
DIGITAL I
COMPUTER PROGRAMMING

General Electric Series
WRITTEN FOR THE ADVANCEMENT OF

ENGINEERING PRACTICE

DIGITAL COMPUTER PROGRAMMING
by D. D. McCracken

THE ART AND SCIENCE OF PROTECTIVE RELAYING
by C. Russell Mason

APPLIED ELECTRICAL MEASUREMENT
by Isaac F. Kinnard

AIRCRAFT GAS TURBINES
by C. W. Smith

AN INTRODUCTION TO POWER SYSTEM ANALYSIS
by Frederick S. Rothe

D-C POWER SYSTEMS FOR AIRCRAFT
by R. H. Kaufmann and H. J. Finison

TRANSIENTS IN POWER SYSTEMS
by Harold A. Peterson

SERVOMECHANISMS AND REGULATING SYSTEM DESIGN, TWO VOLUMES
by Harold Chestnut and Robert W. Mayer

TRANSFORMER ENGINEERING
by the late L F. Blume, A. Boyajian, G. Camilli, T. C. Lennox, S. Minneci, and
V. M. Montsinger, Second Edition

CIRCUIT ANALYSIS OF A-C POWER SYSTEMS, TWO VOLUMES
by Edith Clarke

CAPACITORS FOR INDUSTRY
by W. C. Bloomquist, C. R. Craig, R. M. Partington, and R. C. Wilson

PROTECTION OF TRANSMISSION SYSTEMS AGAINST LIGHTNING
by W. W. Lewis

MAGNETIC CONTROL OF INDUSTRIAL MOTORS
by Gerhart W. Heumann, Second Edition

POWER SYSTEM STABILITY
Volume I—Steady State Stability; Volume II—Transient Stability;
by Selden B. Crary

MATERIALS AND PROCESSES
by J. F. Young, Second Edition

MODERN TURBINES
by L E. Newman, A. Keller, J. M. Lyons, and L B. Wales;
edited by L E. Newman

ELECTRIC MOTORS IN INDUSTRY
by D. R. Shoults and C. J. Rife; edited by T. C. Johnson

DIGITAL

COMPUTER PROGRAMMING

d. d. McCracken
Manager-Training, Computer Department

General Electric Company
Phoenix, Arizona

One of a series written by General Electric authors
for the advancement of engineering practice ' -

JOHN WILEY & SONS, INC., NEW YORK
CHAPMAN & HALL, LTD., LONDON • 1 957

SECOND PRINTING, SEPTEMBER, 1957

Copyright© 1957 by General Electric Company

All rights reserved. This book or any part thereof
must not be reproduced in any form without the

written permission of the publisher.

Library of Congress Catalog Card Number: 57-8891,

Printed in the United States of America

PREFACE

This book is written for the person who needs to know how prob­
lems are solved on a modern stored program computer. The person
seeking such information in the past has had to rely on printed mate­
rials which are directed either toward- those who only want to know
the end product of computing—what computers can do, how much
money they can save, etc.—or toward those who want the details of
operation of a particular machine. Digital Computer Programming
provides a general introduction to the entire field, with emphasis on
the basic principles. It is written for people with no previous knowl­
edge of computing who want to know how to prepare the detailed
“instructions” for the computer, as well as for people whose work is
so closely related to computer applications that they need to know
what is involved in programming. .

The book begins with a rudimentary discussion of the elements of
a computer and their relationships.. It presents the fundamental ideas
of programming with detailed examples and explanations. . These
examples are written for a mythical computer called TYDAC, which
stands for TYpical Digital .Automatic Computer. This “paper”
computer is intended primarily.as an aid to learning rather than as
a compilation of all the features of available equipment. It is gen­
erally representative of the major trends in present computer build­
ing. The examples are written in a form which makes. it possible,
if desired, to study them without detailed knowledge of the char­
acteristics of the illustrative computer. The book presents many
of the programming techniques which must be known to make effi­
cient use of the equipment, and thus helps to answer the question,
“Now that I know how the machine works, how do I solve my
problem?”

It is anticipated that the book will be useful, in different ways, to
two main groups of readers. Those who read it without having an
actual machine to practice with will find that what they learn can

Vi PREFACE

easily be applied to a real situation later. This is because the
primary concern is not with details and peculiarities of a particular
machine, which must be the concern of a machine manual, but with
the principles of programming. In fact, much of the textual matter
is a general discussion of ideas which apply equally to any computer,
without direct reference to TYDAC.

Those who have a computer at hand while they read the book will
find several desirable features. Possibly the most important is that
the chapters which do not apply to a particular situation can be
omitted without loss of continuity: at least half of the chapters may
be omitted or included at will. This group of readers will find little
difficulty in applying the illustrations to their particular machine,
partly because of the format of the programs and partly because
TYDAC is an uncomplicated machine. In a classroom situation, the
instructor can fairly easily rewrite the illustrations. The many ex­
ercises are in no way dependent on the features of TYDAC.

Both groups of readers will find that the text is self-contained. If
necessary, it may be read without an instructor or reference mate­
rial, either to provide a general background knowledge of computer
programming or as a supplement to a manual.

Practically none of the technical material of the book is original
with me. I am indebted to all those who have developed and made
available the material presented here. All the computer manufac­
turers were most helpful in supplying material on their equipment.

-1 wish to acknowedge my appreciation to P. M. Thompson, W. C.
McGee, and Dr. H. R. J. Grosch of General Electric Company, for
encouragement in the very early stages of this effort; to F. G. Gruen-
berger of General Electric, who read the manuscript and made many
valuable suggestions; to R. C. McGee of General Electric, who sup­
plied most of the material for Chapter 7; to members of my staff who
assisted in the clerical work; and to my wife, for her patience during
the writing.
' D. D. McChacken

Phoenix, Arizona .
March 1957

CONTENTS

CHAPTER
1 Computing Fundamentals 1
2 Coding Fundamentals 13
3 Binary and Octal Number Systems 30
4 Decimal Point Location Methods 62
5 Address Computation 66
6 Loops in Computing 74
7 Flow Charting 37
8 Index Registers 98
9 Subroutines m

10 Floating Decimal Methods 121
11 Input-Output Methods 132
12 Magnetic Tape Programming 160
13 Program Checkout 169
14 Relative Programming Methods 170
15 Interpretive Programming Methods 178
16 Double Precision Arithmetic 191
17 Miscellaneous Programming Techniques 198
18 Automatic Coding 211

Numerical Operation Codes for TYDAC 218

APPENDIX
1 Summary of TYDAC Instructions 219
2 Minimum Access Programming 227
3 Externally Programmed Computers 231
4 Octal-Decimal Integer Conversion Table 236
5 Octal-Decimal Fraction Conversion Table 244
6 Bibliography 247

Index 249
vii

1 COMPUTING FUNDAMENTALS

1.0 Introduction ;

Programming a problem! for solution on a digital computer is
basically a process of translating- from the language convenient to
human beings to the language convenient to the computer. The
language of the problems to be solved is mathematics or English state­
ments of decisions to be made; the language of the computer is simple
arithmetic and elementary choices, expressed in coded.numerical
form. By and large, we are at present required to present problems
to the computer in its language.

In order to put the problem in the required form, we must learn
in some detail the functions of the various parts of a computer, and
the precise manner in which orders are given to the machine. This
chapter presents the framework of the subject; later chapters will
provide the details. Section 1.1 discusses the over-all picture arid
defines some of the basic terms. Section 1.2 gives an initial descrip­
tion of the mythical computer used for illustration in the text. The
succeeding sections trace the development of present equipment,
sketch the steps in computer solution of a problem, and list some
typical computer applications. .

1.1 Computer Organization
. A modern digital computer usually consists of several boxes or

racks of mechanical and electronic equipment, connected together by
electric cables. In. this array we find five distinct functions being
performed: input, memory, arithmetic, control, and output. Figure 1
is a block, diagram of these functions, showing the relationships
among .them . - . ; ..."

The input section of a computer - ordinarily consists ..of devices
which take information from punched cards, paper tape, or magnetic
tape, and place it in memory. In technical language, this is called
reading. The function of the input device (s) is essentially to trans-

2 DIGITAL COMPUTER PROGRAMMING

late from the external form in which the information is represented,
such as a punched card, to the form in which the same information is
stored in memory. The information in question may be anything
which can be stored in memory: numbers to be used in the calcu­
lation, instructions which tell the machine what to do, numbers or
letters to be used later as column headings on the output, etc. The
single arrow from the input box to the memory box in Figure 1 implies
that the information goes only to memory—further operations must
take the information from memory to other sections of the machine.

Figure 1. Functional parts of a digital computer and their relationships. The
solid lines represent information flow, the dashed lines control signals.

It is difficult to find good analogies between large computers and
things more familiar, and the analogies are apt to be misleading.
Nevertheless, it may be helpful to characterize the input function
as equivalent to the keyboard of a desk calculator^ Of course, the
difficulty with this analogy is that a desk calculator has no real
internal memory.

The memory or storage of a computer is the nerve center of the
machine. All information must travel through it. All numbers must
be in it before any arithmetic manipulations can be carried out. All
the instructions which tell the machine what to do must be in memory
before they can go over to the control section. The memory needs
to be large and fast, i.e., it should be able to hold many numbers or
instructions—from 1000 to 30,000 in present equipment—and be
able to send these to the arithmetic or control sections with a mini­
mum delay—as short as about 10 microseconds in the fastest machines
at the time of writing. If it is not technically or economically

COMPUTING FUNDAMENTALS 3

feasible to build a high-speed memory large enough to hold all the
information required, a solution is to store the part not currently
needed in a larger, but slower, auxiliary device. As indicated in
Figure 1, the auxiliary memory “communicates” only with the main
memory.

The present trend is for the main memory to be built around
magnetic cores in large machines, and magnetic drums in the smaller.
Auxiliary memory is almost always magnetic tape, with magnetic
drums also being used in the large computers. Electrostatic and
mercury-delay storage are still employed in some machines, but are
being superseded in the newer ones. Descriptions of the operation of
these devices will be found in works listed in the bibliography.

The arithmetic section of the computer does what its name implies.
It is here that the actual work of problem solution is done. In addi­
tion to the four arithmetic operations, this section can shift numbers
right and left, and assist in certain operations which make it possible
for the computer to make decisions. It corresponds in a desk calcu­
lator to the wheels and gears and shafts that actually do the
calculation.

Register is a term commonly used in connection with several of
these basic functions; this is simply a device for temporarily storing
a piece of information while or until it is used. A register corre­
sponds quite closely to the dials on a desk calculator, which are
wheels that temporarily store the numbers on which arithmetic is
done. In our case, it is not only numbers which may be stored in
a register but also instructions.

The control section of a calculator has the function of interpreting
or decoding the instructions stored in memory, and then sending
signals to the rest of the parts telling them what to do. In the
diagram we see two solid lines, implying that instructions are sent
to and from (usually from) memory to control; the dashed lines
imply electric signals sent to the rest of the machine, based on these
instructions.

The control section is equivalent to the buttons which are pushed
to start the various arithmetic operations on a desk calculator, but
the analogy is quite incomplete. The arithmetic and control sections
are the hardest functions to point to in looking at a machine. The
input and output devices are usually separate frames, as are memory
and the magnetic drums and tapes if any. The arithmetic and
control sections, on the other hand, are made up of ordinary-looking
electronic components, and the equipment constituting the two func­
tions is usually in the same cabinet. Incidentally, there are usually

4 DIGITAL COMPUTER PROGRAMMING

one or more boxes to which no reference has been made here: the
power supply. This omission simply points up that we are looking
at a computer from the standpoint of what it does and how the
information flows, not from the standpoint of electrical engineering.

The output section has the obvious purpose of recording in con­
venient form the answers to the problem or anything else in memory.
The media may be punched cards, printed pages, or paper or magnetic
tapes. The chart shows that information may be recorded (or
written, in the jargon) only from memory. For our purposes this
is true, although electronically the arithmetic unit may be involved. «.

• The word instruction, which has been used repeatedly, should be
amplified. Anyone who has used a desk calculator realizes that it
is necessary to have some sort of pattern to the operations so that
the operator can get into a routine. This pattern consists of a
sequence of specified arithmetic operations on specified quantities.
Analyzing or breaking down the process further, we see that doing
a desk calculation consists of doing a series of distinct steps, each
step involving one arithmetic operation and one new piece of
information.

The situation in the electronic computer is not so different. For
a problem to be solved on a computer, it must be broken down into a
series of precise steps, each involving one arithmetic operation and
one piece of information (two or three in some machines) in addition
to the result of the previous step. The difference’ between this situa­
tion and the desk calculator is that with the desk calculator the
sequence of operations is in the operator’s head, whereas to satisfy the
computer the sequence must be written down in a rigidly defined
form. The appearance of these instructions will be elaborated in
the next chapter; we may say here that they are usually stored in
memory as ordinary numbers.

After defining several more terms, we shall look at the flow of
information as a typical instruction is executed. The first term is
program. A program is simply a collection of instructions which
carries out some purpose such as solving a particular problem. We
speak of modem computers as being stored program machines. As
a verb, to program means to write the instructions necessary to tell
a computer how to solve a problem, along with the planning necessary
before the detailed instructions can be written. The word code is
sometimes used almost as a synonym for program, but often it implies
a lower level of activity which involves a sinaller amount of planning.
Word is used in computing as a generic term to cover either a number

COMPUTING FUNDAMENTALS 5

or an instruction or a group of characters to be used for some other
purpose. It is roughly equivalent to piece of information as used
previously.

Suppose now as a very simple example that two numbers are to be
added. The two numbers, and; in the type of machine to be con­
sidered in this book, three instructions, have to be loaded into memory
by the input device (s). Actually, many other instructions have to
be in memory to instruct the machine to bring these in, but we can
without great inconvenience ignore this fact.

The first instruction moves from memory to the control unit, which
analyzes the coded instruction to determine what operation is called
for and where in memory to locate the first number. After this
analysis or interpretation, the control unit sends out signals to the
appropriate units, calling for the specified number to move to one
of the arithmetic registers in preparation for the next operation. The
second instruction is similarly interpreted and the control unit calls
for the second of the two numbers to move from memory to the
arithmetic unit and be added to the first number. The third instruc­
tion sends the sum back to memory. Finally, the sum is written on
an output device; this also requires many more instructions, which
fact can be temporarily ignored.

In Chapter 2 we shall discuss the same example in terms of the
details of machine characteristics.

1.2 TYDAC
; Much of the material of- later chapters will be illustrated by writing
codes for TYDAC, which, in the tradition of naming computers by
acronyms, stands for TYpical Digital Automatic Computer. This
machine is a compilatioh of representative characteristics of present
computers, and of course exists only in this book. This section is a
description of-the major features of TYDAC, showing the relationship
to the material of the previous section.

The input of TYDAC is assumed to include punched cards, a
special typewriter, and a paper-tape reading device on the type­
writer.’ The memory is taken to be 2000 words, each holding ten
decimal digits and sign. Each word may be either a number to be
used in the calculation or a (coded) instruction. No assumptions or
statements are-made about the physical type (whether magnetic
cores, drums, etc.) or the speed of the memory. Four magnetic tapes
are assumed as auxiliary memory.

6 DIGITAL COMPUTER PROGRAMMING

The arithmetic unit comprises two registers: the accumulator and
the multiplier-quotient or MQ. The accumulator does all the addi­
tion and subtraction and participates in multiplication, division, and
most other operations. It can hold eleven digits and sign. The MQ
is involved in multiplication, division, some shift operation, and a
few others. It holds ten digits and sign. TYDAC is assumed to be
able to do floating decimal arithmetic (Chapter 10), i.e., keep track
of decimal points during a calculation, if desired.

The control section has four registers: the current instruction
register, the location counter, and two registers called index registers.
As discussed in the previous section on general computer organization,
each instruction from memory has to be placed in the control section
before being interpreted and executed. The temporary storage in
which each instruction is held after being brought from memory, and
while it is being decoded, is called the current instruction register.
The register which keeps a running record of the “location” in mem­
ory of the instruction of current interest is called the location counter.
(The notion of location in memory has not been discussed yet; it
will be clarified early in the next chapter.) The index registers have
to do mostly with the automatic modification of instructions. Chap­
ter 8 is devoted to their operation and use.

The output equipment of TYDAC is assumed to be punched cards,
the special typewriter, and a paper-tape punch attached to the
typewriter.

We may now draw a diagram of TYDAC, Figure 2, which is an
expansion of the general diagram, Figure 1. The over-all information
flow paths are the same as in Figure 1; the details will be presented
in succeeding chapters.

1.3 History of Computing
The characteristics of present computers have been arrived at

through a process of development, most of which has occurred since
1945. It may be instructive to trace, in broad outline, the course
of these developments.

Devices to assist in working with numbers have been in existence
as long as there have been numbers. The first was the abacus, which
made use of the bi-quinary number system (page 49) some 5000
years before its application in several modern computers. The first
mechanical computer was built by Pascal; a better device was built
by Leibnitz in 1673. The first large computer was started in 1812 by
Charles Babbage, a British mathematician. The machine was called

Figure 2. Functional diagram of TYDAC.

C
O

M
PU

TIN
G

FU
N

D
A

M
EN

TA
LS

8 DIGITAL COMPUTER PROGRAMMING

the Difference Engine,-from the mathematics it] employed to calculate
tables of mathematical functions. Babbage -did not complete his
machine, but others built a computer-from his plans.

In 1833 Babbage Conceived the Analytical; Engine, which is the
ancestor of all automatic computers. This machine can fairly be
called a general-purpose computer, since it was to have flexible se­
quential control over the arithmetic operations it performed. Se­
quential control meahs that it was to be possible to specify in advance
a sequence of arithmetic operations and the numbers to be operated
on. Once the sequence had been specified by a punched card mecha­
nism developed earlier for use on the Jacquard loom, the machine
would carry out the operations automatically. .The sequence could be
changed by altering the punched cards. It was to store numbers ip
mechanical wheels and use mechanical arithmetic elements. The
input was to be either punched cards or hand-set dials, and the
output was to be punched cards, a printed page, or a mold from
which type could be set. Unfortunately, this brilliant conception
was never translated into a working machine, due partly to financial
difficulties and' partly to engineering problems which were at the
time insurmountable. |

The present application of punched cards'] began in 1889 when
Dr.) Herman Hollerith patented the Hollerith punched card. The
equipment he invented and constructed was u^ed in his work for the
U. S. Census Bureau, and later became the basis for the International
Business Machines Corporation which was organized in 1911.

The first modem machine to use Babbage’s principle of sequential
control was described subsequently by Dr. Howard Aiken of Har­
vard University in the 1930’s. Called the Automatic.Sequence Con­
trolled Calculator, or more commonly the Mark I, it is remarkably
similar in principle to the Analytical Engine. It does, however, make
use of electromagnetic relays, ana uses punched paper'tape for se­
quence control rather than punchejd cards. It (was completed in 1944
after several years’; work by/Harvard University and IBM. It is
still in use. ; ’ •• • I

The ENIAC (Electronic Numerical Integrator and Computer)
represented a considerable advance in the computer building tech­
nology, since it is entirely electronic in internal operation. Designed
by J. P. Eckert and Dr. J. W. Mauchly of the Moore School of
Electrical Engineering at the University of Pennsylvania, it was
completed in 1946. lit was of course much faster than any previous
machine. Sequence, control is effected by means of many external
wires running between holes in-plugboards,-and by external switches.

COMPUTING FUNDAMENTALS 9

Input and output are basically IBM cards, but dials may be used
for the input of constants.

All these machines, and others along the same lines, use some
external means of sequence control: punched cards, paper tape,
wired plugboards. The memory is used only to store numbers. The
fundamental idea of placing “instructions” in memory, which is basic
to modern computers, did not emerge until 1945. This “stored pro­
gram” idea, with which we shall have much contact, appeared in a
report written by Dr. John von Neumann, proposing a computer
quite different from the ENIAC. By storing the instructions inter­
nally and by using binary instead of decimal numbers (Chapter 3),
much greater power could be achieved at considerably less expense
of electronic equipment. The name EDVAC (Electronic Discrete
Variable Automatic Computer) was suggested. In a further attempt
to reduce the bulk of equipment, the memory of the EDVAC was
built around the ultrasonic or mercury-delay type of memory. The
EDSAC (Electronic Delay Storage Automatic Computer) was built
along similar lines at Cambridge University. It first operated in 1949.

No radically new ideas, of the magnitude of the stored program
principle, have appeared in the flood of computers designed and built
since these early models. Great advances have been made, however,
in speed, reliability, and ease of use.

The Univac, produced by what is now the Sperry Rand Corpora­
tion, was the first mass-produced computer placed on the market, in
1951. It is a decimal machine, has magnetic tapes, and uses the
mercury memory. It and its successors are in wide use.

The IBM 701 appeared in 1953. It gained speed by using binary
numbers and electrostatic storage.

The Whirlwind I, built at the Massachusetts Institute of Tech­
nology, was the first large machine to use magnetic cores for main
memory. This development represented a gain of a factor of 2 or
more in speed, and a great increase in reliability, over electrostatic
memory. . Production machines using magnetic cores include the
Univac II and the IBM 704 and 705.

One of the problems plaguing computer designers for many years
has been the great disparity in speed between the input-output equip­
ment and the internal electronic circuitry. Significant advances
have been made in improving the reading and writing devices, but no
mechanical device can match arithmetic speeds of millions of opera­
tions per minute. A solution to this problem, which has been avail­
able since about 1954, is the use of separate high-speed tape reading
and writing equipment. For instance, on a machine where punched

10 DIGITAL COMPUTER PROGRAMMING

cards are the primary input medium, it is highly uneconomical to tie
up the entire machine while reading cards. What can be done is to
read the cards in a separate machine and write the information onto
magnetic tapes, at the usual card-reading speed; this, of course, while
the main computer is doing something else. Then the information
now on tape can be read by a tape reader connected to the computer,
at the much higher tape-reading speeds. A similar saving can be
effected on printing the output. Such equipment is available for the
major production computers.

Many further advances are surely forthcoming. The foregoing is
an outline of the trends of computers actually on the market, up to
the time of writing. Computers now in development are said to be
much faster, more flexible, and to have much larger memories.

1.4 Steps in Preparing a Problem for Computer Solution
There are several fairly distinct steps which must be carried out to

solve a problem on a computer, some of which have been alluded to in
previous sections. These steps are now outlined; details will be
given later.

NUMERICAL ANALYSIS
In all but the simplest problems, a considerable amount of work

must be done before much detailed consideration of the computer is
brought in. This is because computers, in a single step, can do only
simple arithmetic and make only simple logical decisions. Most
scientific and engineering problems are expressed in terms a computer
cannot handle directly: integrals, cosines, differential equations, vec­
tors. A numerical method must be found to translate continuous
functions to arithmetic: finite difference methods, infinite series, con­
tinued fractions, iterative procedures, etc.

Although numerical analysis (and in business problems, proce­
dures analysis) is a highly important part of the computing field,
it is outside the scope of this book.

PROGRAMMING
This is a classification which is often merged with the preceding

or following. When interpreted strictly, it implies all the planning
which comes after analysis and is related specifically to the computer.
It involves primarily drawing a flow chart or block diagram (Chap­
ter 7), planning memory allocation (Chapter 11), and planning for
careful records of what is done during coding.

COMPUTING FUNDAMENTALS 11

CODING
This is the writing of detailed machine instructions which carry

out the arithmetic operations called for above, whether in actual
machine language or in some symbolic or abstract form (Chapters
14, 18). It is usually the first subject a newcomer to computing is
taught. For most problems it is not the most demanding aspect of
the work, but in others involving severe space or time restrictions
it is crucial. It is the part of the job which really comes face to face
with the details, not to say peculiarities, of the particular machine
being used. Coding must to a certain extent be relearned in order
to work on a new computer, although of course relearning will be
much shorter than the original learning. It involves a great deal of
detailed work and is the source of many errors. It is also at the
center of many efforts to make the computer take over the detailed
work and prepare its own programs (Chapter 18).

CHECKOUT
There are so many opportunities to make mistakes in the steps

outlined so far that most programs as originally written contain
errors. Often these are of such a nature that the programs will not
proceed far enough to get any answers; in other cases they will get
wrong answers. The mistakes must of course be found and corrected,
and initial answers checked against a calculation done by hand.
There are systematic ways of. finding the errors, and for that matter,
of trying to avoid them. These are discussed in Chapter 13.

PRODUCTION
After the program is known to be computing correct answers, it

remains to obtain answers for all the sets of input data that may be
required. This can often be set up as a fairly routine procedure
and handled by an operator with less training than the programmer
and others who may have worked on the problem.

1.5 Applications of Computing
Computer applications cover a wide variety of fields, which may be

classified roughly as follows.
1. Speeding up the solution of simple problems. Some computing

tasks, although not complex, are extremely long and cumbersome.
A good example is the determination of prime numbers. This search,
which is of considerable interest in number theory, requires tens of

12 DIGITAL COMPUTER PROGRAMMING

thousands of arithmetic operations per prime number. The operations
are of no complexity whatsoever, but 50,000 operations to find one
prime number gets tiresome. The latest large machines can find
several thousand primes per hour.

2. Taking into account more variables when solving mathematical
and engineering problems. Many formulations must be greatly sim­
plified before they can be solved by hand; a computer operates fast
enough that much less simplification is required.

3. Doing “experiments” inside the machine. It is often possible
to predict operation of equipment under study without ever building
the device—thus saving years and millions of dollars in some cases.
This is commonly called simulation.

