through V19
has been used to shift the character
information from Bl through BY
into the tape unit register.

When the tape unit register is
completely loaded, the test pulse
emitted from Al4 passes through
&18 instead of &’15. This pulse
resets the counter C12 and also is
returned to the computer or to the
intermediate buffer stage to indi-
cate that the tape unit register now
contains a full word and may be
emptied. B10 remains set to 1 so
that the brake solenoid remains
energized, stopping the movement
of the paper tape.

The half-broken line in Figure
15.4.7 indicates the boundaries FIGURE 15.4.8. The Feranti TR7 High
between the paper tape reader Speed Paper Tape
mechanism and the paper tape Reader. Courtesy of
reader unit. Ferranti Ltd.

The buffer control logic takes
over when a word is loaded in the paper tape unit register. It then
receives the “datum ready” pulse. It sends shift pulses to V12 of the
paper tape unit register and empties it over the output line. It directs the
datum to the proper place in buffer storage. If more words are needed for
the buffer, the buffer control determines this and sends a “Let’s have
another word”’ pulse to V16 of Figure 15.4.7. Thissets B10 to 0 and starts
things going again in the paper tape reader mechanism unit.

Of course, there may be no paper tape buffer in some systems! In
that case, the computer takes over when a pulse is emitted from &18. In

b
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this kind of set-up it may then be desirable that the register hold several
words, rather than one.

The mechanical principles described apply to tape readers with speeds
up to about 300 characters per second. Readers have been produced
which read 1000 characters per second based on paper tape transport
mechanisms quite similar to those used for reading magnetic tape, such as
those discussed in Section 15.7. The Ferranti TR7 shown in Figure 15.4.8

is a high-speed (1000 CPS) paper tape reading mechanism. The logic
described applies to all speeds. -

15.5. THE PAPER TAPE PUNCH

Mechanisms to punch holes into paper tape are of two kinds. The
synchronous mechanism has a motor which is constantly rotating but

FIGURE 15.5.1. High Speed Punch. FIGURE 15.5.2. High Speed Punch.
Copyright 1952, 1954, Courtesy of the Soro-
& 1955 by Teletype ban Corporation.
Corp. Reprinted by
permission of Teletype
Corp.

which can be actuated only during one portion of the cycle; an asynchro-
nous device can be actuated at any time in the machine cycle. The differ-
ence between these mechanisms is not very great, but it should be men-
tioned that the machine we shall discuss is synchronous. Photos of typical
units appear as Figures 15.5.1 and 15.5.2.

Two tasks are required of the paper tape punch: it must punch the
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proper information into the tape; it must move the tape one character
width after each punch cycle. These are discussed in order.

Punching

A hole is punched at a given hole site only if the corresponding selector
magnet is actuated in the mechanism illustrated in Figure 15.5.3. The

Punch bail drive link
Ball bearing

Eccentric portion

of mum_shc.Jff “)T:rnin‘g
Armature energized moment
selector magnet \
Turning  © Short
moment toggle arm

Detail

Punch bail
Blocking pawl, engaged

Armature of deenergized
selector magnet

Blocking pawl, disengaged

Spring post
Long toggle arm

Short toggle arm
Punch pin

Punching drag link

Short toggle arm
Nonpunching drag link

FIGURE 15.5.3. A typical mechanism for punching paper tape.

hole or no-hole condition is referred to in teletype parlance as a mark or
space condition. These mechanisms originally arose from applications in
the telegraphy field and this terminology has persisted.

In Figure 15.5.3 two selector magnets are shown. The one on the left-
hand side of the page is energized; that on the right is de-energized. The
energized selector magnet moves the blocking pawl to the left. The eccen-
tric portion of the main shaft is continuously rotating and causes the
punch bail to move up and down in synchronism with it. The blocking
pawl is moved out of the way by the selector magnet when the punch bail
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drive link is at the top of its travel. As the link moves downward, the
long arm toggle passes by the blocking pawl, since it is withdrawn. The
short toggle arm which is riding on the pivot of the long toggle arm is
pushed down with the long toggle arm. It, in turn, pushes down the
punching drag link. The end of the punching drag link pushes the punch
pin with great force into the paper at the point where a hole is desired.

For a space the selector magnet is not energized, as in the right-hand
side of the illustration. The blocking pawl remains in a forward position.
As the punch bail drive link is pushed down, its motion is intercepted by
the engaged blocking pawl. This causes the long toggle arm to pivot about
the engaged blocking pawl. The long toggle arm and short toggle arm
move together and, you might say, break at the joint. The short toggle
arm does not push down the drag link; hence the punch pin does not enter
the paper tape.

The detail of Figure 15.5.3 shows the long toggle braced by the short
toggle. The punch bail applies full force through the long toggle to the
short toggle, the three acting as if they wcre one rigid member. When the
pawl is interposed, it acts as a pivot point for the long toggle arm. The
punch bail then conveys a turning moment to the long toggle arm, which
pushes sideways upon the short toggle arm support, causing the short
toggle arm to rotate. Motion is not conveyed downward because the three
members—punch bail, and long and short toggle arm—mnow act
independently.

In the teletype high-speed punch mechanism shown in Figure 15.5.1
discussed here, punching (or non-punching) occurs at the rate of 60 char-
acters per second.

Tape Feed

The tape feed operation is illustrated in Figure 15.5.4. The tape feed
out magnet must be energized at the proper time in the cycle. This time
comes a fraction of a revolution after the punch selector magnets have
been energized. When a tape feed is required, the feed magnet moves the
blocking pawl out of the way of the long toggle arm. The pivot between
the long and short toggle arms therefore remains straight. The toggle
arm pushes down on the feed pawl adjustable link. This causes the feed
pawl to be moved up; the feed pawl engages the ratchet on the feed wheel,
causing it to turn. The detent arm roller assures the movement of the
tape for only one character position. The feed wheel has sprockets (not
shown) which positively engage the feed holes in the tape which have been
punched previously, thus advancing the paper tape. _

When the feed out magnet is not energized, the blocking pawl remains
in a blocking position causing the long and short toggle arm to break at
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the pivot point. This prevents any motion of the feed pawl adjustable
link so that the paper tape is not advanced.

Punching speeds higher than 60 characters per second have been
attained by the ingenious design of the Soroban Engineering Corporation,
shown in Figure 15.5.2. This equipment can punch paper tape at 300

Tape feed out lever assembly

Tape feed out lever spring

Armature

Long toggle arm

magnet assembly
Short toggle arm Blocking pawl

Long toggle arm spring
Feed pawl
Feed pawl adjustable link
Detent arm

) Clamp screw
Eccentric R

Feed pawl spring
Detent arm roller

Lock nut = A Feed wheel ratchet
p4 =

FIGURE 15.5.4. Tape feed mechanism of the paper tape punch.

characters per second. This is so fast that the quantity of chad (the name
for the paper removed from the holes in the tape) produced must be
removed by a vacuum feed so as not to clog the mechanism.

Control

The character to be punched is entered in binary form into the bit
storage B1 through B7 in the logic of the paper tape punch mechanism



328 INPUT AND OUTPUT EQUIPMENT = CHAP. 15

shown in Figure 15.5.5. A cam-controlled switch SWB on the punch unit
emits a pulse at the proper time during the punch cycle. This pulse is
applied through &11, &12, ... &17 to the corresponding punch magnets.
If there is information stored in any one of the bits B1 to B7, there is both
an input and an output from V9. Ior a request of one or more holes to

Cam-operated switch

Sw8
kA
Bt
— ih
0 i
9 Punch magnet {
Information 812 —J :
input —
single churac'rer< 0 12 [ ]
parallel bit \ O Punch magnet 2
______7 |
B7 I
—_ { 1 _
~ i 17
0 [ ] Punch magnet 7
l |
|
NN
Punch magnet 0
(location hole)
SW 10 18

+—%\ Feed magnet
Cam-operated switch BI9

|
X 0 @ Punch complete

FIGURE 15.5.5. Logic for paper tape punch mechanism.

be punched, there is an output from &21 which energizes punch magnet
0 to punch a location hole. At the proper time in the cycle for the punch-
ing of the location hole another cam-operated switch, SW10, on the punch
mechanism issues a pulse. This passes through &18 to operate the feed
magnet as long as there is an output from V9—a request for punch of any
hole. It also sets the uni B19 to 1. When punching is complete, SW10 is
opened by the cam and later B19 resets to 0. This causes a pulse to be
issued from the shaper $20. This pulse is returned to the computer or
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intermediate control unit to indicate that the punching of this character
is complete.
15.6. PUNCH CARDS

The punched card, or simply punch card, is a medium similar in intent
to punched paper tape. Information appears at a hole site in the form of
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FIGURE 15.6. Punch cards. 90 column (top) and 80 column (bottom). Courtesy,
respectively, of Remington Rand Division of the Sperry Rand Corp. and
the International Business Machines Corp.

a punched hole or lack of a hole. There are two types of cards popular in
this country—the 80- and 90-column cards used with equipment produced
by IBM and Remington Rand, respectively. Sample cards appear as
illustrated in Figure 15.6.

The 80-column card contains one coded character per column, each



330 INPUT AND OUTPUT EQUIPMENT ® CHAP 15

column occupying the full width of the card and containing 12 hole sites.
There are 80 columns within the length of the card. The holes are rec-
tangular in shape, the long dimension lying along the width of the card.

The 90-column card really consists of 45 columns, each divided into
two parts, an upper and a lower, and each of which records one character.
There are 12 circular hole sites in each column and 45 columns the length
of the card.

Punching

Information may be entered into punch cards by means of keyboard
equipment. This equipment may consist of a full alphabetical and numer-
ical keyboard, although for some purposes only a numerical keyboard is
required. The 80-column key punch works on a column-by-column basis;
each column is punched as it is entered into the keyboard. All the infor-
mation to be punched into the 90-column card is entered into the key-
board and set up mechanically in the punching guide before the card is
affected. At the end of the entry part of the cycle, the card is punched
in a single operation; this is called block punching.

There are many problems in designing a block punch, and these have
not been satisfactorily solved for 80-column cards. _

Another way to enter information into the card is to reproduce it from
another card. Equipment aptly called a reproducer performs this func-
tion and can relocate groups of columns from the source card into new
positions on the new card.

Single Record Processing

The punch card offers a great convenience because it carries a com-
plete record on a single separable document. This allows operations to be
performed upon stacks of punch cards which could be performed on a
paper tape record file or a magnetic tape record file only by repeatedly
reading and reproducing the file with multiple equipment units. Here are
some of these operations.

SorTiNG. If the cards are examined with a particular group of columns
in mind, called a key, they may be put in order with respect to this key
by means of a sorting operation. Equipment called a card sorter is used
to separate punched cards into piles with respect to the character punched
into a designated column on the card. By performing successive sorts—
one, or at most two sorts for each digit of the key—the cards can be placed
in alphabetical or numerical order.
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SeLECTION. Specific cards may be chosen from a stack of cards by means
of equipment called a collator. One input to the collator is the stack from
which the cards are to be selected. The other input is a set of cards con-
taining a key identical to that on the desired cards. The output of the
collator is three stacks, one for the unselected cards, the second for the
selected cards, and the third for the selector or key cards—the ones bear-
ing the key identification.

MzerciNg. The collator may be used to return the selected cards to the
original stack. The unselected and selected cards, both in proper sequence,
are the inputs to the collator and the result at the output is a fully
merged stack of cards in sequence.

CorraTioN. Other activities may be performed with the collator. These
include placing a blank card behind each card in the stack, or withdrawing
duplicates from a stack of cards.

These card manipulations may facilitate the computer operation; they
save the computer the time of looking up information in extensive files
and also provide a method to hold files in order outside of the computer;
hence they avoid tying up large and costly computer memory space and
time.

Reading

To retrieve the information from the punch card, the array of hole
sites must be examined. This may be done in one of three sequences: the
card may be examined all at once, one row at a time, or one column at a
time.

The method chosen for any given computer depends on the buffer
storage and internal storage of the computer. Column-by-column reading
is the slowest but it requires the least amount of auxiliary storage; con-
versely, reading the complete card is fastest, but all the information must
be temporarily stored before it is placed in the internal memory of the
computer. Row-by-row reading is a compromise adopted in many current
computers.

Scanning of the information from the card may be done either mechan-
ically or photoelectrically. The latter, of course, is the faster but requires
more expensive equipment. Mechanical reading can use mechanical stor-
age to hold the information; conversion into electrical impulses can then
be done easily by means of a mechanical switch.

15.7. MAGNETIC TAPE

Magnetic tape offers a means for storing a larger amount of informa-
tion than any of the media discussed previously. Information can be
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entered into or retrieved from magnetic tape faster than any other exter-
nal storage medium—but it is also the most expensive.

Information is registered on magnetic tape in much the same fashion
as upon punched paper tape. Along the tape, and perpendicular to its
length, are character rows; situated in each row are sites. Each of the sites
may be magnetized in one of two possible directions. An arbitrary assign-
ment of a “0” direction and a “1” direction makes it possible to store
information on tape.

Magnetic tape is superior to paper tape because the inf ormation, when
no longer of use, may be erased and new information stored upon the old
reel of tape. It is also possible to take a record stored on the tape, alter it
within the computer, and rewrite it in its updated form where the original
record previously appeared on the tape.

The number of magnetic sites per character is determined by the
choice of input/output language and whether a parity check is incorpor-
ated within the code.

Oversimplified Tape System

Figure 15.7.1 shows the simplest possible representation of magnetic
tape storage. Tape is stored on reel A. It is unwound from this reel over
a reading head and back onto reel B. The tape is moved by power sup-

plied to reel B. As the tape passes
over the reading head, information

is retrieved from the tape and is
) passed along to its destination. In-
Head formation is entered into the tape

in the same fashion.

There are several difficulties
with this simple system. The in-
ertia of the tape reels makes it
difficult to get the tape up to speed rapidly. When the take-up reel is full
and the play-off reel empty, the take-up reel must rotate more slowly
than the play-off reel. When the play-off reel is full and the take-up reel
empty, the play-off reel must move more slowly than the take-up reel. A
system which takes account of these problems follows.

FIGURE 15.7.1. Oversimplified tape sys-
tem.

Mechanical System Outline

The more sophisticated requirements for providing motion to control
the tape are implemented by the mechanism shown in Figure 15.7.2. The
first additional requirement is that since information might be sought
from either direction, it must be possible to both read and write with the
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tape being moved in either direction. The second requirement is the abil-
ity to start the tape very quickly and to keep it in motion at a high but
uniform speed. A third requirement is to stop the tape on a dime without
harming the tape.

The path of the tape on the diagram is now traced out. Itleavesreel A
and enters tape reservoir A. Passing out of the tape reservoir, it goes

Reel

A \ Reverse
Reverse brake
Tape solenoid solenoid
reservoir
A
R%/erse Rgvel:se
capst rake
psian pad
Read/write pr}éggSre
heads solenoid
Forward F%;‘gﬁéd
006%1’1 pad
Tape
reservoir
B Forward Forward
Reel solenoid brake,
B solenoid

FIGURE 15.7.2. Magnetic tape drive system.

through the reverse capstan station, the reverse braking station, the head
reading and writing station, the forward brake station, the forward cap-
stan station, and into tape reservoir B. From tape reservoir B, it is
spooled onto reel B.

In the oversimplified version it was possible to move the tape by rotat-
ing reel B; because of the fast-start requirement, the inertia of the system
cannot be overcome by rotating reel B without injuring or breaking the
tape. The intervening tape reservoirs isolate the inertia of the supply and
take-up reels from the tape reading system. Motion is supplied to the
tape reading part of the system by the capstans. These capstans are con-
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tinuously rotating shafts of accurate diameter, and with a large mass
attached which provides high inertia to the capstan shaft, so that it moves
at a uniform speed despite moderate loading. Movement is applied to the
tape by energizing the capstan solenoid. The capstan solenoid, when ener-
gized, moves the capstan solenoid roller toward the capstan until the roller
makes contact with the tape and presses the tape against the capstan.
The motion of the capstan is then imparted to the tape, which is free to
move against the capstan solenoid roller. Because of the high inertia of
the capstan and the low inertia of the tape at the read section of the unit,
it is possible to bring the tape up to the speed of the capstan in a very
short time. The tape reservoirs serve to furnish tape on demand; they
are places to dump tape after it is read and before the take-up reel gets
up to speed.

Once the tape is in motion, the take-up and supply reels are started
rotating. They take a substantial time to get up to the speed of the
tape in the reading section of the system. The tape reservoir makes up
for this time lag and either supplies or accepts tape to keep the system
in equilibrium.

To stop the tape, the capstan solenoid is de-energized and the corre-
sponding brake solenoid is energized. The brake solenoid applies pressure
between the brake pads to the tape and causes it to come to a stop in a
very short time. The tape reservoirs facilitate the stopping of the tape,
again isolating the inertia of the take-up and supply reels from the tape
in the reading section.

During reading and writing it is desirable that the tape be kept in
close contact with the read/write head. A head pressure roller maintains
the tape and head in contact during either reading or writing, but not
during fast spooling (described later). '

Let us examine a read forward operation of the magnetic tape unit as
diagrammed in Figure 15.7.2. To start, the forward capstan solenoid is
energized and the forward brake is released; these two work in opposition
—at no time can both be energized. The tapeisimmediately set in motion;
it is pulled from tape reservoir A through the reverse capstan and brake
stations and past the reading head. The tape is kept in contact with the
reading head by the head pressure roller. It passes through the forward
brake station and into the forward capstan which is causing its movement.
It then enters tape reservoir B. Some time after the tape has been set into
motion, spools A and B are getting up to speed. Before tape reservoir A
is exhausted, supply spool A will be supplying tape faster than it is leav-
ing the reservoir. Similarly, take-up reel B will be removing tape from
tape reservoir B faster than it is entering. Operation will continue until
an equilibrium is reached and the reservoirs are filled to normal capacity.
This requires that the speed of each reel be independently adjustable.
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Tape Reservoirs

There are two kinds of tape reservoirs in common use. They are more
commonly referred to as magnetic tape servo control systems. The first
is a mechanical supply and the second, often called a vacuum servo con-
trol, is a low-pressure system. The mechanical system will be described
first.

Mechanical Servo Control System

A block diagram of the mechanical servo control system is seen in Fig-
ure 15.7.3. The actual reservoir is indicated diagrammatically in Figure
15.7.4. The reservoir consists of a
numb.er of pegs around which the Magnetic tape
tape is wrapped. Some of the pegs
are on a movable arm and others are Upper Counterclockwise
fixed to the tape deck. As tape is [~ ,;%?,IO, Clockwise
played out of the reservoir toward
the drive, the arm moves toward the Sensing arm Control

fixed pegs; as tape is supplied to the [ contactor
reservoir from the supply reel, the
arm is moved away from the fixed r?\g%cr) B
pegs by the tape tensioning spring. Sp‘?g‘pef
. S y |
An indication of the fullness of the
reservoir is the angular rotation of |  Sensing arm__ | Control
the supply loop and sensing arm. contactor

This is the means for actuating the Clockwi
Lower ockwise
supply reel. When tape has been reel
pulled out of the reservoir by the motor
capstan drive, the sensing arm is
moved counterclockwise, causing the
lower section of the control contactor
detailed in Figure 15.7.5 to close a
circuit to the supply reel. This causes ' _
the torque motor on the supply wheel to rotate as rapidly as possible. As
soon as tape is entering the supply loop faster than it is leaving the supply
loop, the sensing arm starts to turn clockwise. As it turns clockwise, the
control contactor goes through two steps. The first step is to supply low
power to the torque motor, and the second step is to supply no power to
the torque motor. If the supply reel is still supplying tape faster than the
capstan drive, the sensing arm continues to turn clockwise and at some
point begins to supply power to the torque motor to take up tape. In this

Counterclockwise

FIGURE 15.7.3. Block diagram of servo
control for magnetic
tape system.
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fashion the torque motor is made to follow the fluctuations of the tape
Teservoir.

Vacuum System

A vacuum servo system is shown in Tigure 15.7.6, picturing only the
system for one reel. The tape from reel A goes into the glass bin. A pump
removes the air through a vent in the bottom of the bin. There is reduced

Supply loop and
sensing arm

To cupsmr\

drive

O

ontact damping
dashpot -

FIGURE 15.7.4. Servo mechanism tape reservoir for magnetic tape system. Courtesy of
Ampex Corp.

pressure on one side of the tape and atmospheric pressure on the top of
the tape, causing it to be pushed down towards the bottom of the bin.
Without moving reel A, the tape can be pulled out of the bin when the
capstan solenoid roller engages the capstan, applying a longitudinal force
to the tape.

On one side of the bin are two spaced lamps; on the other side, directly
opposite, are two photocells. A light path exists between each lamp and
its photocell through the glass bin except when tape intervenes. The out-
put of each photocell after amplification is applied to a relay. Energiza-
tion of the relay causes a voltage to be applied to the reel motor. Thus,
when the capstan has pulled too much tape out of the bin, both lamps
energize both photocells; relays K1 and K2 are both energized; relay con-
tact K1 is closed and relay contact K2 is opened; the reel motor therefore
rotates clockwise, causing the bin to fill up. Similarly, when the tape bin
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FIGURE 15.7.5. Simplified electrical control for the servo tape reservoir of the magnetic
tape system. Courtesy of Ampex Corp. :
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is full, neither relay is energized; contact K1 is opened and K2 is closed;
the reel motor revolves counterclockwise and removes tape from the bin.

Other means, such as pressure transducers, may be used to control the
filling of such a reservoir.

Forward
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Read—a_sg'wd_ﬁ_ -
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. 7 5 1 [Servo System
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switch S | I I l
- / -
Mﬁg;g;w Single character register [—
Read l I l |
Write —
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3
Write ready Read Character ~ Reset Character
ready from from

'
buffer  buffer  putfer

FIGURE 15.7.7. Magnetic tape mechanism unit logic.

Magnetic Tape Mechanism Unit Logic

The logic for controlling the magnetic tape mechanism and the single-
character buffer, usually a part of the tape mechanism unit, is seen in
Figure 15.7.7.

In the upper left-hand corner the control solenoids are noted. The
forward solenoid is energized on a forward signal, either manual or auto-
matic; the reverse solenoid is energized on a reverse signal; the magnetic
tape head pressure solenoid is energized for either a read or write signal
(for either forward or reverse)—it is not energized for fast spooling of
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the tape; the brake release solenoid is energized on both forward and
reverse signals.

The interlocks required in the magnetic tape system are shown in the
upper right-hand corner of the figure. Plastic magnetic tape usually has
a metal leader at either end of the tape. When this leader passes through
a special contact, it closes a circuit indicating the end or the beginning of
the tape. This information is communicated to the computer which uses
it or transmits it to the operator. There are other interlocks in the system
which determine emergency situations such as when the tape breaks or
comes loose from the tape-winding mechanism. The function of any of
these interlocks is to communicate to the computer the existence of the
emergency situation.

The servo system, one of the types previously described, is indicated
on the right-hand side of the figure merely as a box.

INFORMATION-HANDLING LOGIC. Information appears at the magnetic
reading heads and is transmitted to the read/write switch. This switch
is energized by a read or write signal appearing at its terminals. For read-
ing, the signal is amplified by Al and sent to &2 and V3. &2 is gated by
the read signal. The information passes through &2 and V4 and into the
single-character register. V3 detects the presence of a signal on any one
of the read lines and produces a read-ready signal which is sent to the
buffer. The information in the single-character register is accessible to
the buffer through &5 during the read operation. The buffer makes use
of the information and sends back a reset signal via the reset line which
clears the single-character register. The buffer must function to accept
information and clear the register alternately during the read operation
and in synchronism with the reading of the tape.

To write, information is entered from the buffer through &6 and V4
and set into the single-character register. The buffer controls the timing
of writing onto the magnetic tape. At the write-ready signal from the
buffer, information passes from the single-character register through &7
and A8 and is written by the switched read/write amplifiers through the
magnetic heads onto the reading tape.

The operation described above uses a single character register to
accumulate information. In a slow system, communication may be made
directly between the register and the computer. However, this is no longer
a common practice.

The Magnetic Tape Buffer Logic

In Figure 15.7.8 the logic of a fairly typical buffer is displayed. In the
upper left-hand corner is seen the information flow and control. The com-
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puter control (CC) directs the flow of information to and from the com-
puter (C); the magnetic tape unit control (MC) determines the timing of
information emanating from the tape (M); the buffer control (MBC)
determines the timing of information that is written from the buffer
(MB) onto the magnetic tape (M).

A list of the orders commonly associated with magnetic tape units is
found in the upper right-hand corner of the figure. The reverse orders use
almost exactly the same logic; only the forward orders are discussed here.

READ oNE BLoCK. The read one block forward order signal ROT is applied
through V1 to set bit storage B2 to 1. This applies a forward signal (IF)
to the tape unit which starts the tape moving forward. Blocks of infor-
mation are laid out on the magnetic tape so that a space exists between
each block of information. While the tape unit is getting up to speed, the
read/write heads are over this interblock space and no information is
being read. When the first character code appears under the magnetic
reading heads, it is entered into the single-character register discussed
previously and the read-ready signal is transmitted from the tape mecha-
nism unit logic. The character is entered from the tape character register
into the buffer register through &5 and V6. After a short delay provided
by A3, the read-ready pulse (see Figure 15.7.2) appears at the input of
V7. The delayed read-ready pulse passes through V7 and tests &'8 and
&9. The number of characters which have been entered into the buffer
register, as described subsequently, was recorded in the counter C and
decoded by the decoder D. If the buffer register has not yet been filled
with information from the magnetic tape, a pulse will emerge from &’8.
This passes through &23 and V4 to shift the buffer register in preparation
for the next character. It also enters the delay A10. From A10 it resets
the tape mechanism register in preparation for it to receive the next char-
acter. It also tallies the counter C. It tries to pass through &11 but can-
not, since this is a read cycle.

Subsequent characters are entered through &5 and V6 into the buffer
register and shifted by the read-ready pulse which passes through A3, V7,
&'8, &23, and V4. When the buffer register is full, the testing pulse at
&'8 and &9 can no longer pass through &’8. It emerges from &9 and
passes through V12 to set B2 to 0. The tape unit no longer gets a forward
signal so that the brake release solenoid is de-energized and the tape is
immediately stopped. Since this is a read one block order, a non-search
order, the pulse from &9, slightly delayed by A13, also passes through &14
and V15, to return to the computer as a tape-function-complete pulse.
The computer then takes over and empties the tape buffer. It does this
by sending shift pulses through V4. Information then emerges from the
buffer register through &16 to be entered into the computer.
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WRITE FORWARD. Information to be written is sent by the computer
through &17 and V6 into the buffer register. When the buffer register is
full, a “buffer-loaded” signal from the computer appears at V1. This
sets B2 to 1. The magnetic tape begins to move forward. Al8 provides a
delay sufficient for the magnetic tape to come up to speed. When this has
happened, the delayed pulse passes through V7 to test &’8 and &9. Since
none of the characters has yet been written, it passes out &’8 and emerges
from &19 as a write-ready signal. One character of information is now
read from the buffer register through &20 and entered into the single-
character register of the tape mechanism. When the write-ready signal
appears, the character is written onto the tape. The pulse from &’8 passes
through delay A10 and is returned to the tape mechanism to reset the
single-character register. The pulse from A10, besides tallying the counter,
passes into the buffer register via V4 to present the next character to be
written at the buffer output. It also passes through &11 and V7 to check
&’'8 and &9 again. When the information in the buffer is completely writ-
ten, the pulse from V7 passes through &9. It resets the counter and passes
through V12 to set B2 to 0. This stops the forward motion of the tape.
The pulse from &9, delayed by A13, passes through &14 and V15 to com-
municate to the computer that the tape function is now complete.

ApvaNce. An advance function does not require the exchange of informa-
tion. Its purpose is to wind or rewind the entire reel. The advance order
passes through V1 and sets B2 to 1. This causes the tape mechanism to
advance the tape. The tape continues to be reeled until an end-of-tape
(EoT) signal is produced by the interlock switch. This signal passes
through V12 and sets B2 to 0, which stops the tape.