4. Data reduction. In testing new equipment, literally millions of
readings of temperature, pressure, force, strain, etc., may have to be
taken. Reducing this mass of data to averages and meaningful
answers is greatly accelerated by computers.

5. Optimizing designs. In designing complicated systems such as
atomic reactors or jet engines, much time is spent trying to find the
best combination of possibly dozens of design variables. Although
present computers can by no means carry out the entire task, they
can assist materially.

6. Commercial or business applications. Much of the detailed work
of processing payrolls, inventory records, sales records, insurance
billing, etc., can be done by computers. They may also be used to
predict machine loading or market trends and thus assist in the
planning phase of business. These business applications will eventu­
ally require a much larger use of computers than the engineering
and scientific applications.

All of these areas share, to a greater or lesser extent, this charac­
teristic: a certain basic calculation has to be carried out many times
with different values of the input. For instance, the payroll opera­
tion has to be carried out for each man, each pay period. The basic
calculations in the reduction of data from a jet engine test must be
carried out thousands of times. The engineering analysis of a pro­
posed design must be tried for many combinations of the design
variables. It is almost never practical to set up a calculation for
computer solution if the problem is to be done only once or only a
few times. The reason for this will perhaps become clearer in the
following chapters.

2 CODING FUNDAMENTALS

2.0 Introduction
To the newcomer to computing, this is probably the most important

chapter in the book. Real problems may be more complex; later
chapters will discuss many short cuts and elaborations; but the basic
idea of what it takes to translate a problem into computer language
is presented in this chapter.

2.1 Memory Identification
TYDAC has 2000 words of storage, Which is roughly typical of

existing computers. Each word consists of ten decimal digits and
sign; TYDAC cannot handle alphabetic and other symbols as can
many computers.

Since there are 2000 different locations where numbers or instruc­
tions can be located, some means must be provided for identifying
each one uniquely. This is so that there will be some way of specify­
ing an instruction, where to find data, where to put answers, or where
to find the next instruction. The problem is solved by giving each
of the 2000 locations an identification number, from 0 to 1999, which
is called the address (synonyms for address: cell, location, box,
bucket). A common analogy is to compare the computer memory
with pigeonholes in a post office. Pigeonholes have name plates on
them which serve as a reference identification. It is important to
note that the name plate does not tell anything about the contents.
The name “Smith” on the name plate does not tell where a letter
came from or what it says. All it does is this: if you put a certain
letter in the box labeled “Smith,” you should subsequently be able
to find that same letter, whatever it may be about, by going back
to the pigeonhole marked “Smith.”

That is really all the address of a memory location does: if we
put a certain number in location 1507, we should be able to go back

13

14 DIGITAL COMPUTER PROGRAMMING

to 1507 later and find that same number. The address 1507 certainly
does not mean that we can find the number 1507 stored there—except
by accident. This may seem painfully obvious, perhaps, but it is a
perennial source of difficulty to new coders.

Memory has two additional characteristics which unfortunately
do not fit into the post office analogy. First, a memory location
can hold only one word at a time, and placing a word in a location
automatically and finally destroys whatever was there previously. On
the one hand, this means that there is no problem of making sure
a location is empty before putting something there; on the other
hand, it means that we must be sure a cell does not contain anything
we wish to keep before something else is put in it. Second, it is
possible to read a number out of memory without destroying or re­
moving it. It is as though the postal clerk, instead of removing a
letter, simply made a quick copy of it on another piece of paper.

In TYDAC, instructions and numbers are of the same length and
no special handling of instructions is required. Thus it is impossible
to distinguish between numbers and instructions simply by inspecting
the contents of a memory location, without information as to what
is stored there*

2.2 Instruction Format
Each TYDAC instruction consists of one word in memory. Instruc­

tions are always positive. The first two digits, from the left, are
called the operation part, and tell the machine what to do. The next
four digits are termed the address part, and usually refer to a location
in memory, but may specify a number of shifts or an input or output
unit. The last four digits are called the index control and used only
occasionally, mostly in connection with the index registers (Chapter
8); if they are not used, nothing need be written in the four digits—
which is the same as writing zeros. In writing instructions, we
usually have an initial column showing where the instruction is in
memory, which is called the location of the instruction. The loca­
tion is not a part of the instruction proper, but must always be

♦It is not essential to the stored program concept that this be so; all that
is required is that it be possible to do arithmetic on instructions. Indeed,
several machines distinguish between the two (although either can be stored
in any location) and stop if an attempt is made to use data words as instructions.

CODING FUNDAMENTALS 15

known. We thus have these terms in connection with a TYDAC
instruction:

INDEX CONTROL
LOCATION SIGN OPERATION ADDRESS (iF ANY)

4 digits + 2 digits 4 digits 4 digits

The ten digits of an instruction are numbered from the left; thus
the address part is digits 3-6 of the word.

The addresses of TYDAC memory registers run from 0 to 1999,
yet the four digits allowed for the address of a TYDAC instruction
could contain a number as large as 9999. What would happen if
the machine encountered an instruction such as Clear add 3400?
The answer is that we assume in TYDAC that only the odd-even
character of the first digit of the address is sensed by the machine.
Thus the address 3400 would be taken by the machine to be 1400;
6879 would be treated the same as 0879; 2000 would be treated the
same as 0000. (Some actual computers handle the problem in this
manner; others make some special use of the larger addresses.)

2.3 Examples
In the examples that follow, it will be assumed that the instructions

and numbers are somehow loaded in storage, and that the location
counter is just ready to proceed to the location of the first instruction
in the illustrative program.. This assumption is sometimes confusing
to the student. It seems reasonable that since input is the first thing
mentioned in connection with computer organization, it would also
be the first topic under coding. It turns out, however, that input
programming is an advanced topic which makes use of concepts
which have not yet been introduced. The discussion of input and
output coding must therefore be postponed until Chapter 11. The
contents of the location counter at the start of these examples are
somewhat similar. Actually, all of these illustrations would normally
be simply small parts of larger programs; there would be other
instructions both before and after those shown. We shall discuss only
the effect of these few instructions by themselves.

The actual locations used for numbers and instructions are picked
at random from one problem to the next. This is done to emphasize
that a program can be located anywhere in memory. A few of the
TYDAC instructions are used and described in these examples.
Appendix 1 is a complete description of all instructions; the numerical
code for each operation is given in tabular form on the page facing

16 DIGITAL COMPUTER PROGRAMMING

Appendix 1. The instructions in the Appendix are in order of the
operation codes. The description of each instruction should be read
as it is encountered in the text.

Example 1. A + B
Suppose it is required simply to add two numbers and store the

result. Suppose the two numbers A and B (whatever their actual
numerical values may be) are stored in locations 1000 and 1100, and
that the result is to be stored in 1167. Assume further that the
program, or sequence of instructions, is located in 500, 501, and 502.
The program could be as follows:

I .'st «*-■*'
LOCATION

500
501
502

OPERATION
CODE

10
11
40

OPERATION
ABBREVIATION

Clear add
Add
Store acc

ADDRESS

1000
1100
1167

This says that the first instruction, which is located in memory
at address 500, consists of the operation part 10 and the address 1000,
and that there is no index control. Thus the coded form of the
first instruction as it would appear in memory is

1010000000

Clear add means to erase or clear the accumulator of whatever
might have been there, and bring in (or, add to nothing) the number
in the memory location specified by the address part. The details of
the machine operation are as follows:

1. At the start of the cycle, the location counter contains 500, to
show that the instruction now to be performed is located in cell 500
in memory.

2. The control circuits send signals to memory asking for the
instruction at 500 to be sent over to the current instruction register.
This would be the coded instruction 1010000000.

3. The control circuits analyze, or decode, the operation part (10)
to discover what is to be done. This would be found to be Clear
add.

4. As a result of 3, the accumulator is cleared by a signal from
the control circuits, in keeping with the function of the Clear add
operation.

5. The control circuits send a signal to memory, asking that the
number in 1000 be sent to the accumulator. As pointed out above,

CODING FUNDAMENTALS 17

the number would be left unchanged in memory after it goes to the
accumulator.

6. Since in this machine the instructions are taken from consecu­
tive locations unless specified otherwise, the contents of the location
counter are increased by one. This means that the next instruction
comes from memory location 501. The control circuits proceed to
deal with this next instruction.

Such a pattern must be carried out-for each instruction in a
program, with the pattern varying somewhat for different operations.

All we have accomplished so far is to get the first of the two
numbers to be added from memory to the accumulator. The next
instruction, at 501, brings the second number from memory location
1100 to the arithmetic unit and adds it to the number already there.
To do this, the control unit has to go through steps similar to the
six above, but we need not spell these out in detail for each instruction.

The third instruction, at 502, results in the sum of A and B being
sent back to memory, to location 1167. In the TYDAC accumulator,
this leaves the sum still in the accumulator. It destroys the previous
contents of location 1167. The machine then proceeds to the instruc­
tion at 503, whatever it may be.

There have been two tacit assumptions here. The first is that
the two numbers have the same decimal point location. This assump­
tion will be made throughout this chapter; Chapter 4 deals with the
more realistic situation of varying decimal points. The second as­
sumption is that the sum of the two numbers of ten digits each can
be contained in ten digits. It is quite possible in general for the
sum to contain eleven digits. If so, the extra digit would overflow
into the overflow position of the accumulator. This position obviously
cannot be stored in a ten-digit memory location, so the program
above would not give the correct answer if overflow occurred. The
overflow possibility must be anticipated in writing real programs
of this sort, unless other solutions such as floating decimal are avail­
able (Chapter 10). Methods for discovering and correcting overflow
difficulties are discussed later.

'•'Example 2: —A — B + (O') — |D|
Suppose it is required to form the sum indicated, i.e., the negative

of A, the negative of B, the absolute value of C, and minus the
absolute value of D. Assume that A is in 231, B in 232, C in 1300,
D in 1350, and the sum is to go in 789. ' The following instructions
would evaluate the formula, assuming that the first instruction is
in 510.

18 DIGITAL COMPUTER PROGRAMMING

OPERATION OPERATION

LOCATION CODE ABBREVIATION ADDRESS

510 13 Clear sub 231
511 14 Sub 232
512 12 Add abs 1300
513 15 Sub abs 1350
514 40 Store acc 789

There are several things to be pointed out about this program.
The first and obvious reason for the example is to demonstrate the
use of four new instructions. Clear subtract simply changes the
sign of the number in memory before placing it in the accumulator.
Subtract operates as might be expected. The other two new instruc­
tions simply allow for easy manipulation of absolute values. It may
help to clarify some of these operations if a numerical example is
given. First, observe that the numerical form of this program in
memory would be:

510 + 1302310000
511 + 1402320000
512 + 1213000000
513 + 1513500000
514 + 4007890000

Next suppose that the numerical values of A, B, C, and D are
respectively 23, —16, —40, and —12. These could appear in a
ten-digit memory location as 0000000023, etc. The contents of the
accumulator after each instruction would then be:

LOCATION

510
511
512
513
514

OPERATION

Clear sub
Sub
Add abs
Sub abs
Store acc

CONTENTS OF ACCUMULATOR
AFTER OPERATION—

TWO DIGITS ONLY

-23
-07
+33
+21
+21

This numerical example illustrates the second point: sign control
is completely algebraic in the arithmetic unit.

The last observation on this example is that there is almost never
a program which is uniquely the best possible program, or the only
correct one. The following program would be just as short and give
exactly the same answer, although it would arrive at it in a different
order:

CODING FUNDAMENTALS 19

510 13 Clear sub 232
511 15 Sub abs 1350
512 12 Add abs 1300
513 14 Sub 231
514 40 Store acc 789

It is also true that on many occasions there are alternative solu­
tions which are not all equally good. We shall have occasion from
time to time to point out some of the criteria of what makes a
program “good.”

2.4 Details of Multiplication and Division
For complete understanding of some of the following material and

especially parts of Chapter 4, it is necessary to have a fairly thorough
grasp of how the computer handles multiplication and division.

The multiplication of two numbers is effected by having or placing
one of them in the MQ register and giving the order multiply and
specifying the address of the second. Since multiplier and multi­
plicand each have ten digits (maximum), the product may have
twenty digits (maximum) which appear in the accumulator and
MQ combined, with the less significant ten in the MQ. During the
process of multiplication, the multiplicand is held in a register which
has not been named or mentioned, since we have so little control
over it in TYDAC. For our purposes here we will call it the
memory register. Its function in this case is to provide a temporary
storage register so that the multiplicand need be brought from mem­
ory to the arithmetic unit only once, even though it will ordinarily
be needed many times during multiplication. With these factors in
mind, the multiplication process may be explained by means of an
example.

Suppose the number 1111111111 (multiplicand) is to be multi­
plied by 0987654321 (multiplier), the latter number being already in
the MQ as we begin. After the control circuits discover the instruc­
tion calling for multiplication and giving the address of the number
1111111111, the steps are:

1. The number 1111111111 is brought from memory to the memory
register, and the accumulator cleared. The picture is now:

14-1 Memory Register
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11

| + | Accumulator | + | MQ
|0|0|0|0|0|0|0|0|0|0|0|0|9|8|7|6|5|4|3|2|l|

20 DIGITAL COMPUTER PROGRAMMING

The accumulator and MQ are drawn together since that is the way
they operate in multiplication.

2. The multiplicand is added into the accumulator as many times
as the value of the digit standing in the tenth, or rightmost, position
of the MQ:

[+] Accumulator | + | MQ
[0] 1 111 1 I 1 1-1 I 11 1 11 I 1 I 1 I 0 I 9 I 8 I 7 I 6 I 5 I 4 I 3fT]T|

(The memory register is unchanged throughout and will not be
redrawn.) . »

3. The entire contents of the accumulator and MQ are shifted right
one place, as though the accumulator and MQ were one register of
twenty-one digits counting the overflow position:

|+| Accumulator |+| MQ
fo | o 111111111111111111111 o | 9 | 81 7 I 6 I 5 I 4 I 3 | 21

4. The multiplicand is added into the accumulator as many times
as the value of the digit in the tenth position of the MQ, which is
now two:

|+| Accumulator | + | * MQ *’•
| 0 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 11 0 | 9 | 8 | 7 | 6 | 5-| 4 | 3 | 2^]

5. The accumulator and MQ are shifted right one place:

| + | Accumulator ■> | + [MQ
| 0 10 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 j 3 111 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |

6. The multiplicand is added into the accumulator as many times
as the value of the digit in the last position of the MQ, which is now
three: ’

["+] Accumulator | + | MQ
| 0 | 3 |-5 | 6|6|6|6|6|6|6|6|3|l|0|9|8|7|6|5|4|3|

Following the same pattern, the successive contents of these two
registers are:

m_____________ ■ i+i-...............................
Shift |0|0|3|5|6|6IS|6|616|6|6|3|l|0|9|8|7|6|5|4l

CODING FUNDAMENTALS 21

+ ■ ______ ____ FA ; • '
Add |0|4|8|0|l|l|l|l|l|l|0|6|3|l|0|9|8|7|6|5|4|

......... r+i
Shift |0|0|4|8|0|l|l|l|l|l|l|0|6|3|l|0|9|8|7|6|5|

fa fa
Add |0|6|0|3|5|6|6|6|6|6|6|0|6|3|l|0|9|8|7|6|5|

FA FA
Shift |0|0|6|0|3|5|6|6|6|6|6|6|0|6|3|1|0|9|8|7|6|

m.......................1+1
Add r0|7|2|7|0|2|3|3|3|3|2|6|0|6|3|l|0|9|8|7|6|

HFH
Shift |0|0|7|2|7|0|2|3|3|3|3|2|6|0|6|3|l|0|9|8|7|

FA FA
Add |0|8|5|0|4|8|0|l|l|l|0|2|6|0|6|3|l|0|9|8|7|

FA FA
Shift |0|0|8|5|0|4|8|0|l|l|l|0|2|6|0|6|3|l|0|9|8|

FA........................... -FA
Add [0|9|7|3|9|3|6|8|9|9|,9|0|2|6|0|6|3|l|0|9|8|

FA___ FA
Shift |0|0|9|7|3|9|3|6|8|9|9|9|0|2|6|0|6|3|l|0|9|

FA _ • ■ _ FA
Add |l|0|9|7|3|9|3|6|8|9|8|9|0|2|6|0|6|3|l|0|9|

FA FA
Shift |0|l|0|9|7|3|9|3|6|8|9|8|9|0|2|6|0|6|3|l|0|

FA . FA
Add |0|l|0|9|7|3|9|3|6|8|9|8|9|0|2|6|0|6|3|l|0|

FA FA -• ’
Shift |0|0|l|0|9|7|3|9|3|6|8|9|8|9|0|2|6|0|6|3|l|

22 DIGITAL COMPUTER PROGRAMMING

The multiplication is now complete. The product has been de­
veloped in the accumulator and the MQ taken as one long register.
The multiplier in the MQ has been lost. The multiplicand is still
in memory. If either or both numbers had been negative, algebraic
sign control would have given the correct sign to the product, with
the sign appearing in the sign position of both the accumulator and
MQ. All of this is effected by the single instruction, multiply.

In the multiply-round order, multiplication is automatically fol­
lowed by a round operation as described in Appendix 1.

All of this may be seen to be simply a mechanization of the
ordinary process of multiplying with paper and pencil. Details vary
from one machine to the next, as regards the actual multiplication of
the multiplicand by one digit of the multiplier and the placement
of operands in arithmetic registers, but the adding-and-shifting
scheme is the same.

If multiplication is effected by using one digit of the multiplier
in an adding-and-shifting routine, division is accomplished by build­
ing up the quotient one digit at a time in a subtracting-and-shifting
system. Only a few steps of an example need be followed through,
since the process is similar to multiplication and is almost exactly
analogous to paper-and-pencil long division.

The dividend must be in the accumulator and MQ, as a twenty­
digit number. The twenty comes from comparison with multiplica­
tion: two ten-digit factors give a twenty-digit product. Conversely,
division of a twenty-digit dividend by a ten-digit divisor gives a
ten-digit quotient. If, as is usually the case, the dividend at hand
has only ten digits, then the last ten digits may be made zero by
simply clearing the MQ. Division is effected by giving the operation
divide and specifying the address of the divisor.

Suppose the number 1045203973 is to be divided by 1111111111.
The first number is in the accumulator, the MQ has been cleared,
and the divide order given. The first few steps would be:

1. The divisor is brought from memory and placed in the memory
register. The picture:.

| + | Memory Register
|1|1|1|1|1|1|1|1|1|1|

[+| Accumulator | + | MQ
|0|l|0|4|5|2|0|3|9|7|3|0|0|0|0|0|0|0|0|0|0|

2. The divisor is compared with the number in the accumulator.
If the divisor is now larger (in absolute value, sign control being

CODING FUNDAMENTALS 23

automatic as usual), the division continues. If not, i.e., if the
divisor is equal or smaller, the machine stops in what is called the
divide stop condition. A little experimentation with paper and pencil
or a desk calculator will show that if this condition is not met, the
quotient will have to contain eleven digits—and the MQ has room
for only ten. Of course, attempted division by zero will always
result in a divide stop.

3. The contents of the accumulator and MQ together are shifted
left one place:

| + | Accumulator | + | MQ
|l|0|4|5|2|0|3|9|7|3|0|0|0|0|0|0|0|0|0|0|0|

(Memory register again omitted.)
4. The divisor is subtracted from the accumulator as many times

as possible without changing the sign of the accumulator. This is
just the long-division process of “seeing how many times it will go.”
The number of times is entered into the last position of the MQ:

m [+i..............
|0|0|4|5|2|0|3|9|7|3|l|0|0|0|0|0|0|0|0|0|9|

5. The accumulator and MQ are shifted one place left:

• H [+].................. . ..
|0|4|5|2|0|3|9|7|3|l|0|0|0|0|0|0|0|0|0|9|0|

6. The divisor in the memory register is subtracted from the ac­
cumulator as many times as possible and this number entered into the
last position of the MQ:

| + | Accumulator | + | MQ
|0|0|0|7|5|9|5|2|8|6|6jo|0|0|0|0|0|0|0|9|4|

The process is continued. The last three steps are:

w Accumulator [+1 MQ
Subtract 1010 |8|8|2|2|9|8|1 1 7 | 5 | 0 | 9 | 4 | 0 | 6 | 8 | 3 | 5 | 7 | 5|

1[+1 Accumulator [+1 MQ
Shift |0|8 |8|2|2|9|8|1|7| 5|0|9|4|0|6 |8|3|5|7|5|0 |

1+1 Accumulator 1+1 MQ
Subtract |0|l | 0 | 4 | 5 | 2 | 0 | 3 | 9 |7|3|9|4|0|6||8|3|5|7|5|7|

24 DIGITAL COMPUTER PROGRAMMING

Thus the quotient is developed a digit at a time in the MQ. After
the process is finished, the accumulator contains the remainder, which,
because of the numbers used, happens in this case to be the same
as the dividend.

Example 3. A • B
A is stored in 1803, B in 1812, the result to go in 1837. Suppose

this program starts at 1787.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

1787 42 Load MQ 1803
1788 17 Mult round 1812
1789 40 Store acc 1837

The first instruction places the multiplier in the MQ, destroying
whatever was there, the second forms the ten-digit rounded product
in the accumulator, and the third stores this product. Whether
multiply or multiply-round is used depends on the particular situa­
tion; there was not enough information given to specify the choice
here, which was made arbitrarily.

Example 4- A -e- B
A is assumed to be in 1103, B in 1196, 25 contains zero, and the

result is to go in 1200.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

401 42 Load MQ 0025
402 10 Clear add 1103
403 18 Divide 1196
404 43 Store MQ 1200

The first instruction simply clears the MQ register, which is neces­
sary because the accumulator plus MQ is considered to be one long
twenty-digit register. On the other hand, this will ordinarily have
a rather small effect and is often not done. The second instruction
places the dividend in the accumulator. The number in memory is
as usual unchanged. The last instruction simply stores the quotient
in 1200.

Example 5. Adding Ten Numbers
Suppose that the ten numbers in 200 to 209 are to be added and

the sum placed in 210. The only way available at this point is:

CODING FUNDAMENTALS 25

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

1600 10 Clear add 200
1601 11 Add 201
1602 11 Add 202
1603 11 Add 203
1604 11 Add 204
1605 11 Add 205
1606 11 Add 206
1607 11 Add 207
1608 11 Add 208
1609 11 Add 209
1610 40 Store acc 210

This example is intended to provoke some thought about the in­
convenience of writing out so many nearly similar instructions. If
there were very many more numbers in the list, the problem would
become intolerable. Such is the basic, problem solved by loops,
discussed in Chapter 6.

Example 6. Determining Larger of Two Numbers
Suppose the number A is in location 507, the number B in 508.

It is required to put the larger (algebraically) in location 600. If
they are equal, either may be placed in 600 and no signal need be
given.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

1000 10 Clear add 507
1001 14 Sub 508
1002 03 Acc plus-jump 1005
1003 10 Clear add 508
1004 01 Un jump 1006
1005 10 Clear add 507
1006 40 Store acc 600

This is the first contact with a jump instruction. The various
jumps have the function of breaking the usual one-after-the-other
sequence of instructions. The Unconditional jump simply breaks the
sequence by taking the next instruction from the location specified
by the address of the jump instruction—which is a new use for the
address. The various conditional jumps break out of sequence only
if some condition in the machine is met. For instance, the Accumu­
lator plus-jump breaks the sequence, i.e., executes the jump, only
if the accumulator has a plus sign at the time. If not, the next
instruction in normal sequence is taken.

26 . DIGITAL COMPUTER PROGRAMMING

The problem in the example is to instruct the computer how to
determine which of the two numbers is larger, and then choose one of
two alternatives. The seven-word program consists basically of four
parts. The first three instructions determine which of the numbers
stored in 507 and 508 is larger, by subtracting them and executing
a conditional jump based on the difference. The Accumulator plus­
jump at 1002 decides whether the instruction at 1003 or 1005 is to be
carried out.

If the difference is positive, indicating that the number in 507
is larger, the plus jump goes down to 1005 which brings in the
number in 507. If the conditional jump is not executed, the number
in 508 must be larger, and the program goes on to 1003 which brings
in the number in 508. The last of the four parts is step 1006, which
stores whichever number was brought into the accumulator by step
1003 or 1005. Step 1004 was necessary, since without it the number
brought into the accumulator by step 1003 would have been replaced
at step 1005—either way, we would get the contents of 507 going
into 600.

We have here the first of many illustrations of the computer
making a choice of two or more alternatives on the basis of a fairly
simple test.

Example 7. (10 ‘A + B)'C
A is stored in 0804, B in 0805, C in 0806, result to go in 0807. The

problem here is to obtain the product 10A as simply as possible and
to get the numbers into the right registers at the right time.

By far the simplest way to multiply by ten in a decimal machine
is to shift left one place. Multiplication by any power of ten,
positive or negative, can be carried out by shifting the appropriate
number of places to the left or right respectively.*

The program could look like this:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

1200 10 Clear add 804
1201 30 Acc left 1
1202 11 Add 805
1203 33 Long right 10
1204 17 Mult round 806
1205 40 Store acc 807

The first two instructions bring the number A into the accumulator
and multiply it by ten. Note that the “address” of a shift instruction

* In a binary machine, multiplication by powers of two is similarly easy.

CODING FUNDAMENTALS 27

is not an address at all, but simply a number of shifts. The “address”
is not a location in memory where the number of shifts may be found.
The next step adds B. The sum is in the accumulator, whereas the
multiplication step requires it to be in the MQ. The most direct
attack is simply to call for a long right shift of ten.* This shifts the
contents of the accumulator into the MQ. The sign of the accumu­
lator becomes the sign of both and whatever was in the MQ is lost.
Multiplication and storing are as usual.

2.5 Arithmetic Speeds
Table 1 gives some approximate idea of the arithmetic speeds of

three representative types of computers. The first type is a magnetic
drum machine of medium size. The second is a large magnetic core
computer intended primarily for commercial applications, and which

OPERATIONS PER SECOND

TABLE 1

TYPE OF OPERATION
Magnetic drum,

medium size

Magnetic core,
commercial,
alphabetic

Magnetic core,
scientific,
binary

Add, subtract, store, 400 6,000 40,000
shift, jump, etc.

Multiply 100 500 5,000
Divide 80 200 5,000

can handle alphabetic characters with no special effort. The third
is a magnetic core machine intended for scientific work, operating in
binary where the others are decimal. The speeds in each case include
the average time required to get the necessary numbers from memory,
which can be reduced considerably in the case of the magnetic drum
machine by careful programming. All are for single address machines
like TYDAC, operating on numbers equivalent to ten decimal digits.

Exercises
For exercises 1 through 10, a is in 500, b is in 501, c is in 1400, and d is in

1450; place x in 600. Each exercise should be written as a separate program.

* In some computers it is faster to store the accumulator and then load the
MQ. This would probably hold where memory is random-access, as electro­
static or magnetic cores; it would decidedly not be true for a delay line or
magnetic drum memory. In other machines this consideration might not apply
at all, since the functions of the arithmetic registers can be quite different.

28 DIGITAL COMPUTER PROGRAMMING

1. x = a + & + c ' f
2. x = a + 2b + 3c
3. x = b — c

4. x = 2b - d

5. x = ab

6. x = ab + c

7. x = ad — cd

8. x = (a + c)/d

4(a + b)
10. x — a — |6| + |d|

11. The three numbers in 100, 200, and 300 should all be nonzero. If so,
form the sum of the three and place it in 400. Test each number separately,
and halt if any of the numbers is zero. This will require the halt order
described in the instruction summary. Hint: Be sure your program stops
only if one of the numbers is zero, i.e., be careful the halt is not placed in
such a way that the program will always stop.

12. Program the evaluation of a + b ± c. a is in 50, b in 51, c in 52;
place result in 53. a and b are both known to be positive^ If c, as found
in memory, is positive, take the plus sign in the formula; if negative, the
minus sign.

13. Three numbers which may be positive or negative are stored in 100,
101, and 102. Change the sign of any negative numbers so that after the
program has been executed the numbers in memory are all positive.

14. Three numbers are stored in 1500, 1547, and 1609. Place the number
which is algebraically largest in 1900.

15. An angle in radian measure is in 500, 2ir is in 600. The angle is known
to be between 0 and +20 radians. Subtract 2?r as many times as needed
to reduce the angle to less than 2?r, and place the reduced angle in 501.

16. Program the evaluation of a + bx + ex2 + dx3.«a is in 1000, b in
1001, c in 1002, d in 1003, x in 1100; place result in 1200. Hint: The
program can be shortened somewhat by rewriting the formula as a + x [6 +
x (c + dx)].

17. Program the evaluation of (a + bx + 10c)/(x2 — d). a is in 800,
b in 801, c in 802, d in 803, x in 405; place result in 500. Divide stop might
occur, depending on size of x. Evaluate numerator and denominator, then
program a test to anticipate divide stop. If divide stop would happen, halt
instead of finishing evaluation.

18. The “number” in 500 consists of three positive numbers placed in
that one location by a special loading program, a consists of the first four

CODING FUNDAMENTALS 29

digits, b of the next three, and c of the last three, so that the word looks like:

1234 56789 10
I a | b | c |

By shifting and manipulating the arithmetic registers, separate these three
numbers and place a in 501, b in 502, c in 503. Each number should be
placed to the far right of the specified location. For instance, a should
appear in 501 as

|0|0|0|0|0|0|X|X|X|X|

3 BINARY AND OCTAL NUMBER SYSTEMS

3.0 Introduction*
The binary number system, which is at the heart of all digital

computers, is built around only two (hence, binary) digits, zero and
one. The system is used explicitly in many present, computers, i.e.,
numbers and instructions must be entered into the machine in binary
form. Usually the computer is programmed to make the conversion
from decimal to binary, concurrent with reading the numbers from
an input medium which is prepared in decimal form. For instance,
cards may be punched in standard decimal format, read as though
they were binary by the computer, and the pattern of binary digits
then converted to the actual binary representation. Output is handled
similarly. Thus, although the computer is completely binary in
operation, it can be programmed to accept and interpret decimal
information and give decimal answers. (Binary digit is usually ab­
breviated to bit.)

Many other computers, although still basically binary in electronics,
do the conversion from decimal to binary and back electronically.
This is inherently wasteful of electronic circuitry, but is felt by many
to be enough of a simplification in programming and operation to
justify the additional cost.

The reason the binary number system lies at the heart of all com­
puters, whether of binary or decimal input and output, is that a binary
variable is so simple to represent physically. Common examples are:
a particular location on a punched card which either has a hole or
does not; an electric switch which is either on or off; an electron tube
which is either conducting or not; a track on a magnetic tape which
either has a change in magnetization at a given point or does not;
a magnetic core which is magnetized in one direction or the other.
In each case, the device or state has just two stable, mutually ex­
clusive conditions. The digit value 0 is assigned to one of these
conditions and 1 to the other; the circuits of the computer are built

* The entire chapter may be omitted without loss of continuity.
30

BINARY AND OCTAL NUMBER SYSTEMS 31

to act according to the rules of binary arithmetic on combinations of
the two states.

It might seem reasonable to try to discover computing elements
which have three—or ten—stable states. There are indeed such
devices, but it turns out that they are still basically binary, and
nothing has been gained. Take, for instance, an electromechanical
wheel with ten electric contacts around a circle with a wiping arm
to touch just one of them and some sort of spring to maintain the
position. This could be used, in conjunction' with some type of
actuating device, to store a decimal digit. But observe that what
we have here is a system of ten binary digits: each position of the
contact arm is either on or off! We see, then, that basic decision
elements in computers are always binary.

In use, binary numbers are quite cumbersome, since about 3%
binary digits are required to represent a decimal digit. By com­
bining binary digits into groups of three or four or five, we get the
octal, hexadecimal, or duotricenary number systems. Since the
conversions between these systems and binary are so simple, wide
use is made of them in reducing the number of symbols required
to write down binary numbers.

3.1 Number Representation
The central feature of the Arabic number system is the fact that

a given digit can have more or less value depending on where it is
written. For instance, the symbol 2 may mean 2.0, 200, or 0.00002
depending on where it is written. (Recall that there is no such
general place value in the Roman number system; also no zero, deci­
mals, or convenient fractions.) This is so familiar to us as to be
overlooked in everyday use of decimal numbers. What we really
mean by 744.819 is of course

700 + 40 + 4 + 0.8 + 0.01 + 0.009
or

7-102
+ 4-101
-I-4-10°
+ 8-IO"1
4- 1-10-2
+ 910~3

Another way of saying the same thing: the first 4 is worth ten times
as much for being written where it is as is the second 4.

32 DIGITAL COMPUTER PROGRAMMING

The question we must ask is, why this number ten, or why just
ten digits? Why not six, or twenty—or two? The answer, in all
probability, arose from our having ten fingers. If we use some other
place value, we will of course need the same number of digits as the
number base, which will require invention of some new ones if there
are to be more than ten.

In the case of binary numbers we need only two—zero and one—
and the place value between adjacent digits is just two. For instance,
in binary the number 1101 means:

1-23
+ 1-22
+ 0-21
4- 1-2°

Again, the first 1 is worth twice as much as the second 1, and eight
times as much as the last. The basic idea of place value is un­
changed: the amount of the place values is now two instead of the
familiar ten.

Since a number involving only zeros and ones could be taken as
either binary or decimal, we must be careful to specify the base
(place value) wherever there could be confusion. This is usually
indicated by enclosing the number in parentheses and writing the base
as a subscript, in decimal. Thus:

(1101)2, (1101)10
As an exercise in interpreting the meaning of binary numbers, we

may take a direct method of conversion from binary to decimal. The
number (11101.101) 2 means:

1-24 = (16)io
+ 1-23 = (8)w
+ 1-22 = (4)io
+ 0-21 = (O)io
+ 1-2° = (l)io
+ 1-2-1 = (0.5)io
-I-0-2-2 = (O)io
+ 1-2-3 = (0.125)io

or, (11101.101)2 = (29.625)io. Binary fractions may be confusing
at first. It may help to observe that:

(0.1)2 = l-2-i = i = = (0.5)10
Octal numbers fit into the same pattern; here the place value is

eight, and only eight digits, zero through seven, are needed. :For
example: '

BINARY AND OCTAL NUMBER SYSTEMS 33

(327.41)8 = 3*8 a • - (192)io
+ 2-81 = (16)w
+ 7-8° = (7)io
+ 4-8-1 = (O.5)io
+ l-8~2 = (0.015625)io

(215.515625)io

The simple reason for the use of octal (also sometimes called
octonary) numbers is that the conversion from binary to octal can
be carried out mentally, and only a third as many digits are required
to carry the same information. All that is necessary to convert from
binary to octal is to group the binary digits in groups of three’s
from the binary point, and write down the decimal value of each
group taken as an integer. Thus:

(11/011/010/110.110/001/110)2 = (3326.616)8
The basis for this may be seen readily with an example:

(101011)2 = 1-25
+ 0-24

4-23
+ 0-23 = 5-23 = 5-81

+ 1-23 _ + 1-23
+ 0-22 + 0-2°
+ 1-21 4- 2-2° = 3-2° = 3-8°
+ 1-2° + 1-2°

or, (101011)2 = 5-81 + 3-8° = (53)8
The same simplicity of conversion could be accomplished using

any base which is a power of two. Four would be the quaternary
system, which would have no particular advantage over octal and
would indeed require more digits to represent the same number.
Bases 16 and 32 are both in use by at least one computing instal­
lation. They accomplish a further reduction in number of digits at.
the expense of requiring new symbols for the extra six or twenty-two
digits. In the balance, the disadvantages of these latter outweigh
the gains, unless there are overriding factors such as the character­
istics of input-output equipment.

3.2 Arithmetic in Binary and Octal
Addition of integers may be regarded as an extension of the idea

of counting. Before proceeding we should therefore be sure that the
formation of the symbols for the integers is clear.

When counting in decimal, we first write the ten digits in order.

34 DIGITAL COMPUTER PROGRAMMING

Then we begin writing a 1 to the left, giving it a place value of
ten—the base of the number system. The process is similar for
counting in any other number system: we write the digit symbols
until we run out, then start writing a 1 to the left, giving it the place
value of the system. As soon as we run out using two digits, we
write another 1, giving it the value of the number base squared.
This, of course, is nothing more than we have already discussed, but
the difference in viewpoint may make the scheme clearer. Counting
in decimal, octal, and binary, we have:

DECIMAL OCTAL BINARY

0 0 0
1 1 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1000
9 11 1001

10 12 1010
11 13 1011
12 14 1100
13 15 1101
14 16 1110
15 17 1111
16 20 10000
17 21 10001
18 22 10010
19 23 10011
20 24 10100

Coming back to the relation between addition and counting, we
may begin by laying out a numbered scale, thus:

I I I I I I I I FT"!—I—I—I I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

If two integers m and n are to be added, we count n places beyond
m to find the sum of m and n. The scale may be labeled in any
number system we please.

Thia would, of course, be a cumbersome way of actually adding,
and would have to be extended to cover fractions. The rules of
addition may be summarized in small tables, such as Table 1 (in
decimal).

BINARY AND OCTAL NUMBER SYSTEMS 35

TABLE 1

0 12 3 4 5 6 7 8 9
0 0 12 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 04-0
2 4 5 6 7 8 9 04-0 14-0
3
4
5
6
7
8
9

*C = 1 carry,

6

or

7 8 9 0 4- C
8 9 0 4-0 14-0

0 4-C* 14-0 24-0
24-0 34-0

44-0

1 added to next most significant

14-0
24-0
34-0
44-0
54-0
64-0

position.

24-0
3 4- C
44- C
54-0
64-0
74-0
84-0

Tn octal the table is smaller, as shown by Table 2.

TABLE 2

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 04-0
2 4 5 6 7 04-0 14-0
3 6 7 0 4- C 14-0 24-0
4 0 4-0 14-C 24-0 34-0
5 2 4- C 34-0 44-0
6 44-0 54-0
7 64-0

In binary the table is simplicity itself:

0 1
o ro F~
1 | 1 0 + C

Using these tables we may carry out some additions.

Octal
1 1 11

12743 770146
4- 4701 + 11135

17644 1001303
Binary

111 111 111
1011 10111000 1001100

+ 101 4- 101011 4- 10101
10000 11100011 1100001

Subtraction may also be related to counting, going backwards this
time. Again we may develop simple tables, such as the octal one
shown in Table 3, where the number on the side (subtrahend) is sub­
tracted from the number at the top (minuend).

36 DIGITAL COMPUTER PROGRAMMING

TABLE 3

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 7 + b* 0 1 2 3 4 5 6
2 6 + b 7 + b 0 1 2 3 4 5
3 5 + b 6 + b 7 + b 0 1 2 3 4
4 4 + b 5 + b 6 + b 7 + b 0 1 2 3
5 3 + b 4 + b 5 + b 6 + b 7 + b 0 1 2
6 2 + b 3 + b 4 + b 5 + b 6 + b 7 + b 0 1
7 l + b 2 4- b 3 + b 4 + b 5 + b 6 + b 7 + b 0

*b = 1 borrowed from adjacent digit.

Again the binary table is very simple:
0 1

o I 6 i
11 l + b o

Illustrations
Octal

40 57706
12X/13 4^1/5

- 12642 - 123456
112251 4454517

Binary
0 0 001
Xonii /0//X0010

- 10011 - 10101010
11100 10111000

Subtractions which give negative answers can be handled as usual
by subtracting in reverse order and attaching a minus sign to the
difference.

Subtractions are actually carried out in computer electronics by
the addition of complements. This method is based on the following,

: illustrated with a six-digit decimal number:
493,201 — 126,944 = 493201 + (1,000,000 — 126,944) — 1,000,000

The subtraction 1,000,000 — 126,944 can be very simply performed by
subtracting each digit from 9 except the last, which is subtracted
from 10 (if the last digit is 0, the next to the last is subtracted from
10, etc.). This is then called the ten’s complement. Thus

1,000,000 — 126,944 = 873,056
' ij ! Now adding:
iji- 493,201
| K|' 873,056
]|ji| 1,366,257

BINARY AND OCTAL NUMBER SYSTEMS 37

The 1,000,000 is subtracted off again simply by deleting the 1 at
the beginning. •

An alternative method uses the nine’s complement, which is formed
by subtracting each digit from nine, including the last. After the
addition of the complement, the leading 1 is deleted and a 1 is added
to the units position. This is sometimes called “end-around-carry.”
In either method, a negative difference will be in complement form,
and must be reconverted. Also, no end-around-carry is required. A
negative difference may be recognized by complementing one more
digit than necessary, i.e., adding a 0 at the front; a negative difference
will be signaled by a 9 in the first position, instead of a 0.

Examples
0456789

-0123456
becomes 0456789

9876543
($0333332--

0333333

9’s complement

—333333 on reconversion

0123456 becomes 0123456
-0456789 9543210

9666666 which becomes

This may seem to be an exceedingly difficult way of subtracting
two numbers. It is used (or the equivalent thing in binary) because
it is far simpler to form a digit-by-digit complement than to build
circuits or devices to “borrow.” •-This is especially true in binary,
where the one’s complement is formed simply by changing ones to
zeros and zeros to ones, which can be done with great ease
electronically.

In fact, in some machines (Univac Scientific, JOHNIAC, ENIAC,
and others) negative numbers are represented entirely by comple­
ments rather than by the use of minus signs. Again circuit simplicity
makes for programming difficulty. This is the reverse of the current
trend.

MULTIPLICATION
Multiplication is simply a process

multiply in octal or binary simply
multiplication table and following
multiplication.

of repeated addition. We can
by developing an appropriate
a process similar to decimal

38 DIGITAL COMPUTER PROGRAMMING

Tn binary we have:
• 00 - 0

0-1 = 0
1-0 = 0
1-1 - 1

Example
1011011

1101
1011011

0000000
1011011

1011011
10010011111

The octal table is given in Table 4.

TABLE 4

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 2 3 4 5 6 7
2 4 6 10 12 14 16
3 11 14 17 22 25
4 20 24 30 34
5 31 36 43
6 44 52
7 61

Example
1247
305

6503
3765
405203

In a binary computer, no multiplication table need be stored
since the table is so simple. Each digit of the multiplier is examined
in turn: if it is a 1, the multiplicand is added; if it is a 0, no addi­
tion takes place. This is all done quite simply electronically, and
is another reason the binary number system is so attractive to
computer designers.

In most decimal machines, no table is stored, but multiplication
is carried out by adding the multiplicand as many times as the digit
value of the multiplier.

BINARY AND OCTAL NUMBER SYSTEMS 39

Example
12345-123 = 1234500

+ 123450
+ 123450
+ 12345
+ 12345
+ 12345

1518435

Advanced machines do, however, have multiplication tables “built
into” the electronic circuitry, gaining speed at the expense of circuit
complexity.

DIVISION
Division can be carried out in binary or octal by the same process

as in decimal: repeated subtraction.

Examples
Octal

114
126,14723

126
0212

126
643
530
113 remainder

Binary
1001

1011)1101101
1011
0010101

1011
1010 remainder

For most work in computer programming it is not necessary to be
expert at nondecimal arithmetic, but it is often useful to know how
it is done.

3.3 Number Base Conversion

It is often necessary to know what is the equivalent, in one num­
ber base, of a number expressed in a different base. For instance,
it may be desired to enter a decimal number into the memory of a
binary machine directly, without using the conversion system pro-

40 DIGITAL COMPUTER PROGRAMMING

grammed for usual data loading. Although it is possible to use
methods based on experimentation, with the principles presented so
far, or to use prepared tables, systematic methods are available.

CONVERSION OF DECIMAL INTEGERS TO BINARY
The basis of the method may be presented as a series of algebraic

manipulations with an example. All arithmetic will be carried out
in decimal.

Example. (27)io to binary.

2727 = — • 2 = (13 + 1)2 = 13-21 + 1-2°
A

■ ’ 13
But 13 = — • 2 = (6 + 1)2 = 6-21 + 1-2°

So 27 = (6-21 + l-2°)2 + 1-2° = 6-22 4- 1-21 + 1-2°
A

Again 6 = - • 2 = (3 + 0)2 = 3-21 + 0-2°
40

So 27 = (3-21 + 0-2°)-22 + 1-21 4- 1-2°

= 3-23 4-0-22 + 1-21 + 1-2°
3

Finally 3 = - • 2 = (1 + 1)2 = 1-21 4-1-2°

So 27 = (1-21 4-1-2°)23 4- 0-22 4- 1-21 4- 1-2°

= 1-24 4- 1-23 4- 0-22 4- 1-21 4- 1-2°

This last is precisely the meaning of the binary number 11011 so
we have effected the conversion.

The procedure may be summarized in the following rule:

To convert a decimal integer to binary, divide repeatedly by 2. Each
time write down the remainder, starting from the right, and divide the
quotient by two to get the next digit. The sequence of remainders will
be the binary number.
It may be noted that this process is inherent in the definition of

the binary form. If an integer N is to be converted to the form

N = dn2n + on-12"-1 4- • • • 4- O121 4- Oq2°

it is obvious that a0 is the remainder on division of N by 2, Oi is the
remainder on division of this quotient by 2, etc.

BINARY AND OCTAL NUMBER SYSTEMS 41

Example. (27)io to binary.
13

26
1 1 (First remainder)
6

212

1 , 11 (First two remainders)
3

. 2|"6
• 6

0 011 (First three remainders)
1

2|~3
2
1 1011 (First four remainders)
0

<T
0
1 11011 (All remainders)
and as before, (27)io = (11011)2

Since division by 2 can be done mentally, the process can be
condensed to writing down only the quotient:

27 1
13 11
6 011
3 1011
1 11011

Conversion of a- decimal integer to octal can be carried out
similarly, except, of course, division is by eight (again all arithmetic
is in decimal).

Example. (1809) io to octal.
226

8|1809
1808

• 1 1 (First remainder)
28

8| 226
224

2 21 (First two remainders)

42 DIGITAL COMPUTER PROGRAMMING

__3
8r~28

24
4 421 (First three remainders)
0

8| 3
0
3 3421 (All remainders)

So (1809) 10- (3421) 8

CONVERSION OF DECIMAL FRACTIONS TO BINARY AND OCTAL
A somewhat similar process is used for conversion of fractions.

Example. (0.62) to binary.

0.62 = • 2 = ~ = l-2-i + (0.24)2-1

0.24 = • 2 = = 0-2-1 + (0.48)2-1
2 2

So 0.62 = l-2-i + (0-2-1 + o.48 • 2~1)2~1
= l-2-i + 0-2-2 + (0.48)2-2

0.48 = • 2 = = 0-2-1 _|_ 0.96-2-1
A &

So 0.62 = 1-2-1 + 0-2-2 + (o-2-i + o.96-2-i)2-2
= l-2-i + 0-2-2 + 0-2-3 + 0.96-2-3

0.96 = ^ • 2 = ^ = l-2-i + 0.92-2-1

So 0.62 = l-2-i 4. 0-2-2 + 0-2-3 + (pj-i _|_ o.92-2-i)2-3
= l-2-i _|_ 0-2-2 + o-2-3 + 1-2-4 + 0.92-2-*

= (0.1001)2

This may be continued as long as we wish; in general, the binary
fraction will be infinite. This is an unfortunate quirk of number
base conversion, that finite fractions in one base-do not usually have
finite forms in another base. [We are familiar with this in such
cases as the fraction which as a decimal fraction is nonterminating
while in base three it would be (0.1) 3.]

The binary expression above is just what we mean by (0.1001)2,
and is the equivalent, to four digits, of the decimal number (0.62).

BINARY AND OCTAL NUMBER SYSTEMS 43

There is of course a systematic way of doing the conversion
expressed in this rule:

To convert a decimal fraction to binary, multiply the fraction (in
decimal) by 2. Write down whatever appears to the left of the decimal
point, as the first binary digit.
product by 2 again, etc.

Example. (O.79)io to binary.
0.79

2
1.58

2
1.16

2
0.32

2
■ ■■• - .•-..■0.64

2
1.28

Multiply the fractional part of the

0.1

0.11

0.110

0,1100 ;

0.11001, etc.
Since multiplication by 2 can be done mentally, the binary equiva­
lent can be written dowri quite rapidly.

The problem of converting a. number which is part integral and.
part fractional can be handled several ways. The most obvious is
to convert the two parts separately: • 1

91.42 = 91 + 0.42
= (1011011)2 + (0.0110110)2
= (1011011.0110110)2

Another way is to convert’ the entire number as if it were an integer,
then multiply, in binary, by the binary equivalent of the required
power of ten:

91.42 = 9142-10-2 • .
= (10001110110110) • (0.00000010100011)
= (1011011.0110110)2

Similarly, we can convert the number as if it were, entirely frac­
tional, then multiply by the required power of ten:

91.42 = (0.9142)(102)

Exactly analogous methods may be used to convert to octal.

CONVERSION FROM BINARY OR OCTAL TO DECIMAL ..
The same techniques may be used to reverse the process, except

that we must now use the binary or octal representation of decimal
ten, and of course all arithmetic must be done in binary or octal.

44 DIGITAL COMPUTER PROGRAMMING

Also, as the decimal digits are developed, they will appear in binary
or octal and must be converted.

Example. (10110111)2 to Decimal

(10)io - (1010)2
10010

1010|10110111
1010

1011
1010

11 remainder = (3)io = unit’s digit

1
1010|10010

1010
1000 remainder = (8)io = ten’s digit

0
1010[l

1 remainder = (l)io •= hundred’s digit

So (10110111)2 = (183)io

Example. (1705)s to Decimal

(10)io = (12)8
140

12|1705 (All arithmetic in octal)
12

50
50
05 remainder — (5)io

11
12[140 ?. 1 . .