SEARCH FORWARD EQUAL. There are six kinds of search orders, all of
which are similar but only one of which is now described. To search for
a given block of information, its key is entered by the previous order into
the key register of this tape buffer. A block of information is entered into
the buffer register as described in the paragraph entitled ‘“Read one
block.” The comparison circuit compares the key of the block in the buf-
fer with the information in the key register. It emits one of the signals,
M, E or P, corresponding to a key which is respectively less than, equal
to, or greater than the key in the buffer register. The equal signal, E, is
either present on or absent from the line labeled E entering &21 and &'22.
. For the search forward equal order, the pulse from A13 will emerge from
&'22 if the proper word has not yet been found. This pulse labeled SUE
is entered into V1 and sets B2 to 1 again; B2 was reset to 0 by the pulse
from &9. The time during which B2 was set to 0 and back to 1 again is
s0 short that the tape unit does not even slow down; after reading through
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the interblock space, the next block is read and entered into the buffer
register. If the search is completed, and the desired key found, the pulse
from Al3 passes through &21 and V15 and returns to the computer to
indicate that the search is complete and the proper block is now in the
buffer register. The pulse from &9, passing through V12, has set B2to 0
and turned off the tape unit. Notice that if the proper block is not on
the tape, the tape is stopped by an end-of-tape signal passing through
V12 to set B2 to 0.

Appearance of Tape Units

The photograph in Figure 15.7.9 shows the external appearance of a
tape unit with a mechanical servo tape reservoir as made by Ampex; the

FIGURE 15.7.9. Magnetic Tape Unit. FIGURE 15.7.10. Magnetic Tape Unit.
Courtesy of the Ampex Courtesy of the Potter
Corp. Co.

details of a similar unit made by Potter are seen in Figure 15.7.10; a
Remington Rand Univac® II surrounded by Uniservos® with a ‘“‘vac-
uum” reservoirs appears in Figure 15.7.11.
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FIGURE 15.7.11. Console of the Univac® || surrounded by magnetic tape units, each having
vacuum reservoirs. Courtesy of Remington Rand Division, Sperry Rand
Corp.

15.8. THE HIGH-SPEED PRINTER

The purpose of the high-speed printer is to take information from the
computer at a rapid rate and produce a printed document giving the
result of the computations or a journal of activities. High-speed printers
can print about 120 characters per line. Printers which can produce 600
lines per minute have been out since the middle of the 1950’s. Speeds of
over 1500 lines per minute are now attainable.

The general idea of the operation of such a printer is shown in Figure
15.8.1. The message, ‘“Here is a printer,” is stored within the computer
memory. Under the control of the computer it is entered into the buffer
of the high-speed printer. The printwheel of the printer is constantly
rotating. At the instant illustrated, the letter “e”’ appears on all of the
120 printwheels underneath the print hammers. The logic of the high-
speed printer examines all the characters of the message to see which is an
“e.” While the “e’s” of the printwheel are under the hammers, those
hammers corresponding to the “e’s” in the message are energized.
Between the hammers and the printwheel is interposed the output docu-
ment and a carbon ribbon. The hammer hits the paper against the ribbon
and an impression is made of the printwheel character upon the paper
through the carbon on the document and at the proper place. Although
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the printwheel is in motion, the actuation of the hammer is so rapid that
the impression of the character is clear and without blur.

The printwheel continues to rotate and soon “f’s”” appear beneath the
hammers. The message to be printed is again scanned completely. Ham-
mers for which there are “f’s’’ in the message (none in our example) are

Printer Buffer
Here is a printer I
[ \
I \
I \
I IPrint Register|

E €]

Memory

ere is 0 printe,.

T

A

/7
/
Z

<

«\Q\g&
of

¢ Control

Column * { hammer— l
Print hommer g cfo
module VSV

( one hammer
per column)

FIGURE 15.8.1. High-speed printer, general idea.

energized. This cycle of rotate, scan, and print is repeated until the print
wheel has made a full revolution. The message should then be all printed.

High-Speed Printer Flow Diagram

Let us discuss what happens within the high-speed printer logic. This
is best illustrated by the flow diagram of Figure 15.8.2. Counters bearing
the label 7 and j keep track, respectively, of the buffer address being exam-
ined and the number of print positions examined so far. Before starting,
i is set to 1 and j to O as per the label. In box 1 the first step is to fill
the printer buffer with information from the computer.

Attached to the printwheel is a small magnetic drum which rotates in
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synchronism with it. By some means information is taken from this drum,
indicating the character on the set of printwheels now underneath the
hammers. This information is in the same code used for the characters in
the computer and in the printer buffer. The code of the character now
under the print hammer is entered into the character code register, box 2.
The number of print positions examined so far is then increased by 1 in

2
1 Enter character code

@ Fill printer @ from print wheel into O
| | butfer character code

I register, CCR

i=0, j=0 ]

i = buffer address being examined
i = number of print positions examined so far

CRR = Character Code Register
Ng = total number buffer positions 7

= : 5 e Fire hammers
Ny = total number print wheel positions 0—i when ready/
Py = print register, bit i
1 1 10
ali [
14 13
"Print complete" Advance
to computer paper
)
[]
—l-\
(1)

FIGURE 15.8.2. Flow diagram, high-speed printer.

box 3. Since this number was originally 0, the print position counter now
contains a count of 1, indicating that the first print position for this mes-
sage is about to be examined. This could be any position on the print-
wheel. The first character in the buffer is compared with the code in the
character code register in box 4. If they are not the same, nothing hap-
pens; if the printwheel character corresponds to the characters stored in
this position in the buffer, a 1 is entered into the first bit portion of the
print register. The print register holds as many bits as there are charac-
ters on the printwheels—in this case, 120. For a character to be printed
at this print position, a 1 must be present for this hammer within the
print register.,
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In box 6 the number of characters in the buffer register examined so
far is examined. This is done by comparing the count in the buffer address
counter with the total number of buffer positions—in this case, 120. If
they are not equal, the next message character should be examined. The
index 7 is increased by 1 in box 3 to indicate the next message position is
to be scanned. We continue to box 3 where the code of the next message
character is compared with that corresponding to the printwheel which
is now stored in the character code register.

This process continues until all the characters in the message register
have been examined. At that time 7 is equal to the number of buffer posi-
tions, and the equal arrow out of box 6 in the flow diagram is followed.
And by now 1’s have been stored in the print register for each character
position in the message which is the same as the character on the print-
wheel now under the print hammers.

When the printwheel is in the exact position for good printing, a pulse
is emitted from the firing section of the printwheel drum. This pulse fires
the selected thyratrons which, in turn, send current through the print
hammer electromagnets and cause the proper characters to be printed
onto the document. After this, in box 9, the number of characters exam-
ined so far is compared with the total number of characters on the print-
wheel. A common figure for this is 51. If all 51 characters have not been
printed message must be examined for the next print position. In box 10
the count in the print position counter is increased by 1. Before examin-
ing the message again for the new character coming up, the print register
must be cleared to 0 for all bit positions, box 11 and the counter ¢ reset
to 0. Return is then made via circle 2 to box 2, and the next character
code is read from the printwheel drum.

When all the printwheel character positions have been reviewed, both
the buffer address counter and the print position counter are reset to their
original values in box 12. The paper is advanced to receive a new line,
box 13. A pulse is returned to the computer to indicate that the printing
of this message is now complete, box 14, and a new message may be
entered into the printer buffer.

Printer Logic

Figure 15.8.3 shows one possible arrangement of logic to implement
the high-speed printer just described. It assumes that the read-out from
the computer is serial by character, parallel by bit.

Loaping. When the computer receives word that the printer is ready to
start on a new message, it sends the first data character into the data
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FIGURE 15.8.3. High-speed printer.

input register; it also sends a pulse to V1, indicating that the first char-
acter is ready. The output of V1 starts the core-timing logic. The mes-
sage to be printed is now stored in the buffer core memory. This core
memory together with its associated logic is similar to that described in
Chapter 14. The core-timing logic block which appears on Figure 15.8.3
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was described in that chapter. The X and Y registers hold the address
where the next character is to be stored. In this instance, the X register
consists of 12 cores and the Y register of 10 cores for a 12 X 10 character
core memory. As each character is entered, the X register, a ring counter,
is shifted once, which amounts to increasing its count by 1. After the X
register has counted to 12, its output pulse is re-entered into the X register
and also used to shift the Y register. In this fashion each of the 120 char-
acters of the message is entered in sequence into buffer corememory. Each
character from the computer first appears at the data input register and
then is entered into the buffer core memory. After this, the X register is
counted to advance to the next buffer address. Before this cycle is started
by the computer, B6 was set to 0, indicating an entry cycle follows. After
each character is stored, the “character access complete’ pulse from the
core-timing logic is applied to &'2, &'3, &4, and &5. During entry of the
message from the computer, B6 is set for “E’ and this pulse passes
through &’2 and returns to the computer to request “Insert the next
character,” indicating that the previous character is now entered into
the buffer memory.

After the last character is entered into the buffer core memory, a pulse
labeled “Z” is emitted from the Y register. This guides the character-
access-complete pulse through &5 to set B6 to 1, indicating the print cycle
follows.

PrinT cycLE. The high-speed printer is now on its own. Timing internal
to the printer now takes over and the computer cannot communicate with
the printer until the message has been placed in full on the document.

Having entered the last character into the core memory, the Xand Y
registers have automatically been advanced to the first buffer character
position.

The pulse from &5 which has set B6 to 1 passes through V1 and starts
the core-timing logic again. The core buffer is sent through a complete
set of read cycles. The code for each character in sequence is entered into
the buffer output register. The print code for the character now under
the hammers was entered earlier into the print code register. The com-
parator compares the content of the print code register with each buffer
register character, and emits a signal only when the two are identical.
The identity signal is returned to the distributor. The distributor enters
a 1 into the corresponding column position of the print register. The posi-
tion at which the 1 is entered is determined by decoding the X and Y
register counts, the address of the character under examination.

Through this procedure the entire content of the buffer core memory
is examined and 1’s are entered into the print register where the message
contains the character now under the print hammers.
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Each time a new character of the message is examined, a character-
access-complete pulse is emitted by the core-timing logic. This passes
through &’3 and starts the core-timing logic again. After the complete
buffer has been examined, a Z pulse is emitted from the Y register, caus-
ing the character-access-complete pulse to pass through &4 instead of &'3.
This tallies the print cycle counter C by 1. The decoder D emits a signal

FIGURE15.8.4. High-speedprinter. FIGURE 15.8.5. The Magnityper—a high-
Courtesy of the Ana- speed printer. Courtesy
lex Corp. of the Potter Co.

only when the counter C contains the number equivalent to the number
of characters around the typewheel.

After each complete examination of the core buffer, the timing gener-
ator emits a pulse to the print thyratrons which energizes the print ham-
mer and causes characters to be printed at the proper position on the
paper. This pulse also checks &7 and &’8. If each of the characters on
the printwheel has not had a chance to be printed, the timing pulse passes
through &'8 and starts the core-timing logic again. Each of the 51 char-
acter positions on the typewheels is thus examined in order, starting ran-
domly from any given character. When all of the characters have been
reviewed, the pulse from the timing generator passes through &7 instead
of &'8, since a ““51”” decoder output is present, and is returned to the com-
puter as a print-complete pulse to indicate that this line has now been
inscribed upon the output document.

In Figure 15.8.4 appears a photo of a high-speed printer made by the
Analex Corporation incorporating these principles, and another made by
the Potter Company appears as Figure 15.8.5.
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15.9. TYPEWRITERS

Typewriters can do three tasks. (1) They produce a printed copy,
called hard copy, of the information that was entered into the keyboard.
(2) They simultaneously produce coded impulses which may be entered
directly into the computer: these same impulses may be entered into a
punch unit and produce a punched paper tape. (3) They also may be used
as output devices.

The Typewrster for Input

The means by which a typewriter produces its hard copy is obvious.

To produce a coded signal, each key when depressed actuates a multi-
pole switch. There are as many poles to the switch as there are bits per
character. One side of each contact is connected to a voltage source; the
other side is connected to one of the information lines. Each of these
switches hence operates as one input to a V-mixer of an encoder. This is
the function which the typewriter performs during input—it is an encoder.

Mechanical Translation

Direct electrical translation requires one multipole switch for each
key on the keyboard. Such switches are bulky and expensive and increase
the size of the equipment. A more convenient means for translating the
key motion into électrical form uses a mechanical translator.

Such a translator is constructed by the Flexowriter Division of the
Friden Co. in a form which is easily installed on the bottom of a conven-
tional electric typewriter. The frame of this device is shown in Figure
15.9.1. Sitting in the frame are a number of slides—one for each key of
the typewriter. The depression of a key pushes a corresponding slide and
causes the slide to move to the left as in Figure 15.9.2. In so doing, the
cam surfaces along the slide, upon which the bails (cross pieces or bars) lie
cause some of the bails to move upward. Each slide is different and causes
a different set of bails to be moved upward. These bails correspond to
the bits in the code for the character for which the key is depressed.

Returning to Figure 15.9.1, as the slide is pushed forward, bail #1 is
pushed upward. The left-hand end of the bail sits in the contact shaft
fork. The upward movement of the bail causes the contact shaft to rotate
clockwise as indicated. As the contact shaft rotates clockwise, it pushes
the code #1 contacts together, causing the generation of an electrical pulse.
Only one bail is shown in the diagram. For each bit in the code there is
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one mechanical set consisting of a bail, a contact shaft fork, a contact
escapement, and a contact.

There is one such complete set which is actuated by all keys. This is
the set which generates pulses corresponding to the feed holes in the tape.

Code
contact

< shaft

shaft fork

FIGURE 15.9.1. Contactor selector construction for the electric typewriter used as an

encoder.

Cam surfoce/ \
Bail

FIGURE 15.9.2. Slides for mechanical translation in the electric typewriter.

There is usually a paper tape punch associated with the typewriter
and code generator. One contact is connected to each of the punch mag-
nets, and the feed contact is connected to the paper tape feed clutch
mechanism and location hole punch magnet.

The Typewriter for Output

The typewriter is limited in its ability to follow information that is
entered into it. It is severely taxed to go at any greater than ten to twelv.e
key strokes per second, or approximately 120 words per minute. It 18
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therefore uneconomical to use it as the direct output of a computer. The
computer can produce a punched paper tape much more rapidly; one or
more typewriters can then transcribe the paper tape into hard copy.

MECHANICAL DECODING. The decoding of the electrical input to the type-
writer could be done electrically. This would require one actuator for each
key on the keyboard. A more economical way to perform the decoding is

Bar #Z 4

Bar#.3
Bar# ©

Bar# 2
Bar# 5

Bar# 1

# 2 Armature

FIGURE 15.9.3. A secker in its operated condition as caused by the typewriter decoder.
Courtesy of Friden, Inc.

to do it mechanically. Figure 15.9.3 shows a number of bars. Each posi-
tion along the length of each bar corresponds to one of the keys on the
keyboard. Each of the bars corresponds to one of the bits of each charac-
ter. The code which is received by the typewriter mechanism is converted
into mechanical motion of the corresponding bars. There are notches in
the bars which are aligned only when the code corresponds to the charac-
ter whose key should be depressed.

Figure 15.9.3 shows a seeker bar for which the notches on the permu-
tation bars are aligned. Because the notches are lined up, the spring is
able to pull the seeker bar toward the rear.

There is one magnet and permutation bar assembly for each bit to be
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read from the paper tape. This assembly is shown in Figure 15.9.4. In
that figure the permutation bar is shown latched. The holding projection
of the bar is caught and held by the armature. When the magnet is ener-
gized, the armature is attracted towards the magnet. This releases the
permutation bar, which is pushed to the right by the plunger spring, the
bar’s motion being limited by a stop on its right-hand side (not shown).
The notches in the full set of permutation bars of Figure 15.9.3 align for
one and only one seeker.

FIGURE 15.9.4. Permutation bar and magnet assembly in the latched position. Courtesy
of Friden, Inc.

KEY sELECTION. At the normal position, with no magnets energized, the
permutation bar assemblies appear as in Figure 15.9.5. One of the seekers
is shown and you will notice that it is held forward by the projections on
several of the permutation bars.

While one (and only one) seeker is being selected by the method dis-
cussed above, the feed-hole pulse actuates a clutch assembly attached to
the typewriter motor. This clutch assembly functions quite similarly to
the clutch assembly in the paper tape punch unit. When it is energized,
it causes the output shaft to rotate for just one revolution. It is this
motion which is now used to actuate the proper key. There are a number
of cams attached to the clutch output shaft and these actuate various
mechanisms which will now be discussed.

Tigure 15.9.6 shows the seeker restoring bail mechanism. In normal
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# 3 Armature

FIGURE 15.9.5. A seeker in unoperated position held forward by projections on some of
the permutation bars. Courtesy of Friden, Inc.

Keylever

Clutch
output shaft

Seeker moved
in between
projections

FIGURE 15.9.6. The seeker restoring bail mechanism, Courtesy of Friden, Inc.




356 INPUT AND OUuTPUT EQUIPMENT ® (CHAP. 15

position, when the clutch output shaft is not rotating, the seeker restoring
bail cam holds the seeker restoring bail in a forward position. This pre-
vents the seekers from falling into the slot which is produced by alignment
of the permutation bars on actuation of the permutation bar magnets.
Thus, when a character is called for and properly decoded by the permu-
tation bails, nothing will happen unless the clutch mechanism causes the

Seeker

eeee,  Keylever 2223 non-operated
G
Sisie, & g
e tf:*!"g-\\
E 2 S :
u eeker
i< operated J J
% )
Cllinicf; . ;
outpu
shaft Seeker

operating

\/L bail

Permutation
bar

FIGURE 15.9.7. The seeker operating bail operating the key lever. Courtesy of Friden,
Inc.

clutch output shaft to rotate. As soon as the shaft begins to rotate, the
seeker-restoring bail cam allows the bail to move away from the seekers
and allows the chosen seeker to fall into the permutation bail slot.

The seeker operating bail mechanism is shown in Figure 15.9.7.
Shortly after the seeker has been released and allowed to fall against the
permutation bar, the seeker operating bail is pushed downward. The only
seeker that it contacts will be the one which was chosen by the permuta-
tion bar alignment. It will push this seeker downward because of a notch
in the seeker which it encounters.

Each seeker is hooked about a projection on a corresponding keylever.
The downward movement of the chosen seeker therefore operates the
chosen keylever. Operation of the keylever causes the chosen key to be
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moved forward against the paper and the chosen character to appear
printed on the paper. :

The bar restoring bail is shown in Figure 15.9.8. It is the function of
this bail to restore to normal position the permutation bars which were
chosen to print this character. As each permutation bar is restored, it is

Cam

FIGURE 15.9.8. The bar restoring bail resetting the permutation bars. Courtesy of Friden,

Inc.

latched by the now-released armature of the magnet assembly, Iligure
15.9.4. As the clutch output shaft completes its revolution, it causes the
seeker-restoring bar of Figure 15.9.6 to push all the seekers away from the
permutation bars. The decoding mechanism is now completely restored
and is ready to receive the next character code.

Summary. To summarize, the typewriter decoding mechanism performs
the following operations in sequence:

1. The proper magnets are actuated from the paper tape reader.

2. The corresponding permutation bars are unlatched.

3. The clutch mechanism is energized.

4. The seeker-restoring bail releases the seekers, and the chosen

seeker falls into the notch formed by the permutation bars.

The operating bail causes the chosen key to be depressed.

The bar-restoring bail restores all the permutation bars and

relatches them. :

7. The secker-restoring bail resets the seekers, pushing all of them
away from the permutation bars.

o o
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The Full Typewriter Assembly
The usual typewriter assembly furnished for a computer installation

consists of a typewriter, a mechanical encoder connected to a paper tape
punch, and a paper tape reader connected to a mechanical decoder which

7 > .

FIGURE 15.9.9. The Automatic Electric Typewriter, trademarked Flexowriter. Courtesy
of Friden, Inc, ’

automatically operates the electric typewriter. A photograph of such
equipment as manufactured by Flexowriter is found in Figure 15.9.9.

15.10. OFF-LINE OPERATION

Equipment is said to operate off-line when its operation does not in
any way tie up the computer. Since use of auxiliary equipment is less
expensive than the computer, it is advantageous to have such equipment
operate by itself or together with other auxiliary equipment and not tie
up the computer. Examples of off-line operation are now discussed.
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Punched Cards and Punched Paper Tape

Both punched cards and punched paper tape are prepared on a key-
board device which obviates direct keyboard input to the computer.
Information from the source document is transcribed in the keyboard
device to the intermediate media. A high-speed mechanism can be used
to get the information from the intermediate media into the computer.
Information is entered by the computer into similar intermediate media.
The punched paper tape can be transcribed into a document by means of
the typewriter discussed in the previous section. Punched cards can be
read on an automatic tabulator. These are off-line operations and do not
tie up the computer.

Magnetic Tape

The magnetic tape unit is more equally matched in speed with the
computer. Even so, the very fast computers can keep a large number of
magnetic tape units rolling at high speed. It is possible to enter informa-
tion into magnetic tape directly by keyboard equipment, such as the
Unityper® made by Remington Rand. Since magnetic recording equip-
ment is more costly than either card entry or punched tape entry equip-
ment, this is still a moderately expensive process. It is often advisable to
use two intermediate media. Information is punched into cards or paper
tape by a keyboard device, and then a translating device takes the infor-
mation from the cards or paper tape and produces a recorded magnetic
tape. Two step-ups in speed result: paper tape and cards can be read

much faster than keyboard entry; magnetic tape can be read much faster .

than paper tape or cards.

The same methodology prevails for output devices. Here the com-
puter writes onto magnetic tape which is later converted into paper tape
or cards. These, in turn, are used on slower output devices.

Off-Line Processing

The job of the computer can be shortened if information can be organ-
ized beforehand. In the section on punched cards, methods were described
for arranging unit records before entry into the computer and after pro-
duction by the computer. Analogous methods are available for handling
records stored on magnetic tape. Off-line equipment called a tape sorter
can be used to arrange information on magnetic tape. An off-line sorter
is associated with the File Computer made by Remington Rand and with
the Elecom 120 formerly produced by Underwood. The sorter has four
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tape units associated with it, and by shufling information back and forth
can produce an output which is in the proper sequence according to the
key contained in each record.

Verification

Methods have been discussed earlier for recognizing errors committed
by the computer in its calculations or in transporting data from one sec-
tion or piece of equipment to another. Remember, complementary arith-
metic was mentioned and so were the parity check and error-correcting
codes. However, the greatest source of error arises from the human oper-
ator. We have no control over the key punch operator who misreads or
inverts a number in transcribing a document. Because this kind of error
can ruin a calculation, some means must be used to control it. For this
reason, card and tape verifiers are used.

The card verifier produced by IBM works as follows. A card originally
punched by another operator is inserted into the verifier. The verifier
operator has a copy of the information which should appear on the card.
She enters this information into the keyboard. When a discrepancy exists
between the character on the card and that punched by the operator, the
machine hangs up. An alarm lamp lights and the operator determines
the reason for discrepancy. If she incorrectly inserted data, she can over-
ride the machine and continue to check,the card; otherwise if the error
was previously punched into the card she must duplicate the card up to
that point, enter the correct character where the fault was found, and
duplicate the rest of the card.

The Remington Rand system requires that the card be punched twice,
the second time by a different operator. The verifying key punch is set
to enter the duplicate information but slightly offsets the holes. The
punched and repunched cards are inserted into the verifier. This machine
examines all of the holes punched in the card. Any non-offset hole is an
indication that the same information has not been entered by both oper-
ators. This card is offset from the pack; a new card may be made up to
replace it. '

The first system described has been found to be superior because it
does not require a re-examination of the deck. Such a re-examination may
create problems, especially if the deck must be kept in order. In the first
system, errors are corrected when they are found.

PROBLEMS

1. In Figure 15.11 and 15.12 and the text with each, starting on page 362
show and describe the control console of the IBM 650 and IBM 1401
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10.
11.

12.

13.

14.

15.

16.

respectively. These were extracted from the operator’s manual. For each
machine indicate the function of each knob and light using Table 152 as a
guide as was done for Figures 15.2.1 and 15.2.2.

Characterize direct and indirect communication. List the forms that input
and output to the compdter may take.

. Make a chart contrasting speed, capacity, cost (per bit or per word), erasa-

bility, ete. for all the I/O media you can think of.

The computer stops with +000014835 in the A register. For an XS3 machine
how does this appear on the control panel register display, where O means 1
(on) and ® means 0 (off)? .

Draw the paper tape punch output system in a diagram similar to Figure
15.4.2,

For each punch card type appearing in Figure 15.6, show how 17RS69PZ and
your name would be entered into the card.

. Describe the operation of the magnetic type buffer, Figure 15.7.8, for the

following orders: (a) SFM (b) SFP. Add logic, if needed.
Add logic to Figure 15.7.8 for reverse operation including reverse advance
(rewind). Describe the operation for the orders:

(a) FR (b) ROR (c) SRE (d) SRP

Devise a logic for reading 80-column cards. Show both the card reader and
mechanism and the reader unit. :

Do the same for a card punch.

Assuming six bits per character, show in logical detail the guts of the high-
speed printer, Figure 15.8.3. This should include details on the

(a) data input register
(b) print code register
(c) buffer output register
(d) comparitor

(e) X and Y registers

(f) distributor

(g) print register

Draw a timing diagram for the high-speed printer Figure 15.8.3 showing the
outputs of the elements important to the cycle during:

(a) a full print cycle .
(b) a buffer read-out cycle for a single print wheel revolution
(c) a single print wheel character read-out

Describe how the high-speed printer is used on line with the computer and off
line with a magnetic type unit.

Show in full what comprises the core-timing logic for the high-speed printer,
Figure 15.8.3.

Some means must be used to synchronize the HSP print cycle with print wheel
rotation. Malke suggestions. Incorporate one into the logic of Problem 14.
Design a plug board for format control for the high-speed printer. Assume
a 120-character printer and a 90-character buffer.
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17. Design an “electronic” typewriter encoder with “baseless” input (one for
each key—exclude shift control) and Univac® code output. (See Figure 8.7.)
Design a decoder for Univac®-to-baseless operation.

IBM 650 CONTROL PANEL DESCRIPTION
Operating Lights

These lights indicate the operating status of the system. They can be very
belpful in determining the reason for unscheduled machine stops.

Data Address. With program execution stopped, this light indicates that the
next half-cycle will be an execute cycle.

Instruction Address. With program execution stopped, this light indicates that
the next half-cycle will be a fetch cycle. This light will come on as a result of
pressing either the computer reset or program reset key with the control switch
set to RUN or ADDRESS STOP.

Program. This light is on only if program execution is stopped:

1. manually
2. by a programmed stop
3. by an address stop.

However, it does not come on if a manual stop takes place during the fetch cycle
of an input-output command.
Accumulator. This light is on whenever the accumulator is in use.
Input-Output. This light is on during the execute cycle of any input-output
instruction. It stays on until the interlock is removed. If program execution is
stopped with this light on, it may indicate one of the following conditions:

. No cards in one of the feed hoppers

. A feed failure

. Cards have not been run into one of the feeds

. The stop key on one of the input-output units has been pressed

. A read parity error or punch parity error has occurred. This is further
signified by the storage selection light and a valid address showing in the
address lights.

6. Using an input-output code for a unit that is not attached

7. Trying to execute an output code on a unit that has an error

G W N~

Overflow. This light comes on if an overflow condition occurs. An overflow
condition can be caused by one of the following:

1. An excessive accumulation

2. Trying to develop a quotient of more than ten digits

3. Trying to exceed the number of shifts called for in a shift-and-count
operation

Checking Lights

These lights are used to indicate the presence of an error condition in the
various units of the system.