12
20
12
6 remainder = (6)io

o
12I11

11 remainder = (9) io

So (1705)8 = (965)io

BINARY AND OCTAL NUMBER SYSTEMS 45

Example. (0.1101110)2 to Decimal
0.1101110

1010
11011100

1101110
1000.1001100 (1000)2 = (8)10, bo first decimal digit is 8

0.1001100
1010

10011000
1001100

0101.1111000 (0101)2 = (5)io

So

0.1111000
1010

11110000
1111000

1001.0110000 (1001)2 = (9)10
(0,1101110)2 = (0.859)io

Example. (0.7235)8 to Decimal
0.7235

12
16472 (All arithmetic in octal)
7235

11.1042 (11)8 = (9)io

0.1042
12

2104
1042

1.2524 (1)8 = (1)10

0.2524
12

5250 •
2524

3.2510 (3)8 - (3)io

0.2510
12

5220
2510
3.2320 (3)8 = (3)io

(0.7235)8 = (0.9133)io

46 DIGITAL COMPUTER PROGRAMMING

RECONVERSION
Suppose we were to convert a decimal fraction to binary, then

convert the binary fraction to decimal. Would we get the same
decimal fraction? Testing the first example above:

(O.62)io = (0.1001)2
0.1001

1010
10010

1001
101.1010 (101)2 = (5)io

0.1010
1010

10100
1010

110.0100 (110)2 = (6)10
We seem to get (0.62) io = (0.1001)2 = (0.56) io? ’

The problem is that four binary digits cannot carry as much
information as two decimal digits. If we had continued the con­
version to binary to get seven places: ‘ •

(O.62)io = (0.1001111), then reconversion would have given:
0.1001111

1010
looiino -

1001111
110.0010110 (110)2 = (6)io <

0.0010110 k
1010

00101100
0010110
001.1011100 which rounds off to

(010)2 = (2)io
(0.1001111)2 = (O.62)io as before

The number of binary places necessary to give exact reconversion
to decimal may be presented in a table, as illustrated in Table 5.

OTHER METHODS
There are other techniques for number base conversion. Some

provide short cuts for special uses; others are dictated by equipment
design or input format, such as punched cards. The methods pre­
sented here are simple and general; they provide a basic technique.

BINARY AND OCTAL NUMBER SYSTEMS 47

TABLE 5
NUMBER

OF
DECIMALS

0
1
2
3
4
5
6
7
8
9

10

NUMBER OF BINARY PLACES TO
GIVE EXACT RECONVERSION

0
4
7

10
14
17
20
24
27
30
34

3.4 Binary Coding of Decimal Digits

Machines which operate in decimal require that each decimal
digit be coded in binary. The arithmetic and control circuits then
operate on the groups of bits which represent the decimal digits.
There are many ways of “coding” the decimal digits, i.e., of com­
bining several binary digits to represent one decimal digit. All the
methods require at least four bits, and involve assigning some
value or “weight” to each. There are about five systems in common
use, namely the 8-4-2-1, the 2-4-2*-l, the excess-three, the two-out-
of-five, and the bi-quinary'systems.

DECIMAL
DIGIT

TABLE 6

BINARY VARIABLES
Weights 8 4 2 1

0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 1
0 0 10
0 0 11
0 10 0
0 10 1
0 110
0 111
10 0 0
10 0 1

The 8-4-2-1 systemf assigns the same weights as in ordinary binary
notation. The coding is simply the binary representation of the
decimal digits; see Table 6.

tIBM 604, 605, 702, 705; NORC; National 102-D; Mark II; MONROBOT;
MINIAC; DATATRON.

48 DIGITAL COMPUTER PROGRAMMING

The next two systems share several features which are desirable
in design. They have these two characteristics: 1. The nine’s com­
plement of a decimal digit can be formed by complementing each
binary digit, which is easily done electronically. 2. When two binary
coded digits are added in binary, the sum contains five binary digits
if it is ten or greater, four if less.

The first of these is the 2-4-2*-l system,! the second 2 being
starred to remind us that there are two two’s. The representations
are given in Table 7.

TABLE 7

DECIMAL BINARY VARIABLES

digit Weights 2 4 2 1

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 10 0
5 10 11
6 110 0
7 110 1
8 1110
9 1111

The two characteristics mentioned above may be checked. The
nine’s complement of seven is two; the representations are respec­
tively 1101 and 0010, which are seen to have binary zeros and ones
reversed. Adding two and seven in decimal causes no carry; adding
0010 and 1101 in binary does not. Adding six and five does; adding
1100 and 1011 does. ’ * —

The other is the excess-three system, so called because it is just
like the 8-4-2-1 system but with binary three added to each repre­
sentation,! as Table 8 illustrates.

The two considerations above are also seen to apply. This system
has the additional advantage that combinations 0000 and 1111 are
illegal. Since these are easy to check for electronically, a simple
test of machine reliability is available.

The next system is based on checking machine reliability, to which
is sacrificed the cost of an additional binary variable. Sometimes
called the two-out-of-five system, it requires that exactly two binary
variables be “on” in the representation of each digit. The weights

t Mark III.
t Univac. \ .

BINARY AND OCTAL NUMBER SYSTEMS 49

assigned are 0, 1, 2, 3, 6. Each decimal digit can be made up of
exactly two of these, which provides a simple check of machine
operation. There are two ways of coding the digit three; one of
these is used for zero.

TABLE 8

DECIMAL BINARY VARIABLES
DIGIT Weights 8 4 2 1

(Three
added to

each)

0
1
2
3
4
5
6
7
8
9

0 0 11
0 10 0
0 10 1
0 110
0 111
10 0 0
10 0 1
10 10
10 11
110 0

In the machine where this last finds widest application, the IBM
650, the representations on the drum and on the console are different.
The two-out-of-five scheme is used on the drum, but the bi-quinary
(“two-five”) system is used on the console.* This method requires

assigned weights 5 and 0, and one of five (quinary), .variables,

TABLE 9

DECIMAL 5 0 4 3 2 1 0
0 0 1 0 0 0 0 1
1 0 1 0 0 0 1 0

■.................. 2 - b 1 0 0 1 0 0
3 0 1 0 1 0 0 0
4 0 1 1 0 0 0 0
5 1 0 0 0 0 0 1
6 i 0 0 0 0 10
7 i 0 0 0 1 0 0
8 1 0 0 1 0 0 0
9 i 0 1 0 0 0 0

that each digit be represented by one of two (binary) variables,

assigned weights of 4, 3,2,1, and 0. The codings are given in Table 9.

' * Bell Computer, Models IV and VI; IBM 650.._ _

50 DIGITAL COMPUTER PROGRAMMING

The main advantage here seems to be that it can be presented in
a very readable form on the console:

0 5

0
•
1

2

3 -

4

Of some historical interest is the fact that the first large electronic
(but not stored program) machine, the ENIAC, uses ten binary
variables, one for each decimal digit. No other electronic machine
has ever been built this way.

3.5 Conversion Tables
In practice, such conversions as must be done by hand are usually

done with the aid of prepared tables. Two are appended, one for
integers (Appendix 4), and one for fractions (Appendix 5). The
integer table is self-explanatory. Two points may be mentioned
about the fraction table. First, only numbers less than (0.5) io
are included; larger numbers are handled by subtracting (0.5) io,
converting, and adding (0.4) 8 [since (0.5)io = (0.4)8]. Second, the
conversion must be done in two parts, once to get the equivalent of
the first three digits, and again to get the equivalent of the last three.

Perform the indicated arithmetic operations:
Exercises

1. 1010
+0101

2. 1101
+0001

3. 1101
+0011

4. 1011010
+ 111011

5. 10010111
+11111111

6. mill
+111111

7. 1010 •
-0001

8. 1010
-0001

1 -i i
9.

’ I1 ■'

100
-001

10. 1010
-101

11. 101110
- 10101

12. 101111001
-110101110

BINARY AND OCTAL NUMBER SYSTEMS 51

13. 1010 14. 10111 15. 1011101
x ion

16. 10111
X10001X 11 X___10

17. 101101 18.
X 10111

11101101
x mu

19. 10|1010 20. 101|1010

21. 110|10010 22. 1010|1100100

23. 1011|10000000 24. 11010|10101110001

Perform the indicated base conversions:

25. (5)10 = ()8 = ()2

26. (8)10 = ()8 = ()2

27. (10)10 = ()8 = ()2
28. (32)10 — () 8 = (h
29. (lOO)io = ()8 “ (h
30. (1125)1O = ()8 = ()a
31. (0.25) 10 - ()8 = ()a
32. (0.729) 10 - ()s “ ()a
33. (0.110986)lo - ()8 = ()2

34. (0.997)lo - ()8 - ()2
35. (0.2)10 = ()8 = ()2

36. (14.65)10 - ()8 = ()2
37. (173.409)lo - ()8 = ()2

38. (11010)2 = ()8 = ()10
39. (1011110111)2 = ()8 - ()i0

40. (1111U11)2 - ()8 = ()10

41. (100000000)2 = ()8 = ()io
42. (11011.110)2 - ()8 = ()10

43. (10001.11010)2 = ()8 = ()i0

44. (1.1)2 = ()8 ~ ()io
45. (1.4)8 = ()2 = ()io

46.‘ (177.45)8 = ()2 - ()10
47. (100.01)8 = ()2 - (ho
48. (25.111)8 = ()2 = ()10

4

4 DECIMAL POINT LOCATION METHODS

4.0 Introduction
One of the problems requiring most careful attention in program­

ming is decimal point or binary point location.* This may not be
readily apparent to the person who has not used a computer before:
the ordinary arithmetic of balancing a checkbook or doing engineer­
ing calculations by paper and slide rule does not seem to present
great problems involving decimal point location. The difference is
that in a stored program calculator, and to a lesser extent with any
computer, all of the planning must be done in advance. In writing
a program, provision must be made for contingencies which may only
arise under certain unlikely circumstances. All this is done, not in
terms of actual numbers, but in terms of quantities about which no
more can be specified than the maximum and minimum sizes.

Considerable simplification could be made in the techniques to be
described if it were not for the fact that it is usually necessary to
retain as many significant figures as possible throughout a calculation.
Even though the accuracy of the data does not justify it, considera­
tions from numerical analysis may demand that there be as few
nonsignificant zeros at the left of the numbers as possible. But if this
is done, the addition of two numbers may produce a sum with more
digits than can be stored in memory. Add to these considerations
the fact that there are always precautions to be observed regarding
division, and we see that decimal point planning is hot trivial.

In the sections which follow, various devices are presented which
assist in planning and keeping records of what goes on inside, the
machine. It is quite important to observe, however, that all of these
are simply conveniences to the programmer, not rules which govern
the operation of the calculator. Multiplication of the two sets of
digits 1234 and 9876 always gives the result 12186984, regardless
of whether we are thinking of the result as

♦ Most of the chapter applies equally to decimal and binary, with appropriate
changes in terms and notation.

52

DECIMAL POINT LOCATION METHODS 53

(1.234)-(9.876) = 12.186984
or (1234.)-(.9876) = 1218.6984 /

or (0.0001234) • (98760) = 12.186984
or whatever.

Similarly, if 1.234 and 987.6 are to be added in a computer, it is
the responsibility of the programmer to shift the numbers so that
the decimal points line up. After all, there is no decimal point in
memory (with minor exceptions in the case of one or two machines):
all that is in memory is a collection of digits. If the programmer is
thinking of the digits 1234 and 9876 as 1.234 and 987.6, but forgets
and programs the addition as

1.234
. . +987.6

the mistake is of no concern to the machine. The digits of the sum
will be 11110, with no warning that to the programmer this is a
meaningless result.

This is intended to emphasize that the decimal point problem is
a matter of how to think about numbers in memory and the operations
performed on them. The following sections present different ways
of thinking about the numbers and different notations for keeping
records, but the functioning of the arithmetic unit is the same in all
cases.

It is likely that the reader will find one of the three methods more
pertinent to his area of interest than the others. No loss of con­
tinuity will result if these sections are merely skimmed.

4.1 Decimal Point Fixed in the Middle of the Word
This technique is useful under the following conditions: *
1. The significance requirements of the numbers are not severe, or,
2. The numbers actually are all the same size, which is seldom, or,
3. It is impossible to predict the sizes of intermediate values and

floating point methods are not feasible (Chapter 10).
■ If any of these conditions are met, it is:possible to write a simpler
program, with much less effort, than with the two following methods.*

* One small machine, the MONROBOT V, is built on this principle. Words
are twenty digits long, with a decimal point fixed in the middle. All results of
arithmetic operations are in this form, and the manual makes little mention
of the point location problem. The machine has no shift, orders. This sim­
plicity, however, is gained at the expense of extra equipment. Twenty-digit
word length would be a high price to pay in a machine with a large memory.

54 DIGITAL COMPUTER PROGRAMMING

Suppose we are again dealing with TYDAC with its ten digit
numbers, and we locate the decimal point between the fifth and sixth
digits, such as:

12345.67890
04960.12000

—00001.00047
—00000.02394

This is the form in which all data and constants are entered into
the problem, the form in which all intermediate answers appear, and
the form of all final answers. Perhaps it is obvious, but note that
this means that no data, intermediate results, or answers may be
larger in absolute value than 99999.99999 or smaller than 00000.00001.
(It is possible, however, to generalize the method somewhat by
observing that a similar set of rules could be built around any fixed
point location—at the left end of the word, at the right end, or
anywhere else.)

Since in this system all numbers in memory have the same decimal
point, addition and subtraction can be carried out without any pre­
liminaries. Furthermore, if the maximum-size limitation is valid,
there can never be overflow in this system. If overflow did occur, it
would mean that the sum was larger than 99999.99999, and all num­
bers have been assumed to be smaller than this. This fact is essential,
for if overflow were to occur, nothing could be done—within the
framework of this system—to rectify the trouble. There is no way
to shift the sum and store the extra digit, without also shifting the
decimal point and thus destroying the whole system.

In multiplication, we are multiplying two numbers each of which
has five places to the right of the decimal point; the result, by the
ordinary rules of arithmetic, will have ten places to the right of the
point. The before and after pictures of the arithmetic registers, in
terms of an example, are:

Before: Memory Accumulator MQ
00147.05100 XXXXXXXXXX 00098.46123

The contents of the accumulator are immaterial, since the accumulator
is'cleared before multiplication in TYDAC.

After: Memory Accumulator MQ
00147.05100 0000014478 8223327300

As may be seen, the result is split up between the accumulator and
MQ, with the decimal point between the two; in order to make use

DECIMAL POINT LOCATION METHODS 55

of the product, it is usually necessary to shift into the accumulator
and, if desired, round off.

In the division of a twenty-digit dividend by a ten-digit divisor
to get a ten-digit quotient, there will be as many places to the right
of the point in the quotient as the difference of the number of decimal
places in the dividend and in the divisor. Thus to get five to the
right of the point in the quotient, with five to the right in the divisor,
we must arrange to have ten in the dividend. The before and after
pictures are almost the reverse of multiplication, although the
numerical example is different:

Before: Memory
00057.19447

Accumulator MQ
0000010973 4002700000

The dividend has been shifted right five places, as required.

After: Memory
00057.19447

Accumulator
0000504913
(Remainder)

MQ
00191.86121
(Quotient)

The difference between multiplication and division, of course, is
that the accumulator contains the remainder after division, whereas
before multiplication the contents of the accumulator were immaterial.
Observe that we have legislated the divide stop possibility out of
existence, just as we did overflow, by assuming that the numbers
would be of such size that it could not occur. If two numbers are
simply to be divided and the result stored, the dividend must be
shifted right five places before division, as noted above. If two
numbers are to be multiplied and the product divided by a third, it
is clearly better to perform the multiplication first, since there will
then be no shifting required.

a + bx x2
Example 1. y - j

QUANTITY LOCATION

a .1000
b 1001
c 1002
d 1003
2 1004
X 1005
y 1006

Temporary storage 1100,1101

56 DIGITAL COMPUTER PROGRAMMING

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS COMMENTS

500 42 - Load MQ 1005 x into MQ
501 16 Mult 1005 •C
502 18 Divide 1004 x2/2 in MQ
503 43 Store MQ 1100 Store temporarily
504 42 Load MQ 1005 x into MQ
505 16 Mult 1003 dx
506
507

32
35

Long left
Round

5 Into acc

508 11 Add 1002 c + dx
509 40 Store acc 1101 Store temporarily
510 42 Load MQ 1005 x into MQ
511 16 Mult 1001 bx
512 32 Long left 5 Into acc
513 11 Add 1000 a + bx
514 33 Long right 5 Prepare to divide

a + bx
515 18 Divide 1101 c -f- dx
516 43 Store MQ 1101 Move quotient into

_ 517 10 Clear add 1101 . acc and clear re­
mainder

518 11 Add 1100 Form y
519 40 Store acc 1006 Store result

It is instructive to note how these twenty steps were used. Four
were utilized to shift numbers and round. Eight were used to move
numbers to and from memory. Only eight called for actual arithmetic
operations; if anything, this is a high proportion of “productive”
steps. It is an unfortunate fact that the bulk of most programs is
mere manipulation of numbers.

4.2 Graphic Method
This method is so called because it is simply a generalization of

the technique we use in doing arithmetic by hand. It provides a
fairly simple notation for keeping track of the decimal point through­
out planning and coding. As compared with the other methods
presented, the graphic method is slightly more general than the
middle-of-the-word technique; since it is quite similar to methods
we are familiar with, it is easy to learn and use; it is applicable with
slight changes to machines which have registers of different lengths
and to variable word length machines, whereas the scale factor
method is somewhat inflexible for such situations.

The rules of the method are just those of ordinary arithmetic.
1. In addition or subtraction, the decimal point location of both

DECIMAL POINT LOCATION METHODS 57

numbers must be the same. In TYDAC and other fixed word length
machines, this may be made more specific by saying that the two
numbers must have the same number of places to the right or left
of the point.

2. In multiplication, the product has as many places to the right
of the point as the sum of the number of places to the right of the
multiplier and multiplicand. In TYDAC, we may say right or left,
observing that not all digits to the left will always be nonzero.
. 3. In division it is harder to make a completely general statement.
Particularizing to the situation of the TYDAC and many others, i.e.,
twice as many digits in dividend as in divisor or quotient, we may
say that the number of places to the right in the quotient is the
difference of the number of decimal places to the right in the dividend
and the number to the right in the divisor. Note carefully that not
all factors are the same size; the location of the point in the dividend
is in respect to the accumulator and MQ combined, whereas the
quotient is in respect to the MQ alone. • '

For all of these rules it is not necessary that the point lie in the
ten-digit number. The “number of places to the right” may be
negative, as when the digits 1023456789 in memory actually, stand-
for 1023456789000, or greater than ten as when the same digits stand
for 0.000001023456789. All the previous rules apply for these
conditions.
' For the purpose of stating these rules succinctly and making for

a simpler record-keeping job, we may introduce a notation. We
shall say that a number which has m places to the left of the decimal
point and n to the right is an (m/ri) number. Now the' rules become
quite simple to state: - ■ . ."

ADDITION OR SUBTRACTION
(m/ri) + (p/q) = (w/n) or (p/q), i.e., it is necessary that m = p,

n = q, and that the answer have the same point location as the two
factors. This is not to imply that we are ignoring the possibility of
overflow; it simply says that if the sum or difference can be contained
in a location the same size as the numbers, its point location numbers
must be the same as the original.

MULTIPLICATION
(m/n)-(p/q) = (m+p)'(n+q). This is a very short way of

saying the rule stated earlier. It does not guarantee that all the
leading digits will be nonzero, e.g., multiplication of the two (1/1)
numbers 1.2 and 3.4 gives a (2/2) number 04.08, but the first digit

58 DIGITAL COMPUTER PROGRAMMING

is zero. This may appear artificial, but it happens automatically
in the computer, since obviously enough space must be provided for
the more general case where there are the full number of significant
digits as in (4.9)(6.7) = 32.83.

DIVISION
(m/n)
—— = (m - p)/(n - q)
(p/q)

In this case it is particularly necessary to count the number of
places with respect to the accumulator plus MQ, since the inverse of
the first multiplication example above can be a source of confusion.

In division, it is necessary to know either the minimum size of
the divisor or the maximum size of the quotient. One or the other
must be known to be able to avoid divide stop situations.

Example 1
Given the problem of evaluating the expression

12.67 - (x2/2) + (s*/24)
(pi/p2) + 126.94

and knowledge of the following maximum sizes.

MEMORY MAXIMUM
QUANTITY LOCATION LESS THAN POINT LOCATION

T 400 0.1 (-1/11)
X 401 1.0 (0/10)
?i 402 100 (2/8)
P2 403 10 (1/9)
P1/P2 — 10 (1/9)

The constants are of the following form.

12.67 500 100 (2/8)
2 501 10 (1/9)

i ' ' 24 502. 100 (2/8)
126.94 503 1000 (3/7)

j L As we write the program, it is necessary to keep a running log of the point
location of whichever register (accumulator, MQ, or both together) we are
interested in. A zero is stored in 300.

i i OPERATION
OPERATION ABBREVIA­

location conn TION ADDRESS POINT COMMENTS

1100 10 Clear add 402 (2/8) pi into acc
1101 42 Load MQ 300 (2/18) Clear MQ

1 ■ 1102 18 Divide 403 (1/9)
{Continued, on next page)

DECIMAL POINT LOCATION METHODS 59

1103 43 Store MQ 1500 (1/9) Temporary
1104 10 Clear add 1500 (1/9) Prepare to add
1105 31 Acc right 2 (3/7) Line up point

for next addi­
tion

1106 11 Add 503 (3/7) Denominator
1107 40 Store acc 1500 (3/7) Temporary
1108 42 Load MQ 401 (0/10)
1109 16 Mult 401 (0/20)
1110 40 Store acc 1501 (0/10) For later use in

X4
1111 33 Long right 3 (3/17) Prepare to get

correct point
for addition

1112 18 Divide 501 (2/8)
1113 43 Store MQ 1502 (2/8) Temporary;

x2/2
1114 42 Load MQ 1501 (0/10) X2
1115 16 Mult 1501 (0/20) X4
1116 33 Long right 4 (4/16) Prepare for

addition
1117 18 Divide 502 • (2/8)
1118 43 Store MQ 1501 (2/8) Temporary
1119 10 Clear add •500 (2/8) 12.67
1120 14 Sub 1502 (2/8) -x2/2
1121 11 Add 1501 (2/8) +x4/24
1122 42 Load MQ 300 (2/18) Clear MQ
1123 18 Divide 1500 (-1/11)
1124 43 Store MQ 400 (-1/11) T

A few notes are in order. Temporary storages 1500 and 1501 were used in
two different places each. This was possible since the first number stored in
each case was of no further value once it had been brought back into the
arithmetic registers. It is advisable, however, to be extremely careful in the
use of temporary storage; it is very easy to forget what is in each location.
Careful bookkeeping is necessary, as will be discussed later. In several places
numbers were shifted in anticipation of later needs to line up the point, as
in steps 1105, 1111, 1116. In a few places it was necessary to change the point
location symbol from a ten-digit number to a twenty-digit one, to account for
an ensuing division by a ten-digit number.

4.3 The Scale Factor Method
The technique to he discussed next is by far the most commonly

used of those presented—at least for scientific or engineering work
on fixed word length machines. In one sense it is simply an extension
of the previous method, as we shall see, but it seems to lend itself
better to applications where there is a great deal of fixed decimal
work to do. One advantage is that it is easy to do all the planning

60 DIGITAL COMPUTER PROGRAMMING

for point location before coding, thus separating two error-prone
processes.

The scale factor of a (fractional) number in memory is defined
as the power of ten by which the fraction must be multiplied
to get the number actually represented. Thus, if x is the actual
number and x is the fraction in memory, we have the “scale factor”
equation:

x = 10’x
Strictly speaking, the scale factor is 10®, but common usage refers
simply to q as the scale factor, a practice which will be followed here.

The scale factor may be positive or negative. We may think of
the digits 1023456789 in memory as standing for the true numbers:

0.1023456789
1023.456789
0.0001023456789

Scale factor 0
Scale factor 4
Scale factor —3 etc.

It happens that the scale factor is the same, as the number of places
to the left of the point, in the notation of the previous section.
Here, however, we do not think of the matter the same way, although
the machine functioning is of course unchanged. Here, we think of
all numbers in memory as having a decimal point fixed at the left
end of the word; if a number is shifted in the accumulator, the decimal
point does not move, but rather the scale factor changes. This is
obviously merely a change in viewpoint, but it turns out to facilitate
planning and record keeping.

The application of the scale factor method to programming may
be reduced to a five-step rule.

Step 1. Determine, from information about the physical quantities,
the maximum sizes of all numbers. (Throughout, “maximum size”
will refer to absolute values.) In the case of division, determine
also the minimum sizes of divisors or the maximum sizes of quotients.
Doing this will ordinarily require knowledge about input, inter­
mediate results, and output; at the very least, the information must
be available for the input.

Step 2. Write the relationships between true numbers and scaled
numbers by determining the necessary scale factors. These will
ordinarily be the power of ten just larger than the maximum size of
a quantity. Thus, if x in a certain problem can never be as large
as 100, then the scale factor would be 2, and

x = 102z

DECIMAL POINT LOCATION METHODS 61

Step 3. Substitute the scaled quantities into the equations of the
problem. Cancel exponents wherever possible.

Step 4. Quantities to be added or subtracted must have the same
scale factor. If this condition is not met in the scaled equation as it
stands, some scale factors must be changed by shifting some of the
numbers before addition or subtraction. The number of shifts
required will be the same as the difference in scale factors in the
scaled equation.

Step 5. An “uncanceled” scale factor in division specifies a right
shift necessary to avoid divide stop. An “uncanceled” scale factor
in multiplication specifies a left shift of the product, which will cause
no loss of significant digits at the left. This, retains digits at the
right, thus increasing the accuracy of the computation.

Example 2. x = a + b + c
Step 1. a < 100

& < 10
c < 1
x < 100

Step 2. a = 1023
b = lO1^
c = 10°c
x = 102z

Step 3. 102x = 102a + 10*& + 10°c
Step 4. The differences in exponents on the right side of the equation

specify shifts required before addition, c must be shifted two places right, b
one place right. The limit given for x tells us that the numbers a, b, gnd c in
this problem are such that the maximum value of all three does not occur at
the same time, so that there is no danger of overflow. If this had not been
specified, we would have had to assume the worst and used a scale factor of
3 for x, which would have required either shifting all the numbers one more
place right before addition or shifting the sum one place right.

Step 5. Not applicable.
If 3 is located in 500, b in 501, c in 502, and x is to be placed in 600, a program

to carry out this addition might be:

-: OPERATION OPERATION
’ PERTINENT

SCALE

LOCATION CODE ABBREVIATION ADDRESS FACTOR ..

100 10 Clear add 502 0 '■
101 33 Long right 1 1
102 11 Add • 501 1
103 33 Long right

...
■- 2

104 11 ■ Add 500 2'
105 35 Round 2 '
106 40 Store acc 600 2

62 DIGITAL COMPUTER PROGRAMMING

Example 3. x = d*e
Step 1. d < 100

e< 1000
x < 10,000

The limit on x implies that d and e do not both approach their maximum sizes
at the same time; if they did, x could obviously be almost as large as 100,000,
not 10,000.

Step 2. d = 1023
e = 103e
x = 104X

Step 3. 104x = 102d- 103e, which is the same as
x = lO^-e

Step 4. Not applicable.
Step 5. The equation of step 3 states that the product as computed will

always have one leading zero, derived from the fact noted above that x does
not become as large as the limit on d and e would seem to imply. In terms of
the numbers in the arithmetic unit, this means that the product as formed
will always have one leading zero, allowing a left shift of one after the multi­
plication.

If d is in 1200, e in 1300, x to go into 1307:
PERTINENT

OPERATION OPERATION SCALE
LOCATION CODE ABBREVIATION ADDRESS FACTOR

540 42 Load MQ 1200 2
541 16 Mult 1300 5
542 32 Long left 1 4
543 35 Round 4
544 40 Store acc 1307 4

Example 4. x = f/g
Step 1. /<1500

10 < g < 500
x< 100

Here we are given additional information; it would seem that x could be as
large as 150, whereas we see that in fact the maximum is less than 100.

Step 2. f = 10y (Since 104 is larger than 1500, but 103 is not)
g = 1O30
x = 102x

Step 3. 102x = (104j)/(103^), or 10xx = (j)/(g)
Step 4. Not applicable.
Step 5. The uncanceled scale factor points out the necessity for shifting the

dividend one place right before division.
If f is in 1050, 9 is in 1051, x to go in 1052, the program could be:

OPERATION OPERATION
PERTINENT

SCALE
LOCATION CODE ABBREVIATION ADDRESS ’ FACTOR

1000 10 Clear add 1050 4
1001 33 Long right 1 5
1002 18 Divide 1051 2
1003 43 Store MQ 1052 2

DECIMAL POINT LOCATION METHODS 63

Observe in all these examples that it is not absolutely necessary
that a size limitation be given for all results. For instance, if the
maximum size of x had not been specified in the division example
as 100, we would simply have assumed that the quotient could be
as large as 150 (1500 10). The scaled equation would then have
been:

103® = (1047)/(103?)

or 102® = (/)/(£)
The 102 factor would then have specified a right shift of two before
division. The maximum size of the result of an arithmetic operation
can always be computed in this manner, if more precise information
is not available.

This presentation has possibly left the impression that fixed point
calculation is a routine matter of applying a few simple rules. This
is not exactly the case. The primary difficulty revolves around
estimating the maximum and minimum sizes of all quantities in
advance. Experience shows that it is quite difficult to foresee all the
contingencies, especially in problems where the physical phenomena
under study are not well understood. Furthermore, last-minute
changes in formulas can require a disproportionate amount of effort
in revising decimal point planning.

What happens to the program if a mistake is made in scaling?
Suppose the sum of two numbers is assumed to have an upper limit
of 999, but turns up in the calculation as 1050. Unless some test
is provided which will discover the error before it does any damage,
the program will turn out meaningless results. In this case, the effect
would probably be to store 050 as the result instead of 1050, since
the planning would not have allowed space to store the extra digit.
In almost all cases of errors due to an assumed maximum which
turns out to be too small, the trouble will be signaled by the presence
of some digit other than zero in the overflow position of the accumu­
lator. Since there is such a large chance of error, it seems wise to
program periodic tests of the overflow position (using in TYDAC the
overflow jump instruction) to determine if any scaling errors have
crept in. Divisors which turn out to be smaller than estimated will
be signaled by divide stops, which in TYDAC stop the machine.
In real computers the signals of trouble may be different, but similar
checks can be made. Many machines do not have an overflow posi­
tion,, but simply give a warning if overflow occurs.

64 DIGITAL COMPUTER PROGRAMMING

Exercises
(May be coded using any or all of the three methods.)

Exercises 1 through 13 assume the following size and location information.
If a size for y is not given, compute the maximum possible.

QUANTITY

a
b
c

• d
e
f
y

SIZE

<1000
<100
>10, <100
<125
>60, <600
>l,<10
Given, or to

be com­
puted

LOCATION
100
101
102
103
104
105
150

1. y -a + b

2. y = a — b

3. y = bd

4. y = a/c
5. y = df, where y < 1000

6. y = d/f, where y < 100

7. y = a + (&/)

8. y = a/(b + c)

9. y - (a + bf)/c

10. y = a + 10/ + 100b/2

11. Same as 10, except y < 10,000

12. y=f/e
13. y = a/f+b/f2 + c/f

14. Write a program to evaluate y = Vot + Igt2.

QUANTITY LOCATION MAXIMUM SIZE
t 150 15 sec
0 157 ■ 32.2 ft/sec2 •
Vo 162 120 ft/sec .
y 200 To be determined

15. Write a program to evaluate y = 1 + x + (x2/2) + (rc3/6). x is
1 in 200, 2 in 201, 6 in 202. x is always positive and never as large
Assume appropriate point locations for the constants. Place y in 300.

•S 3

DECIMAL POINT LOCATION METHODS 65

A(t2 ~ 61)
(Li/Ki) + (L2/K2)16. Write a program to evaluate H =

QUANTITY LOCATION SIZE RANGE .

61 100 Between 0-400
62 101 Between 100-1000
Li 110 <10
L2 111 <10
Ki 120 Between 0.001-0.1
k2 121 Between 0.001-0.1
A 150 <1000
H 200 To be determined

17. Write a program to evaluate y ir 1 1____ e__ '
62 L a + bx 2(a + bx)2.

a, in 100, is always positive and less than 50; b, in 1200, is between +1 and
20; x, in 1800, is between ±5. Assume locations for needed constants. Deter­
mine the maximum and minimum sizes of y, avoid divide stop, and store
result in 1950. Devise a procedure to handle the possibility that (a + bx)
is zero or close to zero.

5 ADDRESS COMPUTATION

5.0 Introduction
It has been mentioned in earlier chapters that the central feature

of a stored program calculator is the ability to perform arithmetic on
the instructions which tell the machine what to do. This capability
is utilized in several ways. The most important use revolves around
the employment of loops, which are discussed in the next chapter.
A small section of a program may be used many times with minor
changes in some of the instructions. Another application is in the
making of “decisions” inside the machine; a jump instruction can
have its address modified to go to one of several alternatives depend­
ing on some controlling parameter. A further application is in the
writing of general-purpose programs. It may be desirable to set up
a code to solve a system of simultaneous linear algebraic equations
of any size (limited only by memory size). Given only the coefficients
and constants in some systematic order, plus the number of equations,
the program must be able to do all the various operations a varying
number of times. This will involve a very small number of actual
arithmetic operations and a much larger number of instructions which
compute and place the correct addresses in these instructions and
decide when to quit.

These are actually only illustrations of a general method and not
distinct techniques. The following sections present three illustra­
tions of this method in some detail because the concept is so im­
portant, and because it can sometimes be difficult to grasp. Later
chapters will present many examples in connection with discussion
of other principles.

5.1 Address Modification in Loops
Probably the most frequent use of address computation is in chang­

ing instructions in loops. For our purposes here, we may define a
loop as a program segment which is repeated, often with some of the

66

ADDRESS COMPUTATION 67

instructions altered or modified between repetitions. A common modi­
fication is to increase the address of certain instructions each time
the loop is repeated.

To illustrate how an instruction can be altered by the machine,
consider the following. Suppose that a loop is required which will
clear to zero all the locations in memory from 200 to 1999. One way
to do this is to have zero in the MQ, then successively store the MQ
at all the locations specified. An instruction can be written which
stores the MQ at 200; then the address of the instruction changed
to 201 and the instruction executed again, etc.

All that is required is somehow to get this instruction into the
accumulator and add one to the address. Observe that the instruc­
tion in memory would appear as 4302000000—simply a number.
With this number (instruction) in the accumulator, it is only neces­
sary to add 0000010000, and store the sum, which is the modified
instruction, back where the old instruction was. The instruction
can then be repeated. Assuming that the MQ has been cleared, and
that 90 contains 0000010000, the program might be:

at 100 into the

would be run through. The following listing shows the
of the accumulator, including overflow position, and of

location 100, after each instruction has been executed:

at 101 brings the instruction
adds one to the address; 103 stores the new

The instruction
accumulator; 102
instruction back in 100; 104 returns control (jumps) to 100. Thus
the first step would be repeated over and over, the address being
increased by one each time, and eventually all the addresses from 200
to 1999
contents
memory

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

100 43 Store MQ 200
101 10 Clear add 100
102 11 Add 90
103 40 Store acc 100
104 01 Un jump 100

(Continued on next page)

INSTRUCTION CONTENTS OF CONTENTS OF
LOCATION ACCUMULATOR LOCATION 100

100 Immaterial 43 0200 0000
101 0 43 0200 0000 43 0200 0000
102 0 43 0201 0000 43 0200 0000
103 0 43 0201 0000 43 0201 0000
104 0 43 0201 0000 43 0201 0000
100 0 43 0201 0000 43 0201 0000

68 DIGITAL COMPUTER PROGRAMMING

101 0 43 0201 0000 43 0201 0000
102 0 43 0202 0000 43 0201 0000
103 0 43 0202 0000 43 0202 0000
104 0 43 0202 0000 43 0202 0000
100 0 43 0202 0000 43 0202 0000
101 0 43 0202 0000 43 0202 0000
102 0 43 0203 0000 43 0202 0000
103 0 43 0203 0000 43 0203 0000
104 0 43 0203 0000 43 0203 0000
Etc.

Actually, we wish to modify only the address of the instruction at
100, whereas the store accumulator instruction at 103 stores all ten
digits: operation part and index control as well as address. This is
permissible,' since the “nonaddress” digits are brought into the
accumulator by instruction 101. This is often not allowable, as we
shall see in a later example.

(.The reader might consider the limitations of this example as a
usable program. As a matter of fact, it would clear all the locations
from 200 to 1999, but it would be somewhat deficient in other respects.
The interesting problems raised here will be discussed in the next
chapter.)

The question may be asked how the machine knows the difference
between an instruction and a number. The answer is that it does
not, and that as far as doing arithmetic is concerned, it makes no
difference. Since instructions are simply numbers, the arithmetic
unit has no difficulty performing arithmetic on them.: It is the
responsibility of the programmer to be sure that if arithmetic is
done on instructions, the manipulation is really intended; an acci­
dental, unintentional modification of an instruction always leads to
trouble. It is also necessary to ensure that the machine does not
try to interpret what really are numbers, i.e., data, as instructions.
This also leads to trouble, but usually to trouble so drastic that it is
easily detected. In some computers, numbers and instructions carry
some distinguishing mark which will prevent this particular error.

5.2 Computing Jump Addresses

It is fairly common to find computer applications where part of
the input to a program is a code number which determines exactly
what is to be done on a particular case. For instance, the program
may choose between four alternative . methods of calculating a
quantity, based on whether a code number is 1, 2, 3, or 4.

For an illustration, take the case where a code number in location

ADDRESS COMPUTATION 69

500 may be any digit between zero, and nine inclusive. If the code
is zero, the program should jump to 1400 to handle this case; if the
code is one, to 1410; if it is two, to 1420, etc., until if it is nine the
jump should be to 1490. At these locations would be stored small
subprograms to handle the individual cases. There is a simple pattern
here, which can be expressed by the formula: ,

Jump address = 1400 + 10 • (Code number)

The following program will evaluate this formula, store the- com­
puted address in a jump instruction, and perform the jump. Note
that rather than assign a location to the constant 1400, we have
simply written “loc 1400.” This is read “location of 1400,” and means
we realize that in a real problem the constant 1400 would have to
be stored somewhere and a numerical address written in place of “loc
1400.” For purposes of illustration, the address is immaterial, and
we save the trouble of specifying an actual location. As before, the
constant and the code number would have to be stored in positions
3-6 of the memory location.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

400 10 Clear add 500
401 30 Acc left 1
402 11 Add Loc1400
403 41 Store address 404
404 01 Un jump [0000]

When the program is written, it is not known what the address of
the instruction at 404 should be; as a matter of fact, it is the function
of the program to make a decision on this point and compute the
appropriate address. When the program is first written, we indicate
that the address is to be computed by the program by writing zero
for the address and placing brackets around it. The sequence of
operations is:

1.- The- first three steps bring in the controlling code number,;
multiply it by ten by shifting left one place, and add 1400. This is
the address to which the program should now jump, in accordance
with the formula developed above. At this point the required address
is in the address part of the accumulator: positions 3-6. At 404 is
the jump instruction with an address of zero; if the address now in
the accumulator were placed in the address part of the instruction,
the necessary jump could be performed.

70 DIGITAL COMPUTER PROGRAMMING

2. The store address instruction at 403 performs the necessary Stor­
ing of the address. It stores only the address part; if this were not
so, the operation part of the instruction at 404 would be wiped out
since the accumulator contains zeros in the operation part.

3. The jump at 404—which now has a relevant address—is carried
out. As discussed above, whichever subprogram is appropriate to
the code number in 500 would be carried out.

The contents of the accumulator and of location 404 during the
program execution are shown in the listing below. It is assumed
for purposes of this illustration that the code number in 500 is 7.

INSTRUCTION CONTENTS OF CONTENTS OF
LOCATION ACCUMULATOR LOCATION 404

400 0 00 0007 0000 . 01 0000 0000
401 0 00 0070 0000 01 0000 0000
402 0 00 1470 0000 01 0000 0000
403 0 00 1470 0000 01 1470 0000
404 0 00 1470 0000 01 1470 0000

1470
1471
Etc.

5.3 Computing Final Address of a Matrix
Suppose we have stored in consecutive locations in memory a

rectangular array of numbers as follows, where the numbers written
above are locations of the numbers (represented by the letters a to I)
in storage:

1200 1201 1202 1203
abed

1204 1205 1206 1207
e f g h

1208 1209 1210 1211
i j k I

This is a particular case of our more general problem: we know where
the first number of a similar array is located, namely 1200, but we
do not know how big the array is. We do have stored in memory
two numbers which are the number of rows m and columns n. Given
only this much information, we are required to store the last number
in the array (matrix) in location 1000.

The first problem is of course to decide what the relationship is
between the first location, m and n, and the last location. . A little

ADDRESS COMPUTATION 71

thought shows this to be:

Final address = 1200 + m • n — 1
= 1199 + m • n

Suppose that m and n are stored as integers, i.e., that the decimal
point is to the far right of the word in memory. We must also
assume that m and n are such that the matrix can fit into the available
space. A program for this would be as follows:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

810 42 Load MQ Loc m
811 16 Mult Loc n
812 32 Long left 14
813 11 Add Loc 1199
814 41 Store address 815
815 10 Clear add [0000]
816 40 Store acc 1000

The first two instructions form the product wn. Again we are
quite unconcerned with the actual memory locations of some of the
data and have merely indicated “location of.” A review of decimal
point location on multiplication will show that the product is at
the extreme right of the MQ. Since addition is not possible in the
TYDAC MQ, we must at least shift this into the accumulator and
we may as well shift it into the address part of the accumulator
at the same time. A glance at a diagram of the accumulator and MQ
will illustrate the situation:

Accumulator MQ
00 0000 0000 OOOOOOOXXX

Op. Addr. Index mn

A long (accumulator and MQ) left shift of 14 will evidently bring
the product into the address part of the accumulator. The addition
of 1199, assumed to be stored as 00 1199 0000 so as to add into the
address part, completes the computation of the final address. Instruc­
tion 814 places this address in the address part of instruction 815,
which instruction brings the last number of the array or matrix into
the accumulator. Instruction 816 stores this number in 1000 as
required.

This program is a sketchy illustration of what must be done
extensively when one program is intended to be able to handle a
group of numbers of variable size, given only some such indication

72 DIGITAL COMPUTER PROGRAMMING

of the size as we had here. The technique is quite commonly used,
with many of the applications being much more complex than this one.

Exercises

1. If the number in 507 is zero, jump to 800; if it is one, jump to 802;
if it is two, jump to 804, etc.

2. A loop has been written which takes the square roots of a series of
numbers located in 50 to 100 and places the roots back in the same locations.
The instruction which initially brings in a number is located at 950, and at
first reads:

950 10 Clear add 50

The instruction which stores the square root each time is located at 980, and
at first reads:

980 40 Store acc 50
Starting at 985, write the instructions necessary to add one to each of these
addresses.

3. Location 483 contains one of the digits zero to nine at the far right,
i.e., as an integer. If the number in 483 is zero, add one to the number in
490; if it is one, add one to the number in 491; if it is two, add one to
the number in 492, etc. This is a frequent application, in which a com­
puted result is used to control which location gets a tally added.

4. dtj, the element from the ith row and jth column of a matrix which has
m rows and n columns, is in location 0000. The numbers t, j, m, and n are
in memory in 10, 11, 12, and 13 respectively. The first element of the
matrix, which is in row order as in the text example, is stored in 1400.
Using this information, or as much of it as necessary, store ai} in the correct
location in the matrix.

5. Two positive numbers Er and E2 are stored in memory, as integers.
Call the difference — E2], n. It E1>E2, bring the number in 500
into the accumulator and perform a long right shift of n. If Er = E2, bring
the number in 501 into the accumulator and perform a long right shift of n.
Hint: Note that the numbers E± and E2 are not in the address part as
stored. 1 • ‘ '

6. A code number in 600 is an integer between zero and nine. If it is
zero, jump to 805; if it is one, jump to 822; if it is two, jump to 839; if it
is three, jump to 856, etc.

7. A number x in 510 is a fraction, i.e., decimal point to the far left. If
the number is less than 0.125, add one to the number in 511; if it is in
the range 0.125 x < 0.250, add one to the number in 512, etc., until if it
is in the range 0.875 sS x < 1.0, add one to the number in 518. (This is
explained in Chapter 17, but it can be done with techniques available at
this point.)

ADDRESS COMPUTATION 73

8. A list of one hundred numbers is stored in 100 to 199. The address
of one of the numbers is in the address part of the accumulator. Store
the number which is in this address at 850, the number which is in the
following address at 851, and the number which is in the next address at 852.
For instance, if the number in the accumulator is 162, transfer the numbers
in 162, 163, and 164 to 850, .851, and 852. Test whether the number in the
accumulator is 197 or smaller and halt if not, since if it is 198 or 199 the
complete transfer cannot be made.

6 LOOPS IN COMPUTING

6.0 Introduction
Several times previously it has been indicated that one of the most

powerful features of stored program computers is the ability to
repeat, with modification, basic parts of the program at electronic
speeds. In earlier machines this is not possible because the instruc­
tions are carried out as they are read from the input device, such
as cards or paper tape. Or in the case of the external plugboard
machines, high-speed repetition is possible but very little modification
of the program between repetitions is feasible. The loop ability is
probably a good capsule summary of the distinguishing characteristic
of the stored program machines. It is certainly typical of the work
of programming; it is fairly safe to say that almost never is a program
written for a stored program machine which does not involve a loop
somehow. This is easy to believe when it is considered that a program
which completely filled memory but had no loops would be executed in
about one second on modern machines!

We shall accordingly look into the loop idea in some detail and
with several examples. Later chapters will also refer to loops.

6.1 The Parts of the Loop
The functions of the parts of a loop can best be explained by an

example. Suppose we have a list of fifty numbers stored in locations
100 to 149, which must be added and the sum stored in 150. Assume
that the numbers all have the same decimal point location and are
small enough so that the sum will fit into one word, and that certain
constants are available as needed.

The heart of the program will be a series of steps which successively
add all the numbers into 150, i.e.:

Clear add []
Add 150
Store 150

74

LOOPS IN COMPUTING 75

The variable address of the first instruction will start as 100 and
run through all the addresses up to 149. If location 150 contains
zero to start, repetition of these three steps fifty times with all the
addresses from 100 to 149 will compute the required sum and store it
in 150. This portion of the loop does the real work and is called
the computing part of the loop.

Before we can get to this, however, some preliminaries have to be
taken care of. The correct starting address must be given to the
Clear add instruction. We cannot usually assume in such a situation
that location 150 would already be clear, so we must store a zero
there. And for a reason which will become apparent shortly, we will
store the number 50 in location 200. These three operations are not
repeated; we would obviously not want to clear 150 every time
through the loop, because the sum is being accumulated there. The
preliminary steps which set up the loop and are not repeated con­
stitute the initializing section of the loop.

In the previous chapter, in connection with doing arithmetic on
instructions, we discussed the next part of the loop. It is necessary
simply to add a one to the address of the Clear add instruction each
time through the loop.* In other applications this function can be
more complex, as we shall see. It is called modifying.

Now obviously some way must be devised to tell the machine when
to stop. The parts we have outlined so far would rim through all
machine addresses and either start over or cause the program to fail,
depending on details of how it was written. The part of the loop
which determines when it is finished is called testing. In this example
it amounts to keeping a record of how many times the loop has
been executed, and terminating the repetition as soon as it has been
done fifty times. This can be accomplished by subtracting one,
each time through the loop, from the fifty which we stored in 200.

*It is necessary in many computers to observe a precaution in modifying
addresses. It is fairly common for instructions to have signs which either specify
something about the address or are part of the operation code. When an
instruction with a negative sign is brought into the accumulator to be modified,
the sign acts just like it always does; it represents a negative number. The
fact that the purpose of the sign is something else, or that we are regarding the
instruction as an instruction, makes no difference to the accumulator. An
instruction with a minus sign attached acts like a negative number.

This must of course be considered in modifying addresses. It is necessary
either to take the sign into account and subtract instead of add, or to use the
Add absolute value instruction (if the machine has one) to bring the instruction
into the accumulator. In the latter case it is essential to use the Store address
instruction to replace the address in memory; otherwise the sign of the instruc­
tion will be changed incorrectly.

76 DIGITAL COMPUTER PROGRAMMING

The location where the fifty is stored is called a counter. As soon as
the number in 200 is down to zero, we are finished. There are simpler
ways, as we shall see; this is probably the easiest to understand.

We are now in a position to put the parts together.

LOCATION
OPERATION

CODE
OPERATION

ABBREVIATION ADDRESS

Initialize 450 10 Clear add Loc 100
451 41 Store address 456
452 10 Clear add Loc 0
453 40 Store acc 150
454 10 Clear add Loc 50
455 40 Store acc 200

Compute 456 10 Clear add [0000]
457 11 Add 150
458 40 Store acc 150

Modify 459 10 Clear add 456
460 11 Add Loc 1
461 41 Store address 456

Test 462 10 Clear add 200
463 14 Sub Loc 1
464 40 Store acc 200
465 04 Acc zero jump 467
466 • 01 Un jump 456
467 Continuation of main program

A few notes should make this program clear. The various constants
are assumed to be stored with suitable decimal point locations. Step
461 could be either Store accumulator or Store address; it is probably
a good habit to use Store address here always. Using Store address
where Store accumulator would have worked cannot hurt, whereas
forgetting and using Store accumulator where Store address should
have been used will ordinarily destroy the program in memory.
Notice that step 464 is quite necessary; it does no good to subtract
one from the number in 200 if the difference is not stored back in 200.
This may seem painfully obvious, but it is, strangely, a fairly common
source of error to beginners. Steps 465 and 466 test to see whether
the number just stored in 200 is zero. If so, the zero jump takes us
to 467 which is the continuation of the main program. If not, the
zero jump will not be executed, the loop has not been carried out
fifty times, and we go back to 456 to add another term in the
summation*

* In many computers the use of two instructions for this purpose would be
unnecessary, either because they have a specific instruction called “nonzero
jump” or because on a multiple address machine it is possible to specify the
address to which to jump on both alternatives.

Loops in computing 77

It is not at all necessary to carry out the four steps of initialize,
compute, modify, test, in that order. Initializing does have to be
first, of course, but the other three can be in any order. For reasons
peculiar to the loop being written, it may be desirable to test, compute,
modify, or modify, test, compute. This brings up a matter which
deserves very careful attention in writing loops. Suppose in the
program above we had tested before computing, so that the step
after initializing had looked like this (minor changes being necessary
in the initializing part):

LOCATION
OPERATION

CODE
OPERATION

ABBREVIATION ADDRESS

Test 456 10 Clear add 200
457 14 Sub Loc 1
458 40 Store acc 200
459 04 Acc zero jump 467

Compute 460 10 Clear add [0000]
461 11 Add 150
462 40 Store acc 150

Modify 463 10 Clear add 460
464 11 Add Loc 1
465 41 Store address 460
466 01 Un jump 456
467 Continuation

This will work, almost. The question is, How many times will the
computing part be executed? Suppose, for purposes of this question,
that we had been required to go through the loop only once. Then,
by the present plan, the counter would have started out at one, one
would have been subtracted at step 457, and the zero jump would
have been executed. Where we wanted one execution, we got none.
We see then that the program as it stands would execute the loop
only forty-nine times. This is corrected easily enough by initializing
the counter to 51 instead of 50.