Program Register. Indicates the detection of a parity error in the program
register.
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Storage Selection. Can indicate any one of the following error conditions:

1. A read or punch parity crror. If this type of crror is detected, the input-
output light is on, and a valid address appears in the address lights

. An instruction with an invalid address

. Information being written in two or more drum locations simultaneously

. Information not being written in any drum location on a store operation

. A store operation with a D-address in the 8000 series

. Attempted manual entry to 800X from the storage-entry switches

. Not finding an equal or higher value on a TLU operation

NOo oUW

Distributor. Indicates the detection of a parity error in the distributor.
Accumulator. Indicates the detection of a parity error in the accumulator.
Clocking. Indicates the detection of an error in the timing circuitry.

Error Sense. Operates in conjunction with the error switch. When this switch
is set to sense, the error sense light comes on for one of these conditions:

1. Parity error
2. Clocking error.

The light remains on until the error sense reset switch is pressed.
Control Unit—Storage Unit. The operation of these lights indicates an error in
the respective units.

Error Sensing and Stopping

Inherent in the design of the 650 System is a scries of checks that assure
correct processing of data. If an error should occur, it is signaled on the console
and can be corrected manually or automatically.

Unconditional Error Stops. Some error conditions, by their nature, are not
correctable by automatic machine procedure. Therefore, they always result
in stopping program execution. These errors are:

1. Read parity check

2. Punch parity check

3. Invalid address (Storage Selection)
4. Invalid OP Code

5. Divide overflow.

Conditional Error Stops. Some other error conditions can, when they occur,
cause program execution to stop, or programmed error-correction routines to
take place. The error switch controls which of these two possibilities is used.
These are under control of the error switch:

1. Program register parity error
2. Distributor parity error

3. Accumulator parity error

4. Clocking.

With the error switch set to sTop, any of the preceding errors halt program
execution. The location of the error is signaled by the corresponding checking
light. )

With the switch set to sENsE, any of these errors cause program execution
to be momentarily stopped while an automatic computer-reset operation 1s
performed.
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Overflow Sensing and Stopping

In the arithmetic operations of many problems, if the capacity of the accu-
mulator is exceeded (overflow), some error has occurred that may require manual
handling. In other problems the overflow indicates that a specific point in the
problem has been reached, and that a different branch of the program is to be
used.

The effect of an accumulator overflow on machine operation is controlled
by the overflow switch. When the switch is set at stop, any overflow causes
program execution to stop at the end of the execute cycle during which the
overflow occurred. The overflow light indicates the cause of the stop. When
the switch is set at SENSE, any overflow except one caused by improper division,
lights the overflow light and sets up an internal overflow condition.

This internal overflow condition can be interrogated using the 47 BOV (Branch
on Overflow) operation code, which also turns out the overflow light.

Control Keys

Transfer. This key functions only when the control switch is set to manual
operation. When operative, pressing this key transfers the number set up in
the address selection switches to the address register.

Program Start. This key is used to initiate program execution. The starting
point is determined by the setting of the program control and the content of the
operation and address registers.

Program Stop. This key is used to halt program execution. It stops at the
completion of the cycle during which the key is pressed.

Program Reset. This key resets the program register to zeros, and sets program
control to the fetch cycle. Also, it resets the error circuits that have been acti-
vated by a program register parity check, storage selection error, or a clocking
error. Its effect upon the operation and address registers is determined by the
setting of the control switch.

Compuiter Reset. This key resets all error circuits and sets the program register,
distributor, and accumulator to zeros. Also, it sets the program control to the
fetch cycle. Its effect on the operation and address registers is identical to the
program reset key.

Accumulator Reset. This key resets the distributor and accumulator to zeros.
It also resets error circuits that have been activated by an overflow, accumulator
parity check, distributor parity check, clocking error, or storage-selection error
other. than that caused by an invalid address. It has no effect on the contents
of the program, operation, and address registers.

Error Reset. This key resets the error circuits activated by a clocking error
or a storage selection error other than that caused by an invalid address. It
also resets an overflow condition if both the overflow and error switches are set
to sToP.

Error Sense Reset. This key resets the error-sense circuit and turns out the
error-sense light. It is effective only when the error switch is set to SENSE.
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{ PROCESS S  READER

MANUAHAROF

FIGURE 15.12. Control panel of IBM 1401 data processing system. Courtesy of Inter-
national Business Machines Co., Inc.

IBM 1401 CONTROL PANEL DESCRIPTION

Power On. Controls the main power supply for the entire system. Pressing
it causes POWER oN key to light.

Power Off. Turns off the main power supply.

Start. This key is used to initiate or resume machine operation after a stop:
manual, programmed or automatic. Similar keys are found on each of the other
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units in the system. Operation of this key is conditioned by the setting of the
mode switch.

a. During a normal run mode, the system can be started by pressing the
start key on any of the units.

b. During a single cycle process mode, any of the start keys can cause the
system to advance through the program, except on an input-output execution
cycle. The start key at the input-output unit must be pressed for this operation.

¢. To restart following an error indication, the check reset key must be pressed
prior to the operation of the start key.

d. Following a card jam or misfeed in either the reader or the punch, the cards
in the associated feed must be run out by means of the non-process-runout key
for that feed, and its hopper must be reloaded before the start key is pressed.

Start Reset. This switch is used to reset the system (except for the data in
storage) so that the operator can restart the operation.

Stop. This is a lighted key, and is used to stop processing in the system. It is
not effective until the instruction being executed is completed. Similar stop keys
(without lights) are provided on each of the other units within the system.

Emergency Off. This is a pull switch, located on the console. In an emergency,
pulling this switch disconnects all the power to the entire system. This switch
should be manually reset by a customer engineer before power is restored to the
system.

Check Reset. An error detected by the checking circuits causes this key to
light. It must be pressed following a 1401 Processing Unit error, and the system
is restarted by pressing the start key.

Checking Lights

Four lights are provided at the top of the console panel, representing the
Processing Unit, Reader, Punch, and Printer. When the machine is operating
normally, these lights appear as white areas with black lettering. When the
machine stops, requiring operator attendance at one of the four units, the appro-
priate light glows red, indicating an error. The light is extinguished when proper
action is performed by the operator.

Storage. The storage light is red when an error at the input to storage is
detected by a parity check.

B-light. The B-light comes on when a B register parity check error occurs.
The lights underneath display the BCD coding check-bit status, and the word
mark status of the character in the B register.

A-light. The A-light comes on when an A register parity check error occurs.
The lights below indicate the coded character, check-bit status, and word mark
status of the character in the A register.

Logic Block Lights

O-flo. Lights when an overflow condition exists.
B > A. Is on when an unequal-compare condition exists after a compare
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instruction. Additional lights are provided for high-low-equal compare when this
optional feature is included in the system.

Bit Display. Shows the bit configuration of the sum of the characters being
processed in an arithmetic operation.

Regrster Lights

OP Register. The Op light is red when an incorrect operation code exists in
the op register, or if the code is incorrectly interpreted. The lights below indicate
the coded character and the check-bit status of the character in the op register.

Instruction Length Lights. Indicate the number of characters in the instruc-
tion.

Storage-Address Light. Red when an address register parity check occurs.
The lights below, displaying the address, can be checked for the error condition.

Storage Address Display. A group of storage address lights display the storage
address (in binary-coded-decimal form) contained in the address register indi-
cated by one of three key-lights:

I Address Register. Glows when the I address is in the storage address display.

A Address Register. Glows when the A address is in the display.

B Address Register. Glows when the B address is displayed.

Stopping the machine and holding down one of these keys causes the contents
of the associated register to be displayed in the storage-address lights. When the
key is released the storage-address display lights return to their former status,
if the mode switch is on rUN.

1/0 Check Stop Switch

When in the oN position (up), the machine stops at completion of an I/0
operation if an error occurs during that operation. In the orr position (down),
the machine does not stop if it detects a hole count check in the Card Reader or
Card Punch, a validity for the Card Reader, or a Print Check. With the switch in
the oFF position, error detection must be accomplished by programming.

Manual Address Switches

The four dial switches labeled Manual Address are used to select the address
to be entered in the storage-address register. These work in conjunction with the
address register key-lights and the storage-address display lights.

For example, set the contents of the A address register to 1200.

1. Set the mode switch to ALTER.

2. Set the manual address switches to 1200.
3. Press the A address register key.

4. Press the start key.

The storage-display lights then show the bit configurations for this address
(1200). . .

The manual address switches are also used to select a storage location for a
display or alteration, without disturbing the contents of the address registers.
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Sense Switches

Seven sense switches can be included in the 1401 Processing Unit. The manual
toggle switches that control them are located on the console. Switch A is used
to control last card operations by making the TEST AND BRANCH SENSE SWITCH ON
instruction effective only when the last card in the reader has passed the second
reading brushes. Switch A is standard in all systems except Model D. Six addi-
tional sense switches (B, C, D, E, F, and G) are optional features.

The B (I) d TEST AND BRANCH SENSE SWITCH ON instruction can be used to
interrogate the setting of the switch specified by the d-character, at any time dur-
ing processing, and causes a branch to the (I) address if the switch is oN.

Mode Switch

The nine modes of machine operation are selected by the }/ode Switch:

1. RuN. When the mode switch is set to RON, the system is under control
of the stored program.

2. I/Ex (Instruction/Ezecution). When the mode switch is set to 1/EX, the
first time the start key is pressed, the machine reads one complete instruction
from storage and stops. This is called the instruction phase.

The next time the start key is pressed, the machine executes that instruction.
This is called the execution phase. :

Subsequent pressing of the start key results in alternate instruction and
execution phases. L

3. Single-Cycle Process. Each time the start key is pressed, one .012 milli-
second storage cycle is taken when the machine is in the single-cycle process mode.
Console indicating lights display the contents of the OP, I Address, A Address,
B Address, A and B registers, and the logic unit.

4. Single Cycle-Non Process. This is similar to the single-cycle-process mode,
except that no data enters storage from the A register or the logic unit. Data
always enters storage from the B register only. This mode permits observing the
results of arithmetic operations, one character at a time, in the logic display,
without destroying the original B field data.

5. Character Display. When the machine is operating in this mode, the start
key is pressed to cause the character at the address selected by the manual-
address switches to be displayed in the B register.

6. Storage Print Out. This mode of operation permits any 100-character block
of storage to be printed. The hundreds and thousands manual address switches
are used to select the desired block of storage.

Ezample: 12xx is set in the manual address switches and the start key is
pressed. The 100 characters in the selected block 1201-1300 are printed auto-
matically in print positions 1 through 100. Another automatic print cycle causes
the word marks for that block to be indicated by printing 1’s in their corre-
sponding print positions on the second line. This featureisused to great advantage
in program testing, because the contents of a block in core storage is printed and
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can be easily examined by the programmer. Thus, this feature serves to increase
both processing and programming efficiency.

7. Alter. The operator can manually change the contents of any address
register or storage location if the mode switch is set to aLTER. For example, to
change the contents of address registers:

set the manual address switches at the desired location;
press the appropriate address register key-light;

press the sTarT key;

the selected address register is set with the new address.

To change the contents of a storage location:

set the manual address switches to the desired location H

select the bit-structure of the character to be entered, by setting the eight
BIT-switches located on the auxiliary console;

press the ENTER key (also on the auxiliary console).

8. Storage Scan. When the mode switch is set to STORAGE SCAN, pressing the
start key causes the 1401 to start reading out of storage beginning at the address
set in the manual-address switches. If an error condition is detected that had
been previously set by an input-output device the machine stops, and the check
light with the corresponding unit is turned on; and the location of the card column
or print position in error is shown in the storage address display unit. The B-
register contains the storage position in which the error was detected, the actual
location in storage can be corrected by using the Brr-switches and ENTER key as
described under the ALTER mode. ' ’ '

After the error condition is corrected, the MopE switch is again set to STORAGE
5CAN and the sTART key is pressed to cause a read out of storage starting from the
address set in the manual address switches. This mode is used as a service aid to
insure that all positions of storage are correct.

9. Address Stop. When the mode switch is set to ADDRESS STOP, pressing the

start key starts the program and the machine stops at the address selected by the
manual address switches.



SIXTEEN

A PROBLEM

16.1. INTRODUCTION

Programming is a plan for the solution of a problem. A complete
program includes plans for transcription of data, coding for the computer,
and plans for the absorption of the results into the system. Programming
has been discussed earlier, and the preparation required before the com-
puter can start working on a problem was given preliminary attention.
This discussion will assume that a computer has been selected and built.
The code for this computer is available and known to the programmer.
The computer is functioning properly and computer time is available for
the solution of the problem.

The problem for solution is also familiar to the programmer, and he

understands the formulas which relate the output to the input informa-

tion. The form of the data is also known; this includes the range of num-
bers in both the input and output data, the number of times the routine
is repeated as one or more of the parameters in the formulas are varied,
the number of significant figures in the input data, and the accuracy
required in the solution.

The steps to be taken to solve a problem are now enumerated.

Numerical Solution

A digital computer is only able to perform directly the processes of
arithmetic. Any equation or transcendental function must be converted
371
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into a numerical approximation. Thus, if the sine of an angle is required
somewhere in the problem, an arithmetic method must be used to obtain
a trigonometric approximation. The method that you and I use, going to
a set of tables, can be incorporated into the computer solution provided
enough storage space is available for the computer to “memorize’”’ the
function table. Another method that we might use is to expand sin X
into a rapidly converging series and substitute the values of X into this
expression. This eliminates storing a table within the computer memory
but requires the use of a subroutine.

Other problems solved by numerical approximations in this way
are differential and integral equations and a variety of transcendental
functions.

Analysis into Subproblems

The programmer will find certain sections of a solution, such as finding
the sine or the square root of a variable, to be subroutines with which he
is familiar. When he recognizes the subroutines, he can consider them as
subproblems. This is demonstrated in our sample problem discussed
below. Usually the interrelation of certain steps is obvious, and the prob-
lem subdivision can follow a natural course.

Layout of Data and Program within the M. emory

The number of words of input and output data should be determined
as closely as possible. Position of these data in the memory can then be
assigned, as long as sufficient space is reserved for the program and cer-
tain storage locations are kept free to contain intermediate results and
constants.

Flow Chart

The programmer now determines into what subproblems the problem
may be divided. He should then know whether subroutines are available
for subproblems and where he can locate the subroutines. Each subpro-
gram is flow-charted where a subroutine does not already exist. The flow
of information for each section of the problem is laid out in a chart, as
previously discussed, and as in the sample problem below. Each of the
boxes in the flow chart is assigned a number which is useful when relative
coding is done.

Relative coding uses labels to identify storage locations for instruc-
tions with respect to their order of appearance in the subroutine, rather
than the actual address in memory which will later be assigned to the
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instruction. Relative coding allows the programmer to refer to data and
instructions as operands in the coding before he has determined what
their best location is within the memory. This method is demonstrated
in the illustrative problem.

Coding

From the flow chart a program can be easily devised, using relative
coding.

Integrating the Coding

Once the subproblems have been coded, it is necessary to make a full
coding of the problem, working the subproblem codings together. At this
point the coding is converted from relative coding to absolute coding.
This means that specific addresses in the memory are now assigned to the
labels which have been used in the relative coding. At this time break-
points are inserted into the coding. A breakpoint at one of the steps in
the coding will cause the computer to stop there if it is so directed by the
operator by means of the control console. The breakpoint allows the oper-
ator to obtain intermediate results to see if the solution of the problem is
proceeding as planned. A few preliminary results are made by some other
method, such as a hand calculator, and these results are compared with
the answers the computer produces when it stops at the breakpoint.

Debugging

Now the programming is almost complete. It remains only to be
checked. Special simplified data, such as trivial solutions or hand-caleu-
lated intermediate answers to one of the sets of actual problems for com-
puter solution, can be used to check out the computer. The data and
program codes are entered into the computer memory. The computer
is started, and when it comes to a breakpoint, the operator checks the
results. If they don’t check, the operator and/or the programmer must
determine what is wrong. Once the program has been checked out com-
pletely in this fashion, the programmer can have confidence in the results
for other problem data submitted to the computer.

Running and Interpretation

The set of problems in its entirety is now submitted to the computer.
The results obtained may require the placing of titles along the top or side
margin or other similar frills, so that the customer can understand the
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results. Usually the programmer must also examine the results and deter-
mine their significance. Unless the customer is a scientist or technician,
the interpretation of the results is often left to the programmer.

16.2. ILLUSTRATIVE PROBLEM

To show how these principles are applied, a problem has been chosen
which, although fairly simple, requires an analysis following the above
description.

The problem is to determine the similarity of certain input waveforms.
Suppose that there are 20 of these waveforms labeled X, to Xo.*

Each of these waveforms is sampled at 18 points. The first sample of
the first waveform X is labeled z,0; the second sample is labeled zo.1; . .. ;
the eighteenth sample is labeled zo,;7.

Similarly, picking X; as a general waveform, its first sample is labeled
Z:,0, its second is labeled z;:; ... ; its eighteenth sample is labeled ;7.
The samples of the waveforms produce a 20 X 18 matrix, as shown in
Figure 16.2.1. The general sample is called z:., where 7 is the number of

a N\
z 0 1 2 ... 17 2 0 1 2 ... 19

0 0 oo do1 Poz ... dors
1 20 Zi1 Z22 ... Trar 1 ¢10 d11 P2 ... d119
2 2 d20 P21 P22 ... b2

Zo,0 To1 T0,2 ... T0,17

Z2,0 T2,1 T2,2 ... T2.17

19  =Zi50 ZTiea Z192 ... 1017 19 ¢10.0 d19.1 P19.2 ... D109

FIGURE 16.2.1. Matrix of sample pointsof FIGURE 16.2.2. Matrix of correlation
given waveforms, coefficients,

the waveform and a is the number of the sample within that waveform.
Let us suppose that the following relationship holds.

0 < |zl £ 9.99 (16.2.1)
That is to say, the absolute value of any sample point is less than 10. The
* Tt is often convenient to start the numbering of variables from 0 rather than 1.

If the reader will refer to the chapter on coding, he will note that cycling is simple
when the initial value of the variable is labeled 0.
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correlation coefficient between two waveforms is defined by

17

2 ZiaTja .
$ij = T=°_T_ (16.2.2)
2z 2z,
=0 a=0

a

Here 7 and j are the numbers of the waveform and a refers to the sample
point of each waveform.

The source of (16.2.2) is found in information theory. In the continu-
ous case this would take the form

[ xoxod
\ [, xiva [, Xiwa

The terms in the denominator are the RMS power of the respective wave-
forms. These are powers needed to normalize these waveforms—the
power of each waveform is set equal to unity. The numerator then repre-
sents the sum of point products of the waveforms. It can be shown that
this is maximum when the X; and X; are identical. In that case ¢u is 1.

A similar formula arises in statistics where the correlation coefficient
of two random variables is called r;; and is defined by

(16.2.3)

o:j

2

Trii = .8 (16.2.4)

04035
where o is the covariance and ¢}; and o} are the variances with respect to
each variable. Upon expansion this is found to be identical with (16.2.2).
The correlation coefficient is a measure of the similarity between two
waveforms. When the waveforms correspond exactly with respect to each
sample point, the correlation coefficient between them is 1; if the wave-
forms are mirror images of each other, if each value in one is the negative
of the value in the other, the correlation coefficient between them is
exactly —1; all other cases result in a correlation coefficient between —1
and +1. There is the least similarity between two waveforms when the

correlation coefficient between them is 0.

Results

The result of correlating this set of waveforms is a correlation coeffi-
cient ¢;; for every combination of z and j. Since there are 20 ’s and 20 j’s,
there are a total of 400 correlation coefficients. These form a matrix of




376 A PROBLEM = cHAP. 16

answers as in Figure 16.2.2. Each of these coefficients is a number between
—1 and +1. Since the input data is significant to three digits, we cannot
expect any greater accuracy in the correlation coefficients.

The problem as stated above makes it clear that the input consists of
360 words and the output consists of 400 words.

16.3. SUBDIVISION OF THE PROBLEM

There are no exponential or transcendental functions encountered in
the statement of the problem. The only notable feature is the need to
obtain the square root of an expression. Let us assume that this procedure
already has been coded as a subroutine and that the coding is readily
available to be incorporated into the problem.

In order to facilitate further analysis of the problem, the following
simplification is made.

17

Yh = 2 Tikia (16.3.1)
a=0
17
and Yii = A 2 TiaBia (16.3.2)
a=0
so that
Y2
bij = —— (16.3.3)
YiiYsi

This notation immediately poses a subdivision to the problem: first, the
y:'s are calculated; then the square roots of the variables y% (v with

results

FIGURE 16.3.1. Subdivision of the correlation problem into five major jobs.

J = 1) are taken to yield w.; finally, the correlation coefficients are
calculated.

The problem then can be divided into five parts as shown in Figure
16.3.1. Here the first and the last parts consist of entering the informa-
tion and coding into the computer and removing the results from the
computer.

We have sufficient information to allocate addresses in memory. This
is done, for the most part, arbitrarily. The first computer instruction is
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best entered at 000 since the computer can be automatically started from
this step. The first 200 addresses, 000 to 199, are left for the program, as
in Figure 16.3.2. Addresses 200 to 239 are spares. The data occupy posi-

000 100 200 300 400 500 600 700 800 900
to to to to to to to to to to
099 199 299 399 499 599 699 799 899 999

00’s Spare
10’s
20’s Yii's o's

30’s Tia'S Answers

40’s | Program
50’s and Data
60’s Spares
70’s
80’s
90’s

FIGURE 16.3.2. Memory map, correlation problem.

tions 240 to 599. The output information, the correlation coefficients, are
assigned the spaces 600 to 999.

16.4. MORE INFORMATION ABOUT THE POLYVAC

We are going to do this problem on the Polyvac, so we should learn a
few more details about the computer. It is a drum-type computer and
the drum rotates at 6000 revolutions per minute. This amounts to 100
revolutions per second, or 10 milliseconds per revolution. The maximum
access time for the computer is 10 milliseconds, and the average access
time is 5 milliseconds. Let us say that the computer can do an addition
in 100 microseconds. Each addition requires the moving of one word, or
ten characters. Then each character must be moved in 10 microseconds,
so that the character time is 10 microseconds. This requires a basic pulse
repetition rate of 100 kilocycles.

The Polyvac has paper tape input and output. Unlike many com-
puters, the Polyvac matches the speed of these devices so that it can
accept information at 300 characters per second and punch out infor-
mation at 300 characters per second. This is well within the state of the
art, although the output paper tape punch is more expensive than the
input paper tape reader.
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More Instructions for the Polyvac*

Lop. In order to load information into the computer, this instruction is
given. It may be stated symbolically as

LOD: (PT)— M; (PT)— M +1; ...; (PT)—> 999;
' = 000

The first complete word is read from the paper tape and inserted into the
memory address MMM; the next complete word is read from the paper
tape and stored in the succeeding memory address. The process continues
until the word read is placed into location 999. After that point no further
words are read from paper tape but the next instruction word is taken
from the memory address 000 and acted upon.

Urp. To unload information from the memory, the unload order is given.
ULD: (M)—PT; M+ 1)— PT; ...; (999) — PT;
=141

The word at address MMM is entered into the paper tape punch and
punched onto the paper tape. The words at the succeeding addresses in
the memory are punched onto the paper tape similarly. After the word at
location 999 is punched onto the paper tape, the computer takes its next
instruction from I + 1.

REep. This is the instruction to read a single word with the paper tape
reader:

RED: (PT)— M

The word read from the paper tape is entered into the memory location
MMM. The computer takes its next instruction from I + 1.

Pun. This order is given to read out or punch a single datum. The word
at location MMM is punched into the paper tape and the computer finds
its next instruction at I 4+ 1.

PUN: (M) — PT
Breakpoints

Letters specify the use of one or more characters in the computer
instruction word. The computer instruction word now looks like this:

PROMMMOCB X X
where B stands for the breakpoint. It is specified in the form of one of the

*The complete Polyvac code is found in Figure 5.7.
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first ten letters of the alphabet. Thus, the Polyvac has ten breakpoints
available. The programmer can specify a breakpoint in the program by
placing a letter at the position indicated above by B in the instruction
word. To use this breakpoint, the operator must throw the breakpoint
switch corresponding to the letter in the instruction word. Thus, if the
instruction at position 137 is

137: ADD 239 3 A

then the computer will stop after completing instruction 137 if the break-
point switch labeled A has been put in the “on’’ position by the operator;
otherwise, it will disregard the breakpoint letter.

16.5. CORRELATION PROBLEM—FIND 7%

For each 7 and each j there is a y%. Since there are 20 7’s and 20 j’s,
there will be 400 y2’s. Remember there are 400 correlation coefficients
using the same subscripts. Why not place the y’s where the ¢’s will go?
These values will then go in one of the storage locations between 600 and
999.

Now, how do we assign a location to y;? Let us start with the very
first Va,lue, y2,, and assign it to the address 600; assign Y51 t0 601, and so
on; then yZ ,, will go into 619. Let us next change ¢, which was formerly 0,
to 1 and place the next values in succeeding locations. Then y,0 goes into
620; 31,1 goes into 621, and so on. In general the y;; is assigned to 600 +
207 + 7 so that

[y:;] = 600 + 207 + j (16.5.1)

At what address is the general z;, stored? Well, the first value, Zo,0 i
assigned to 240; xo,17 is found in 257; 71,0 is found in 258; and in general

(i) = 240 + 18/ + a (16.5.2)

Now that we know where the results and input data are, let us recall
the formula relating them (16.3.1), restated here,

17
v = 2 , Tiaia (16.5.3)

This is the sum of products. Each product has a fixed 7 and j and differs
only in a. To determine the yZ’s, we

1. fix 7 and j and vary a systematically;
2. change j systematically, then varying a again;
3. change ¢ systematically, varying j, then varying a.

Since we have cycle registers available, the variation of a may be made
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by varying the cycle register. From (16.5.2) it can be seen that varying a
varies i, and @j, simultaneously as desired. If we start with the largest
value of a and tally down, we can automatically determine when we have
formed the required number of products Tialja.

We cannot use a cycle register for obtaining the next 7 or j address
because they differ by 18; that is,

[xl'+i.a] - [a;i,a] =18 =d (1654)

This difference, d, of 18, however, can be used to alter 7 and J by conven-
tional address modification.

Another use of a cycle register is to keep track of the address of the
result. If we let

b= 20; + j (16.5.5)

then [y7] is formed from (16.5.1) by simply adding b to 600. The initial
value for bis 0 (z = 0,5 = 0) and this is established in box 20 of Figure
16.5.1. Setting in this initial value is called initializing.

20 21 22 23
0=b (1)~ 1801 (2 ) (A) 4+ Xj XigA | | a-1-=0

26 25
b+1-=b [« (A)—b

i21_:>ji _’®

FIGURE 16.5.1. Flow chart of job II: find yii.

Box 21 initializes the cycle index labeled a to 18, because there are 18
different values which @ may assume. We are going to form y by working
backwards using the last sample of each waveform first. We start with
the last sample of the first waveform, z 7 located at 257 and work back
to the first sample of the first waveform, z,0 at 240.

The method adds the contents of one of the cycle registers (CY1) to a
“fixed” address. “Fixed” is in quotes because it will be modified by the
number d discussed above. The first time around, the cycle register is set
so that the sum of the fixed address and the cycle index is 257. Just before
the cycle index is tallied down to 0, the last product using (240) is formed.
Then the fized address 41 (the cycle index is 1 before tallying down to 0)
must equal 240. Hence, the fixed address is 239. The first value needed
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is 257, or 239 + 18; hence, the cycle index is initially 18. We knew this
before because, since there are 18 sample values, there must be 18 in the
cycle index (a rule of thumb).