Depending on the nature of the loop and of the test, it is possible
to make a truly remarkable variety of mistakes in testing. If the
loop should be carried out n times, it is quite easy to make mistakes
which will result in doing it: (1) not at all; (2) n— 1 times; (3)
n + 1 times; (4) 2n times; (5) until the power fails or the machine
breaks down. It is fairly safe to say that loops, although one of
our most powerful tools, are also a very large source of errors. What­
ever other prechecking systems may be used, it is always advisable
to go back and check the loop-testing parts of the program. As
indicated above, one simple way is to analyze what would happen if
the loop were to be executed only once.

76 DIGITAL COMPUTER PROGRAMMING

We should investigate a refinement of the above. It may be
apparent to some that the testing method used is a bit wasteful since
we already have another counter. The address of instruction 456 is
counting the number of executions simultaneously. We could use
this as a counter if we had some way of determining by the program
what the accumulator contains after step 461. We observe that
after step 461, on the first time through, the accumulator contains
10 0101 0000. The 10 is of course the operation code for Clear add;
0101 is the address just modified; 0000 is the index control, which
is not used on this instruction. After fifty times through the loop,
the accumulator at this point in the program will contain 1001500000;
if we subtract the same number, the difference will be zero and we
can stop the loop.

What we need, then, is a constant 10 0150 0000 to use as a test
number. It is possible to store such a constant simply as a number,
but in most cases it is simpler to get it into memory as an instruction.
Suppose we have at 201 the instruction Clear add 150. This, with
the operation part suitably coded, will be just the constant we need.
Observe that the “instruction” at 201 will never be executed as an
instruction; it is used purely as a test constant. For this reason it
is sometimes called an instructional constant, or pseudo instruction.

The program could now be written:

LOCATION
OPERATION

CODE
OPERATION

ABBREVIATION ADDRESS

Initialize 450 10 Clear add Loc 100
451 41 Store address 454
452 10 Clear add Loc 0
453 40 Store acc 150

Compute 454 10 Clear add [0000]
455 11 Add 150
456 40 Store acc 150

Modify 457 10 Clear add 454
458 11 Add Loc 1
459 41 Store address 454

Test 460 14 Sub 201
461 04 Acc zero jump 463
462 01 Un jump 454
463 Continuation

Observe that we have saved four steps, two because it is no longer
necessary to initialize the counter, and two in bringing in and- storing
the counter.

We have followed a procedure in writing these examples which is
to be recommended. The initializing section of each loop has been

LOOPS IN COMPUTING 79

written to preset any address or location which might be uncertain.
An alternative procedure would be to write the correct address, etc.,
originally and then reset them after each use of the loop. The whole
issue is what happens when a loop is used more than once. If it
were used only once, then this discussion would have no point. If it
is used the second time, we have the choice of assuming that all
variable parts of the loop were reset after the last use, or of presetting
them before using the loop again. The presetting procedure is to be
preferred, as being more positive. Too much can go on between uses
of a loop.

6.2 The Square Root Loop
The method commonly used to compute square roots illustrates

that a loop need not be repeated a fixed number o? times. It also
brings in some of the points discussed in previous chapters, and is
worth discussing in its own right.

The method most commonly used is the Newton-Raphson iteration.
To find the square root y of the number a, we repeatedly apply the
formula

which may also be written

The procedure is to make some guess at the square root of a.
A corrected second approximation t/i is computed by applying the
formula, a third approximation by applying it again, etc. Each time
an approximation is computed, it is compared with the previous one.
As soon as two approximations agree to as many places as we are
concerned with, the process is stopped.

The program to compute this is fairly straightforward. The
initialization consists simply of storing the first guess in the location
where the answer is to be developed. In the simple versions of this
program the first guess is often taken as the largest possible number
in the machine, to avoid any possibility of divide stop. The only
new concept is testing for the end of the loop by the size of a
computed quantity. This amounts simply to computing the formula
in the second form above, and testing to see if this (in our case)
has ten leading zeros. If so, the last two approximations are as close
together as they can get, and we simply jump out. If they are not

80 DIGITAL COMPUTER PROGRAMMING

the same, we add the previous approximation before starting over.
Assume that the number we want the square root of is stored in

93 and has a scale factor of zero, i.e., the decimal point is at the
extreme left, and that all calculations are on this basis. The % is
stored as 5000000000. The answer is to be stored in 94. A program
to get the square root is:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

100 10 Clear add Loc 9999999999
101 40 Store acc 94 Store first ap­

Clear add
proximation

102 10 93 a
103 18 Divide 94 a/yt in MQ
104 43 Store MQ 90 Temporary
105 10 Clear add 90 a/yt in acc
106 14 Sub 94 a/yi - y<
107 33 Long right 10 Into MQ
108 17 Mult round Loc | yi+i — yi in acc
109 04 Acc zero jump 112 If all zeros
110 19 Add to mem 94 y»+i
111 01 Un jump 102
112 Continuation

Many variations are possible. Frequently it is desirable to waste
a little space by writing a longer program, in order to save time
by requiring fewer iterations. This can be done by starting with a
first guess which is closer to the average square root which we will
compute. For a number between 1 and 10 the best guess turns out
to be 2.3, and it is possible even to compute a first guess by another
formula.

On particular machines it may be desirable to carry out the
steps in the calculation in a different order, or rewrite the formula
as:

a + y.-2
y<+1 ~ 2Vi

possibly to take advantage of some feature of the instructions avail­
able. There may be simpler ways to effect the test for convergence.

These choices illustrate a point which we shall see recurring: there
is almost always a choice between memory space, machine time,
and programming time. In this case, we could reduce the machine
time at the expense of a slightly longer program and more time
spent on analyzing and coding. In many cases when a code is being
written, savings and refinements become obvious which would require

LOOPS IN COMPUTING 81

rewriting the code. Quick analysis of the time and space require­
ments, however, may show that the advantages are overshadowed
by the cost of reprogramming, and the code is left as is. In other
cases the program being written may be used for hundreds of hours,
making it worthwhile to spend much time in reducing the time to
a minimum. Or there may be a serious question whether a given
program can be made to fit into storage, in which event it would
be worth reducing the number of steps to a minimum, probably also
at the expense of speed.

This matter is raised here because a similar choice is often avail­
able in the writing of loops. Obviously, most of the time of computing
with a loop is taken up with the instructions that are repeated.
Quite often it is possible to write a few extra steps in the initializing
part which remove one or two from the computing, modifying, or
testing part. The result is a slightly longer program in space, but
significantly shorter in time. And finally, we may observe that a
loop itself is a sacrifice of speed for space. The problem of the
previous section, for example, could be accomplished by writing one
Clear add, forty-nine Adds, and one Store. This would be absolutely
the shortest possible program in time; the program as written in
loop form would take (in most machines) about ten times as long.
But of course it is only a third as long in space as well as being
more flexible. This is enough of an advantage to justify the extra
time.

6.3 Linear Interpolation
A very practical example is that of linear interpolation in a

functional table stored in memory.
Suppose that y is a function of x, and that tables of y and x are

in storage as:

X1 101 yi 201
X2 102 y2 202

103 V3 203 The x’s are stored in ascending
X4 104 y± 204 algebraic order

Xioo 200 yioo 300

A known value of x is stored in 100; we are to find by linear
'interpolation the corresponding value of y and store it in 400. It is
not certain whether the known x actually lies within the range of the

82 DIGITAL COMPUTER PROGRAMMING

x’s; if it does not, the program obviously cannot interpolate and
the machine should be stopped to signal the error.

The two x’s which bracket the given x will be designated xn+1
and xn; the corresponding y’s are yn+i and yn. The desired value
of y is then

i 2/n-pl Vn f \
y - Vn-\---------------(® — ®n)

3/n+l *̂n

Note that the formula still applies if x equals either xB or xn+i-
The calculation problem may be broken down into these steps:
1. Determine if the given x lies within the range of x’s in the table.

If it does not, stop the machine; if it does, go on. We must be care­
ful not to give an error indication if the given x is the same as either
the first or last x in the table.

2. Determine which two x’s in the table bracket the given x. This
is made possible by the fact that the entries are stored in ascending
order. It is not necessary that the numbers be positive or that they
all have the same sign, as long as they are stored in ascending
algebraic order.

This part will of course be a loop.
3. From the addresses of the two x’s which bracket the given x,

compute the addresses of the corresponding y’s. Store all addresses
where needed for the next step.

4. Evaluate the interpolation formula.
This is a cumbersome way of stating the procedure. In the next

chapter we shall see how the block diagram or flow chart helps in
this phase of problem solution.

We are ready now to write the code. One or two details will need
an explanation, which follows the program.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

500 10 Clear add 100
501 14 Sub 101 X — Xl
502 04 Acc zero jump 505 Within range at low end

if x — xi is zero or
positive

503 03 Acc plus jump 505
504 00 Halt-jump 0 Stop if out of range
505 10 Clear add 200 xioo
506 14 Sub 100 xioo — x
507 04 Acc zero jump 510 With range at high end

if xioo — x is zero
or positive

(Continued on next page)

LOOPS IN COMPUTING 83

508 03 Acc plus jump 510
509 00 Halt and jump 0 Stop if out of range
510 10 Clear add Loc 102 Initialize address
511 41 Store address 512 of bracketing loop
512 10 Clear add [0000] Xf
513 14 Sub 100 Xi — X
514 03 Acc plus jump 518 Jump if table value is

larger than given x
515 10 Clear add Loc 1 Modify address
516 19 Add to mem 512 of testing instruction
517 01 Un jump 512
518 10 Clear add 512 Bring in address of x»+i
519 41 Store address 531
520 14 Sub Loc 1 Compute address of xn
521 41 Store address 532
522 41 Store address 535
523 11 Add Loc 100 Compute address of yn
524 41 Store address 529
525 41 Store address 541
526 11 Add Loc 1 Compute address of y„+i
527 41 Store address 528
528 10 Clear add [0000] Vn+l
529 14 Sub [0000] tfn+1 — Vn
530 40 Store acc 91 Temporary
531 10 Clear add [0000]
532 14 Sub [0000] Xn-f-1 Xn
533 40 Store acc 92 Temporary
534 10 Clear add 100 X
535 14 Sub [0000] x — xn
536 33 Long right 10 Into MQ
537 16 Mult 91 (iM-l — y»)(® — Xn)
538 18 Divide 92 Xn+l Xn
539 43 Store MQ 93 Temporary
540 10 Clear add 93 Into acc
541 11 Add [0000] 4-2/n = y
542 40 Store acc 400
543 Continuation

The first ten steps test whether x is within range. If x — xx is
zero, then x and Xi are equal, x is not out of range, and we may
jump down to 505 to test the other end. If x — a?i is positive, x is
clearly greater than and again the low end of the range is satis­
factory. If neither of these conditions is met, the program will
continue normally to 504, which is a Halt and jump order. This
instruction stops the machine; when the start button is pressed the
jump is executed. We are interested here primarily in the “halt”
part. If the error were such that it could be corrected, the jump
would be to a corrective section of the program, and might be simply
an unconditional jump. The assumption here is that the error would

84 DIGITAL COMPUTER PROGRAMMING

be very unlikely, and would be impossible to correct. Therefore,
we do not have any particular address to write in the Halt and jump
instruction and simply write zeros.*

The loop is fairly simple. It tests each x in the table, starting
with the second, to see if it is larger than the given x. We safely
start with the second one because if the given x should happen to
be the same as the first x, the formula would still apply. As soon
as the difference between some table entry Xi and x is positive, then
the is the next larger x than the given x, or is equal to it. Either
way, we are ready to jump out (step 514) to evaluate the formula.

At this point the instruction at 512 will contain the address of
x„+1. The address of Xn will be one less. An examination of the
addresses of the table of y’s shows that the address of ?/n+i is just
100 more than the address of xn+1. The address of yn is similarly
easy to find. These addresses are computed by steps 518-527, and
stored as the addresses of six instructions between 528 and 542.

When these latter steps are reached, the instructions contain just
the necessary addresses to compute the interpolation formula. It
is worthwhile to look into the divide stop situation. Division by
zero could occur only if two table entries of x were equal, which
should not happen. If x = xn+i, we in effect divide (rCn+i — %n)
by itself, and as a result we get divide stop.

One way out would be to add one to the last position of the
denominator, which would not affect the accuracy of the result sig­
nificantly and would ensure against divide stop. A better way is
to arrange to multiply first. This will take care of the problem,
since multiplication of (x — xn) by any number whatever will give
a product which is less than (x — xn). This blanket statement
assumes for the moment, as we may, that all scaling' factors are zero.
Thus the divide stop problem is sidestepped.

The remark about scaling factors of zero applies only to the
analysis of division possibilities. Actually the program will be correct
for any scaling factors, as long as all z’s have the same scaling
factor and all y’s have the. same—which need not be the same as
that of the x’s.

* In many computers zero may have either a plus or a minus sign, depending
on how it is arrived at. In these machines it would be possible to arrange the
calculation so as to combine the zero and plus jumps into one plus jump.

LOOPS IN COMPUTING 85

Exercises

1. Write a loop to clear to zero all of memory from 1000 to 1999 inclusive.

2. The cube root of a number a may be found by repeated application
of the formula

Write a loop to find the cube root of a number in 500, and place the root
in 501. The number has a scaling factor of zero.

S 3. Locations 100 to 150 contain 51 numbers all of which have the same
scaling factor. Write a loop to compute the 50 first differences of this list,
and place them in 151-200.

4. A list of numbers is stored in 100-119. Write a loop to multiply each
number by the number in 120, and place the individual products in 130-149.

5. Two lists of numbers are stored in 100-119 and 120-139. Write a
'' loop to multiply the number in 100 by the number in 120 and place the

product in 140, and similarly for all twenty pairs of numbers.

6. Rewrite Exercise 5 to sum all of the products and store this sum
in 140.

7. Six lists of numbers .are stored in 100-119, 120-139, 140-159, 160-179,
180-199, 200-219. Multiply the first list by the second and sum the products
as in Exercise 6, and store the sum in 220. Multiply the first list by the
third and store the sum in 221, etc., to compute five numbers in 220-224.

8. Ten lists of numbers are stored in 100-119, etc., up to 280-299.
/ Multiply the first list by the sixth, seventh, eighth, ninth, and tenth, form

the sums as before, and store them in 300-304. Multiply the second list
by the sixth through tenth, sum, and store the five numbers in 305—309.
Continue until each of the first five lists has been multiplied by the second
five to get twenty-five sums of products.

9. A number in 1350 may have leading zeros. Write a loop to “normalize”
the number, i.e., shift it left until a nonzero digit appears in the high order
(or leftmost) digit in memory. Store in 1351 the number of shifts necessary.
The number does have at least one nonzero digit. (Why is the last con­
dition important?)

10. Write a loop to evaluate the summation
i —'h/3 (ao + 4ai 4- 2a2 + 4aa 4- 2a4 4- ••• 4* 2an—2 4" 4an_1 4- an)

h is stored in 100. The a’s are stored in 200 to (200 4- n); n itself is stored
as an integer in 101 (Simpson’s rule). Hint: There is a choice between
evaluating the formula as it stands, or rewriting it as

i = h/3 [(ao 4" 4ai 4- 02) 4- (02 4* 4as 4- 04) 4- • • •]
What are the advantages of each way?

I

86 DIGITAL COMPUTER PROGRAMMING

11. A grid of values is composed of values in an array such as:
Gil G-12 ®13 Q14 015 ’ ’ * Oln
021 022 023 024 025 • • • O2n
031 032 033 034 035 * * * fl3n

The values in the first row are stored from 100 to (100 + n — 1); in the
second row, from 200 to (200 + n—1); in the third row, from 300 to
(300 + n — 1). n is stored as an integer in 92. The problem is to calculate
a new value of all but the first and last entries in the second row, by
the formula

«2.i = i(«l.€ + «2.»-l + q2,v4-1 + a3,i)

where i = 2, 3, • • •, n — 1, i.e., taking the average of the four surrounding
points. Each new a2t< is stored back in the same location as soon as it is
computed.

12. The formula of Exercise 2 may be generalized to find any integral root:

Given a in 100 with a scaling factor of zero, and n in 105 as an integer, write
a loop to compute the nth root of a.

13. Write a loop to evaluate the series
a? x3

ex=l + xd------ k — + • ••2! 3!
There are many ways to do this, as discussed in Chapter 17. For this
problem, "start from the front” by evaluating the low powers first. Stop
the loop as soon as a computed term is less than 10 ~8, which number is
stored as a constant in 100. x, with a scaling factor of zero, is in 101.
(What must be the scaling factor of e®?) Assume that all needed reciprocal
factorials are stored in 102 and following addresses, starting with one-half.
The scaling factors of these are all one.

(Further exercises along the same lines may be found at the end of
Chapter 8.)

7 FLOW CHARTING

7.0 Introduction
Most programs of interest are much too large to visualize at one

time. There are too many logical choices and branches throughout
the problem to be able to keep them in mind. Another way of saying
the same thing is that individual parts of the program must be
planned separately; without a way of representing the logic that
has been planned so far, it would be forgotten before it could be put
into code.

A flow chart is a commonly used solution to this problem. It is a
graphical or pictorial representation of a problem, which spells out
the result of each choice, the exact sequence of operations on the
data, how loops are tested, etc. It seldom itemizes each individual
instruction. Long sequences of straightforward algebra are of no
concern in a flow chart; the important thing is the logic—how the
alternatives fit together.

A completed flow chart allows one to see the over-all picture of a
program, or of the part that has been flow-charted so far. This can
be a valuable aid in discovering logical errors, which are a common
source of trouble during the checkout stage of problem preparation
(Chapter 13).

In addition to the important value of picturing the logic and the
over-all flow of a problem, the flow chart has a second advantage.
If a complex problem must be transferred to another programmer
after it is under way, a serious communication problem develops.
It is not easy to describe in ten short sentences what has been done
to date. The two individuals may have different working habits which
complicate the attempt of the second person to understand the first
person’s work. It is sometimes next to impossible to figure out the
logic of a problem given only a listing of the instructions, especially
if the coding has logical errors in it! The flow chart helps alleviate
all these. It is a good device for establishing continuity between

87

88 DIGITAL COMPUTER PROGRAMMING

two workers, and for refreshing the memory of the original pro­
grammer when he must return to a problem which has become
“cold.”

7.1 A Flow Charting Notation
Basically, a flow chart is just a collection of lines and boxes and

arrows and notes about the things to be done. It helps, however, to
have a somewhat standardized system of symbols and ways of writing
the notes. Some of these conventions are simply short cuts which
have developed out of experience; others are somewhat arbitrary,
but are to be recommended as establishing uniformity between
different writers of flow charts in the same organization.

In the following paragraphs we will define a system of flow chart­
ing and then give some examples using this system. It is not intended
to represent the “last word” in flow charting, and in some of its
details it will certainly differ from the ideas of some programmers.
However, it is complete, and it will help us to illustrate some of the
fundamentals of flow charting.

At the very least, a system of flow charting must have symbols to
describe the following:

1. The various functions to be performed.
2. Changes in the sequence of calculations as a result of logical

decisions.
3. Changes in the sequence of calculations as a result of modifying

or creating instructions.
For these purposes we define function boxes, choice boxes, and

•variable connectors as follows:

FUNCTION BOX
This rectangle, Figure 1, will contain a description of a function.

It has one entry and one exit, i.e., the function represented by this
box may require that one of several alterna-
tive paths be followed within the box, but all

------ ------ of these must lead to the same instruction
_______ when leaving the box. For example, the box
Figure 1 might contain a statement such as, “Calcu­

late /(t) = (t2 + %t)2,” m which case a fixed
sequence of instructions is always followed; or it might say, “Calcu­
late Social Security withholding,” in which case the box represents two
alternative calculations depending upon whether or not the employee
has paid all of his Social Security tax for the year. In either event,

FLOW CHARTING 89

however, the instruction processed following the calculation of the
tax is the same.

CHOICE BOX
This box, Figure 2, indicates which one of two or more paths is to

be followed through a program as a result of answering a question;
hence, it has a single entry and two or more
exits. It often describes a single machine oper- Enter Exit
ation such as, “Jump if the contents of the /
accumulator are zero.” This need not be the y
case, however. For example, if this box is used
in a flow chart describing the evaluation of an Figure 2
alternating series, the box might contain the
question, “Series converged?” This would imply the performance
of half a dozen or so machine instructions.

VARIABLE CONNECTOR
This describes a set of symbols that indicates which one of several

paths is to be taken in a program; see Figure 3. Variable connectors
differ from choice boxes in that the connectors need not include the
instructions which cause the path to vary. In particular, a choice

Figure 3

box describes a conditional jump or
branch operation and associated calcu­
lations; a variable connector describes
the modification (or creation as a func­
tion of a parameter) of the address
portion of a jump.

With these three representations we
can describe any program. However,
limiting ourselves to these three would
have some notable disadvantage^, such
as:

1. Topographical problems would be
encountered; i.e., if lines or arrows were the only provision for con­
necting remote portions of the flow chart with one another, it would
soon become a nearly unintelligible maze.

2. No representation except the comparison (choice) box is pro­
vided to distinguish red tape operations, i.e., those which operate
on instructions and do no work directly concerned with calculating
results.

3. No representation is provided to distinguish input-output in­
structions from others. The distinction is desirable because in-out

90 DIGITAL COMPUTER PROGRAMMING

boxes usually represent milestones in a program. Hence, repre­
senting them in a unique fashion helps the reader of the flow chart
to get a “bird’s-eye view” of the program.

4. There is no provision for making parenthetical remarks, elabora­
tions on statements contained in other boxes, or notes to aid the
reader in a clear understanding of the flow chart.

These disadvantages lead us to make five more definitions:

FIXED CONNECTOR
A fixed connector is used to connect remote parts of a flow chart

with one another without the use of long or crossing lines, as
illustrated in Figure 4. One or more

(?) (?)------ paths through the program will termi-
Fi e 4 nate with a circle enclosing a number or

letter reference. All of these paths will
then lead to a single circle (containing the same number or letter
reference) which is the starting point from which to continue through
the program.

Along with this definition usually goes the convention that the flow
chart will be drawn from left to right and top to bottom.

SUBSTITUTION BOX
This box, Figure 5, describes any series of calculations which

result in the initialization, modification, or creation of instructions.

Figure 5 Figure 6

IN-OUT BOX
The> reading or writing of information from or to the central com­

puter via input-output equipment is represented by an in-out box,
as shown in Figure 6.

HALT BOX
As its name implies, this circle, Figure 7, indicates a stopping point

in the program. It may or may not have a line
exiting from it, depending upon where it is used.
That is, a particular halt may be inserted to
allow for such things as changing tape reels or
setting switches, in which case the halt box
would be provided with an exit. Or it could be an

Figure 7

end-of-job halt

FLOW CHARTING

or error halt, in which case it would not have an exit. In either event,
the halt box should contain the address which will appear in the loca­
tion counter, to distinguish it from other halts.

ASSERTION BOX
The use of assertion boxes, Figure 8, in sufficient numbers and

appropriate places, can enhance the value of a flow chart more than
any other single device. If properly used, they will greatly simplify
the reading of a “cold” flow chart
(one you have not looked at for a (
month or so) or one written by I____________
another person. For example, sup- [___________________ '
pose a certain counter or instruc- Figure 8
tion is loaded in its initialized
form; this should be stated in an assertion box. Or suppose a coding
trick is used in performing some function of the program. Tricks
save time and/or storage space, and one usually derives a certain
pleasure from writing a clever program. However, a tricky program
is difficult to read after the details are forgotten. A note in an
assertion box makes the trick clear.

We now have an adequate system, but we may add some further
embellishments if we wish:

LABELING CONNECTOR
This symbolism connects, by means of the circled letters, a function

box with modification boxes which affect it; see Figure 9.

Figure 9

REFERENCE MARKS
This symbol, Figure 10, is identical in appearance to a fixed con­

nector except for the “not equal” sign. Its

2
 function is merely to provide a “landmark”

which will also be included in the annotation
of the code. This helps to correlate portions

igure 10 of the coje w^h correSponding portions of
the flow chart from which it is written.

92 DIGITAL COMPUTER PROGRAMMING

SWITCHES
This special case of the variable connector is often defined inde­

pendently, due to its frequent occurrence and because special opera­
tions exist on some machines which facilitate simulating the action
of a switch; see Figure 11. The switch, however, is in every way
analogous to the variable connector illustrated in Figure 12.

Figure 11

We now have described a complete flow charting system, but
what do we write in the boxes? In general, we can write whatever
we wish, but certain things are written sufficiently often to make it
helpful to use abbreviations such as these:

1. I — (for initialize)
2. U — (for increment, or “up”)
3. D — (for decrement, or “down”)
4. A — B (for A replaces B)*
5. A:B (for A compared to B)

The fifth abbreviation is used in choice boxes and the possible outr
comes (= or^, < or >, etc.) are written beside the appropriate lines
exiting from the boxes.

Let us now consider some examples.

Example 1
e? is to be approximated by the first five terms of the Taylor series:

e® as 1 + x + x2/2! + x3/3! + x*/4l

We first factor the polynomial into the form I
ffl3/41 + i>-H!l* + l]® + l

Assume the reciprocal factorials are stored in adjacent memory cells, and
let the partial sums of the polynomial be abbreviated P.S. In Figure 13
the “out” reference circle leads to the next phase of the problem.

Notice that the initialization and modification of the addition looks very
much as if these operations were being performed on a counter. The fact
that the notations are contained in substitution boxes reminds us that they
refer to instructions. Besides achieving notational conciseness, this method
of representation retains the mathematical meaning of n in the series for e®:

FLOW CHARTING 93

f— Figure 13

I ■ ■ I , „ , .' Example 2
A questionnaire consisting of fifty yes-no questions is to be distributed

to 2000 employees at an industrial plant. The plant has three organizational
levels which are numbered as follows:

Departments: Numbered by hundreds
Sections: Numbered by tens
Units: ■ Numbered by units

Thus group 123 means unit 3 of section 2 of department 1; group 120
means section 2 of department 1, etc. Each questionnaire will have on it
the group number of the person who fills it out. The responses to the survey
are to be tabulated by inverse order of groups (i.e., all departments, then
all sections, then all units), with the following items calculated and listed
for each question:

P — v(1) n, (2) p, (3) N,. .(4) P, (5) Z =
1 . ; Vl — n/N

where n is the number of responses by the current organizational entity
answering yes to this question; p is the per cent answering yes; and N and P
are the corresponding quantities for the entire plant.

It is required that the reports for the three organizational levels be labeled
respectively: 1957 Attitude Survey for Department No. XXX, 1957
Attitude Survey for Section No. XXX, 1957 Attitude Survey for Unit
No. XXX. • ?

Two things should be noted: First, the-Z scores cannot be calculated
until the N and P have been obtained for all levels. Hence, these latter
quantities will be obtained along with the n and p for each question- and
organization in a separate preliminary operation. Second, the report format
for all organizational levels is the same; hence, the same instructions will
be used in each case and the headings will be modified when the organiza­
tional level changes. ■ -

94 DIGITAL COMPUTER PROGRAMMING

Obtain simple tabulation
for each question by
organization. Write
results to 3 tapes

by organization.

I—Read instruction
to dept tape

Put word
4*Dept"

in heading

Figure 14

It is assumed that for each questionnaire a card will be keypunched with
the organization number sequence at the outset. Assume that there is
sufficient memory available in the computer to store the n and p for three
levels and the plant at the same time, with enough room left over for all
the necessary instructions.

The gross flow chart (sometimes called a diagram) for this example is
shown in the first line of Figure 14. The detailed flow chart is given
below it, starting at Al.

We have in this example presented two levels of flow chart. They are

FLOW CHARTING 95

similar to the thinking process in their scope; i.e., they go from the general
to the particular. If we were to start writing the code for this example at
this time, we might find it helpful to get even more particular; this might
be done by making more detailed flow charts on scratch paper to elaborate
on some of the boxes shown in Figure 14.

In general, it is desirable to define a hierarchy of flow charts. For
one thing, this forces the designer of the charts to think in a logical
manner—from general to particular. It also gives the various con­
nectors more meaning because it identifies them with the different
blocks on the gross flow chart. For example, connector number 57
tells one very little, but connector C7 says that this is in block C
and probably gives some idea of what part of the block, since now
the numbers do not go so high.

Recall that we have followed the convention that the flow chart
be read from left to right and top to bottom. An alternative method

96 DIGITAL COMPUTER PROGRAMMING

Figure 15

FLOW CHARTING 97

of designating the direction of flow is to connect each box and/or
symbol with an arrow. This has the disadvantage that the arrow
head must be drawn on each connecting line but it has the advantage
that it points up alternate paths, and loops within loops, quite clearly.
This is illustrated in Figure 15.

Exercises

1. Forty numbers in 200-239 are to be added, and the sum placed in 240.
Draw a flow chart for this exercise.

2. Draw flow charts for any of the exercises of Chapter 6.
3. Draw a flow chart for the iterative square root procedure described

in Chapter 6.
4. Draw a flow chart for the linear interpolation problem of Chapter 6.
5. The average of a group of numbers in 350-370 is to be found. If the

contents of any location is zero, the zero should not be used in computing
the average. If all twenty-one numbers are zero, a Halt and jump instruction
should be executed. Draw a flow chart.

6. A list of positive numbers in 1400-1500 is in random order; the
numbers are to be sorted so that the smallest appears in 1400 and the largest
in 1500. One possible sorting method is to compare the first number suc­
cessively with all the others, interchanging the locations of any pair in
which the number in 1400 is larger than the number in the other location.
Doing this for all pairs will put the smallest number in 1400. Repeating
the process with the number in 1401 and all other numbers except that in
1400 will put the second smallest number in 1401. Continuing the scheme
through the list will result in sorting the numbers into ascending order.
Draw a flow chart for the process.

7. Suppose that in 1200-1212 there are thirteen numbers which represent
a bridge hand. Each number is three digits long; the first digit represents
the suit, by a scheme such as one for clubs, two for diamonds, three for
hearts, and four for spades. The second and third digits represent the
denomination within a suit. Draw the flow chart for a program to deter­
mine whether the hand is all of one suit. Draw another chart for a program
to determine whether the suit which contains the most cards consists of an
unbroken sequence, e.g., 2, 3, 4, 5, and 6, or 10, jack, queen, and king. The
“hand” in memory may not be assumed to be in any order.

8 INDEX REGISTERS

8.0 Introduction
We have seen in previous chapters that many instructions in an

ordinary program are concerned not with the actual arithmetic opera­
tions or logical decisions that are the basis of the application, but
with auxiliary operations that are demanded by the nature of the
computer. These are often called red tape operations: such things
as loop testing, shifting to line up decimal points, etc. Index registers,
which are frequently also called B-lines, B-boxes, or base registers,
help to reduce red tape in a variety of ways.

Their basic function is to allow the “modification” of instructions
without ever actually changing them as they appear in memory.
This is done by adding the contents of one of the registers, which are
in the control section of the computer, to the address of an instruction
in memory before the instruction is executed. Thus the effective
address—the address in memory plus the number in the index register
—can be changed simply by changing the index register. Since this
can be done more simply and rapidly than modification of instructions
in the accumulator, the program is speeded up and red tape reduced.
The same characteristic of easy modification of the contents of index
registers makes them valuable also for operations involving counting.
And finally, an index register can be used to keep a record of the
location in memory at which a jump was located, which is the subject
of the next chapter.

In Section 8.1, the details of the operation of the index registers in
TYDAC will be explained, along with a detailed description of all
the operations which affect them. Then examples are presented which
compare an indexed loop with the nonindexed form, and show how
index registers might be set up in a generalized problem and how
they could be used in a counting operation.

W

INDEX REGISTERS 99

8.1 Operation of Index Registers
TYDAC contains two index registers, the contents of which may be

added to the address part of an instruction in memory before the
instruction is executed. If the contents of index 1 are to be added
to the address ofxan instruction, a one is written in the tenth digit of
instruction. If the contents of index 2 are to be added to the address
of an instruction, a two is written in the tenth digit of the instruction.
Only the last digit is interpreted, so anything may be written in the
seventh, eighth, and ninth positions of an instruction; normally zeros
are written.

An instruction now looks like:

SIGN

+

Always plus

OPERATION

XX

Any allowable
operation

address
xxxx

Any allowable
address

INDEX CONTROL

XXX X
t \

Normally 0,1,
zero, but or 2
immaterial

Instructions which call for an index to be added are written with
the one or two following the address:

10 Clear add 1200, 1 or 40 Store acc 0560,2

If no index is to be used on a particular instruction, we do not write
anything, rather than indicating the zero.

Remember the function of the index: the contents of the specified
index register are added after the instruction is brought into the
control section but before the instruction is executed. Thus if index 1
contains 23, and we write the instruction

10 Clear add 1200, 1

nothing at all happens to the instruction as it appears in memory,
but the effect is to Clear add 1223. This is why we speak of the
effective address as being the address as written plus the contents
of the specified index register, if any. If no index is specified or if
the specified register contains zero, the actual address and the effec­
tive address are of course the same.

There are nine instructions in TYDAC which involve index regis­
ters. Four of these move numbers between the index registers and
the accumulator or memory. Two modify the contents of the index
registers. Three are jump instructions which involve the index
registers. Complete descriptions of these appear in the summary of

100 DIGITAL COMPUTER PROGRAMMING

TYDAC instructions, Appendix 1; we will investigate several of them
in detail here.

It is always necessary, before using the registers, to get numbers
into them. The basic means of doing this is the Load index from
memory instruction:

50 Mem to ind A, I '

I is the index control and is one or two. A is the address at which
the number to be placed in the index register I is located. The address
part (digit positions 3-6) of the specified word is used. Note care­
fully that the index control is used in a different sense than on an
ordinary instruction which is being modified by the contents of an
index register. If we write:

10 Clear add 1200, 2

we mean to add whatever is in index 2 to 1200 before executing the
instruction. If we write:

50 Mem to ind 1200, 2

we mean to take the address part of location 1200 and place it in
index 2. This does not mean to add the contents of index 2 to 1200
before going to memory, then placing the address part of this effec­
tive address back in index 2. We express this by saying that these
ninp. instructions are not indexable; in short, the index control can­
not be used for two different purposes at once.

The other instruction for setting an index is Load index from
accumulator. This is used when the number to be placed in the
index has to be computed, as in one of the examples to follow.
This instruction makes no use whatever of the address. Any num­
ber may be written, but again it is customary to write zeros.

In some cases it is necessary to use the contents of an index
register directly, rather than for simply modifying addresses. The
instructions Store index in accumulator and Store index in memory
take care of this situation. Their operation is straightforward; it
should be observed that only the address part of the accumulator
or memory location is affected.

The Raise index and Lower index instructions allow us to modify
the contents of an index register in one operation, as is frequently
necessary in applications. Their operation brings in another func­
tion of the address part of an instruction (others discussed so far
being an actual memory location for obtaining or storing data, the
location of the next instruction, and the number of shifts). In these

INDEX REGISTERS 101

two operations, the actual address part itself is added to or sub­
tracted from the specified register, not the number at a location at
memory. If we write:

54 Raise ind 0002, 1

we mean to add two to index 1, not whatever is stored at location
2 in memory. This may be a little confusing at first, but in practice
it represents enough of a saving in computer hardware and execu­
tion time to justify its being done this way.

Two of the jump instructions are conditional and the other has
a special purpose the point of which will become clear in the next
chapter. Zero index jump tests whether the specified register con­
tains a zero; if not, the next instruction is taken from A. Equal
index jump checks whether the two registers contain the same
number; if not, the next instruction is taken from A. In both
instructions, if the jump is not executed, the following instruction
is taken in normal sequence.

The Set index and jump instruction results in the location of the
current instruction being placed in the specified index register before
the jump is executed. This is quite different from any other instruc­
tion in the machine. If we write:

58 Set ind jump 400, 1

the current location, whether it is 0000, 1200, dr whatever, is placed
in index 1 before jumping. The purpose of this is taken up in the
next chapter; it is presented here to gather into one place a dis­
cussion of all instructions involving index registers.

It may seem that there is a serious limitation in having index
registers which only add to the address. This limitation is only an
apparent one, however, since we can make an adding index register
give the effect of subtracting. We may recall from Chapter 3 that
computers subtract by adding complements. Thus the ten’s com­
plement of 3, to four digits, is 9997; if we add this to 15, for example,
we get 9997 + 0015 = 10012. Deleting the one at the left we get
12, which is just 15 — 3. In the arithmetic section of the computer
this is done automatically, but we can arrange through programming
to do the same thing in the index registers. Take, for example, an
application in which it is necessary to bring into the accumulator
all the numbers in 100 to 122, in that order, and still use Zero index
jump to test the loop. We can initialize the index register to
9978, which is the ten’s complement of 22, and write Clear add
122, 1 and use Raise index. The first time through we would get

102 DIGITAL COMPUTER PROGRAMMING

0122 + 9978 = 10100. The address computing circuits would auto­
matically delete the leftmost one. The last Raise index instruction,
when the register contains 9999, will take it to zero, since here also
the fifth (leftmost) digit would be ignored. Thus we have arrived
at the same effect as an index register which subtracts.

The application of these principles and instructions will now be
illustrated in three fairly typical problems.

Example 1. Linear Interpolation
As an example of how index registers can be used in loop writing

to reduce the number of instructions, we may rewrite the loop dis­
cussed in Section 6.3. For clarity it may be restated here.

TABLE 1

Xi 101 yi 201
X2 102 V2 202
X3 103 2/3 203
Xi 104 2/4 204

®100 200 2/100 300

y is a function of x; tables of x and y are in storage as shown in
Table 1. The x’s are in ascending algebraic order. A known value
of x is stored in 100; we are to find by linear interpolation the
corresponding value of y and store it in 400. It is not certain whether
the known x actually lies within the range of the x’s in Table 1;
if it does not, the machine should be stopped to signal the error.
The two x’s which bracket the given x will be designated xn+1 and
xn; the corresponding y’s by yn+i and yn. The desired value of y
is then

, yn+l Un , \
y = yn 4---------------{X — Xn)

The index registers will allow three savings. First, we need not
test whether the given x is within the table at both ends. Rather,
we can test the low end, then simply count the number of times the
loop is repeated; if it exceeds a certain number, the given x must
have been outside the range. Second, a few steps may be saved by
the simple modification which will be possible. Third, getting the
four values from the table is greatly facilitated, with a saving here
alone of ten instructions. In this example, the programs will be
presented first and then discussed in detail.

INDEX REGISTERS 103

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

500 10 Clear add 100 X
501 14 Sub 101 X — Xl
502 04 Acc zero jump 505
503 03 Acc plus jump 505
504 00 Halt-jump 0
505 50 Mem to ind Loc 0, 1 Load index 1 with

zero'
506 50 Mem to ind Loc 100, 2 Load index 2 with

100
507 10 Clear add 102,1
508 14 Sub 100 Xi — X
509 03 Acc plus jump 513 Jump to calcula­

tion
510 54 Raise ind 1,1 Increase index 1

by 1
511 57 Eq ind jump 507 Jump back unless

index 1 contains
100

512 00 Halt-jump 0 Stop if jump is not
executed

513 10 Clear add 202,1
201,1

2/n+l
514 14 Sub 2/n+l — Dn
515 40 Store acc 91 Temporary
516 10 Clear add 102,1 •En-f-l
517 14 Sub 101,1 •En+l
518 40 Store acc 92 Temporary
519 10 Clear add 100 X
520 14 Sub 101,1 X xn
521 33 Long right 10 Into MQ
522 16 Mult 91 (y»+i-yB)(a: — Xn)
523 18 Divide 92
524 43 Store MQ 93 Temporary
525 10 Clear add 93 Into acc
526 11 Add 201,1 +yn = y
527
528

40 Store acc
Continuation

400

This example provides several illustrations of uses of index regis­
ters, uses which are not otherwise brought out in the text. For a
thorough understanding of the functions of index registers, it is almost
essential that the student study this example carefully.

The first five steps are exactly as before: testing whether the given
x is smaller than the smallest x in the table and stopping if so. Steps
505 and 506 load the two index registers, the first with zero and the
second with 100. On step 507 the “Clear add 102, 1” brings in the
contents of 102, since we have just loaded index 1 with zero. If
the given x is equal to or less than the second x in the table, the

104 DIGITAL COMPUTER PROGRAMMING

jump in 509 will occur. If the jump is not executed, index 1 is raised
by 1 on step 510. Step 511 checks whether the two index registers
are equal, which would mean that the loop had been repeated one
hundred times. The jump is executed, as specified in the TYDAC
instruction list, if the two are not equal. The five-step loop, 507-511,
is repeated until either the conditional Accumulator plus jump is
satisfied or the conditional Equal index jump is not satisfied.

If the latter occurs, it means that index 1 contained 100 at the
time of the test. Since the index was modified before testing, it
must have contained 99 when instruction 507 was last executed, which
means that the given x must have been larger than the contents of
200, i.e., Xjoo- Hence the halt if the Equal index jump does not jump.
Thus we have replaced five steps in the previous program by one here:
step 506, which loads index 2.

If the accumulator plus jump of step 509 is satisfied, it means
that the given x is equal to or less than the x in the table specified
by instruction 507. Suppose this happens on the first time around,
in which case the given x is between a?i and X2, index 1 contains
zero, and the four addresses which concern us are:

xn 101 yn 201
x„+i 102 yn+i 202

Thus if we want yB+1 we need merely write “Clear add 202, 1,” and
similarly for the other locations. If the condtion is met the second
time around, the given x is between x2 and xS) index 1 contains one,
and the four addresses of interest will be:

xn 102 yn 202
Xn+i 103 yn+i 203

To get yn+i we need simply write again “Clear add 202, 1.” This
(for this problem) is the real beauty of the index registers: once set
up, they can be used to modify as many addresses as desired. If
this had been a problem in fourth-order interpolation, the ten required
table entries could all have been found by tagging the appropriate
instructions to add the contents of index 1. .In this case, every one of
the instructions which set up the addresses of the instructions which
evaluate the interpolation formula are unnecessary. Altogether,
use of index registers saves fifteen steps: ten as just mentioned, one
in the loop proper because modification of the index register takes
only one step whereas modification of an address takes two,* and

* Three in most single address machines since they do not usually have the
add to memory instruction; one in a multiple address machine.

INDEX REGISTERS 105

four in the initial testing of the range. This is a 35% reduction of
memory space, and about the same saving in time. These figures
are roughly representative of the savings to be gained by use of
index registers in loop writing.

Example 2. Polynomial Evaluation
The next problem is to evaluate the expression

y — a0 4- axx + a2x2 + • • • + anxn

given only x and the location of n and of the address of ao- That is,
we know that x is stored in 1000, that n is stored in 1001, and that
the address of the first coefficient is in 1002 (the coefficients being
stored in consecutive locations after the first). This is a bit different
from any example we have seen so far, in that we do not know, when
we write the program, exactly where the numbers are stored, or how
many terms there are in the polynomial. We only know that this
information is available in memory. This is leading into the next
chapter, but it is also a good illustration of the use of index registers.

Assume that all the numbers in the problem have scaling factors
of zero, i.e., they are all fractions. Observe that a simple way to
evaluate this expression is to factor it as follows:

y = a0 + rcfaj + x[a2 4- x[a3 • • • xan] • • •]]

This means that the evaluation can be set up as a very simple loop,
essentially starting from the back and working forward. This is
sometimes called nesting. It does mean, however, that we have to
start the calculation with the last coefficient and test to see when
ao has been added. .

The simplest way to satisfy these requirements is as follows: If
we want to add ao, we write an instruction:

Add Loc ao

If we then had n stored in index register 1, and wrote

Add Loc ao, 1

we would add a„. This may be seen a little more clearly in Table 2.
Recall once again that in this problem we do not know what the
initial address and n are, only where they are stored.

The following program will compute y and leave it in the accumu­
lator, since a location was not specified for it:

106 DIGITAL COMPUTER PROGRAMMING

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

1200 50 Mem to ind 1001, 1 n into index 1
1201 10 Clear add 1002 Location of do
1202 41 Store address 1205
1203 42 Load MQ Loc 0 Clear MQ
1204 16 Mult 1000 x times sum so far
1205 11 Add [Loc ao], 1 Add at
1206 33 Long right 10 Shift for next mul­

tiplication
1207 55 Lower ind 1,1
1208 56 Zero ind jump 1204,1
1209 Continuation; y in accumulator

This program contains an error which is so typical of the pitfalls
of loop writing that the author chooses to admit his initial mistake
in the hope that the precautions which must be taken in writing loops
will be emphasized.

The intention is as discussed in the paragraph previous to the
program. Step 1200 puts n into index 1; steps 1201 and 1202 move
the address of the first coefficient from 1002 into the instruction where
it is needed. Step 1203 simply clears the MQ so that the loop will
get started right. The first time through the loop results in merely
placing an in the MQ. Step 1207 decreases index 1 by 1; 1208 jumps
back to 1204 if index 1 is not zero. The second time through the
loop multiplies an by x and adds an-i to get a„_i + anx.

TABLE 2

COEFFICIENT IS STORED IN:

do Initial location (whatever it is)
dl “ “4-1
02 “ “ 4-2
03 “ “4-3

an " " + n

The trouble is in the last time through. As it is set up now, we
need to go through the loop a final time with index 1 containing zero,
but we never will: as soon as step 1207 reduces it to zero, the jump
at 1208 will not be executed! The solution is to observe that all we
really want from the indexing is the sum of the index register contents
and the indicated address. This can be accomplished as was done
above, or by writing one less than the address of the initial coefficient

INDEX REGISTERS 107

and setting the index register to n + 1. Then, when the register goes
to zero, we will have just added (Loc ao — 1) + !•

* The program must be modified to make these changes:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

1200 10 Clear add 1001 Bring in n
1201 11 Add Loc 1 n + 1
1202 51 Acc to ind 0,1 To index 1
1203 10 Clear add 1002 Loc ao
1204 14 Sub Loc 1 Loc ao — 1
1205 41 Store address 1208
1206 42 Load MQ Loc 0 Clear MQ
1207 16 Mult 1000
1208 11 Add [Loc ao — 1], 1
1209 33 Long right 10
1210 55 Lower ind 1,1
1211 56 Zero ind jump 1207,1
1212 Continuation

The program contains no other changes and we will now evaluate
the polynomial as required. The notation of the address of instruction
1208 should be clarified. The brackets indicate that the address
which is to appear there when the instruction is executed is computed
by the program itself. The “Loc <1q — 1” inside the brackets is a
note to ourselves as to what the program will put there. When such
an instruction is eventually entered into memory, it appears
simply as

+ 11 0000 0001

without the reminders. -
When the instructions are punched on cards or written on tape,

it is possible in most systems to write the reminders off to the side.
These would be the “remarks” that have appeared in the coding
examples. They are usually printed on a listing, even though they
are not entered into the machine as part of the instructions. This
is one of the functions of the assembly programs discussed in
Chapter 14.

Example 3. Averaging
A fairly common problem which arises in the reduction of test

data is a special sort of averaging. Frequently, say, in a jet engine
test, several or even dozens of readings of the same temperature or
pressure will be taken. It is often possible that the measuring or
recording equipment can fail to get a particular reading but will
record some sort of missing-data symbol.

108 DIGITAL COMPUTER PROGRAMMING

To be specific, suppose we have, in storage locations 350 to 370,
up to twenty-one measurements of a compressor inlet temperature.
The average is to be placed in 340. Decimal points are on the
“middle-of-the-word” basis described in Chapter 4. There is no
guarantee that there actually are twenty-one readings. Any missing
data are indicated by a zero in the location. If all data are missing,
we want to stop the computer, since the following parts of the pro­
gram cannot operate without some average value for this temperature.

The method is to bring in each reading separately and test whether
it is zero. If not zero, one is added to the index register which is
counting the number of good readings, and the reading is added to
the summation. The readings are brought in starting from the highest,
in order to use the Zero index jump instruction, which means we must
be careful of the pitfail of the previous example. Location 340, where
the average is placed, must of course be cleared. We will use both
index registers: the one to count with must be set to zero, the other
to modify addresses must be set to 21. Once all the locations have
been examined, the sum must be divided by the count in the first
index register, unless this is zero. Decimal point on division must
be accounted for. The program is:

(.Continued on next page)

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARES

1819 10 Clear add Loc 0
1820 40 Store acc 340 Clear sum storage
1821 40 Store acc 1800 and temporary

storage
1822 50 Mem to ind Loc 0,1
1823 50 Mem to ind Loc 21, 2
1824 10 Clear add 349, 2 •
1825 04 Acc zero jump 1828 Skip if missing data
1826 19 Add to mem 340 Form sum
1827 54 Raise ind 1,1 Count one good

point
1828 55 Lower ind 1,2 Decrease address­

modifying index
1829 56 Zero ind jump 1824, 2 Jump back if not

all data examined
1830 52 Ind to mem 1800,1 Store count tempo­

rarily
1831 10 Clear add 340 Bring in sum
1832 04 Zero jump 1837 Jump out to halt if

no good data
1833 33 Long right 6
1834 18 Divide 1800

INDEX REGISTERS 109

1835 43 Store MQ 340 Average
1836 01 Un jump 1838 Jump over halt
1837 00 Halt-jump 0
1838 Continuation

A few points will bear discussion. The first five instructions are
clear enough. 1800 must be cleared because the contents of index
1 will be stored there temporarily, and the Index to memory instruc­
tion affects only the address part. The first time 1824 is executed
it will bring in the contents of 370 since index 2 at this point
contains 21. If this reading is zero, the jump simply skips over
adding this value to the sum, and also skips over adding one to the
count of good points which is being built up in index 1. Step 1828
essentially modifies the address of the next data point to be examined.
Observe that in this case we do not want to execute the loop with
index 2 containing zero. Instruction 1829 jumps back if we have
not examined all points. Instruction 1830 moves the count of good
points to a temporary location from which it may be called to divide.
1833 checks whether the sum is zero, which would indicate that no
good data were found. 1834 shifts to set up the correct decimal point
in the quotient, which is obtained and stored in the next two steps.
The jump at 1837 skips around the halt so that we do not get a false
error indication.

Exercises

1. Reprogram Exercises 1, 3 through 11, and 13 of Chapter 6, using
indexing.

2. Locations 1200, 1208, 1216, etc., up to 1272 contain ten numbers with
scaling factors of zero. Write a program, using indexing, to compute the
sum of the squares of these numbers and store it in 1307. The sizes of the
numbers are such that overflow will not occur in forming the sum.