In box 22 the product of corresponding sample points in two wave-
forms is added to the sum of the products so far accumulated, and this
sum is returned to the A register. In box 23, the a index is tallied down.
As long as a is greater than 0, there are more terms to be calculated and
added. Box 24 compares a to 0 and loops back via circle 2 to box 22 as
long as a is greater than 0. When a is equal to 0, the A register contains
the value y%. This value is stored at the b address in box 25, formed by
adding b of (16.5.5) to 600. In box 26, b is tallied up to get the next address
for yfj- In box 27, j is compared with 19. If all the possible waveforms
have been correlated with this waveform (labeled %), if ¢ is now 19, then
we proceed to box 29. Otherwise, we can correlate the nezt (j + 1) wave-
form with this (7). Box 28 increases j to j + 1.

Box 29 compares the number of this waveform (7) with 19. If they
are equal, we are done with this subproblem and go on to subproblem III.
Otherwise, in box 30 the index j, which we found to be 19 in box 27, is
changed to 0, and the index 7 is increased by 1.

Coding

In coding this section of the problem, relative coding is done; the com-~
plete coding is found in Figure 16.5.2 at the end of the section. Each
instruction is numbered according to the box to which it corresponds,
rather than the actual location of the instruction in storage. This will be
changed when the absolute coding is made up.

First, we initialize b; we set 0 into the cycle register assigned to b, CY2.

Step PRO MMM C Remarks
20.1 XP2 000 0—>b

Next, we set cycle index 1 assigned to a to 18.
21.1 XP1 018 18— a+1

The next three orders form the partial product. Add it to the partial sum
and return the partial sum to A.

22.1 XML 239 1 Zie—> L
22.2 MUL ﬁg 1 (A) + Tialja — L
22.3 XMA 00L 2 ZiaTja—> A

Notice that both 239’s are underlined. Address modification will be
accomplished by actually changing the operand address in the instruction.
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This method is required because the address increment in this case is 18
and not 1 and does not lend itself to a simple cycle index method.

Notice that step 22.2 determines the address of zj, by adding (CY1)
to 239 the first time; each successive time it is used, the 239 is adjusted by
adding 18 to get a new value of j. In step 22.1 the changes in the operand
address are due to the formation of new 7 values.

Now we tally down the cycle index a and test it to see if the sum of
the products is complete—to see if all the a’s have been used. If it is not,
another product is formed and added by returning to Step 22.1.

Step PRO MMM C Remarks
23,24 TM1 221 a—1—>a

Note that this instruction performs the duties of the two boxes, 23 and 24

and is labeled accordingly. The completed sum is now stored at the b
address.

25 XAM 600 2 yi; —> 600 + b

The b cycle register is increased by 1,
26 TP2 27.1 b+1—

Here no decision is required. The next address MMM is filled in as 27.1
so that the next order 27.1 will always be done next.

The j index is checked by taking the command referred to as 22.2 and
comparing it with a dummy command stored at [19] to check whether all
the values of j have been used. The dummy at [19] will be identical to
22.2 only when j = 19.

271  XMA 22.2
272 CMP [19]} j:19
273  JOE 29.1

If j has not yet reached 19, it is increased by 1 by increasing the operand
address in the multiplication order (22.2) by d = 18. The next sum of
products may then be calculated by returning to Step 22.1.

281  ADD [d]
282  XAM 222t j4+1—j
283  UCJ | 22.1

If the j values have been exhausted, the ¢ value is next checked. If
the 7 values have been exhausted, this subroutine is completed and we
go to III,

29.1 XMA 22.1]
#:19

29.2 CMP [19]
293  JOE 111
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Otherwise the 7 value is increased by 1 [adding 18 (d) to the operand
address of 22.1].

Step PRO MMM C Remarks
30.1 ADD d X ,
302  XAM 221 itl—

The j value must also be reset to 0. This is done by replacing the already
altered step 22.2 by a prestored copy of the original. We then return to
box 21.

30.3 XMA [New 22.2]) )
30.4 XAM 22.2 - 21’11
30.5 ucy 21.1 .

This completes the subroutine, presented in full in Figure 16.5.2.

Step P ROMMMC Remarks
20.1 XP2000O0 0—b
21.1 XP1018 18—a +1
22.1 XML 2 3 91 zie—>L
22.2 MUL 2 3 91
223 X MADO 0L ] (A F e =—S
23,24 T M1 221 ea—1—a
25 X A M6 O0O0 2 yi — [¢iil
26 T P 2 271 b+1—>b
27.1 X M A 221
27.2 C MP [19]* 7:19
27.3 J O E 291
28.1 A D D [18]***
28.2 X A M 222 } j+1—>j
28.3 U CJ 211
29.1 X M A 221
29.2 C M P [19]** i:19
29.3 J O E III
30.1 A D D [18]*** . ,
30.2 X A M 221 ¢l
30.3 X M A [New 22.2]
30.4 X A M 222 0—>j
30.5 U CJ 221

These dummies are different

*MU L 6§ 7 9 1 0 0 O

*XM L 5 7 9 1 0 0 0

**x0 0 o 0 1 8 0 O O O

FIGURE 16.5.2. Subprogram to find v%; (Il).
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16.6. THE SQUARE ROOT SUBROUTINE

This section is not devoted to discussing the square root subroutine
itself, but rather how access may be gained to a subroutine from any
given point in a program.

The values for which the square root must be found are the 20 y3's.
The flow chart for doing this is found in Figure 16.6.1. In box 40 the

40 a - 43
TT—> | Initialize (1 | y2—A @ Store y;

44
i—1—i
a—1—-a

FIGURE 16.6.1. Flow chart of job Il of the correlation problem.

% index is initialized so that y,9 ;0 is called for first. In box 41 the quantity -
for which the square root is to be found, y2, is obtained from the memory
and placed into the A register. Box 42 is the square root subroutine. Box
43 stores the square root in the assigned working storage location. Box 44
decreases the cycle index 7 by 1. Box 45 checks the cycle index 7 ; if all the
values y:; have not yet been found, return to box 41 via circle 1.

Each of the answers obtained by taking the square root is stored at
the working storage location allocated as

[ya] = 220 + ¢ (16.6.1)

The addresses of the values for which the square root is to be found are
given by

Y% = 600 + 20¢ + 7 = 600 + 214 (16.6.2)

These addresses differ by 21. Successive operands are found by subtract-

ing 21 from the previous operand address in order to procure the next

number y. We start with y3,,, which is found at 999; the next square
root operand, ys,1s, is found at 999 — 21 = 978, and so forth.

Coding

The operand address is to be found using (16.6.2).- We wish to start
with the operand at 999. We find successive operands by successive sub-
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tractions of 21. This is stated as

lya] = 999 — f(19 — 7) (16.6.3)
where f = 21, or

[y:] = 600 + e — f(19 — %) (16.6.4)

where e = 399. o
We can get 600 + e by storing e in a cycle register and adding it to a

command with operand address 600. To get the next operand, subtract

f from the cycle register before using.

Successive addresses of y:; differ by 1 so that they can be found by
tallying down a cyecle index.

The 4 is kept track of in cycle register 1; the operand increment
f (= 21) is stored in cycle register 2; the augmented address modifier e is
stored in cycle register 3. Then to initialize we have

Step PRO MMM c Remarks

40.1 XP1 020 20— ¢
40.2 XP2 021 21— f
40.3 XP3 399 399 —>e

The value for which the square root is to be taken is entered into the A
register.

411 XMA 600 3 y——A
Preparation is made to return to this step in the program b}.r storing the
address to which return must be made when the subroutine is completed
in cycle register 4.

41.2 XP4 43.1 43.1 — CY4

Now we jump to the square root subroutine which is stored in steps 42.1

to 42.19, say,
41.3 ucJ 42.1 =/

The last step after the step in the square root subroutine is. set up so that
a return is made to the proper point in the current routine to pick up

where we left off,
42.20 ucJs 000 4 =43.1

The square root is in the A register. It is to be transferred t9 one of the
locations 220 to 239. The proper location is obtained by adding the con-
tents of the cycle register 1 to 219,

43.1 XAM 219 1 yii — Wil

The address of the next value for which the square root is to be found

i

i
b
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is determined by subtracting f from e, which is in cycle register 3. This
requires three steps.

Step PRO MMM C Remarks

441 XMA CY3 e—— A

44.2 SUB CcY2 e—f— A e —f—e
443 XAM CY3 (A) — CY3

Now we tally down; and at the same time we check to determine if all
the square roots have been taken; if not, we return to step 41.1.

45 TMI 41.1 1+ 1—1

The access subroutine for the square root subroutine appears below
in Figure 16.6.2.

Step P RO MMMC Remarks
40.1 XP1020 20 —> ¢
. 40.2 XP2o0 21 21— f
40.3 XP3 3 9 9 399 — e
41.1 XMAG6 00 3 yh—— A
41.2 X C A 431 [43.1] — CY4
413 U CJ 421 =
421

v

4220 UCJ O0O0O0 4 = 43.1
43.1 XAM2 19 1 Yis — [yss]
44.1 XMACY 3

442 S UBCY?2 e —f—e
44.3 XA MCY 3

45 T M1 411 1t—1—>¢

Iv

FIGURE 16.6.2. Coding, Part lll, correlation problem.

16.7. CALCULATION OF THE PHI'S
The phi’s are determined by the formula (16.3.3).

2
Yij

¢i; =
Tyl

Flow Chart

The first task is to get a sequence in which to find the ¢’s. Tallying
down is our best bet. We start with the largest values of ¢ and j; after
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each value of ¢ is found, we reduce j by 1, holding 7 fixed; j is reduced
until it becomes 0. We start on another set of ¢’s by reducing 7 by 1 and
using the largest value of j; this requires that j be restored ; we then begin
reducing j again. We are done when ¢ is reduced to 0.

The place from which y; is obtained and to which the corresponding
¢ is returned is to be found. The address to be used first for 3,19 is 999;
successive addresses are obtained by subtracting 1. The address of the
¢’s is in the form

¢;=B+Db (16.7.1)

where B is a constant and b is successively reduced by 1.
The flow chart for this is found in Figure 16.7.1. Box 60 is for initializ-
ing. In box 61 the product yuy;; is formed. In box 62 the product formed

60 61 62 63 64
Initialize . . -
m— | " (1 )—=1 Find y; ; Find ¢y; = $ij>B+b b-1->b
7 69 68 : 66 65
i IniTionize > i'0 i-1—i ]_1_>i Q
70 X
Error

" FIGURE 16.7.1. Flow chart of job IV of the correlation problem.

in box 61 is divided into the corresponding y* value, y%, forming ¢. This
value is stored at the address labeled B + b in box 63. The b index is
tallied down in box 64 and compared to 0 in box 65. If b is 0, all the ¢’s
have been calculated and we go to subroutine V. Otherwise, the j index
is reduced by 1, box 66, and checked to see if it has reached zero in box 67.
If not, the new ¢ value is found by re-entering box 61. When j is equal
to 0, the ¢ index must be reduced by 1in box 68 and it is compared with 0
as a double check in box 69. If it is equal to 0, an error has been made and
the machine stops—box 70. Otherwise, the 4 index must be reset to 20,
box 71, and return made to box 61.

Coding

The coding for part IV is presented in Figure 16.7.2. The reader
should now be able to follow the coding with the help of the remarks in
the column so headed and with the aid of a few additional notes.

e
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The stumbling blocks to beware of are the Initializing and the setting
of the operand addresses to be modified. There are 20 each of 7 and j
values and a total of 400 b values; the operand addresses in steps 61.1

Step P ROMMMC Remarks
60.1 XP1400 400 —> b
60.2 XP2020 19— 4
60.3, 70 XP3o020 19— j
61.1 XML 2 19 2 yis—> L
61.2 MUL 2 1 9 Yiiyii——> L
62.1 XMAS5 9 9 1 yi— A
62.2 DI VOOL b —> Q
63.1 XQ M5 9 9 1 ¢i;—> B + b
64, 65 T M1 66.0 b—1—>b

A%
66, 67 T M3 611 i—1—j;
68, 69 T M 2 603 i—1—>;
71 S TP — i=0

FIGURE 16.7.2. Coding, Part IV, correlation problem.

and 61.2 are found by subtracting 20 from [19,15]; that used in both 62.1
and 63.1 is found by subtracting 400 from %25, 16].

16.8. ENTERING AND REMOVING INFORMATION
FROM THE COMPUTER

Loading the Computer (I)

The content of the memory has been laid out earlier in Section 16.3.
The entire content of the memory, since it is known, is entered into paper
tape by a typist from the copy given her by the programmer. The full
1000 words must then be entered from the paper tape into the computer
memory.

The paper tape is placed in reading position in the paper tape reader.
The operator then sets an order into the control register by means of the
operator’s console. The order he enters there is

LOD 000

This order causes all the information to be read from the tape into the
memory. The computer will then choose its next instruction from the
address 000.
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Unloading the Computer (V)

After the results have been stored in the output section of the memory,
one simple order will transfer all the results into punched paper tape.
This order is

ULD 600

Reloading the Computer

It is possible to enter a new set of data for caleulation by following the
unload order by another load order which will cause further information
to be entered from paper tape, beginning with the first datum location,
240; the computer will start again from the initial location 000. This is
done by placing the new data tape into the input unit and entering on the
console the order

LOD 240

16.9. FULL ROUTINE

We shall now take the five subroutines of the problem just devised
and integrate them into one coded routine. In so doing, the relative cod-
ing is replaced by absolute coding.

The original loading order, as mentioned in Section 16.8 will be entered
into the console and is not part of the coding. The first order to be per-
formed by the computer, located at the address 000, is the first order of
subroutine II.

The coding of the full routine appears as Figure 16.9. The first steps
are a duplicate of those of Figure 16.5.2. The difference is that the loca-
tion numbers are now absolute; the first one is at 000. Notice that the
operand locations can now be filled in while the program is being written
in absolute form. Let’s examine the first occurrence of this process. Step
005 in the full coding requires that an absolute address be used for its
operand. Examining Figure 16.5.2, we notice that this step, which is num-
bered 23,24, uses as an operand the step numbered 22.1. Its absolute
address is determined by returning to Figure 16.9, where we find that the
order originally called step 22.1 is here called step 003. All operand loca-
tions relatively coded are converted in this manner. When the address
called for is one not yet coded, we leave it blank. When the last coding
step has been noted, we can return and fill in the blanks.

In Figure 16.5.2, step 27.2, comparison is made and the operand for
this comparison is a dummy. The dummy is listed next to the asterisk in
that figure. A location has not been assigned to it. We shall work back-
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wards within the spare locations and assign location 219 to this dummy.
In the final coding step 009 specifies 219 as its operand for this reason.
In a similar manner, the operand in step 015 is specified as 218.

As in Figure 16.5.2, step 29.3 requires a jump-on-equal to ITL. The
operand address of subroutine III is left blank until its place in the abso-
lute program is determined. The second subsection of the problem can be
entered in the first 22 locations of memory which ends with location 021.
Therefore, the third subsection of the problem will start at step 022. As
we start the third subsection, the location 022 can be entered in the blank
space of step 016.

The coding continues, now using the steps of Figure 16.6.2.

The next novel situation encountered occurs when the square root
routine is called for. Let us assume that the steps for this routine, previ-
ously available, can be stored in the locations 180 to 198. When we reach
step 027, the location to which the jump should be made is 180. The step
to which we wish to return after using the square root routine is that
which is after 027, and hence the number is 028. This is the number to be
entered into cycle register 4, step 026. Notice that the step following the
square root routine, numbered 199, specifies a jump to 000 plus the con-
tent of the cycle register. This will cause a return to the main routine at
step 028.

The fourth subsection of the program is added in final coding form by
simple substitutions using the coding of Figure 16.7.2 as a basis. When
unloading is called for, it is specified at step 042 as discussed in the last
section. Notice that a stop is called for at step 043 and that the operand
address for the stop is 044. This means that if the restart button is
pressed, the computer will begin with step 044. Step 044 is a load order.
Tt will load the computer from the punched paper tape input, starting at

position 240. This position is where the firstinput datum isstored. Thus the
program will remain untouched and new data will be entered into the
computer to be worked on. After the computer is loaded, it will take its
next instruction from location 000. This procedure obviates the need for
rewriting the program each time new data is to be run.

Breakpoints

One more item which is included in the final program is the breakpoint
designation. The first breakpoint appears at step 006. It causes the com-
puter to stop after the first value for yZ has been found and stored. This
is the first point at which the programmer can check functioning of his
program. The first time around the operator will find yg,, in the A register
after this order.

The next breakpoint is at step 028, just after yi has been stored. The
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first time around, the value of yo,0 will be found in the A register, thus
providing the second check on the program. If desired 1 « may be checked
for all values of ¢ at this breakpoint.

The third breakpoint at step 039 occurs after the first answer is
obtained. The first time around, this is ¢, which should be 1, as the
reader can check for himself. Further breakpoints may be added if diffi-
culty should arise in checking out the program.

16.10. PREPARATION AND RUNNING OF THE PROBLEM

Copy Preparation

The final coding of Figure 16.9 is translated for the typist into hard
copy, which also includes the input data. Typical copy will appear as in
Figure 16.10. In that figure no step number or location need accompany
the coding. In fact, it must not be present. The copy will be read one
word at a time in order into successive memory locations. On the other
hand, zeros have been added where previously they were not required in
the final coding. This is because each word must have ten characters. If
characters are lacking from this word, part of the next word would be read
as belonging to this word.

- Notice also that where there are words missing in the program, such
as between step 48 and step 180, words or zeros must be filled in. This is
for the same reason—if words are omitted, consecutive words on the tape
will occupy consecutive positions in the memory. The 220th word of the
hard copy is the first word of the input data. Data words are visually
distinguished by the presence of a sign in the left-hand position. Notice
again that all the words from 600 on consist of ten characters, or zeros.
The tape typist receives 1000 words of ten characters each to type. The
input tape of 1000 words is prepared from this hard copy.

Running the Problem

After the paper tape has been punched and when time is available on
the computer, the tape is loaded into the paper tape reader. The proper
switches on the computer are set so that it is supplied with full power and
ready to go. The load instruction is entered into the control register. The
breakpoint switch is set to A. The start button is pressed.

The computer takes off, and when the first breakpoint answer is ready,
it stops. The operator checks the answer with that produced by a hand
calculation. If the answer is wrong, he must set about checking his pro-
gram. He sets the operation switch on the operator’s console to one-step
operation. He presses the start-at-zero button and examines the content
of each register as each step is performed at his instigation. Further
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Remarks for
reader only,
not typist

Address 000 |XP20000000

Program

047-{STP0000000
0480000000000

Dummies
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XP30180000
XP10180000
XML2371000

TM20350000

0000000000

0000000000

0000000000
MUL2391000
XML5791000
MUL5721000
0000000000

0000000000
+000000137
-000000025
+000000937

-

+00000027 1
0000000000

0000000000
r\/\\/\/-’\

FIGURE 16.10. Copy for typist, correlation problem.
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details of the debugging process can only be gained through experience.
Each program has its own eccentricities.

Once the program is checked out, all the breakpoint switches are
turned off and the program is run from the beginning. The paper tape
punch will start operating as a finale to the program. The paper tape
thus produced is entered into the output equipment—in this case a tape-
reading typewriter. The typewriter will print out columns of 10-digit
numbers. The operator labels these columns to coincide with the answers.

It is usually the job of the programmer to interpret the results. In
this case he would examine each of the correlation coefficients to deter-
mine which of these was equal to or close to 1 in value. These would indi-
cate waveforms which were similar. Naturally, the correlation coefficient
between a waveform and itself should be 1. Hence he would disregard
these correlation coefficients, using them only as a check of the authen-
ticity of the program.

PROBLEMS

1. Using the coding of Problem 4 of Chapter 5, write a relative coding for the
square root by the Newton-Raphson method. Incorporate this into the
routine of Figure 16.9.

2. Start with a table of 100 values of ¥, where ¥; = Y (X;) with the X; at uniform

intervals. Given 75 X s set up a program to interpolate to find the ¥,'s and
then the Z;s where

Z = A,,Y"+A”_1Y“_1 4 ... +A1Y+ Ao

with 7 = 11. Lay out the complete program together with a special print-
out when X; lies outside the range of the table. Include the in/out procedures.

3. Look up the formula for the solution of a cubic equation. Use for an iteration
formula for the cube root

1/X
Z"+1=Zi+g<2‘?—zs>

Make up a complete program for the solution of sixty cubics.
4. Devise a complete statistical program so that, given corresponding values of
two variables as X; and Y, it will find

& EX; = EY.
X=—N— Y = N
Z X? oy?
H1 = N M2 = N Hiz = b XiYi/N
0'1=‘\/“1_X2 or =V — ¥? o1z = Vi — XY
2
J12
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GLOSSARY 2

This glossary was compiled from several current glossaries. Many e
definitions were added by the author, most of which apply to words 3
defined in the text but missing from the other glossaries. A number of
definitions from other glossaries were “adapted.” This is my way of
saying that I have changed a few words here and there to make the defini-
tion read, in my way of thinking, a little more smoothly or accurately.

Each definition is followed by a parenthetical letter indicating its
source. These are listed below. When any major change was made, the
author takes the full blame; where just a word or two are changed, it is
not noted and the original source is given.

DEFINITION SOURCES ! . |

A. “QGlossary of Computer Engineering and Programming Terminol- ,
ogy,” Aberdeen Proving Grounds, BRL Report No. 1010. This L
appeared in several installments in issues of the Communications of
the Association for Computing Machinery during 1958. It incorporates
many definitions from other assorted glossaries.

C. “Glossary of Terms in the Field of Computers and Automation,”
Computers and Automation, October 1958.

I. “IRE Standards on Computers,” Proceedings of the IRE, September
1956. This is a small list and is for the most part included in (A) and
(C) above.

M. “IRE Standards on Static Magnetic Storage: Definitions of Terms
1959, Proceedings of the IRE, March 1959.

F. The author’s definitions or the author’s changes of other definitions.

395



A

-ac. A suffix meaning “automatic computer,” as in Eniac, Seac, Polyvac. )

access, arbitrary. Access to storage under conditions in which the next position
from which information is to be obtained is in no way dependent on the previous
one. (A)

access, random. See access, arbitrary.

access time. The time interval between the instant at which the arithmetic unit
calls for information from the memory unit and the instant at which the infor-
mation is delivered from storage to the arithmetic unit. The time interval
between the instant at which the arithmetic unit starts to send information to
the memory unit and the instant at which the storage of the information in the
memory unit is completed. In analog computers, the value at time ¢ of each
dependent variable represented in the problem is usually immediately accessible
when the value of the independent variable is at time ¢, and otherwise not
accessible. (C)

accumulator. The register and associated equipment in the arithmetic unit in
which are formed sums and other arithmetical and logical results; a unit in a
digital computer where numbers are totaled, i.e., accumulated. Often the
accumulator stores one quantity and upon receipt of any second quantity, it
forms and stores the sum of the first and second quantities. (A)

accuracy. Freedom from error. Accuracy contrasts with precision; e.g., a four-
place table, correctly computed, is accurate; a six-place table containing an
error is more precise, but not accurate. (A)

adder. A device capable of forming the sum of two or more quantities. (A)

adder, full. A functional unit which produces outputs corresponding to the sum
and carry of binary addition for inputs corresponding to the addend, augend
carry-in bits. (F)

address. A set of characters which identifies either a register, a location in stor-
age, or a device in which information is stored; a label, usually in the form of
numerical coordinates. (F)

address, absolute. The label(s) assigned by the machine designer to a particular
storage location; specific address.

address part. In an instruction code the part that specifies an address. See code,
wnstruction. (F)

address, relative. A label used to identify a word in a routine or subroutine with
respect to its position in that routine or subroutine. Relative addresses are
396
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translated into absolute addresses by the addition of some specific “‘reference”
address, usually that at which the first word of the routine is stored; e.g., if a
relative address instruction specifies an address and the address of the first word
of the routine is %, then the absolute address is n + k. (A)

address? symbolic. A label chosen to identify a particular word, function, or
Ot.heF information in a routine, independent of the location of the information
within the routine; floating address. (A)

allocate. To assign storage locations to the main routines and subroutines,
thereby fixing the absolute values of any symbolic addresses. In some cases
allocation may require segmentation. (A)

amplifier. A device for increasing the amplitude of electric waves by the control
exercised by the input over the power supplied to the output of the amplifier.
See also amplifier, buffer and amplifier, torque. (C)

amplifier, buffer. An amplifier used to isolate the output of any device, e.g.,
oscillator, from the effects produced by changes in voltage or loading in subse-
quent circuits. (A)

amplifier, torque. A device which produces an output turning moment in pro-
portion to the input moment, wherein the output moment and associated power
is supplied by the device, and the device requires an input moment and power
smaller than the output moment and power. (A)

analog. The representation of numerical quantities by means of physical varia-
bles, e.g., translation, rotation, voltage, resistance; contrasted with “digital.”
(A)

analyzer, differential. An analog computer designed and used primarily for
solving differential equations. (A)

and. A logical operator which has the property that for two statements P and @,
the statement “P and Q" is true or false according to the following table:

P Q P and Q
false false false
false true false
true false false
true true true

The and operator is represented by a centered dot (), or by no sign asin P+ Q
or PQ. (A)

and-gate. See gate.

arithmetic unit. That portion of the hardware of an automatic computer in
which arithmetical and editing operations are performed. (A)

assemble. To integrate subroutines (supplied, selected, or generated) into the
main routine, by adapting, or specializing to the task at hand by means of preset
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parameters, by adapting, or changing relative and symbolic addresses to abso-
lute form, or incorporating, or placing in storage. (A)

asynchronous. See compuier, asynchronous.

attenuate. To obtain a fractional part or reduce in amplitude an action or
signal. (A)

automatic controller. A device which controls a process by (1) automatically
receiving measurements of one or more physical variables of the process, (2)
automatically performing a calculation, and (3) automatically issuing suitably
varied actions, such as the relative movement of a valve, so that the process is
controlled as desired; for example, a flyball governor on a steam engine; an
automatic pilot. (C)

automation. Process or result of rendering machines self-acting or self-moving;
rendering automatic. Theory, art, or technique of making a device, machine,
or an industrial process more automatic. Making automatic the process of mov-
ing pieces of work from one machine tool to the next. (C)

B

base. A number base; a quantity used implicitly to define some system of repre-
senting numbers by positional notation; radix. (A)

beam, holding. A diffused beam of electrons used for regenerating the charges
stored on the screen of a cathode ray storage tube. (A)

bias. The average d-c voltage maintained between the cathode and control grid
of a vacuum tube. (A)

binary. A characteristic or property involving a selection, choice, or condition
in which there are but two alternatives. (A)

binary-coded decimal notation. One of many systems of writing numbers in
which each decimal digit of the number is expressed by a different code written
in binary digits. For example, the decimal digit 0 may be represented by the
code 0011, the decimal digit 1 may be represented by the code 0100, ete. (C)

binary digit. A digit in the binary scale of notation. This digit may be only 0
(zero) or 1 (one). It is equivalent to an “on’’ condition or an ‘‘off”’ condition,
a “yes’ or a ‘“no,” ete. (C)

binary notation. The writing of numbers in the scale of two. The first dozen
numbers zero to eleven are written 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001,
1010, 1011. The positions of the digits designate powers of two; thus 1010
means 1 times two cubed or eight, 0 times two squared or four, 1 times two to
the first power or two, and 0 times two to the zero power or one; this is equal
to one eight plus no fours plus one two plus no ones, which is ten. (C) Also
called natural binary. (F)
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binary number. A number written in binary notation. (C)

binary point. In a binary number, the point which marks the place between
integral powers of two and fractional powers of two, analogous to the decimal
point in a decimal number. Thus, 10.101 means four, one half, and one eighth.

©

binary-to-decimal conversion. Converting a number written in binary nota-
tion to one written in decimal notation. (C)

biquinary notation. A scale of notation in which the base is alternately 2 and 5.
For example, the number 3671 in decimal notation is 03 11 1201 in biquinary
notation ; the first of each pair of digits counts 0 or 1 units of five, and the second
counts 0, 1, 2, 3, or 4 units. For comparison, the same number in Roman
numerals is MMMDCLXXI. Biquinary notation expresses the representation
of numbers by the abacus, and by the two hands and five fingers of man; and
has been used in some automatic computers. (C)

bit. A binary digit; a smallest unit of information; a “ves” or a “no’’; a single
pulse position in a group of possible pulse positions. ()

block. A group of consecutive machine words considered or transferred as a unit,
particularly with reference to input and output. In a programming flow chart,
an assembly of boxes, each box representing a logical unit of computer program-
ming (see “‘box’). (C)

bobbin core. See tape-wound core.

Boolean algebra. An algebra dealing with classes, propositions, on-off circuit
elements, etc., associated by operators AND, OR, NOT, EXCEPT, IF ... THEN, ete.

©)

Boolean calculus. Boolean algebra modified to include time, thereby providing
an algebra or calculus for: states and events; additional operators such as
AFTER, WHILE, HAPPEN, DELAY, BEFORE; classes whose members change over time;
circuit elements whose on-off state changes from time to time such as delay
lines, flip-flops, and sequential circuits; go-called step-functions, and their com-
binations, ete. (C)

Boolean function. A mathematical function in Boolean algebra; examples of
. _ |
common functionsarec = aorb = aV b,¢c = aaND b = a - b, ¢ = NOT-@ = @,

¢ = GaEXCEPT b = a -+ b’, ¢ = NEITHER G NOR b = a-b. (0

bootstrap. In a programming flow chart, a logical unit of computer program-
ming surrounded by a rectangle and treated as a unit. Often identified by
requiring transfer of the instructions referred to therein into and out of the
rapid memory of the computer. (C)

breakpoint. A point in a routine at which the computer, under the control of a
manually set switch, will stop for an operator’s check of the progress of the
routine. (C)




400 , GLOSSARY = branch

branch. See conditional jump.

buffer. Storage between the input/output equipment and the computer where
information is assembled in easily absorbed units: storage between the main
memory and the computer where information is rapidly accessible. (F)

bus. A path over which information is transferred, from any of several sources
to any of several destinations. An electrical conductor capable of carrying a
large current; a trunk; a heavy wire, line, or lead. (C)

C

callin. To transfer control of a digital computer temporarily from a main routine
to a subroutine, which is inserted in the sequence of calculating operations
temporarily to fulfill a subsidiary purpose. (C)

call number. A set of characters identifying a subroutine, and containing infor-
mation concerning parameters to be inserted in the subroutine, or information
to be used in generating the subroutine, or information related to the operands.

©)
call word. A call-number which fills exactly one machine word. (C)

capacity. The number of digits or characters which may regularly be processed
in a computer, as in “the capacity is ten decimal digit numbers.” The upper
and lower limits of the numbers which may regularly be handled in a computer,
as “the capacity of the computer is +.00000 00001 to .99999 99999.” Quanti-
ties which are beyond the capacity of the computer usually interrupt its opera-
tion in some way. (C)

capstan. The rotating shaft on a magnetic tape recording and/or reading device
which is used to impart uniform motion to the magnetic tape on command. (F)

card. A document of constant size, thickness, and shape adapted for punching
in a pattern which has meaning. The punched holes are sensed electrically by
wire brushes, mechanically by metal fingers, or photoelectrically. Also called
“punch card.” Punch cards are 73"’ long and 3% wide and contain 80 or 90
columns in each of which any one or more of several hole sites may be punched.

(F)

card column. One of a number of columns (45, 80, or 90) in a punch card into
which information is entered by punches. (C)

card feed. A mechanism which moves cards one by one into a machine. (C)

card field. A set of card columns fixed as to number and position, into which the
same item of information is regularly entered; for example, purchase order num-
bers of five decimal digits might be punched regularly into the card field con-
sisting of card columns 11 to 15. (C)

card punch. A mechanism which punches cards, or a machine which punches
cards according to a program. (C)



card reader = GLOSSARY 401

card reader. A mechanism that causes the information in punch cards to be read,
usually by passing them under copper wire brushes or across metal fingers. (C)

card stacker. A mechanism that stacks cards in a pocket or bin after they have
passed through a machine. Sometimes called “card hopper.” (C)

carriage, automatic. A typewriting paper guiding or holding device which is
automatically controlled by a program so as to feed forms or continuous paper
to a set of impression keys and to provide the necessary space, skip, eject,
tabulate, and other operations. (C) )

carry. A signal or expression, produced as a result of an arithmetic operation on
one digit place of two or more numbers expressed in Positional Notation and
transferred to the next higher place for processing there. A signal or expression
as defined in (1) above which arises in adding, when the sum of two digits in
the same digit place equals or exceeds the base of the number system in use.
If a carry into a digit place will result in a carry-out of the same digit place,
and if the normal adding circuit is bypassed when generating this new carry, it
is called a High-Speed Carry, or Standing-on-Nines Carry. If the normal adding
circuit is used in such a case, the carry is called a Cascaded Carry. If a carry
resulting from the addition of carries is not allowed to propagate (e.g., when
forming the partial product in one step of a multiplication process) the process
is called a Partial Carry. If it is allowed to propagate the process is called a
Complete Carry. If a carry generated in the most significant digit place is sent
directly to the least significant place (e.g., when subtracting numbers using 9’s
complements addition), that carry is called End-Around Carry. In direct sub-
traction, a signal or expression as defined in (1) above which arises when the
difference between the digits is less than zero. Such a carry is frequently called
a Borrow. The action of forwarding a carry. The command directing a carry to
be forwarded. (A)

cascade control. An automatic control system in which control units are associ-
ated in a sequence, where each control unit regulates the operation of the next

control unit in the sequence. (C)

cathode ray tube. A large electronic vacuum tube with a screen for visual plot
or display of output in graphic form by means of a proportionally deflected
beam of electrons. A large electronic vacuum tube containing a screen on
which information, expressed in pulses in a beam of electrons from the cathode,
is stored by means of the presence or absence of spots bearing electrostatic
charges. This capacity usually is from 256 to 1024 spots. (C)

cell. Storage for one unit of information, as one bit, one character, or one machine
word. More specific terms (“‘column, location, block”’) are preferable since
there is little uniformity in the use of the term “cell.” (C)

centralized control. A computer for which all processing is controlled by a
single operational unit is said to have centralized control. Otherwise, the com-
puter has decentralized control, in which case requests for processing are issued
by the main control unit to auxiliary control units, each of which assumes control
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of a portion of the processing and surrenders control to the main unit on com-
pletion of the auxiliary task. (F)

channel. See drum, magnetic storage.

character. A decimal digit 0 to 9, or a letter A to Z, either capital or lower case,
or a punctuation symbol, or any other single symbol (such as appear on the
keys of a typewriter) which a machine may take in, store, or put out. Represen-
tation of such a symbol in a pattern of ones and zeros representing a pattern of
positive and negative pulses or states is called a character code. ©)

check. A means of verification of information. (4)

check, built-in or automatic. Any provision constructed in hardware for veri-
fying the accuracy of information transmitted, manipulated, or stored by any
unit or device in a computer. Extent of automatic checking is the relative
proportion of machine processes which are checked or the relative proportion
of machine hardware devoted to checking. (A)

check, duplication. A check which requires that the results of two independent
performances (either concurrently on duplicate equipment or at a later time
on the same equipment) of the same operation be identical. (A)

check, forbidden combination. A check (usually an automatic check) which
tests for the occurrence of a non-permissible code expression. A self-checking
code (or error-detecting code) uses code expressions such that one (or more)
error(s) in a code expression produces a forbidden combination. A parity check
makes use of a self-checking code employing binary digits in which the total
number of ones (or zeros) in each permissible code expression is always even or
always odd. A check may be made for either even parity or odd parity. A
redundant check employs a self-checking code which makes use of redundant
digits called check digits. (A)

check, mathematical or arithmetical. A check making use of mathematical
identities or other properties, frequently with some degree of discrepancy being
acceptable; e.g., checking multiplication by verifying that A-B = B- 4,
checking a tabulated function by differencing, ete. (A)

check, modulo N. A form of check digit, such that the sum of the digits in each
number 4 operated upon is compared with a check digit B, carried along with 4
and equal to the remainder of A when divided by N, e.g., in a “modulo 4
check,” the check number will be 0, 1, 2, or 3 and the remainder of 4 when
divided by 4 must equal the reported check number B, or else an error or mal-

function has occurred; a method of verification by congruences, e.g. casting out
nines. (A)

check, odd-even. See check, parity.

check, parity. A summation check in which the binary digits, in a chamc.ter or
word, are added (modulo 2) and the sum checked against a single, previously

computed parity digit; i.e., a check which tests whether the number of ones is.
odd or even. (C)
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check, programmed. A system of determining the correct program and
machine functioning either by running a sample problem with similar program-
ming and known answer, including mathematical or logical checks such as com-
paring A times B with B times 4 and usually where reliance is placed on a high
probability of correctness rather than built-<in error-detection circuits or by
building a checking system into the actual program being run and utilized for
checking during the actual running of the problem. (A)

check, redundant. A check which uses extra digits, short of complete duplica-
tion, to help detect malfunctions and mistakes. (A)

check, summation. A redundant check in which groups of digits are summed,
usually without regard for overflow, and that sum checked against a previously
computed sum to verify accuracy. (A)

check, transfer. Verification of transmitted information by temporary storing,
re-transmitting and comparing. (A)

check, twin. A continuous duplication check achieved by duplication of hard-
ware and automatic comparison. (A)

checking, marginal. To determine computer circuit weaknesses and incipient
malfunctions by varying the power applied to various circuits, usually by a
lowering of the d-c supply or filament voltages. (A)

clear. To make all bits zero (or sometimes one) in a storage device. (F)

clock, master. The source of standard timing signals required for sequencing
computer operation, usually consisting of a timing pulse generator, a cycling
unit, and sets of special pulses that occur at given intervals of time. Usually in
synchronous machines the basic frequency utilized is the clocking pulse. (A)

closed shop. A computing installation in which programs and routines are writ-
ten only by the professional staff of programmers. (F)

code. The machine-language representation of a character. The instruction code
is the set of symbols which conveys to the computer the operation which it is
to perform. The instruction code always specifies a process; it usually specifies
one or more operand addresses; it may specify the address of the next order; it
may specify additional information such as a cycle index or breakpoint. The
coded instruction code or machine-language operation code may sometimes be
referred to as a code. (F)

code, excess-three. A binary-coded notation for decimal digits which repre-
sents each decimal digit as the corresponding binary number plus three; e.g.,
the decimal digits 0, 1, 7, 9 are represented as 0011, 0100, 1010, 1100, respec-
tively. In this notation, the 9’s complement of the decimal digit is equal to the
1’s complement of the corresponding four binary digits. (A)

code, instruction. The set of symbols which conveys to the computer the oper-
ation which the programmer desires it to perform. The instruction code always
specifies a process; it may specify operand addresses; it may specify the address
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of the next order; it may specify auxiliary information, such as a cycle index
register or a breakpoint; see code, multiple-address. (F)

code, interpreter. A code which is acceptable to an interpretive routine. (A)

code, multiple-address. When the instruction code specifies no operands nor
the next instruction address, since these are implicit in the order structure, the
code is called a zero address code. The number of operand or result addresses
specified in the code may be used to describe it ; thus, a two address code is one
where two operand addresses are specified. If the address of the next instruc-
tion is part of the code, the phrase “plus one” is added to the description.
Thus, a one-plus-one address code specifies one operand address and the address
of the next instruction. (F)

code, natural binary. A machine language wherein the code corresponds exactly
to the binary numbers used in counting. (F)

code, natural-binary coded decimal. Sometimes NBCD or 8421. A code
which uses the four-bit binary number to represent each decimal digit, thus:

0—0000 1—0100 8—1000 F—1100
1—0001 5—0101 9—1001 F—1101
2—0010 6—0110 F—1010 F—1110
3—0011 7—0111 F—1011 F—I1111

where F is a forbidden combination. ey

code, operational. That part of an instruction which designates the operation
to be performed. (A)

code, self-complementing. A machine language for which the code of the com-
plement of a digit is the complement of the code of the digit. (F)

coder. A person who translates a sequence of instructions for an automatic com-
puter to solve a problem into the code acceptable to that machine. (C)

coding. The list, in computer code or in pseudo-code, of the successive computer
operations required to solve a given problem. (A)

coding, absolute, relative, or symbolic. Coding in which one uses absolute,
relative, or symbolic addresses, respectively; coding in which all addresses refer
to an arbitrarily selected position, or in which all addresses are represented
symbolically. (A)

coding, alphabetic. A system of abbreviation used in preparing information
for input into a computer such that information is reported in the form of let-
ters, e.g., New York as NY, carriage return as CN, ete. (A)

coding, automatie. Any technique in which a computer is used to help bridge
the gap between some “casiest’” form, intellectually and manually, of describ-
ing the steps to be followed in solving a given problem and some “most effi-
cient” final coding of the same problem for a given computer; two basic forms
are defined under routine, compiler and routine, inierpretive. (A)
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coding, minimum latency. See minimum-access programming.

coding, numeric. A system of abbreviation used in the preparation of informa-
tion for machine acceptance by reducing all information to numerical quanti-
ties; in contrast to alphabetic coding. (A) -

coercive force, H,. The magnetizing force at which the magnetic flux density is
zero when the material is in a symmetrically cyclically magnetized condition.
[Note: Coercive force is not a unique property of a magnetic material, but is
dependent upon the conditions of measurement.] (M)

coercivity. The property of a magnetic material measured by the coercive force
corresponding to the saturation induction for the material. [Note: This is a
quasi-static property only.] (M)

coincident-current selection. The selection of a magnetic cell for reading or
writing, by the simultaneous application of two or more currents. (M)

collate. To combine two sequences of items of information in any way such
that the same sequence is observed in the combined sequence. For example,
sequence 12, 29, 42 and sequence 23, 24, 48 may be collated into 12, 23, 24, 29,
42, 48. More generally, to combine two or more similarly ordered sets of items
to produce another ordered set composed of information from the original sets.
Both the number of items and the size of the individual items in the resulting
set may differ from those of either of the original sets and of their sum. (®)

collator. A machine which has input card feeds, output card pockets, and sta-
tions at which a card may be compared or sequenced with regard to other cards,
S0 as to determine the pocket into which it is to be placed. The machine is
particularly useful for matching detail cards with master cards, for merging
cards in proper sequence into a file of cards, ete. ©)

column. The place or position of a character or a digit in a word or other unit
of information. One of the characters or digit positions in a positional-notation
representation of a unit of information. Columns are usually numbered from
right to left, zero being the rightmost column if there is no decimal (or binary,
or other) point, or the column immediately to the left of the point if there is one.
A position or place in a number, such as 387 6, written in a scale of notation,
corresponding to a given power of the radix. The digit located in any particular
column is the coefficient of the corresponding power of the radix; thus, 8 in the
foregoing example is the coefficient of 102 ©)

command. See instruction.

comparand. One of the words which the computer compares when executing a
given comparison order. (F)

comparator. (1) A circuit which compares two stored codes and supplies an
indication of agreement or disagreement; or a mechanism by means of which
two items of information may be compared in certain respects, and a signal
given depending on whether they are equal or unequal. (2) A device for com-




406 GLOSSARY = compare

paring two different transcriptions of the same information to verify agreement
or determine disagreement. (C)

compare. To determine the relative order of two computer words or sets of
symbols by some predetermined eriteria. The result of such a comparison is
equality if the comparands are identical or greater than or less than according
to whether the first comparand precedes or follows the second comparand in
the predetermined ordering. (F)

compiler. A program-making routine, which produces a specific program for a
particular problem by the following process: (1) determining the intended
meaning of an element of information expressed in pseudo-code; (2) selecting
or generating (i.e., calculating from parameters and skeleton instructions) the
required subroutine; (3) transforming the subroutine into specific coding for
the specific problem, assigning specific memory registers, etc., and entering it
as an element of the problem program; (4) maintaining a record of the subrou-
tines used and their position in the problem program; and (5) continuing to the
next element of information in pseudo-code. ©)

complement. A quantity which is derived from a given quantity, expressed in
notation to the base n, by one of the following rules. (a) Complement on n:
subtract each digit of the given quantity from n — 1, add unity to the right-
most digit, and perform all resultant carries. For example, the 2’s complement
of binary 11010 is 00110; the 10’s complement of decimal 679 is 321. (b) Com-
plement on n — 1: subtract each digit of the given quantity from n — 1. For
example, the 1’s complement of binary 11010 is 00101; the 9’s complement of
decimal 679 is 320. The complement is frequently employed in computers to
represent the negative of the given quantity. (C)

complete operation. A calculating operation which includes (1) obtaining all
the operands out of memory, (2) making a calculation or editing operation,
(3) returning the result to memory, and (4) obtaining the next instruction. (F)

computer. A machine which is able to perform sequences of arithmetic and
logical operations upon information. (F)

computer, analog. A computer which calculates by using physical analogs of
the variables. A one-to-one correspondence exists between each numerical vari-
able occurring in the problem and a varying physical measurement in the ana-
log computer. (C)

computer, asynchronous. A calculating device in which the performance of
any operation starts as a result of a signal that the previous operation has been
completed; contrasted with synchronous computer. (A)

computer, automatic. A calculating device which handles long sequences of
operations without human intervention. (A)

computer, digital. A calculating device using integers to express all the varia-
. bles and quantities of a problem. (F)
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computer, synchronous. A calculating device in which the performance of all
operations is controlled with equally spaced signals from a master clock. (A)

conditional. Subject to the result of a comparison made during computa-
tion. (C) '

conditional breakpoint instruction. A conditional jump instruction which,
if some specified switch is set, will cause the computer to stop, after which either
the routine may be continued as coded or a jump to another routine may be
directed. (C)

conditional transfer of control. A computer instruction which when reached
in the course of a program will cause the computer either to continue with the
next instruction in the original sequence or to transfer control to another stated
instruction, depending on a condition which has then been determined. ©)

content. The information stored in any part of the computer memory. The sym-
bol “(...)” is often used to indicate “‘the content of ...”: for example, (m)
indicates the content of the storage location whose address is m. (C)

control. Those parts of a digital computer which effect the carrying out of
instructions in proper sequence, the interpretation of each instruction, and the
application of the proper signals to the arithmetic unit and other parts in
accordance with this interpretation. The components in any mechanism respon-
sible for interpreting and carrying out manually-initiated directions. Some-
times called manual control. In some business applications of mathematics, a
mathematical check. (C)

control, cascade. An automatic control system in which various control units
are linked in sequence, each control unit regulating the operation of the next
control unit in line. (A)

control sequence. The normal order of selection of instructions for execution.

In some computers, one of the addresses in each instruction specifies the control
sequence. In most other computers the sequence is consecutive except where a

jump occurs. (C)

control, sequential. A manner of operation of a computer such that instructions
are fed in a given order to the computer during the solution of a problem. ©)

control unit. That portion of the hardware of an automatic digital comguter
which directs the sequence of operations, interprets the coded instructions,
and initiates the proper commands to the computer circuits to execute the

instructions. (C)
control unit, auxiliary. See centralized control.
control unit, main. See centralized control.

convert. To change numerical information from one number base to another
(e.g., decimal to binary) and/or from some form of fixed-point to some form of
floating-point representation, or vice versa. (A)
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converter. A unit which changes the language of information from one form to
another so as to make it available or acceptable to another machine, e.g., a
unit which changes information punched on cards to information recorded on
magnetic tape, possibly including editing facilities. (A)

copy. To reproduce information in a new location replacing whatever was previ-
ously stored there and leaving the source of the information unchanged. (A)

core, magnetic. A magnetic material capable of assuming and remaining at one
of two or more conditions of magnetization, thus capable of providing storage,
gating, or switching functions, usually of toroidal shape and pulsed or polarized
by electric currents carried on wire wound around the material. (A)

counter. A device, register, or storage location for storing integers, permitting
these integers to be increased or decreased by unity or by an arbitrary integer,
and capable of being reset to zero or to an arbitrary integer. (A)

counter, control. A device which records the storage location of the instruction
word which is to be obtained next. The control counter selects storage locations
in sequence unless otherwise directed. Also program counter. (IF)

counter, ring. A loop of interconnected bistable elements such that one and
only one is in a specified state at any given time and such that, as input signals
are’counted, the position of the one specified state moves in an ordered sequence
around the loop. (A)

CRT. Cathode ray tube; a device yielding a visual plot of the variation of several
parameters by means of a proportionally deflected beam of electrons. (A)

cycle. A set of operations repeated as a unit; a nonarithmetic shift in which the
digits dropped off at one end of a word are returned at the other end in circular
fashion; cycle right and cycle left. To repeat a set of operations a prescribed
number of times including, when required, supplying necessary address changes
by arithmetic processes or by means of a hardware device such as a B-boz or
cycle-counter. (A)

cycle count. To increase or decrease the cycle index by unity or by a selected
integer. (A)

cycle criterion. The total number of times the cycle is to be repeated; the regis-
ter which stores that number. (A)

cycle index. The number of times a cycle has been executed; or the difference,
or the negative of the difference, between that number and the number of
repetitions desired. (A)

cycle, major. The maximum access time of a recirculating serial storage ele-
ment; the time for one rotation, e.g., of a magnetic drum or of pulses in an
acoustic delay line; a whole number of minor cycles. (A)

cycle, minor. The word time of a serial computer, including the spacing between
words. (A)
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cycle reset. To return a cycle index to its initial value. (A)

cyclically magnetized condition. A condition of a magnetic material when it
has been under the influence of a magnetizing force varying between two spe-
cific limits until, for each increasing (or decreasing) value of the magnetizing
force, the magnetic flux density has the same value in successive cycles. M)

D

damping. A characteristic built into electrical circuits and mecnanical systems
to prevent rapid or excessive corrections which may lead to instability or oscil-
latory conditions, e.g., connecting a resistor on the terminals of a pulse trans-
former to remove natural oscillations; placing a moving element in oil or slug-
gish grease to prevent overshoot. (A)

data. Facts or information taken in, operated on, or put out by a computer or
other machine for handling information. (C)

data reduction. Transforming masses of raw test or experimentally obtained
data, usually gathered by instrumentation, into useful, ordered, or simplified
intelligence. (A)

data reduction, on-line. The processing of information as rapidly as the infor-
mation is received by the computing system. (A)

datum. One computer word. (F)

decimal point. In a decimal number, the point that marks the place between
positive and negative powers of ten. (A)

decimal-to-binary conversion. Converting a number in the scale of ten into
the scale of two. (C)

debug. To isolate and remove malfunctions from a computer or mistakes from
a routine. (A)

decade. A group or assembly of ten units; e.g., a decade counter counts to ten
in one column; a decade resistor box inserts resistance quantities in multiples
of powers of ten. (A)

decentralized control. See centralized control.

decode. To ascertain the intended meaning of the individual characters or
groups of characters in the pseudo-coded program. (A) To activate a corre-
sponding output line when input lines are activated in accordance with the code
for that character. (F)

decoder. A logical block which produces an output on one and only one l%ne
when one or more input lines are energized; the decoder is used to determine
the digit in a given number system to which an indicated code is assigned. (¥)




410 GLossARY = delay element

delay element. An element whose output substantially resembles its input
except that there is a time displacement between the two; also delay-line. (F)

delay-line, electric. A transmission line of lumped or distributed capacitive
and inductive elements in which the velocity of propagation of electromagnetic
energy is small compared with the velocity of light. Storage is accomplished

by recirculation of wave patterns containing information, usually in binary
form. (A)

delay-line, magnetic. A metallic medium along which the velocity of propaga-
tion of magnetic energy is small relative to the speed of light. Storage is accom-

plished by recirculation of wave patterns containing information, usually in
binary form. (A)

delay-line, mercury or quartz. A sonic or acoustic delay-line in which mercury
or quartz is used as the medium of sound transmission. See delay-line, sonic or
acoustic. (A)

delay-line, sonic or acoustic. A device capable of transmitting retarded sound
pulses, transmission being accomplished by wave patterns of elastic deforma-
tion. Storage is accomplished by recirculation of wave patterns containing
information, usually in binary form. (A)

delta. See coincident-current selection.

density, packing. The number of units of useful information contained within
a given linear dimension, usually expressed in units per inch, e.g., the number
of binary digit magnetic pulses stored on tape or drum per linear inch on a
single track by a single head. (A)

design, logical. The planning of a computer or data-processing system prior to
its detailed engineering design. The synthesizing of a network of logical ele-
ments to perform a specified function. The result of both the above, frequently
called the logic of the system, machine, or network. (A)

detector. A functional element which produces an output only when inputs cor-
responding to a sample code or character are present. (F)

diagram. A schematic representation of a sequence of subroutines designed to
solve a problem; a coarser and less symbolic representation than a flow chart,
frequently including descriptions in English words ; a schematic or logical draw-

ing showing the electrical circuit or logical arrangements within a component.
(A4)

diagram, logical. A diagram representing the logical elements and their inter-
connections without construction or engineering details. (A)

differentiator. A device whose output function in proportion to a derivative of
its input function with respect to one or more variables. (A)

digit. One of the n symbols of integral value ranging from 0 to » — 1 inclusive
in a scale of numbering of base 7, e.g., one of the ten decimal digits, 0, 1, 2, 3,
4,5,6,7,8,9. (A)
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digital. Using integers to represent all the quantities that occur in a problem or
calculation. (A)

digit, binary. A whole number in the binary scale of notation; this digit may be
only 0 (zero) or 1 (one). It may be equivalent to an “on” or “off”’ condition,
a “yes” or a ‘“no,” ete. (A)

digit, binary-coded decimal. See binary-coded decimal.
digitize. To render an analog measurement into digital form. (F)

digits, check. In a character or word, one or more redundant digits which
depends upon the remaining digits in such a fashion that if a digit is corrupted,
the malfunction is detectable, e.g., a given digit may be zero if the sum of other
digits in the word is odd, and this (check) digit may be one if the sum of other
digits in the word is even. (A)

digits, equivalent binary. The number of binary digits required to express a
number in another base with the same precision; e.g., approximately 3% times
the number of decimal digits is required to express a decimal number in binary
form. For the case of coded decimal notation, the number of binary digits
required is 4 times the number of decimal digits. (A)

disturb current cycle. The application of 0 current to all freshly written cores
in order to reduce the noise current generated on the next readout cycle. (F)

disturbed-one output. See coincident-current selection.
disturbed-zero output. See coincident-current selection.

downtime. The period during which a computer is malfunctioning or not oper-
ating correctly due to machine failures; contrasted with available time, idle
time, or standby time. (A)

drive pulse. A pulsed magnetomotive force applied to a magnetic cell from one
or more sources. (M)

drum, magnetic storage. A rotating cylinder, made of or coated with magne-
tizable material, which may store information by the direction of magnetiza-
tion that exists at fixed referenced sites. Information is entered by passing
current of the proper direction through the drum writing heads; it is withdrawn
without affecting the information storage by examining the voltage appearing
at the drum reading heads. A single head may be used for both purposes. The
portion of the drum which passes beneath a given head is called a track; the
tracks which are used to store a complete computer word comprise & chanmel;
the portion of channel which holds a complete word is called a sector. A channel
used as a buffer and shared by the I/O unit with the computer is called a
revolver. (F)

dummy. An artificial address, instruction, or unit of information. (F)

dump. To withdraw all power accidentally or intentionally. To transfer all or
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part of the contents of one section of computer memory into another section.

©

dump check. A check which usually consists of adding all the digits during
dumping, and verifying the sum when retransferring. (C)

E

Eccles-Jordan trigger. See multivibrator.

echo checking. A system of seeking accuracy in data transmission by reflecting
the transmitter and comparing the reflected information with that which
was transmitted. (F)

edit. The process of removing or inserting information as a record is passed
through the computer. (F)

electronic calculating punch. A punch card machine which in each fraction
of a second reads a punch card passing through the machine, performs a num-
ber of sequential operations, and punches a result on the punch card. ©)

encoder. A logical block which produces outputs on one or more output lines
when only one input line is energized. An encoder is used to produce the binary
code corresponding to the digit from another number system. (F)

erase. To replace all the binary digits in a storage device by binary zeros. In a
binary computer, erasing is equivalent to clearing, while in a coded decimal
computer where the pulse code for decimal zero may contain binary ones,
clearing leaves decimal zero while erasing leaves all-zero pulse codes. (A)

error. The loss of precision in a quantity; the difference between an accurate
quantity and its calculated approximation. Errors occur in numerical methods;
mistakes occur in programming, coding, data transcription, and operating;
malfunctions occur in computers and are due to physical limitations on the
properties of materials. The differential margin by which a controlled unit
deviates from its target value. (A) '

error, inherited. The error in the initial values; especially the error inherited
from the previous steps in the step-by-step integration. (A)

error, rounding. The error resulting from deleting the less significant digits of
a quantity and applying some rule of correction to the part retained. A
common round-off rule is to take the quantity to the nearest digit. Thus, pi,
3.14159265. . ., rounded to four decimals is 3.1416. [Note: Alston S. House-
holder suggests the following terms: “initial errors,” ‘“generated errors,”
“propagated errors’” and “residual errors.” If  is the true value of the argu-
ment, and z* the quantity used in computation, then, assuming one wishes
f(z), x — z*is the initial error; f(z) — f(z*) is the propagated error. If f. is the
Taylor, or other, approximation utilized, then f(@z*) — f.(z*) is the residual
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error. If f* is the actual result then f. — f* is the generated error, and this is
what builds up as a result of rounding. (A)

error, truncation. The error resulting from the use of only a finite number of
terms of an infinite series, or from the approximation of operations in the
infinitesimal calculus by operations in the calculus of finite differences. (A)

exchange. To interchange the contents of two storage devices or locations. ©)

execute. The performance of a complete instruction except for a fetch cycle
(which see). (F)

extract. To obtain certain digits from a machine word as may be specified. For
example, if the ten-digit number 0000011100 is stored in a machine register,
the computer can be instructed to “extract’ the eighth digit from the left
(in this case a 1) and correspondingly perform a certain action. To replace the
contents of specific columns of one machine word by the contents of the corre-
sponding columns of another machine word, depending on the instruction.
To remove from a set of items of information all those items that meet some
arbitrary condition. (C)

F

factor scale. One or more coefficients used to multiply or divide quantities in &
problem in order to convert them so as to bave them lie in a given range of
magnitude, e.g., plus one to minus one. (A)

feedback. The returning of a fraction of the output of a machine, system, or
process to the input, to which the fraction is added or subtracted. If increase
of input is associated with increase of output, subtracting the returned fraction
(negative feedback) results in self-correction or control of the process, while
adding it (positive feedback) results in a runaway or out-of-control process. (©)

feed, card. A mechanism which moves cards serially into a machine. (A)

ferroelectric. A phenomenon exhibited by materials within which permanent
electric dipoles exist and a residual displacement in the D-E plane occurs. (A)

fetch. The portion of a computer cycle during which the location of the fortlf-
coming instruction is determined, the instruction obtained and modified if
necessary, and the instruction entered into the control register. (F)

field. A set of one or more characters (not necessarily all lying on the same word)
which is treated as a whole; a set of one or more columns on a punched card
consistently used to record similar information. (A)

file. A set of items. (A)

fixed-point calculation. Calculation using or assuming & fixed or constant
location of the decimal point or the binary point in each number. (C)
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fixed-point representation. An arithmetical notation in which all numerical
quantities are expressed by the same specified number of digits, with the point
implicitly located at the same specified position. <)

flip-flop. See multivibrator.

floating-point calculation. Calculation taking into account varying.location
of the decimal point (if base 10) or binary point (if base 2), and consisting of
writing each number by specifying separately its sign, its coefficient, and its
exponent affecting the base. For example, in floating-point calculation, the
decimal number —638,020,000 might be reported as —6.3802,8, since it is
equal to —6.3802 X 108. (C)

flow chart. A graphical representation of a sequence of programming operations,
using symbols to represent operations such as COMPUTE, SUBSTITUTE, COMPARE,
JUMP, COPY, READ, WRITE, etc. A flow chart is a more detailed representation
than a diagram, which see. (C)

forbidden combination. Combinations in a given code for which no digit
corresponds are called forbidden combinations, e.g., 1011 in natural binary
coded decimal is a forbidden combination. )

force (verb). To intervene manually in a program and cause the computer to
execute a jump instruction. (C)

frequency response. A measure of the ability of a device to take into account,
follow, or act upon a rapidly varying input condition; for example, in the case
of amplifiers, the frequency at which the gain has fallen to one-half of the
power factor, or to 0.707 of the voltage gain factor ; in the case of a mechanical
automatic controller, the maximum rate at which changes in the input con-
dition can be followed and acted upon. (C)

function generator. A device which produces a given function of the inde-
pendent variable. (C)

function table. (1) A tabulation of the values of a mathematical function for
a set of values of the independent variables. (2) A device of hardware or a
program or a subroutine which translates from one representation or coding of
information to another representation or coding. (3) Logic. A dictionary. (C)

functional unit. A combination of logical elements, simple or compound, and
delay elements which performs an elementary computer function; the hardware
to do this; e.g., comparitor, encoder, pulse generator. (F)

G

gate. A circuit which has the ability to produce an output which is dependent
upon a logical function of the input, e.g., an and gate has an output pulse
when there is time coincidence of all inputs. An or gate—or preferably mize.r——
has an output when any one or any combination of input pulses occurs in time
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coincidence. Any gate may contain any number of inhibits in which there is no
output under any condition of input if there is time coincidence with the
inhibit signal. (F)

generate. To produce a subroutine from parameters and skeletal coding. (A)

generator. A program for a computer which generates the coding of a problem;
a mechanical device which produces an electrical output. (A)

genérator, pulse train. A functional unit which generates, in response to an
input pulse, a fixed number of equally spaced equal amplitude pulses on one
line and one post-train pulse on another line a short time thereafter. (F)

H

half adder. A circuit having two output points, S and C, and two input points,
A and B, such that the output is related to the input according to the following
table:

INPUT OUTPUT
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

where
A and B are arbitrary input pulses, and § and C are “‘sum without carry’” and

“carry,” respectively. (A)

hardware. The mechanical, magnetic, electronic, and electrical devices from
which a computer is fabricated; the assembly of material forming a computer.

(4)

head. A device which reads, records, or erases information in a storage medium,
usually a small electromagnet used to read, write, or erase information on a
magnetic drum or tape or the set of perforating or reading fingers and block
assembly for punching or reading holes in paper tape. (A)

hold. The function of retaining information in one storage device after trans-
ferring it to another device; in contrast to clear. (A)

hole site. The place on a punched card or punched paper tape where & hole
may or may not appear. This site represents a bit of information. A hole
represents a “1’’ and the absence of a hole (the presence of paper) represents
a “0” (sometimes contrariwise). (F)

hunting. A continuous attempt on the part of an automatically controlled
system to seek a desired equilibrium condition. (A)

hysteresis loop. For a magnetic material in a cyclically magnetized condition, &
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curve (usually with rectangular coordinates) showing, for each value of the
magnetizing force, two values of the magnetic flux density—one when the
magnetizing force is increasing, the other when it is decreasing. (M)

I

ignore. A character code indicating that no action whatsoever be taken. (In
Teletype or Flexowriter code, all holes punched is an ignore.) An instruction
requiring nonperformance of what normally might be executed; not to be
executed. (A)

impedance, characteristic. The ratio of voltage to current at every point
along a transmission line on which there are no standing waves; the square root
of the product of the open and short circuit impedance of the line. (A)

information. Knowledge or intelligence produced, processed, or cognized by
the computer. (F)

inhibit pulse. A pulse that prevents flux reversal of a magnetic cell by certain
specified drive pulses. (M)

input. Information received by the computer or its storage device from the
outside. (F)

input block. A section of internal storage of a computer generally reserved for
the receiving and processing of input information. ©)

input equipment. The equipment used for taking information into a com-
puter. (C)

input/output buffer. An autonomous storage unit which accumulates blocks
of information from the I/0 unit (usually several words) for distribution to the
computer and consisting of control, storage, and an I/0 unit. )

input/output equipment. Sometimes “I/0 equipment.” The devices which
are used for entering and obtaining information from the computer. (F)

input/output mechanism. The mechanism for transmitting information be-
tween an intermediate medium and the computer; includes storage only as
suggested by the manufacturer. (F)

input/output unit. The I/O unit consists of three sections—the I/0 mecha-
nism, storage to accumulate a convenient amount of information and control
logic. The latter supervises the accumulation and distribution of information
from the intermediate medium and the computer or awaiting storage devices.

F)

instruction. A set of characters which defines a computer operation, together
with one or more addresses (or no addresses) referring to the location of the
operands and/or results, and which as a unit causes the computer to operate
upon the indicated quantities at the indicated or implied location. [Note: the
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fserm mst'ructwn is preferred by many to the term command or order. Command
is sometimes reserved for electronic signals; order is sometimes reserved to
mean sequence, as in ‘‘the order of the characters.” (F)

inst.ruction, breakpoint. An instruction which, if some specified switch is set,
will cause the computer to stop. (A)

instruction, breakpoint, conditional. A conditional jump instruction which,

if. some speciﬁ§d switch is set, will cause the computer to stop, after which
either the routine may be continued as coded or a jump may be forced. (A)

instruction, multiple-address. See code, multtple-address.

instruction, one-address. An instruction consisting of an operation and
.exactly one address. The instruction code of a single-address computer may
include both zero- and multi-address instructions as special cases. (A)

instruction, one-plus-one or three-plus-one address. A two- or four-
address 1¥1struction, respectively, in which one of the addresses always specifies
the location of the next instruction to be performed.' (A)

instruction, transfer. A computer operation which specifies the location of the
next:, operation to be performed and directs the computer to that operation
(or instruction). (A)

instrua::tion, zero-address. An instruction specifying an operation in which the
locations of the operands are defined by the computer code, so that no address
need be given explicitly. (A)

integrator. A device whose output is proportional to the integral with respect
to the input variable. (A)

interblock space. A portion of the magnetic tape between blocks of information
on which nothing is written. This allows time for the tape to be stopped and
brought up to reading speed again between blocks. (F)

cations to physically separated storage

interlace. To assign successive storage lo
usually for the express purpose of

positions, e.g. on a magnetic drum or tape,
reducing access time. (A)

internal memory. The total memory or storage which is accessible automati-
cally to the computer. This equipment is part of and directly controlled by

the computer. (C)
internal storage. Same as infernal memory. ©)

interpreter. A card-handling device which prints upon a card the information
appearing in the card in the form of punched holes. See also routine, interpretive.

(®)
interpreter code. A code acceptable to an interpretive routine which see. (F)

item. A set of fields containing related information; a unit of information
relating to a single person or object; the content of a single message. 4a)
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intrinsic induction—B;. In a magnetic material for a given value of the
magnetizing force, the excess of the normal flux density over the flux density
in vacuum. The equation for sntrinsic induction is

B; =B — u,H

where p, is the factor that expresses the ratio of magnetic flux density to
magnetizing force in vacuum. (M)

J

jump. An instruction or signal which, conditionally or unconditionally, specifies
the location of the next instruction and directs the computer to that instruction.
A jump is used to alter the normal sequence control of the computer. Under
certain special conditions, a jump may be forced by manual intervention ;in
other words a transfer of control is made to a specified instruction. (A)

jump, conditional. An instruction which will cause the proper one of two
(or more) addresses to be used in obtaining the next instruction, depending

upon some property of one or more numerical expressions or other conditions.
(A)

K

key. A group of characters usually forming a field, utilized in the identification
or location of an item; a marked lever manually operated for copying a charac-
ter, e.g. typewriter, paper tape perforator, card punch manual keyboard,
digitizer, or manual word generator. (A)

L

lag. A relative measure of the time delay between two events, states, or mecha-
nisms. (A)

language. The form or means by which information is communicated within or
between the computer or within or between the computer’s auxiliary devices
and in the outside world. (F)

language, human. Information in a form readily understood by an informed

native, e.g., English-language typing (in the U.S.A.). (F)

language, intermediate. The language in which information may be stored
between the time at which it is obtained from a human source and the time
at which it is entered into the computer, e.g., punch cards or magnetic tape
codes. (F)

language, machine. The code used by the computer for communication among
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its related parts or in which the computer performs arithmetic and editing. (F)

latency. In a serial or serial-parallel storage system, the access time less the
word time, e.g., the time spent waiting for the desired location to appear under
the drum heads or at the end of an acoustic tank. (A)

leap frog test. A program to test the internal operation of a computer which
performs a series of arithmetic or logical operations on one section of memory
location, then transfers to another section, checks to see that the transfer is
correct and then begins the series of operations over again. Eventually the
checking program will have occupied every possible position in the memory
and begins again. The term leap frog comes from the jump seen on a monitoring
cathode ray tube during transfer. (F)

library. A collection of standard and fully tested programs, routines, and
subroutines, by means of which many types of problems and parts of problems
can be solved. (C)

line-printing. Printing an entire line of characters across a page as the paper
feeds in one direction past a type bar or cylinder bearing all characters on a
single element. (A)

line, transmission. Any conductor or system of conductors used to carry elec-
trical energy from its source to a load. (A)

load (unload). To enter (remove) information en masse into (from) the com-
puter from (into) the input (output) unit. (F)

location. A storage position holding one computer word, designated as a specific
address or a specific register. The symbol “[X]”’ is used to indicate ‘‘the loca-
tion at which X is stored.” (F)

location hole. A hole punched in paper tape every time a punch magnet is
energized or the tape is advanced and by which the tape may be moved mechan-
ically both for punching and reading. (F) .

logger. A device which automatically records physical processes and events, usu-
ally with respect to time. (A)

logic. The science that deals with the principles and criteria of validity in thought
and demonstration; the science of the principles of exact and careful reasoning.
the basic principles and applications of truth tables, the relations of proposi-
tions, the interconnection of on-off circuit elements, etc., for mathematical com-
putation in a computer. In the phrase “logic of the computer,” same as ‘“logical
destgn,” which see. (A)

logic, symbolic. The study of the rules governing the composition of proposi-
tions using logical elements and symbols, where the symbols represent elemen-
tary statements or quantities. (F)

logical comparison. The operation of comparing 4 and B; the result is 1 or yes
if A is the same as B and 0 or no if 4 is not the same as B (or vice versa). (C)
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logical design. That phase of the computer design which combines operational
units, functional units, logical elements, and delay elements into an integrated
whole supposedly capable, upon realization in hardware, of performing as a
computer or computerlike device. (F)

logical element, compound. A function of several variables which uniquely
defines the output as either 0 or 1 for all possible combinations of 0 and 1 for
each of the inputs; the circuitry to realize the above, e.g. multiple-input &-gate.

(F)

logical element, simple, also logical unit. A function c of two variables a and
b which uniquely defines ¢ as either 0 or 1 for all possible combinations of 0 or 1
for each of @ and b; also the circuitry which realizes this performance, e.g. two-
input and-gate for ¢ = a & b. ()

logical unit. See logical element.

loop. Repetition of a group of instructions in a routine. See cycle. (C)

M

machine-available time. Time during which a computer has the power turned
on, is not being maintained, and is known or believed to be operating correctly.

©)

machine cycle. The smallest period of time or complete process of action that
repeats itself in order. In some computers, “minor cycles’ and “major cycles’’
are distinguished. (C)

machine language. See language, machine.
malfunction. A failure in the operation of the hardware of a computer. (C)

matrix. A set of quantities in a specified array, subject to mathematical opera-
tions such as addition, multiplication, inversion, etc., according to specified
rules. An array of circuit elements, such as diodes, wires, magnetic cores, relays,
etc., arranged and designed to perform a specific function, for example, conver-
sion from one numerical system to another. ©)

memorize. The process of setting one or more words into the computer
memory. (F)

memory. A device into which information can be introduced and then extracted
at a considerably later time. (F)

memory capacity. The amount of information which a memory unit can store.
It is often measured in the number of decimal digits or the number of binzfry
digits which the memory unit can store. Other measures of memory capacity
have also been defined. (C)
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memory, fas?-acc.ess. .In large computers which have two or more sections of
memory which differ in access time, the faster (fastest) section. (F)

merge. To produce a single sequence of items, ordered according to some rule

(i.e., arranged in some orderly sequence), from two or more Sequences previ-
ously ordered according to the same rule, without changing the items in size,
structure, or total number. Merging is a special case of collating. ©)

message. A group of words, fixed or variable in length, transported as a unit. (C)

microsecond. A millionth of a second. (C)
millisecond. A thousandth of a second. (C)

mini.n.lum.-acc.ess programming. Programming in such a way that minimum
wtflt.mg time is required to obtain information out of the memory. Also called
minimum latency programming or forced coding. (C)

mlsta.lke. A human error which results in an incorrect instruction in a program
or in coding, an incorrect element of information, or an incorrect manual

operation. (C)

mixed-bgse notation. A number system in which a single base, such as 10 in
the decimal system, is replaced by two number bases, used alternately, such as

2 and 5. See biquinary notation. ©)

mnemonic. Assisting, or intending to assist, remembering; a set of letters, usu-
ally. three or less, used by the programmer or coder to indicate what transpires
during a given instruction and usually differing from the machine code for the

instruction. (F)

modifier. A quantity, sometimes the cycle index,
operand. (C)

modify. .(1) To alter in an instruction the address of the operandQ
subroutine according to a defined parameter. (C)

multivibrator. An electronic device which may be found in either of two states.

It may be observed by examining the state of either of two output connections.

There are three kinds of multivibrators: the bistable multivibrator, otherwise
dominantly British) has two

f:alled flip-flop, multi (used here), or toggle (pre
input leads—a signal on either causes the device to assume the corresponding

Ol}tput state regardless of its previous state; the monostable multivibrator, other-
wise uni (used here), flip-flip or delay flip-flop has but one (effective) lead
which, when energized, causes the device to assume the corresponding output
state (say 1) for a fixed length of time (r) and then return to the 0 state—
fiepending upon the particular circuit, the one may or may not be affected by 1
input signals when in the 1 state; the astable multivibrator or free running mulli-
vibrator has no inputs and alternately assumes its 0 and 1 states, remaining in
faach for a relatively fixed time 7o and 7y, respectively—when the multivibrator
is said to have a symmetric output. The trigger is a multi whose inputs are con-
nected together and which operates so that an input signal causes the device to
assume the state complementary to the one it has just occupied. D)

used to alter the address of an

(2) To alter a
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negative feedback. See feedback.

network analyzer. An analog computer using electrical circuit elements which
simulates and solves (analyzes) problems of the electrical behavior of a network
of power lines and electrical loads, and related problems. (C)

nor element. An element with an output only when all inputs are absent. (F)

normalize. To change a floating-point result, such as 63.2 X 108, so that the
exponent, in this case 8, and the mantissa, in this case 63.2, lie in the prescribed
or standard normal range. For example, in this case, the normal or standard
result might be 6.32 X 10° or .632 X 1010 depending on the computer’s adopted
standard. (C)

notation (in the sense ‘“scale of notation”). A systematic method for stating
quantities in which any number is represented by a sum of coefficients times
multiples of the successive powers of a chosen base number 7z (sometimes more
than one). If a quantity is written in the scale of notation 7, then the successive
positions of the digits report the powers of #. Thus 379 in the scale of 10 or
decimal notation means 3 hundreds, 7 tens, and 9. The number 379 in the scale
of 16 (used in some computers) means 3 times sixteen squared, plus 7 times
sixteen, plus 9 (which in decimal notation would be 889). 1101 in the scale of
two means 1 eight, 1 four, 0 twos, and 1 one (which in decimal notation would
be 13). In writing numbers, the base may be indicated by a subscript (expressed
always in decimal notation) when there may be doubt about what base is
employed. For example, 11.101, means two, plus one, plus one half, plus one
eighth, but 11.101; means three plus one, plus one third, plus one twenty-
seventh. Names of scales of notation which have had some significant consider-
ation are:

Base Name
2 binary
3 ternary
4 quaternary, tetral
5 quinary
8 octal, octonary
10 decimal
12 duodecimal
16 hexadecimal, sexadecimal
32 duotricenary
2,5 biquinary (C)

number, pseudo random. A set of digits constructed in such a sequence that
each excessive digit is equally likely to be any of n digits where the number is
written in the base n. (F)

number system. See notation.
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0]

octal digit. See notation.

odd-even check. Same as check, parity.
off-line operation. See on-line operation.
one-address code. See code, multiple-address.
one output. See one state.

one state. A state of magnetic cell wherein the magnetic flux through a specified
cross-sectional area has a positive value, when determined from an arbitrarily
specified direction of positive normal to that area. A state wherein the mag-
netic flux has a negative value, when similarly determined, is a zero state.

A one output is (1) the voltage response obtained from a magnetic cell in a
one state by a reading or resetting process or (2) the integrated voltage response
obtained from a magnetic cell in a one state by a reading or resetting process.
A ratio of a one output to a zero output is a one-to-zero ratio.

A pulse—for example, a drive pulse—is a write pulse if it causes information
to be introduced into a magnetic cell or cells, or is a read pulse if it causes infor-
mation to be acquired from a magnetic cell or cells. (M)

one-to-partial-select ratio. See coincident-current selection.
oune-to-zero ratio. See one state.

on-line operation. Copying, translating, editing, and pre- and post-processing
work which requires the time of the computer. When computer time is not
required, this is called off-line operation. (F)

operand. Any one of the quantities entering into or arising from an operation.

(F)

operation, arithmetic. An operation in which numerical quantities form the
elements of the calculation (e.g., addition, subtraction, multiplication, division).

(A)

operation, average-calculating. A common or typical calculating operation
longer than an addition and shorter than a multiplication; often taken as the
mean of nine addition times and one multiplication time. (A)

operation, complete. An operation which includes (a) obtaining all operands
from storage, (b) performing the operation, (c) returning result to storage, and
(d) obtaining the next instruction. (A)

operation, computer. The electronic action of hardware resulting from an
instruction; in general, computer manipulation required to secure computed
results, (A)
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operation, fixed-cycle. Computer performance whereby a fixed time is allo-
cated to an operation; synchronous or clocked type arrangement within a com-
puter in which events occur at multiples of fixed time intervals. (F)

operation, logical. An operation in which logical (yes-or-no) quantities form
the elements being operated on (e.g., comparison, extraction). A usual require-
ment is that the value appearing in a given column of the result shall not
depend on the values appearing in more than one given column of each of the
arguments. (A)

operation number. A number indicating the position of an operation or its
equivalent subroutine in the sequence forming a program. When a problem is
stated in pseudo-code, each step is assigned an operation number. (C)

operation, red-tape. An operation which does not directly contribute to the
result; i.e., arithmetical, logical, and transfer operations used in modifying the

address section of other instructions in counting cycles, in rearranging data,
ete. (A)

operation, transfer. An operation which moves information from one storage
location or one storage medium to another (e.g., read, record). (A)

operation, variable cycle. Computer action in which any cycle of action or
operation may be of different lengths. This kind of action takes place in an
asynchronous computer. (A)

operational unit. A combination of functional units and logical and delay ele-
ments which performs one computer operation or process. One or more func-
tional units, logical elements, or delay elements may be shared by several oper-
ational units; the hardware which realizes the above. )

operator. The person who manipulates the computer controls, places informa-
tion media into the input devices, removes the output, presses the start button,
and so on; a mathematical symbol which represents a mathematic process to
be performed on an associated function. (A)

or-mixer. An electrical or mechanical device which yields an output signal when-
ever there are one or more inputs on a multi-channel input, e.g., an or-mixer is
one in which a pulse output oceurs whenever one or more inputs are pulsed;
forward merging of pulses simultaneously providing reverse isolation. (F)

or operator. A logical operator which has the property such that if P or @ are
two statements, then the statement “P or @’ is true or false precisely according
to the following table of possible combinations:

P Q PorQ
false true true
true false true
true true true

false false false (A)
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order. A defined successive arrangement of elements or events. The word order
is losing favor as a synonym for instruction, command, or opecration, part due
to ambiguity. (A)

order, memory reference. An order which includes in its execute portion the
obtaining of a datum from memory (e.g., add, transfer). (F)

order, reflexive. An order which requires no data processing but rather alters
the behavior of the computer (e.g., jump). (F)

output. Information transmitted by the computer or its storage device to the
outside. (F)

output block. A segment of the internal storage reserved for receiving data to
be transferred out. (C)

output equipment. The equipment used for transferring information out of a
computer. (C)

overflow. In a counter or register, the production of a number which is beyond
the capacity of the counter. For example, adding two numbers, each within
the capacity of the registers holding them, may result in a sum beyond the
capacity of the register that is to hold the sum; overflow. (A)

P

pack. To combine several brief fields of information into one machine word. For
example, an employee’s pay number, weekly pay rate, and tax exemptions may
be stored together in one word, each of these fields being assigned a different
set of digit columns. (C)

parallel. Handled at the same time in separate equipment; operating on two or
more parts of a word of item simultaneously; contrasted with serial. (C)

parallel operation. The flow of information through the computer or any part
of it using two or more lines or channels simultaneously. (C)

parameter. In a subroutine, a quantity which may be given different values
when the subroutine is used in different main routines or in different parts of
one main routine, but which usually remains unchanged throughout any one
such use; in a generator, a quantity used to specify input-output devices, to
designate subroutines to be included, or otherwise to describe the desired rou-
tine to be gencrated. (A)

parameter, preset. A paramcter incorporated into a subroutine during input.

(A)

parameter, program. A parameter incorporated into a subroutine during. com-
putation. A program parameter frequently comprises a word stored relatlve. to
either the subroutine or the entry point and dealt with by the subroutine during
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each reference. It may be altered by the routine and/or may vary from one
point of entry to another. (A)

partial-read pulse. See coincident-current selection.
partial-select output. See coincident-current selection.
partial-write pulse. See coincident-current selection.

patch. Section of coding inserted into a routine to correct a mistake or alter the

routine; explicitly transferring control from a routine to a, section of coding and
back again. (A)

patchboard. Same as plugboard, but not restricted to punch card machines. (C)

patcheord. A short connecting wire cord for plugging or patching between termi-
nals in a plugboard or patchboard. (C)

path length. The length of a magnetic flux line in a core. In a toroidal core
with nearly equal inside and outside diameters, the value

I, = g (0.D. + L.D.)

is commonly used. (M)

peak flux density, B,,. The maximum flux density in a magnetic material in a
specified cyclically magnetized condition. (M)

peak magnetizing force, H,, (peak field strength). The upper or lower limiting
value of magnetizing force associated with a cyclically magnetized condition. (M)

perforation, rate of. Number of characters, rows, or words punched in a paper
tape by a device per unit of time. (A)

piezoelectric. Having the property of producing different voltages on different
crystal faces when subjected to a stress (compression, tension, twist, and so on)
or of producing a stress when subjected to such voltages. (C)

plotter. A visual display in which a dependent variable is graphed by a moving
pen or pencil as a function of the independent variable. (C)

plotting board. An output unit which plots the curves of one or more variables
as a function of one or more other variables. (C)

plugboard. A removable board holding many hundreds of electric terminals into
which short connecting wire cords may be plugged in patterns varying for dif-
ferent programs for the machine. To change the program, one wired-up plug-
board is removed and another wired-up plugboard is inserted. A plugboard is
equivalent to a program tape which presents all instructions to the machine at
one time. It relies on X-punches and other signals in the punch card passing
through the machine to cause different selections of instructions in different
cases. (C)
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plug-in-unit. A subassembly of tubes, resistors, condensers, diodes, and so on,
wired together, of a standard type and which as a whole can be plugged in or
pulled out easily. (C)

Polyvac. Composite computer used in this book to exemplify existing computers.
From polygenic veriform automatic computer.

post mortem. A diagnostic routine which either automatically or when called
for prints out information concerning the content of all or a specified part of
the registers of the computer, after a problem tape has “died”” on the computer.
The purpose of a post mortem tape is to assist in the location of an error in
coding the problem or in machine function. (C)

precision. The degree of exactness with which a quantity is stated; a relative
term often based on the number of significant digits in a measurement. See
also accuracy. (A)

precision, double. Retention of twice as many digits of a quantity as the com-
puter normally handles, e.g., a computer whose basic word consists of 10 deci-
‘mal digits is called upon to handle 20-decimal-digit quantities by keeping track
of the 10-place fragments. (A)

prestore. To set an initial value for the address of an operand or a cycle index;
to store a quantity in an available or convenient location before it is required
in a routine. (A)

preventive maintenance. Maintenance of any system which aims to prevent
failures ahead of time rather than eliminate failures which have occurred. (C)

printer. An output mechanism which prints or typewrites characters. (C)

process control. Automatic control over industrial processes for manufacturing
continuous material or energy, such as refining oil, generating electricity, or
making paper. (C)

program. A plan for the solution of a problem. A complete program includes
plans for the transcription of data, coding for the computer, and plans for the
absorption of the results into the system. The list of coded instructions is
called a routine; the act of planning a computation or process from the asking
of a question to the delivery of the results, including the integration of the
operation into an existing system. This programming consists of planning and
coding, including numerical analysis, systems analysis, specification of printing
formats, and any other functions necessary to the integration of & computer in
a system. (A)

programmer. A person who prepares instruction sequences without necessarily
converting them into the detailed codes. (A)

programming, automatic. Any technique in which the computer is used. to
help plan as well as to help code a problem; e.g., compiling routines, interpretive
routines. (A)
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programming, optimum. See minimum-access progranmaning.

programming, random-access. Programming without regard for the time
required for access to the storage positions called for in the program; contrast
with minimum-access programming. (A)

program register. The register in the control unit of the computer which stores
the current instruction of the program and thereby completely controls the
operation of the computer during the cycle of execution of that instruction.
Same as control register. Also called program counter. A)

program-sensitive malfunction. A malfunction which occurs only when some
unusual combination of program steps occurs. (A) ;

program tape. The tape which contains the sequence of instructions to the
computer for solving a problem. (A)

pseudo code. An arbitrary code, independent of the hardware of a computer,
which must be translated into computer code. (A)

pulse. A change in intensity or level over a relatively short period of time, e.g.,
a shift in electric potential;i.e., if the voltage level of a point shifts with respect
to ground for two microseconds, one says that the point received a two-micro-
second pulse. (F)

punch, calculating, electronic. A card-handling machine which reads a
punched card, performs a number of sequential operations, and punches the
result on a card. (A)

punch, card. A device which perforates or places holes in cards in specific loca-
tions designated by a program. (A) -

punch, summary. A card-handling machine which may be electrically con-
nected to another machine—e.g., tabulator—and which will punch out on a card
the information produced, calculated, or summarized by the other machine.

(4)

punched tape. Paper tape punched in a pattern of holes so as to convey
information. (C)

punching, rate of. Number per unit time of cards, characters, blocks, fields,
or words of information placed in the form of holes on cards, or tape. (A)

punch position. The location of the row in a columniated card; e.g., in an
80-column card the rows or ““punch positions’’ may be 0 to 9 or “X’’ and “Y”
corresponding to positions 11 and 12. (A)

Q

quantity. An infeger or multiple thereof. Quantity is preferred to number in
referring to numerical data. (I)



quantizer = GLOSSARY 429

quantizer. A device which converts an analog quantity into a digital number.

)

R

range. All the values which a function may have. (A)

ratio, operating. The ratio obtained by dividing the number of hours of correct
machine operation by the total hours of scheduled operation, e.g., on a 168-hour
week scheduled operation, if 12 hours of preventive maintenance is required
and 4.8 hours of unscheduled downtime occurs, then the operating ratio is
(168 — 16.8)/168, which is equivalent to a 90 per cent operating ratio. (A)

read. To copy, usually from one form of storage to another, particularly from
external or secondary storage to internal storage; to sense information on a
recording medium. (F)

read-around ratio. In electrostatic storage tubes, the number of times a spe-
cific spot (digit or location) may be consulted before “gpill over” will cause a
loss of information stored in surrounding spots, immediately prior to which the
surrounding information must be restored; read-around number. (A)

read pulse. See one state.

reader, card. A mechanism that permits the sensing of information punched on
cards by means of wire brushes or metal feelers. (A)

reader, tape, magnetic. A device capable of converting to a train or sequence
of electrical pulses, information recorded on a magnetic tape in the form of a
series of magnetized spots. (A)

reader, tape, paper. A device capable of converting to a train or sequence of
electrical pulses, information punched on a paper tape in the form of a series
of holes. (A)

reading, rate of. Number of characters, words, fields, blocks, or cards sensed
by an input sensing device per unit of time. (A)

readout, destructive. If the reading of information in a storage medium
destroys the information, this is called destructive readout: otherwise it is non-
destructive readout. (F)

real time operation. Solving problems in real time. More precisely, processing
data in time with a physical process so that the results of the data-processing
are useful in guiding the physical operation. (A)

record. All the information regarding one individual or item pertinent to a given
problem or set of problems, usually located on one physical document or con-
secutive locations on the intermediate medium or in the computer memory.
The document upon which the results of the computer appear in human lan-
guage is sometimes called the output record. D)
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red tape operations. Computer operations called for by a program which do
not directly contribute to solving the problem; namely, arithmetical, logical,
and transfer operations used in modifying the address section of other instruc-
tions, in counting cycles, in rearranging data, and so forth. (A)

reel. A spool of tape, generally magnetic. (C)

reference record. An output of a compiler that lists the operations and their
position in the final specific routine, and contains information describing the
segmentation and storage allocation of the routine. (C)

reference time, T,. An instant near the beginning of switching chosen as an
origin for time measurements. It is variously taken as the first instant at which
the instantaneous value of the drive pulse, the voltage response of the magnetic
cell, or the integrated voltage response reaches a specified fraction of its peak
pulse amplitude. (M)

regenerate. In the operation of electrostatic storage, to restore information cur-
rently held in a cell on the cathode ray tube screen in order to counteract fading
and disturbances. (C)

register. The hardware for storing one computer word. Registers are usually
zero-access storage devices. (A)

register, addressable. A register to which there corresponds an address which
may be used as the location of the operand in the instruction word. )

register, circulating (or memory). A register (or memory) consisting of a means
for delaying information and a means for regenerating and reinserting the
information into the delaying means. (A)

register, control. The accumulator, register, or storage unit which stores the
current instruction governing the computer operation; an instruction register.

(A)

register, program. A register in the control unit which stores the current
instruction of the program and controls computer operation during the execution
of the instruction; control register; program counter. (A)

register, shift. A register within which information may be reoriented by a
circular permutation. (F)

remanence, B;. The magnetic flux density which remains in a magnetic circuit
after the removal of an applied magnetomotive force. [Note: This should not
be confused with residual flux density. If the magnetic circuit has an air gap,
the remanence will be less than the residual flux density.] (M)

remember. To obtain information from the computer internal memory without
removing the impression of the information from the memory; remembering for
a destructive read-out memory requires both reading and writing. (F)
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repetition rate of pulse. The number of electric pulses per unit of time experi-
enced by a point in a computer, usually the maximum, normal, or standard
rate of pulses. (A)

representative circulating time. A method of evaluating the speed perform-
ance of a computer. One method is to use one-tenth of the time required to
perform nine complete additions and one complete multiplication. A complete
addition or a complete multiplication time includes the time required to pro-
cure two operands from high-speed storage, perform the operation, and store
the result, and the time required to select and execute the required number of
instructions to do this. (A)

reproducer. A punch card machine that punches cards to agree as may be speci-
fied with other cards. (C)

rerun. To run a program or a portion of it over again on the computer. (C)

rerun point. One of a set of planned-for points in a program such that if an
error is detected in between two such points, to rerun the problem it is only
necessary to go back to the last rerun point, instead of returning to the start of
the problem. Rerun points are often three to five minutes apart so that very
little computer time is required for a rerun. All information pertinent to a rerun
is available in standby registers during the whole time from one rerun point to
the next. (C)

reset. To return a register or device to zero or to a specified initial condition. (C)
reset pulse. A drive pulse which tends to reset a magnetic cell. (M)

residual flux density, B,. The magnetic flux density at which the magnetiz.ing
force is zero when the material is in a symmetrically cyclically magnetized
condition. (M) '

resolver. A device which separates or breaks up a quantity, particularly a vec'tor,
into constituent parts or elements, e.g., to form the three mutually perpendicu-
lar components of a space vector. (A)

restore. To return a cycle index, a variable address, or other computer word Fo
its initial or preselected value; periodic regeneration of charge, especially in
volatile, condenser-action storage systems. (A)

retentivity, B,.. The property of a material which is measured by 1.;he residual
fluz density corresponding to the saturation induction for the material. (M)

return. To go back to a specific, planned point in a program, usually when an
error is detected, for the purpose of rerunning the program. (A)

revolver. See drum, magnetic storage.
rewind. To return a film or tape to its beginning. (A)

robot. A machine containing sensing instruments, acting mechanisms, and guid-
ance circuits, where the circuits receive signals from the sensing instruments,
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perform reasonable calculations on those signals, and deliver appropriate sig-
nals to the acting mechanisms. A machine that runs by itself; an automaton.
A thermostatically controlled automatic oil furnace in an ordinary home is a
robot according to both the first and second definitions; a spring-wound clock
is a robot by the second definition but not by the first. (C)

roll back. See rerun.

roll out. To read out of a register or counter by the following process: add to
one digit in each column simultancously; do this 10 times (for decimal num-
bers); when the result in each column changes from 9 to 0, issue a signal. (C)

round off. To change a more precise quantity to a less precise one, usually choos-
ing the nearest precise one; see precision.

rounding error. The error resulting from dropping certain less significant digits
of a quantity, and applying some adjustment to the more significant digits
retained. Also called round-off error. A common round-off rule is to take the
quantity to the nearest digit. Thus pi, 3.14159265 ... , rounded to four deci-
mals is 3.1416. [Note: Alston S. Householder suggests the following terms: tni-
tial errors, generated errors, propagated errors, and residual errors. If z is the
true value of the argument, and z* the quantity used in computation, then,
assuming one wishes f(z), £ — z* is the initial error and f(2) — f(«*) the propa-
gated error. If f, is the Taylor, or other, approximation utilized, then f(z*) —
fa(x*) is the residual error. If f* is the actual result then f, — f* is the generated
error, and this is what builds up as a result of rounding.] (C)

routine. A sequence of operations for a digital computer to perform. The
sequence of instructions determining these operations. A set of coded instruc-
fions arranged in proper sequence to direct the computer to perform a desired
series of operations. See also subroutine and program. (C)

routine, compiling. An executive routine which, before the desired computation
is started, translates a program expressed in pseudo-code into machine code
(or into another pseudo-code for further translation by an interpreter). In
accomplishing the translation, the compiler is required to decode, convert,
sclect, generate, allocate, adapt, orient, incorporate, or record. (A)

routine, diagnostic. A specific routine designed to locate either a malfunction
in the computer or a mistake in coding. (A)

routine, executive. A set of coded instructions designed to process and control
other sets of coded instructions; a set of coded instructions used in realizing
““automatic coding’’; a master set of coded instructions. (A)

routine, floating point. A set of coded instructions arranged in proper sequence
to direct the computer to perform a specific set of operations which will permit
floating-point operation, e.g., enable the use of a fixed-point machine to handle
information on a floating-point basis from an external point of view. Floating-
point routines are used in computers which do not have built-in floating-point
circuitry. (A)
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routine, general. A routine expressed in computer coding designed to solve a
class of problems, specializing to a specific problem when appropriate: para-
metric values are supplied. (A)

routine, interpretive. An executive routine which, as the computation pro-
gresses, translates a stored program expressed in some machine-like pseudo-code
into machine code and performs the indicated operations, by means of subrou-
tines as they are translated. An interpretive routine is essentially a closed sub-
routine which operates successively on an indefinitely long sequence of program
parameters (the pseudo-instructions and operands). It may usually be entered
as a closed subroutine and exited by a pseudo-code exit instruction. A)

routine, minimal latency. Especially in reference to serial storage systems, a
routine so coded by judicious arrangement of data and instructions in storage,
that the actual latency is appreciably less than the expected random-access
latency. Also called minimum- access routine. (A)

routine, rerun. A routine designed to be used in the wake of a computer mal-
function or a coding or operating mistake to reconstitute a routine from the

last previous rerun point; roll-back routine. A)
routine, sequence checking. A routine which checks every instruction exe-
cuted, printing certain data, e.g., printing out the coded instruction with

addresses, and the content of each of several registers; or it may be designed to
print out only selected data, such as transfer instructions and the quantity actu-

ally transferred. (A)

routine, service. A routine designed to assist in the actual operation of the
computer. Tape comparison block location, certain post mortems, and correc-
tion routines fall in this class. (A)

routine, specific. A routine expressed in computer coding designed to solve a
particular mathematical, logical, or data-handling problem in which each
address refers to explicitly stated registers and locations. (A)

routine, test. A routine designed to show whether or not a computer is func-
tioning properly. (A)

routine, trace. See routine, sequence checking.

run. One performance of a program on a computer; performance of one routine,
or several routines automatically linked so that they form an operating unit,
during which manual manipulations are not required of the computer operator.

(A)

S

saturation flux density. Sce saturation induction.

saturation induction, B,. The maximum intrinsic induction possible in a mate-
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rial (see intrinsic induction). Saturation induction is sometimes loosely referred
to as saturation flur density. (M)

scale. To alter the units in which all variables are expressed so as to bring all
magnitudes within the capacity of the computer or routine at hand. (A)

scale factor. One or more factors used to multiply or divide quantities occurring
in a problem and convert them into a desired range, such as the range from plus
one to minus one. (C)

scanner. An instrument which automatically samples or interrogates the state
of various processes, conditions, or physical states and initiates action in accord-
ance with the information obtained. (A)

sector. See drum, magnetic storage.

segment. To divide a routine in parts, each consisting of an integral number of
subroutines, each part capable of being completely stored in the internal storage
and containing the necessary instructions to jump to other segments; in a rou-
tine too long to fit into internal storage, a part short enough to be stored entirely
in the internal storage and containing the coding necessary to call in and jump
automatically to other segments. Routines which exceed internal storage capac-
ity may be automatically divided into segments by a compiler. (A)

select. To take the alternative A if the report on a condition is of one state, and
alternative B if the report on the condition is of another state; to choose a
needed subroutine from a file of subroutines. (A)

selection ratio. See coincident-current selection.

selector. A device which interrogates a condition and initiates a particular oper-
ation according to the interrogation report. (A)

sense. To examine, particularly relative to a criterion; to determine the present
arrangement of some element of hardware, especially a manually set switch; to
read holes punched in paper. (A)

sentinel. A symbol marking the beginning or the end of some element of infor-
mation such as a field, item, block, tape, and so forth; a tag. (A)

sequence. To select 4 if 4 is greater than or equal to B, and select B if 4 is less
than B, or some variation of this operation. (A)

sequence control tape. Program tape (obsolescent term). (C)
serial. Handled one after the other in a single piece of equipment. (C)

serial operation. The flow of information through the computer or in any part
of it using only one line or channel at a time. Contrasted with parallel operation.

©
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serial storage. Storage in which time is one of the coordinates used to locate any
given bit, character, or (especially) word. Storage in which words, within given
groups of several words, appear one after the other in time sequence, and in
which access time therefore includes a variable latency or waiting time of zero
to many word-times, is said to be serial by word. Storage in which the indi-
vidual bits comprising a word appear in time sequence is serial by bit. Storage
for coded-decimal or other nonbinary numbers in which the characters appear
in time sequence is serial by character; for example, magnetic drums are usually
serial by word but may be serial by bit, or parallel by bit, or serial by character
and parallel by bit, and so forth. (C)

serial transfer. A system of data transfer in which the characters of an element
of information are transferred in sequence over a single path in consecutive
time positions. (C)

servomechanism. A closed loop system in which the error or deviation from a
desired or preset norm is reduced to zero, and one in which mechanical position
is usually the controlled variable; e.g., a synchronized drum storage system
requires a servomechanism to insure synchronism between a crystal-controlled
electronic oscillator and a rotating cylinder; an anti-aircraft fire control gun-
positioning system requires a servo to insure that deviations are corrected. (A)

set pulse. A drive pulse which tends to set a magnetic cell. (M)

shaper. Unique to this book. A differentiating and clipping circuit which pro-
duces a single pulse when a bistable device changes from one state to another,
but not when the change of state occurs in the opposite direction. The change
in state which causes a pulse is determined by the output of the bistable device
to which the shaper is connected—thus, when a shaper is connected to the one
output of a flip-flop, it produces a pulse when that flip-flop changes from 0 to 1
but produces no pulse when the flip-flop changes from 1 to 0. (F)

shift. To move the characters of a unit of information column-wise right or left.
For a number, this is equivalent to multiplying or dividing by a power of the
base of notation. (A)

shift, arithmetic. To multiply or divide a quantity by a power of the number
base, e.g., binary 1011 represents decimal 11, therefore two arithmetic shifts
to the left is binary 101100, which represents decimal 44. (A)

shift, cyclic. A shift in which the digits dropped off at one end of a word are
returned at the other in a circular fashion; logical, non-arithmetical, or circular
shift. (A)

shift, end around. See shift, cyclic. (F)

shift, long. An order which permutes circularly the characters in several
registers. (F)

shift out. To cause information to move within a register toward one end, in
such a way that as information passes out this end, 0’s are entered into the

other end. (F)
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shift pulse. A drive pulse which initiates shifting of characters in a register. (M)

sign digit. A digit, usually 1 or 0, used to designate the algebraic sign of a
quantity (plus or minus). (C)

significant digits. Digits appearing in the coefficient of a number when the
number is written as a coefficient between 1.000 . .. and 9.999 . .. times a power
of 10 (called scientific normal form); and similarly for any base of notation
other than 10. Examples: .000376, which is equal to 3.76 times 104, has three
significant digits; 12 million, equal to 1.2 times 107, has two significant digits;
300,600, equal to 3.006 times 105, has four significant digits; in the statement,
“J. B. Smith’s book had exactly 1000 pages,” 1000’ has four significant digits,
although ordinarily 1000 would have only one significant digit. (C)

simulation. The representation of physical systems and phenomena by com-
puters, models, or other equipment. (C)

simulator. A computer or model which represents a system or phenomenon and
which mirrors or maps the effects of various changes in the original, enabling
the original to be studied, analyzed, and understood by means of the behavior
of the model. (C)

single-address. See code, multiple-address.

skip. An instruction to proceed to the next instruction; a “blank’’ instruction.

©

slow memory. Sections of the memory from which information may be obtained
automatically but not at the fastest rate of the several sections. (C) -

solver, equation. An analog calculating device which solves systems of linear
simultaneous non-differential equations or determines the roots of polynomials
or both. (C)

sort. To arrange items of information by a key contained in the items according
to a rule. (F)

sorter. A machine which sorts punched cards. (I)

specific coding. Coding in which all addresses refer to specific registers and
locations. (C)

squareness ratio. (1) B,/B,. For a material in a symmetrically cyclically mag-
netized condition, the ratio of the flux density at zero magnetizing force to the
maximum flux density. (2) B,. For a material in a symmetrically cyclically mag-
netized condition, the ratio of the flux density when the magnetizing force has
changed halfway from zero toward its negative limiting value, to the maximum
flux density. [Note: Both of these ratios are functions of the maximum magne-
tizing force.] (M)

stacker, card. A mechanism that accumulates cards in a bin after they have
passed through a machine operation; a hopper. (A)
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standardize. To adjust the exponent and mantissa of a floating-point result so
that the mantissa lies in the prescribed normal range; normalize; see floating-
point calculation. (A)

step. An indication of the ordinal sequence in which the instructions are stored
within the computer memory; to each step there can correspond one and only
one instruction—an instruction may be used on none, one, or many steps. )

storage. Any device into which information can be copied, which will hold this
information and from which the information can be obtained at a later time;
the erasable storage in any given computer. (A)

storage, circulating. A device using a delay line, or unit which stores informa-
tion in a train or pattern of pulses, where the pattern of pulses issuing at the
final end is sensed, amplified, reshaped and reinserted in the delay line at the
beginning end. (A)

storage, dynamic. Storage such that information at a certain position is mov-
ing in time and so is not always available instantly; e.g., acoustic delay line,
magnetic drum; circulating or recirculating of information in a medium. (A)

storage, electrostatic. A device possessing the capability of storing changeable
information in the form of charged or uncharged areas on the screen of a cathode
ray tube. (A)

storage, erasable. Media which may hold information that can be changed;
i.e., the media can be reused; e.g., magnetic tape, drum, or core. (A)

storage, external. Storage facilities divorced from the computer itself but hold-
ing information in the form prescribed for the computer; e.g., magnetic tapes,
magnetic wire, punched cards, and so forth. (A)

storage, magnetic. Any storage system which utilizes the magnetic properties
of materials to store information. (A)

storage, mercury. Columns of a liquid mercury medium used as a storage ele-
ment by the delaying action or time of travel of sonic pulses which are circu-
lated by having electrical amplifier, shaper, and timer circuits complete the
loop. (A)

storage, nonerasable. Media used for containing information which cannot be
erased and reused, such as punched paper tapes and punched cards. (A)

storage, nonvolatile. Storage media which retain information in the absence of
power and which may be made available upon restoration of power; e.g., mag-
netic tapes, drums, or cores. (A)

storage, parallel. Storage in which all bits, or characters, or (especially) words
are essentially equally available in space, without time being one of the coordi-
nates. Parallel storage contrasts with serial storage. When words are in paral-
lel, the storage is said to be parallel by words. When characters within words
(or binary digits within words or characters) are dealt with simultaneously, not
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one after the other, the storage is parallel by characters (or parallel by bit
respectively). (A)

storage, secondary. Storage facilities not an integral part of the computer but
directly connected to and controlled by the computer; e.g., magnetic drum,
magnetic tapes, and so forth. (A)

storage, serial. Storage in which time is one of the coordinates used to locate
any given bit, character, or (especially) word. Storage in which words, within
given groups of several words, appear one after the other in time sequence, and
in which access time therefore includes a variable latency or waiting time of
zero to many word-times, is said to be serial by word. Storage in which the
individual bits comprising a word appear in time sequence is sertal by bit. Stor-
age for coded-decimal or other non-binary numbers in which the characters
appear in time sequence is serial by character; e.g., magnetic drums are usually
serial by word but may be serial by bit, or parallel by bit, or serial by character
and parallel by bit, and so forth. (A)

storage, static. Storage such that information is fixed in space and available at

any time; e.g., flip-flop, electrostatic, or coincident-current magnetic-core
storage. (A)

storage, temporary. Internal storage locations reserved for intermediate and
partial results. (A)

storage, volatile. Storage media such that if the applied power is cut off, the
stored information is lost; e.g., acoustic delay lines, electrostatic tubes. (A)

storage, working. A portion of the internal storage reserved for the data upon
which operations are being performed. (A)

storage, zero-access. Storage for which the latency (waiting time) is negligible
at all times. (A)

store. To transfer an element of information to a device from which the unaltered
information can be obtained at a later time. (A)

subroutine. The set of instructions necessary to direct the computer to carry
out a well-defined mathematical or logical operation; a subunit of a routine.
A subroutine is often written in relative or symbolic coding even when the
routine to which it belongs is not. (A)

subroutine, closed. A subroutine not stored in its proper place in the linear
operational sequence, but stored away from the routine which refers to it. Such
a subroutine is entered by a jump, and provision is made to return, i.e., to jump
back to the proper point in the main routine at the end of the subroutine. (A)

subroutine, dynamie. A subroutine which involves parameters, such as deci-
mal point position or item size, from which a relatively coded subroutine is
derived. The computer itself is expected to adjust or generate the subroutine
according to the parametric values chosen. (A)
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subroutine, open. A subroutine inserted directly into the linear operational
sequence, not entered by a jump. Such a subroutine must be recopied at each
point at which it is needed in a routine. (A)

subroutine, static. A subroutine which involves no parameters other than the
addresses of the operands. (A)

substep. Each step of a computer’s task in the computer with centralized control
is often divided into substeps—a portion of a step. (F)

substitute. To replace an element of information by some other element of
information. (A)

switch, function. A circuit having a fixed number of inputs and outputs
designed such that the output information is a function of the input informa-
tion, each expressed in a certain code or signal configuration or pattern. (A)

switching coefficient, S,. The derivative of applied magnetizing force with
respect to the reciprocal of the resultant switching time. Itis usually determined
as the reciprocal of the slope of a curve of reciprocals of switching times vs. val-
ues of applied magnetizing forces. The magnetizing forces are applied as step
functions. (M)

switching time. (1) T\, the time interval between the reference time and the last
instant at which the instantaneous voltage response of a magnetic cell reaches
astated fraction of its peak value. (2) 7%, the time interval between the reference
time and the first instant at which the instantaneous integrated voltage response
reaches a stated fraction of its peak value. (M)

symbol, logical. A symbol used to represent a logical element graphically. (A)

symmetrically cyclically magnetized condition. A condition of a magnetic
material when it is in a cyclically magnetized condition and the limits of the
applied magnetizing forces are equal and of opposite sign, so that the limits of
flux density are equal and of opposite sign. (M)

synchronous. See computer, synchronous.

system, data processing. The assembly of equipment including a computer
(if used) and associated processing equipment, the purpose of which is to solve
a problem or set of problems. The system often includes the procedural details
and computer coding called the program. ®

T

tabulator. A machine which reads information from one medium, e.g., cards,
paper tape, magnetic tape, and produces lists, tables, and totals on separate
forms or continuous paper. (A)

tag. A unit of information, whose composition differs from that of other members
of the set so that it can be used as a marker or label; a sentinel. (A)
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tally. To add 1 to or subtract 1 from a quantity, usually to the content of a
register; tally up is used to indicate addition of a unit, while tally down indicates
subtraction of a unit. (F)

tank. A unit of acoustic delay line storage, containing a set of channels each
forming a separate recirculation path; a circuit consisting of inductance and
capacitance used for the purpose of sustaining electrical oscillations. (A)

tape, magnetic. A tape or ribbon with a magnetic surface on which information
may be placed as magnetically polarized spots. (A)

tape, program. A tape which contains the sequence of instructions required for
solving a problem and which may be read by the computer. (A)

tape reservoir. That part of a magnetic tape recording and/or reproducing sys-
tem which is used to isolate the inertia of the tape from the drive system. (F)

tape-wound core. A length of ferromagnetic tape coiled about an axis in such a
way that one convolution falls directly upon the preceding convolution. The
greater of the cross-sectional dimensions of the tape is the tape width, and the
other is the tape thickness. A wrap is one convolution of the tape about the axis.
Wrap thickness is the distance between corresponding points on two consecutive
wraps, measured parallel to the tape thickness.

A bobbin core is a tape-wound core in which the ferromagnetic tape has been
wrapped on a form or bobbin which supplies mechanical support to the tape.
The dimensions of a bobbin are illustrated in Figure 1. The bobbin I.D. is the
center-hole diameter (D) of the bobbin. The bobbin 0.D. is the over-all diam-
eter (E) of the bobbin. The bobbin height is the over-all axial dimension (F) of
the bobbin. The groove diameter is the diameter (G) of the center portion of the
bobbin on which the first tape wrap is placed. The groove width is the axial
dimension (H) of the bobbin measured inside the groove at the groove diameter.
(M)

fe— [ —>1

H

FIGURE 1. Dimensions of a bobbin.

telemeter. To transmit measurements and observations over a distance, as for
example by radio transmission from a guided missile to a receiving magnetic
tape recorder on the ground. (C)

ternary. Pertaining to the system of notation utilizing the base of 3, employing
the characters 0, 1, and 2. (A)
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test, crippled leap frog. A variation of the leap frog test, modified so that it
repeats its tests from a single set of storage locations rather than a changing set
of locations. (A)

test, leap frog. A program designed to discover computer malfunction, which
performs a series of arithmetical or logical operations on one group of storage
locations, transfers itself to another group of storage locations, checks the cor-
rectness of the transfer, then begins the series of operations over again. Eventu-
ally, all storage positions will have been occupied and the test will be repeated.

(4)

tetrad. A group of four, usually four pulses, in particular, a group of four pulses
used to express a digit in the scale of 10 or 16. (A)

thermistor. The thermistor is a solid-state, semiconducting device made by sin-
tering mixtures of the oxide powders of various metals. It is made in many
shapes, such as beads, disks, flakes, washers, and rods, to which contact wires
are attached. As its temperature is changed, the electrical resistance of the
thermistor varies. The associated temperature coefficient of resistance is
extremely high, nonlinear, and negative. (A)

thermocouple. A device made of two bi-metal joints (forming a closed loop) so
that if the two junctions are at different temperatures, a difference of potential
exists between the two junctions. (A)

three-address. See code, multiple-address.

threshold field, H,. The least magnetizing force in a direction which tends to
decrease the remanence, which, when applied either as a steady field of long
duration or as a pulsed field appearing many times, will cause a stated fractional
change of remanence. (M)

thyratron. A hot-cathode, gas-discharge tube in which one or more electrodes
are used to control electrostatically the starting of a unidirectional flow of
current. (A)

time, code checking. All time spent checking out a problem on the machine
making sure that the problem is set up correctly, and that the code is correct.

(A)

time, engineering or servicing. All machine downtime necessary for routine
testing, for machine servicing due to breakdowns, or for preventive servicing
measures, e.g., block tube changes. Includes all test time following breakdown
and subsequent repair or preventive servicing. (A)

time, idle. Time in which machine is believed to be in good operating condition
and attended by service engineers but not in use on problems.

time, no charge machine-fault. Unproductive time due to & computer fault
such as the following: (1) nonduplication, (2) transcribing error, (3) input/out-
put malfunction, (4) machine malfunction resulting in an incomplete run. (A)
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time, no charge non-machine-fault. Unproductive time due to no fault of
the computer such as the following: (1) good duplication, (2) error in prepara-
tion of input data, (3) error in arranging the program deck, (4) error in operat-
ing instructions or misinterpretation of instructions, (5) unscheduled good test-
ing time, run during normal production period when machine malfunction is
suspected but is demonstrated not to exist. (A)

time, production. Good computing time, including occasional duplication of
one case for a check or rerunning of the test run. Also, duplication requested
by the sponsor; any reruns caused by misinformation or bad data supplied by

sponsor. Error studies using different intervals, convergence criteria, and so
forth. (A)

time, pulse. In a cycle of computer processing, the instant at which information
scanned for detection. (F)

time, standby unattended. Time in which the machine is in an unknown con-
dition and not being used to solve problems. Includes time in which machine
is known to be defective and work is not being done to restore it to operating
condition. Includes breakdowns which render it unavailable due to outside
conditions such as power outages. (A)

time, system improvement. All machine downtime needed for the installation
and testing of new components, large or small, and machine downtime neces-
sary for modification of existing components. Includes all programmed tests
following the above actions to prove machine is operating properly. (A)

toggle. See multivibrator.
track. See drum magnetic storage.

transcribe. To copy, with or without translating, from one external storage
medium to another. (A)

transducer. A device which converts energy from one form to another; e.g., a
quartz crystal imbedded in mercury can change electrical energy to sound
energy as is done in sonic delay lines in computer storage systems. (A)

transfer. To copy, exchange, read, record, store, transmit, transport, or write
data; to change control; to jump to another location. See jump. (A)

transfer check. Verification of transmitted information by temporary storing,
retransmitting, and comparing. (C)

transfer, parallel. A system of data transfer in which the characters of an ele-
ment of information are transferred simultaneously over a set of paths. (A)

transfer, serial. A system of data transfer in which the characters of an element
of information are transferred in sequence over a single path in consecutive
time positions. (A)

transform. To change information in structure or composition without altering
the meaning or value; to normalize, edit, or substitute. (A)



transient = GLOSSARY 443

transient. A phenomenon experiencing a change as a function of time; some-
thing which is temporary; a build-up or breakdown in the intensity of a phe-
nomenon until a steady state condition is reached; an aperiodic phenomenon;
the time rate of change of energy is finite and some form of energy storage is
usually involved. (A)

translate. To change information (e.g., problem statements in pseudo-code,
data, or coding) from one language to another without affecting the meaning.
(A)

transmit. To reproduce information in a new location replacing whatever was
previously stored and clearing or erasing the source of the information. (A)

transport. To convey as a whole from one storage device to another. (A)

trigger. See multivibrator.
trouble-location problem. A test problem whose incorrect solution supplies

information on the location of faulty equipment; used after a check problem
has shown that a fault exists. (A)

trouble-shoot. To search for a coding mistake or the cause of a computer mal-
function in order to remove same. (A)

truncate. To drop digits of a number or terms of a series thus lessening precision.
See precision. For example, the number pi, 3.14159265 ... , is truncated to
three figures in 3.14.

truncation error. The error resulting from the use of only a finite number of

terms of an infinite series, or from the approximation of operations in the infini-
tesimal calculus by operations in the calculus of finite differences. (A)

trunk. A path over which information is transferred; a bus. (A)

truth table. A list in tabular form of the output of a logical function or element
for all combinations of inputs. (¥)

tube, Williams. A cathode ray tube used as an electrostatic storage device of
the type designed by F. C. Williams, University of Manchester, England. (A)

two-address code. See code, multiple-address.

typewriter. An I/0 device used to receive information directly or indirectly
from the computer in computer or human language by means of a modified
conventional electric typewriter. The computer typewriter is often used to con-
vert language for direct communication with the computer; in combination
with a paper tape punch it converts human to intemediate language. e))

U

ultrasonics. The field of science devoted to frequencies of sound above the
human audio range, i.e., above 20 kilocycles per second. (A)
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unconditional. Not subject to conditions external to the specific instruction.

(A)
undisturbed-one output. See coincident-current selection.
undisturbed-zero output. See coincident-current selection.
uni. See multivibrator.

unload. See load.

unpack. To decompose packed information into a sequence of separate words
or elements. (A)

unwind. To code explicitly, at length, and in full all the operations of a cycle
thus eliminating all red-tape operations in the final problem coding. Unwind-

ing may be performed automatically by the computer during assembly, genera-
tion, or compilation. (A)

A\

validity. Correctness; especially the degree of closeness by which iterated results
approach the correct result. (A)

verifier. (1) A punch card machine operated manually which reports by signals
whether punched holes have been inserted in the wrong places in a punch card
or have not been inserted at all. (2) An auxiliary device on which a previous
manual transeription of data can be verified by comparing a current manual
transcription character-by-character during the current process. (C)

volatile. See storage, volatile.

w

winding. A conductive path, usually of wire, inductively coupled to a magnetic
core or cell. When several windings are employed, they may be designated by
the functions performed. Examples are: sense, bias, and drive windings. Drive
windings include read, write, inhibit, set, reset, input, shift, and advance
windings. (M)

wire, magnetic. Wire made of a magnetic material along small incremental
lengths of which magnetic dipoles are placed in accordance with binary infor-
mation. (A)

word. A set of characters which occupies one storage location and is treated by
the computer circuits as a unit and transported as such. Ordinarily a word is
treated by the control unit as an instruction, and by the arithmetic unit as a
quantity. Word lengths are fixed or variable depending on the particular
computer. (A)
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word time. The time required to transport one word from one storage device to
another. See also access time. (A)

wrap. See lape-wound core.
write. To record or copy information in reusable form for future reference. (F)

write pulse. See one state.

X

XS3. See code, X83. (F)

Z

zero. The computer’s conception of zero. [Note: the computer may provide for
two zeros. Positive binary zero is represented by the absence of digits or pulses
in a word. Negative binary zero in a computer operating with 1’s complements
may be represented by a pulse in every pulse position in a word. In a coded
decimal computer, decimal zero and binary zero may not have the same repre-
sentation. In most computers, there exist distinct and valid representations
both for positive and for negative zero.] (C)

zero-access storage. Storage for which the latency or waiting time is negligible.
©)

zero-address instruction. See code, multiple-address.

zero output. See one stale.

zero state. See one state.

zero suppression. The elimination of non-significant zeros to the left of the
integral part of a quantity before printing is begun. One of the operations in
editing is to suppress these zeros. (C)

zone. Any of the three top positions 12, 11, and 0 in an 80-column punch card;
in these zone positions a second punch can be inserted, so that with punches in
the remaining positions 1 to 9, enough two-punch combinations are obtained
to represent alphabetic characters. A portion of internal storage allocated for
a particular purpose. (C)
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ANNOTATED BIBLIOGRAPHY

The purpose of this bibliography is to supply you with a short
list of source material in such a way that you will know approximately
what you will find when you get a copy of the reference. A good jumping-
off place for a concentrated literature search is the bibliography.

1. Netherwood, Douglas B., “Logical Machine Design: A Selected
Bibliography,” Parts I and II, IRE Transactions of the Professional
Group on Electronic Computers, Vol. EC7, No. 2, June 1958, pp.
155-178; Vol. EC8, No. 3, Sept. 1959, pp. 367—-380.

INTRODUCTORY

There are many introductions to the study of digital computers. Usu-
ally they don’t go into the matter very deeply. My recommendation for
a book which will introduce the reader to the logical block design of digital
computers is (2) below; it should also prove valuable to the reader of this
volume if he should find the going rough (quite unlikely, of course). I
often refer to this book in a friendly, even respectful, manner as the com-
puter comic book. It is crammed full of fine drawings which explain, better
than many words, the broad principles of block design. It is the basis of
a course for training computer technicians and so stresses the practical in
contrast to the theoretical.

2. Murphy, John 8., Basics of Digital Computers. New York: John F.
Rider, 1958. 3 Vols.: Vol. 1, 116 pp.; Vol. 2, 133 pp.; Vol. 3, 135 pp.

BOOLEAN LOGIC

Logic is used by many authors to mean the attempt at systematization
which relies almost completely upon Boolean equations and algebra to
express the interrelations which exist within the computer. To introduce

446
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this philosophy, (3) is most valuable. It is written for the engineer who
does not have previous logical background. It contains many drawings
and illustrative problems. It thoroughly explains the Karnaugh map
technique. The address is included below, for the book is most easily
obtained directly from the publisher.

3. Beizer, Boris, and Stephen W. Leibholz, Engineering Applications
of Boolean Algebra. New York: Gage Publishing Co., 1250 Sixth
Ave., New York 20, N.Y. 68 pp. $2.00.

The mapping technique was first presented in

4. Veitch, F. W., “A Chart Method for Simplifying Truth Fractions,”
Proceedings of the Association for Computing Machinery, Vol. 5, Feb.
1952. :

It was developed into a somewhat more useful form in

5. Karnaugh, M., “Synthesis of Combinational Logic Circuits,” Com-
munications and Electronics, No. 9, Nov. 1953, pp. 593-599.

A thorough coverage of logic as applied to switching circuits but with
slight application to computers is found in

6. Caldwell, Samuel H., Switching Circuils and Logical Design. New
York: John Wiley, 1958. xvii + 686 pp.

The classical work which applies Boolean algebra to computers is .
Presented here are models which incorporate a concept of time. This is a
pioneering attempt to systematize the computer art; the trouble is, it
seems to add little to the one’s ability to design a better computer.

7. Phister, Montgomery Jr., Logical Design of Digital Computers. New
York: John Wiley, 1958. xvi + 408 pp.

Another pioneering work is (8), the first to organize computer art into
one comprehensive volume. Many variations of combinations of elemen-
tary blocks which do specific tasks are presented. Even in this fast-chang-
ing field many useful concepts can be gleaned from

8. Richards, R. K., Arithmetic Operations in Digital Computers.
Princeton, N.J.: D. Van Nostrand, 1955. vi + 397 pp.
~ COMPONENT AND CIRCUITS

Excellent detailed descriptions of vacuum tube circuits together with
fine explanations of their operation and interconnection are found in
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9. Millman, J. and H. Taub, Pulse and Digital Circuits. New York:
MecGraw-Hill, 1956. xvix 4 687 pp.

Magnetic components are given especial attention in (10) as are vari-
ous memory devices. These are combined to form many circuits.

10. Richards, R. K., Digital Computer Components and Circuits.
Princeton, N.J.: D. Van Nostrand, 1957. vii + 511 pp.

The latest in computer transistor circuits is found in

11. Pressman, A. I., Design of Transistorized Circuits for Digital Com-
puters. New York: John F. Rider, 1959.

The reader interested in a family of circuits used in an existiﬁg com-
puter will find these described in

12. Booth, G. W., and T. P. Bothwell, “Basic Logic Circuits for Com-
puter Applications,” Electronics, Vol. 30, March 1957, pp. 196—
200.

MAGNETICS AND MEMORIES

Here is a fine discussion about magnetic materials and recording.
Starting from fundamentals, the phenomena surrounding magnetic
recording are simply explained in

13. Begun, S. J., Magnetic Recording. New York: Rinehart, 1949.
X -+ 242 pp. $5.00.

A fine summary of the work done with cores and core-type devices is
found in

14. Rajchmain, J. A., “Magnetics for Computers: A Survey of the
State of the Art,”” RCA Review, Vol. XX, No. 1, March 1959,
pp. 92-135.

Specific problems in storing and retrieving information in core memo-
ries are covered in

15. McMahon, Robert E., “Transistorized Core Memory,” IRE
Transaction of the Professional Group on Instrumentation, Vol. 16,
No. 2, June 1957, pp. 153-156.

PROGRAMMING

An introductory approach to programming is found in

16. McCracken, D. D., Digital Computer Programming. New York:
John Wiley, 1957. vii 4+ 253 pp. $7.75.
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Many new concepts in programming are described in (17) if the reader
is willing to start at the beginning with the author and work up to them.
Here is the only place where interpretive, executive, and compiling rou-
tines are given a brief explanation.

17. Jeenal, Joachim, Programming for Digital Computers. New York:

McGraw-Hill, 1959. viii + 517 pp. $12.00.

BLOCK LOGICAL DESIGN

You can see how block logical design is applied to specific computers
in the following articles:

18.

19.

20.

21.

22.

23.

24.

J. C. Alrich, “Engineering Description of the Electro Data Digital
Computer,” IRE Transactions of the Prof. Group on Electronic
Computers, Vol. EC4, March 1955, pp. 1-10.

Hughes, E. S. Jr., “The IBM Magnetic Drum Calculator Type
650; Engineering and Design Considerations,” Western AIEE-
IRE-ACM Computer Conference, Feb. 1954 at Los Angeles, pp.
140-154.

Ross, H. D. Jr., “The Arithmetic Element of the IBM 701 Com-
puter,” Proceedings IRE, Vol. 41, Dec. 1953, pp. 1287-1294.

Bucholtz, W., “System Design of the IBM 701 Computer,” Pro-
ceedings IRE, Vol. 41, Oct. 1953, pp. 1262-1275.

Leiner, Notz, Smith, and Weinberger, “System Design of the
SEAC & DYSEAC,” Transactions of the Professional Group on
Electronic Computers, Vol. EC3, No. 2, June 1954, pp. 8-22.

Banks, A. W., “The Logical Design of an Idealized General Pur-
pose Computer,” Journal of the Franklin Inst., March 1956, pp.
297-314; April 1956, pp. 421-436.

Astrahan and Rochester, ““The Logical Organization of the New
IBM Scientific Calculator,” Proceedings of the Association for
Computing Machinery, May 1952.

COMPUTER SPECIFICATION

By now you are probably interested in the properties of available com-
puters. Many texts on computers have an appendix section for this infor-
mation. I feel that the most complete source on the characteristics of
extant computers is (25). Besides the computer description, many instal-
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lations are catalogued and the full complement of equipment used is
itemized. It also includes a most thorough design and application
bibliography.

25. Controllership Foundation, Business Electronics Reference Guide,
Vol. 4. New York: Controllership Foundation, 1959. 602 pp.
$15.00.

SYMBOLS

Until the IRE symbols are officially issued and become standard, the
many manufacturers will continue to use different symbols. Most of these
are gathered together for reference in (26).

26. RCA Service Company, The Language and Symbology of Digital
Computer Systems. Camden, N.J.: RCA Corporation, 1959. vi +
114 pp.

GENERAL

An interesting collection of articles on computers is

27. Control Engineering Staff, The Use of Digital Computers in Science
in Business and Control. New York: Control Engineering Maga-
zine, 1958. 112 pp. $3.00.

PERIODICALS

There are a few publications which appear at regular intervals and
which contain contributions in specific areas for computer hardware, sys-
tem design, and component development. There is:

28. Transactions of the Professional Group on Electronic Compulers.
Quarterly by the Institute of Radio Engineers, New York.

For mathematical analyses, system design, and advanced programming
techniques, there is

29. Transactions of the Association for Compuling Machinery. Quar-
terly by the ACM, New York.

Professional, company, and equipment news and program applications
are reported in

30. Communications of the Association for Computing Machinery.
Monthly by the ACM, New York.
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New papers on various phases of computers appear yearly in
31. Convention Record of the Institute of Radio Engineers.
32. Wescon Record of the Institule of Radio Engineers.
33. Proceedings of the Eastern Joint Computer Conference.
34. Proceedings of the Western Joint Computer Conference.

These are available from the IRE headquarters, 1 East 79th Street, New
York.




APPENDIX C

SPECIFICATIONS OF THE
POLYVAC

Name: POLYgenic Variform Automatic Computer

Operation: Serial; Pulse rate: 100 ke

Machine language: NBCD or XS3. 4 bits, per character

Word length: Nine decimal characters plus sign

Instruction type: One address

Memory: 1000 word drum storage; Average access time: 5 milliseconds

Instruction repertoire: 38 instructions in mnemonic form (see Figure 5.7)

Cycle registers: Nine cycle registers of three characters each, which may
be tallied up or down

Data: Numeric only

Console with nine breakpoints

Paper tape reader, 300 characters per second

Paper tape punch, 300 characters per second

Typewriter limited to about 10 characters per second

Operates from paper tape or punches paper tape

Addition time: 10 microseconds
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INDEX

Access:
arbitrary, 18
arbitrary sequential, 18
serial, 18
Access time, 19
Accumulator:
coded digit, 176
parallel character, 176
serial character, 175
natural binary, 173 .
parallel character, 174, 177
serial character, 174, 176
natural binary coded decimal, 182
X$S3, 185
Adder:
full, 152
from Boolean equation, 155
from two half adders, 153
half, 150
from nor elements, 160
Addition:
logic for, 210
Address systems, 48, 209
Arithmetic:
as a mapping relationship, 6
asynchromes, 210
bases other than ten, 106
binary, 105
decentralized, 210
description, 6
logie, 20, 208
addition, 210

combined addition and subtraction,

Arithmetic (Continued):
subtraction, 213
machine, 79
addition, 70
division, 90
multiplication, 88
subtraction, 83
method of doing, 6
serial character, 209
speed, 20
Associativity, 129

Bases:
conversion of numbers between, 102
other than ten, 101
Binary system, 103
Bit storage:
using nor elements, 159
Block, 16
Blockette, 16
Buffers:
core, 269
input/output, 269
memory, 270
drum, 270
fast access bands, 271
output band, 271
Bundles, 100

Character:
machine coding, 14
Checking:
arithmetic, 23

216
division, 225 information, 24
multiplication, 221 Clock, 148

signed multiplication and division, 229  Closed, 98
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Code:
alphabetic, 119
double numerie, 120
multiple-bit, 120
binary decimal, 111
biquinary, 119
excess three, 114
five bit, 117
natural binary, 111
natural binary coded decimal, 112
two-out-of-five, 118
weighted binary, 116
X8S3, 114
addition with, 114
Coding:
for addition of a set of numbers, 63
first method, 63
second method, 67
technique, 58
Communication:
between human and computer, 305
direct, 306, 308
data in registers, 312
input-output unit, 313
machine stop, 308
power, 313
state of operation, 313
table of, 309
test, 314
indirect, 306
instruments, 306
processes, 306
purpose, 307
Commutativity, 129
Comparison, 190
Comparitor:
parallel character, 192
serial bit, 190
serial character, parallel bit, 191
Complementers:
nbed, 188
Computer:
analog, 7
analog versus digital, 10
analysis for the specific, 35
applications, 8
commercial, 8
government, 9
industrial, 9
logical and tactical, 10
scientific, 8

INDEX

Computer (Continued):

statistical and analytical, 10
build, buy or lease, 32
capabilities, 2
construction, 35
cycle, 42
design, 32, 34
digital, 7
general requirements, 33
limitations, 5, 32
means of instructing, 22
operation, 37

change-over, 38

debugging of construction, 37

debugging of program, 37

operating procedure, 38

systems operation and modification,

38
organization diagram, 41
plan, 40
problem requirements, 33
structure, 12
structure and arithmetic, 14

Construction:

logical, 145

Control:

movement, 3
process, 3
reflexive, 4

Control buffer, 316
Control unit:

auxiliary, 274
jobs, 274
centralized, 297
logic, 299
logic for multiplication, 300
order subdivision, 297
substep sequence, 298
communication between, 275
decentralized, 274
incorporation of functional blocks,
205
introduction, 273
main, job of, 274
operation, 42, 55
plan of action, 277
switching, 275
timing, 276

Core memory: See Memories, magnetic

core



Counter:
core, 198
multistage, 199
foreshortened, 197
ring, 200
short count, 199
Counting, 95, 97
Cyecles:
and loops, 69
prototype, 70
using cycle index register, 73

Data:

structure, 14
Decimal system, 101
Decoders, 194
Delay:

binary, 149

lines, 239
Deposited film memories, 261
Detectors:

character, 195
Distributivity, 129
Division:

logic for, 225

signed, 229

Document flow, 36
Drum memories: See Memories, drum
Duodecimal system, 106

Editing:

description, 8
Element:

all, 130

null, 130
Encoders, 193
Execute, 277

Ferrite apertured plates, 259
Fetch:
logic, 280
add-cycle-register phase, 281
start phase, 280
Field, 16
Flip-flop, 146
Flow diagram, 59
Flow symbol:
chart of, 61
comparison, 60
external process, 62
function box, 60
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Flow symbol (Continued):
instruction modification, 61
labels, 63
re-entry loop, 62
stop, 62
subroutines, 62

Functional units, 173

Function plotting, &

Gate, 126
Generator:
pulse train, 200
asynchronous, 201

Half adder, 150
High speed printer:
flow diagram, 345
logic, 347
print cycle, 349

Identity, 128
Tlustrative machine, 49 :
Tllustrative problem, 371
calculation of the phi’s, 386
description, 374
finding the sum of the squares, 379
coding, 387
full routine, 389
break points, 391
introduction, 371
analysis into sub problems, 372
coding, 373
debugging, 373
flow chart, 372
layout of data, 372
numerical solution, 371
running and interpretation, 373
loading and unloading, 388
preparation and running, 392
copy preparation, 392
runping the problem, 392
square root subroutine, 384
subdivision, 376
Indirect communication, 314
Individual, 96
Input buffer unit, 316
Input chart, 315
Input mechanism chart, 314
Input/output equipment:
relation to computer, 315
diagram, 315
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Integer, 99
Intermediate media:
access to, 307
cost, 308
permanence, 307
sequence-ability, 308
Iterations, 59

Jump orders:
logic, 283

Karnaugh maps:
use of, 140

Language translation, 4
Logic:
block, 133
compound functions, 133
function symbols, 134
hardware for, 135
Boolean algebra reduction, 141
entities of, 123
fundamental postulates, 128
nor, 142
simplification, 135
definition, 135
symbolic realization, 140
with blocks, 133
with block symbols, 127
with letter symbols, 124
with pulses, 126
with statements, 132
with truth values, 124
Loops, 59

Machine languages, 110
Machine language translation, 13
Magnetic tape:
appearance, 343
buffer logie, 339
advance, 342
read one block, 341
gearch forward equal, 342
write forward, 342
logic for, 338
information handling, 339
mechanical system outline, 332
simple description, 332
tape reservoir, 335
mechanical servo control, 335
vacuum system, 336

INDEX

Mathematical problems, 2
Matrix switches, 257
Media, intermediate: See Intermediate
media
Memories:
core type, 259
drum, 261
address translation, 264
channel selection, 264
memory address register, 264
Polyvac, 264
sector selection, 265
other combinations, 267
using counter tracks, 266
using one track, 267
transfer from, 265
writing on to, 266
dynamic, 232
forced external synchronization, 233
logical principles, 233
parallel storage, 238
using supplementary reference, 236
magnetic core, 242
disturb current, 251
logic, 251
memorize cycle, 253
remember cycle, 252
timing chart, 253
parallel bit, 250
reading, 244
restoring information, 244
serial bit, 248
serial parallel, 250
structure, 245, 248
systems layout, 255
timing logic, 254
writing, 244
Memorization, 19
Memorization orders:
logic, 289
Memory devices:
logic, 231
Memory reference orders:
logic, 287
Mixer, 127
Mnemonic, 50
de Morgan’s Law, 132
Multiple input block, 120
Multiplication:
logic, 221
centrally controlled, 300



Multiplication (Continued):
signed, 229
Multivibrator, 146

Nor, 142

Not, 131

Numbers:
irrational, 100
natural, 97
rational, 100
real, 99

Number systems, 95

Order:
specification of, 50
symbolic description, 51

Off line operation:
magnetic tape, 359
off-line processing, 359
punch cards, 359
punched paper tape, 359
verification, 360

Polyvac:
arithmetic orders, 54
break points, 378
chart of commands, 76
code of, 121
comparison orders, 66
cycle index register orders, 72
description, 377
end around shift order, 53
jump orders, 66
load instructions, 378
long shift order, 54
shift out orders, 52
stop orders, 67
transfer orders, 52
unload instructions, 378
Problem:
analysis, 26
calculations, 31
coded routine for, 32
data flow, 31
description, 29
document flow, 29
initial statement, 26
preparation for computer, 25
pre-processing requirements, 26
systems analysis, 29

INDEX 457

Processing:
description, 5
Programming:
external, 43
internal, 44
permanent, 42
Propositions, 132
Punch card:
collating, 331
merging, 331
punching, 330
reading, 331
selecting, 331
single record processing, 330
sorting, 330
Punched paper tape input equipment:
general, 317
paper tape punch, 324
control, 327
punching, 325
tape feed, 326
paper tape reader, 319
optical reading system, 320
tape feed mechanism, 319
tape mechanism control, 322

Quinary system, 107

Record keeping, 4
Register, 17, 45
cycle index, 71
tally, 202
Remembering, 19
Revolvers, 269

Shaper, 148
Shifting, 46
Shift orders:
logic, 294
Shift register:
dynamic, 168
symbol, 170
using magnetic core, 165
with built-in storage, 165
Simplification:
logical, 131
Simulation:
nuclear reactor, 3
real time, 2
gecaled, 2
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Storage: Timing generator, 148
delay line, 239 Transfer orders:
dynamic, 232 logic, 289
kinds of, 14 Trigger, 146
statie, 232, 240 Truth tables, 125
addressing, 241 Typewriter:
destructive readout, 241 as input, 351
elements, 241 as mechanical translater, 351
logic for, 241 as output, 352
volatility, 240 summary of operation, 357
Subtraction: operated from paper tape reader, 352
unsigned serial digit, 213 the full assembly, 358 ‘
Symbols:
I.R.E. standards, 127 Tl
logicau} block, 127 using nors, 160
Synthesis and analysis, 5 Unit, definition of, 96

Systems analysis, 35

Veitch diagram, 132

Tabl tructi 4 3
e e Venn diagram, 132

Tallies, 202

Tally orders:
logic, 292 Words, length of, 15

Timing, 21 Word time, 19
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