3. Forty numbers, each with a scaling factor of 2, are stored in 250-289.
Using indexing, compute the mean (average) of the numbers. Overflow
is possible, so some shifting will be necessary before accumulating the sum.
(Hint: What is the maximum number of digits in the sum of forty ten­
digit numbers?) Then calculate the deviations from the mean, i.e., each
number in the list subtracted from the mean, and store these forty numbers
in 290-329. Finally, calculate the squares of these deviations and place
them in 330-369. (Is it better to calculate the deviations and squares of
deviations in two separate loops or to combine both calculations into
one loop?)

4. A table of y as a function of x is stored in memory. The x’s, all with
the same scaling factor, are stored in 101-200. The corresponding y’s, all

110 DIGITAL COMPUTER PROGRAMMING

with the same scaling factor, are stored in 501—600. A given $ in 50 is
known to be in the range x2 ® 9 • Thus it is always possible to find
four x’s such that the given x lies between the middle two. Call these four
x’s x0, x2, and x3, and the corresponding y’s y0, ylt y2> and y3. (Note
the change in meaning of the subscripts.) Write a loop, using indexing, to
locate the four x’s which surround the given x; having done so, evaluate
the formula:

* (x - xi)(x - x2)(x - x3) (x - x0)(x - x2)(x - x3)
y ~ (xo — ®i)(xo — x2)(xo — X3) y° + (®1 — ®o)(xi — a2)(xi — ofc) 1

(x - x0)(x - xi)(x - x3) (x - xp)(x -=- xi)(x - x2) .
(x2 — Xo)(x2 — Xl)(x2 — X3) yi (X3 — Zo)(®3 — X1)(X3 — x2)

(Four-point Lagrangian interpolation.)
5. Generalize Exercise 4 to use as many points in the interpolation

formula as may be desired. Suppose that location 51 contains an integer n
which is the number of points to be used. Write a completely general
program to perform an n-point Lagrangian interpolation.

6. Sixty-one values, y0 through y3Q, are stored in 100-160. The sequence
of numbers 1, 5, 1, 6, 1, 5, 1 is stored in 90-96. Write an indexed program
to form the sum

z = 3A/10 (3/0 + 5yi + y2 + 6y3 + 3/4 + 5j/s + 2ye + 5yv + ys
+ 63/9 + 3/10 + 53/11 + 23/12 -|- • • • + 3/60)

h is stored in 97. Assume overflow will not occur. A fairly simple loop
can be written to do this using two index registers, although testing will
be a little more complex. (Numerical integration by Weddle’s rule.)

7. A table is stored in memory representing the values of a function at
the mesh points of a grid:

“11 “12 “13 “14 “15 “16 “17 “18 “19

“21 022 “23 “24 etc.

“31 etc.

“41

“51

“61 “62 “69

The table is stored in “row order” starting at 200, i.e., the first row is in
200-208, the second in 209-217, etc. Write an indexed program to compute
the new value of each interior point by taking the average of the four
points surrounding it, and place this new value back in the same location.
The loop will thus have to compute new values of twenty-eight interior
points. As a second, major loop, repeat the entire process until the new
values do not differ significantly from the old. A possible criterion of con­
vergence would be to form the sum of the absolute values of the differences
between the old and new values, and stop as soon as this sum is less than
some tolerance. (Iteration method of solving Laplace’s equation.)

9 SUBROUTINES

9.0 Introduction
Fairly often in the writing of a large program we need a certain

group of steps repeated. For instance, there may be a dozen places
throughout the program where a square root must be found, or a
cosine evaluated, or a group of numbers sorted, or a system of simul­
taneous equations solved. It is usually not feasible nor desirable
to write out the necessary instructions every time the function is
needed, and execute the steps right there. The obvious method is
to write out the instructions required once, and then arrange to jump
to this subprogram or subroutine each time.

This is done extensively in most applications of modem stored
program computers. In certain machines and certain installations
it is used very widely; typical programs may use dozens of sub­
routines. Our problem at this point is how to tell the subroutine
to what point in the program to return when it is finished, and in
many cases how to tell it what to work on, i.e., the input data. These
are respectively the subjects of linkages and calling sequences, dis­
cussed in the next two sections.

9.1 Linkage Methods
Suppose for the sake of illustration we have a main program stored

between 400 and 1000, and a subprogram from 1207 to 1228 which
calculates a square root. The number whose square root is to be
taken is placed in the MQ before jumping from the main program
over to 1207, and the answer is to be in the MQ on return. Suppose
the main program does a few operations, places a number in the MQ,
and at 413 jumps to 1207 to calculate the square root of the number.
How does the subroutine know where to return? Presumably we
could make the last instruction of the subroutine read “Uncondi­

112 DIGITAL COMPUTER PROGRAMMING

tional jump 414.” Once the square root was computed and placed
in the MQ it would jump back to the instruction in the main pro­
gram just following the original jump.

So far so good. Suppose, further, that another square root is needed
at instruction 449. How do we now instruct the subroutine that
this time it should jump back to 450? Remember that what we did
before was not to give the subroutine any information with which to
discover the “return address.” Rather we simply wrote in by hand
what we knew the return address to be, which now appears to have
been a mistake.

The obvious solution is to have the program itself give the appro­
priate information to the subroutine, i.e., place the correct address
in the last jump instruction. There are many ways of doing this;
we shall discuss three.

The first consists of simply storing in memory a table of return
jump addresses, and storing the right one each time before leaving
the main program. In outline form, the program might look like:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

413 10 Clear add Loc 416
414 41 Store address 1228
415 01 Un jump 1207

449 10 Clear add Loc 452
450 41 Store address 1228
451 01 Un jump 1207

517 10 Clear add Loc 520
518 41 Store address 1228
519 01 Un jump 1207

The table of return addressed, stored at wherever loc 416, etc., are,
would as usual have to be stored with the numbers in the address
parts. Of course, we have added two instructions in the main program
which would in practice mean that the step previously at 449 would
be later, etc.

The second method requires no table, takes one less instruction
in the main program, but adds two in the subroutine. Suppose, as
before, we are ready at the time of the instruction at 413 to compute
the square root. We write:

SUBROUTINES 113

413
414

10
01

Clear add
Un jump

413
1207

and as the first two instructions of the subroutine:

1207 11 Add Loc 2
1208 41 Store address 1228

1228 01 Un jump [J
This is a bit tricky. The instruction at 413 has the effect of

bringing itself into the accumulator, which then contains:
+ 0 10 0413 0000

Observe that, when the jump at 414 is executed, the accumulator
contains a number which shows exactly where we came from. Over
in the subroutine, the first step adds two to the address part of
the accumulator, giving 415, which is stored in the address part of
1228. When the subroutine is finished, it finds its last instruction
reading “Unconditional jump 415,” which is exactly where it should
return. This sort of method makes most sense in a single address
machine which does not have a special instruction for the purpose;
the Univacs and many others do have such an instruction.

The third method uses an index register. Recall that the Set
index and jump instruction places the contents of the location counter
in the specified index register before the jump is carried out. This
is somewhat similar to the second method, except that it takes two
fewer instructions and does not disturb the accumulator. The main
program and subprogram now look like:

413 58 Set ind jump 1207, 1

449 58 Set ind jump 1207, 1

1207

1228 01 Un jump 1,1

The first time, the number 413 is placed by the control circuits
in index 1 and control is transferred to 1207. When the subroutine

114 DIGITAL COMPUTER PROGRAMMING

gets to 1228, it jumps to the effective address. This is: one, plus
whatever is in index 1; or, 1 + 413 — 414. The second time, the
same instruction results in a return jump to 450. This method has an
additional advantage: in writing the subroutine, it is not necessary to
know the address of the last instruction of the subroutine.

This is surely about as simple a linkage as can be conceived.
Whether the use of index registers for the purpose will grow is not
clear.*

9.2 Calling Sequences
Very often in using subroutines there is considerable information

which must be conveyed to the subprograms. For instance, in a
program for solving a set of simultaneous equations, the subroutine
must know where the coefficients are stored, how many equations
there are, and where the answers are to be placed. In the previous
example we placed all the necessary information in the arithmetic
registers; here, we clearly have too much information. How can
this be solved, without the clumsiness of storing the needed informa­
tion in the subroutine before jumping from the main program?

For an illustrative problem, suppose we are coding a problem in
which the function y/x + y2 + a3 appears many times. Rather
than computing the radicand each time, we wish simply to specify
to the subroutine where to find x, y, and z. The square root may be
left in the accumulator. This represents a fairly typical extension
of the subroutine idea. What the main program has to communicate
to the subroutine, in this case, are the addresses at which x, y, and z
can be found. The technique is to store these addresses in dummy
instructions just following the linkage, with or without indexing.
The linkage plus addresses looks like this, assuming that the routine
begins at 800:

* In three-address machines the problem is solved by single instructions which
specify:

a. What number to place at the end of the subroutine.
b. The jump which needs to have the return specified.
c. Where the subroutine starts.
Various other methods are possible. • ' ,u

450 10 Clear add 450
451 01 Un jump 800
452 00 Halt-jump Loc x
453 00 Halt-jump Loc y
454 00 Halt-jump Loc x

I
■ I

SUBROUTINES 115 I

The instructions at 450 and 451 are the ordinary uhindexed linkage.
The “instruction” at 452 is not an instruction at all. It is never
executed as an instruction. The Halt and jump does not mean that
the program is to halt at this point.' The whole function of “instruc­
tion” 452 is simply to carry in its address part the address at which x
can be found. The operation part has no real function; we have to
write something and 00 is as handy as anything else. If we were
forced to regard the thing at 452 as an instruction, we would interpret
the operation code as Halt and jump, but it does not really mean
anything here. Similarly with 453 and 454.

This group of five instructions is designated a calling sequence.
It has the usual function of telling the subroutine where to return,
and it gives any other information required by the particular
program as well. In other situations the information required might
include such items as the number of places to retain in a summation,
what to do in a situation which the subroutine cannot handle, the
number of points to be used in a higher order interpolation, etc.

Of course, the subroutine must get the information in the calling
sequence out of the main program and into itself. The importan£
things to remember here are: (1) the subroutine at the start has only
the information on where the jump instruction was located, and
(2) 452, 453, and 454 are not themselves the addresses of x, y, and z
—they are the addresses of the addresses of x, y, and z. The sub­
routine might start:

{Continued on next page)

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

800 11 Add Loe 2 452 in acc
801 41 Store address 808
802 11 Add Loe 1 453 in acc
803 41 Store address 810
804 11 Add Loe 1 454 in acc

. 805 41 . Store address 813
806 11 Add Loc 1 455 in acc
807 41 Store address 840 Return address
808 10 Clear add [452] Address of x in acc
809 41 Store address 825 . -
810 10 Clear add [453]'. Address of y in acc
811 41 Store address 817 .
812 41 Store address 818
813 10 Clear add [454] Address of z in acc

‘ 814 41 Store address ’ 820 -■
815 41 Store address 821
816 41 Store address 823

826 With x + y2 + z3 in accumulator, usual square root routine
may continue

116 DIGITAL COMPUTER PROGRAMMING

817 42 Load MQ [Loc ?/] y
818 17 Mult round [Loo y] y2
819 40 Store acc 390 Store y2 temp
820 42 Load MQ [Loc z] z
821 17 Mult round [Loc z] z2
822 33 Long right 10
823 17 Mult round [Loc z]
824 11 Add 390 z3 + y2
825 11 Add [Loc x] s? + y2 + x

840 01 Un jump [455]

This is a bit involved. Instructions at 800-807 have this function:
given that in the address part of the accumulator is the address of
the first instruction of a calling sequence, and that the second, third,
and fourth instructions following contain respectively the addresses
of x, y, z; get the addresses of the following three instructions into the
program and store the return address. For instance, in our example
801 stores the address of the address of x, in 808, etc.

Down at 808, the dummy instruction at 452 is brought into the
accumulator; now we have the address of x, not x itself. 809 stores
this address at 825 so that when we actually need to add x, its address
will be in the appropriate instruction. Similarly with the addresses
of y and z, except that in this example these addresses are needed
more than once.

This matter of “the address of the address of x” is usually con­
fusing at first contact. It is quite important in the writing of
subroutines and elsewhere, and is worth the trouble needed to
master it.

Using an index register, this program is shortened somewhat but
made no simpler in concept. The calling sequence may now consist
of:

450 58 Set ind jump 800, 1
451 00 Halt-jump Loc x
452 00 Halt-jump Loc y
453 00 Halt-jump Loc z

The first eight steps of the subroutine are now unnecessary, as we
may replace the instruction at 808 with

10 Clear add 1, 1

SUBROUTINES 117

all this trouble. What we have here may be used at any point in
the main calculation. At 638, we can call for another evaluation of
y/x + y2 + z3 simply by writing the calling sequence:

To the indicated address, 1, will be added the contents of index 1,
before executing the instruction. But index 1 contains 450. The
effective instruction is then

10 Clear add 451

which brings in the address of x. The instructions at 810, 813, and
840 are replaced by

10 Clear add 2, 1
10 Clear add 3, 1
01 Un jump 4, 1

Perhaps it should be pointed out for emphasis why we go to

638 58 Set ind jump 800
639 00 Halt-jump Log x
640 00 Halt-jump Log y
641 00 Halt-jump Loe z

The addresses of x, y, and z would ordinarily be entirely different
now. In summary, we may say that we have gained the following
advantages:

1. It is not necessary to evaluate the expression x + y2 + z3, at
every point it is needed, before jumping to the square root routine.

2. It is not necessary to write long complicated routines in the
main program for telling the subroutine where to look for its data.
Both of these reduce the total size of the main program.

The disadvantages are:
1. Considerable bulk has been added to the subroutine.
2. These added (red tape) instructions must be carried out every

time, so that we have a method which is longer in time than if the
expression were simply evaluated each time as needed.

What this all boils down to is that we have traded some extra
machine time for reduced memory requirements and a simpler main
program. Such a trade is quite common.

It is worth pointing out, finally, that we might have used a sub­
routine within a routine. If the regular square root subroutine were
already available when this program was written, the routine we de­
veloped might have gone only as far as computing x + y2 + z3,
then calling the square root subroutine itself. This is also done
fairly frequently.

118 DIGITAL COMPUTER PROGRAMMING

9.3 Subroutine Libraries

Certain operations and functions are required very frequently in
scientific computation. In an operating computing center, it is neces-.
sary to have subroutines readily available to carry out these func­
tions. A set of these subroutines, in a form such that they may easily
be borrowed by any programmer and incorporated into his program, is
called a subroutine library. The word “library” implies that the
subroutines are very carefully written to take a minimum of time
and/or space, are completely checked out, are simple to put into an­
other program, and are accompanied by a complete write-up. The
write-up includes a general description of the subroutines, defines the
calling sequence, outlines accuracy, gives error stops, outlines any
mathematics involved, specifies limitations, etc.

Such a library of subroutines is an essential part of any computing
center. It includes the ordinary transcendental functions: sine, co­
sine, inverse tangent, logarithm, exponential, square root, and others,
depending on the type of work done. It may include routines for the
floating decimal method to be described in the next chapter. It in­
cludes subroutines for input and output. The exact list depends,
again, on the nature of the work done at the installation. It may
amount to fifty or more subroutines.

Exercises

1. Assume that a subroutine to take a square root is located starting at
1050; the number whose square root is to be taken is placed in the MQ,
and the square root is placed there by the subroutine. Write a program to
evaluate

y/x + a + y/x2 + n
y~ a*

x is in 200, a in 201; overflow cannot happen. Scale factors are all the same.
2. Suppose that subroutines similar to those in Exercise 1 are available,

i.e., the argument goes in the MQ and the function is returned there. The
subroutines and their starting addresses are:

Square root 1050
Sine - 1075
Cosine . . 1112
Natural logarithm 1145
Exponential 1200

Write a program to evaluate the following formula:

y = y/a + bx + cos x + In (1 + e1)

SUBROUTINES 119

Assume locations for all the constants; assume scaling factors of zero and
ignore divide stop possibilities.

3. Using the assumptions of Exercise 2, write a program to evaluate:

Va + bx -f- tan (2ir/x) + ax "1 '
In x8

4. Incorporate the program of Exercise 3 into a loop to evaluate the
formula for all values of x between 1.0 and 2.0 in steps of 0.05.

5. Suppose a list of x’s in sequential locations in memory are to be
substituted into the formula of Exercise 3. The list starts at location m
and runs to location n, these being specific but arbitrary locations. The
resulting y’s are to be placed in memory starting at p. Write a subroutine
to extract the needed information from this calling sequence:

Loc x is the address of a number whose nth root is to be placed in Loe root.
Write the required subroutine. (Write with indexing if desired.)

______ Clear add _
______. Un jump _
______ Halt-jump
______ Halt-jump
______ Halt-jump

m
n
P

Linkage
First location of subroutine

(Write with indexing if desired.)
6. Given the calling sequence:

______ Clear add Linkage
______ Un jump 800 Start of routine
______ Halt-jump n
______ Halt-jump Loc x
______ Halt-jump Loc root

7. A list of n numbers starting at location m is to be averaged. Using the
computed average, compute the expression

V =
I x2
n — 1

where x is the average of the n numbers. Write a loop to do this (indexed if
desired) and set up the program as a subroutine, with a calling sequence.

8. Compare total memory space and time requirements, using the following
linkage methods:

a. Storing a table of return addresses.
b. Linkage composed of:

b 4- k Un jump [a + 3]

MAIN PROGRAM SUBROUTINE

a Clear add a
d ~|“ 1 Add loc 3 b Store address b + k
d 4- 2 Un jump b •

120 DIGITAL COMPUTER PROGRAMMING

c. Linkage composed of:

MAIN PROGRAM SUBROUTINE

a Clear add a b Add loc 2
a + 1 Un jump b b + 1‘ Store address b + k

6 + k Un jump [a + 2]
d. Indexing:

MAIN PROGRAM

a Set ind jump b, 1 b + k
SUBROUTINE

Un jump 1, 1

1 0 FLOATING DECIMAL METHODS

10.0 Introduction
In Chapter 4 methods were presented for locating the decimal point

during a calculation and for planning number sizes and shifting to
obtain correct additions and subtractions. It was noted there that
the fundamental problem, in scientific work, is maintaining as much
significance as possible while dealing with numbers of widely varying
size. It was noted that it must always be possible to predict maxi­
mum sizes of quantities calculated, and that to maintain significance
and avoid divide stop we often wish to predict minimum sizes as well.
It was doubtless observed that the whole process is time-consuming and
painstaking work. In certain situations the problem is worse than
annoying: it is extremely difficult or even impossible to plan ade­
quately. In preparing a program to solve a general system of simul­
taneous equations, it is next to impossible to predict the sizes of all
numbers in the calculation: input, intermediate factors, and output.

Thus from at least two standpoints we desire an automatic scheme
for indicating and keeping records on decimal point location. We
need some system which will indicate neatly, to the machine, where
the decimal point of a number in storage is. We need some way,
then, of instructing the machine to take account of this representa­
tion in doing almost all operations on numbers. Such a system is
called floating decimal as distinguished from fixed decimal.

This chapter describes how numbers are represented in two alterna­
tive methods, the use of floating decimal subroutines, built-in float­
ing point operations, and gives several examples of floating point
programs.

10.1 Floating Point Representation
The basic idea of floating point numbers is often called scientific

representation. It consists of writing all numbers as some number
121

122 DIGITAL COMPUTER PROGRAMMING

between 0.1 and 1.0, times a power of ten. For instance,

123.45678 is written 0.12345678-IO3
0.0045678901 “ “ 0.45678901 • 10~2
-12340000 “ “ —0.12340000-108

The range of 1.0 to 10.0 is also sometimes used, with an appropri­
ate modification of the power of ten.

The object of floating decimal methods is to store the power of ten,
loosely called the exponent, in memory along with the multiplier,
called variously the fractional part, the significant part, or the man­
tissa, from analogy with logarithms. If the exponent, which effec­
tively “locates” the decimal point, is in memory, we can arrange to
take this into account on each operation so that the placement of the
point after arithmetic operations is automatic. There are two ways
of doing this: build it into the electronics of the computer, or write
subroutines to handle it. In TYDAC we assume the availability of
built-in floating point operations, but we discuss programming the
operations also, since many machines do not have automatic floating
point operations.

In either case it is necessary to store the two parts of each number.
The easiest way is to assign a memory location for each, usually two
consecutively numbered locations. The floating point number might
be given the first address, which would contain the fractional part;
the control section or the subroutine would then always assume that
the exponent was in the next location.

Although simple, the above is quite wasteful, since the exponent
cannot possibly require more than two or three digits and we have
allowed ten.* A somewhat more common approach, for this reason,
is to store the fractional part and the exponent in the same location.
The exponent is stored in the first or last two digits and the fractional
part in the other eight. For reasons which will appear later, storing
the exponent in the first two digits is preferred and is assumed here.

A problem has been created, however: both of the two parts
may have minus signs. How to store both in a location which was
intended to store only one? This is handled by adding fifty to the
actual exponent to get a modified exponent, or exponent-plus-fifty.
We are assuming that all numbers represented will lie between 10-B1
and 10+49 in absolute value, so that the exponent-plus-fifty lies be­
tween + 0 and +99; i.e., it is always positive. An original number
written with a plus or minus sign and a decimal point anywhere has

♦This remark would not apply to the IBM 702 or 705, since each character
is individually addressable.

FLOATING DECIMAL METHODS 123

now been reduced to a number with a well-behaved decimal point
times a modified power of ten which is always positive. We do not
indicate any decimal points in memory, nor, obviously, do we place
the ten in memory. A few examples show the transition.

123.45678 = .12345678 IO3 = .12345678-1053* = 5312345678
exponent- ex- fractional

plus- ponent- part
fifty plus­

fifty
.0045678901 = .45678901•10~2 = .45678901•1048* = 4845678901

-1357.9246= -.13579246■104= -.13579246-1054* = -5413579246
-.000024681357 = —.24681357-IO-4 = -.24681357-1048*

= -4624681357

10.2 Operations Necessary in Floating Point Arithmetic
Whether by electronic hardware or by subroutines, a very precise

procedure must be followed in working with floating point numbers
inside the machine. These are important enough, especially to some
readers, to be taken up in detail.

ADDITION-SUBTRACTION
The fundamental consideration here is that the decimal points

must “line up” before the addition or subtraction is carried out. Also
to be considered is the possibility that the result has more or less than
eight significant digits, in which case an adjustment must be made.
In each situation we observe that shifting a number to the right must
be compensated for by a larger power of ten, i.e., an increased ex­
ponent. Thus

.12345678 • 10° = .012345678 • 101 = .0012345678 • 102 • • •

as can readily be verified. Similarly, shifting to the left requires
decreasing the exponent.

This fact, coupled with another, allows us to carry out all the tests
and adjustments necessary. The other fact is that the decimal points
of two numbers are “lined up” when and only when they have the
same exponent. Thus:

5212345678 = 12.345678
5223456789 = 23.456789

The following steps outline the procedure in addition and sub­
traction.

124 DIGITAL COMPUTER PROGRAMMING

1. The two exponents must be tested to see if they are equal. If
so, the two fractional parts may be added immediately.

2. If the exponents are not equal, the fractional part associated
with the smaller exponent must be shifted to the right a number of
places equal to the difference in the exponents. This is rather long.
An example may help clarify it:

5212345678 = .12345678 • 102 = .12345678 • 102
+ 5110203043 = .10203043 • 101 - .01020304 • 102

Sum = .13365982 • 102
= 5213365982

The second number has been shifted right one place (52 minus 51) to
align the decimal points.

3. The two fractional parts must be added, as shifted if necessary.
The exponent of the larger number becomes the exponent of the sum,
unless modified below.

4. If the sum is zero, the result must be put into the standard form
for floating decimal zero. In most systems this is all zeros, both ex­
ponent-plus-fifty and fractional part. That is, zero in memory ap­
pears as 9000000000, which facilitates later additions.

5. If the sum is not all zeros but does have some leading zeros,
which is called the underflow condition, the sum must be shifted left
until a nonzero digit appears in the first position, and the exponent
of the sum reduced by the number of shifts necessary. This is also
called normalizing; it is essential since we are trying to retain as many
significant digits as possible, and because the numbers are assumed
to be in this form for division. Illustration:

+ 51.12345678 = .12345678 • 101
— 51.12334567----- .12334567 • 101

Sum - .00011111-101 =.11111000 • 10"2 = 4811111000

6. If the sum contains a digit to the left of the point, which is
called overflow, it must be shifted right one place and the exponent
increased by one:

5155555555 = .55555555 • 101
+ 5166666666 = .66666666 • 101

Sum = 1.22222221 • 101 = .12222222 • 102 = 5212222222

7. In all cases great care must be exercised in rounding at the
right time. As an illustration of what can happen:

FLOATING DECIMAL METHODS 125

5099998888 = 0.99998888 • 10°
+ 4611116789 = 0.000011116789 • 10°

Sum - 0.999999996789 • 10°

If we now test for the overflow condition we will conclude that it
has not happened. However, if we round the sum to eight digits by
adding five in the ninth position we get:

0.999999996 589
+ 5

1.000000001 789
Later operations would not anticipate this condition and would give

erroneous results. The solution, in this case, is to round before
testing for overflow, but this may not fit in too well with underflow
testing. Careful planning is necessary, obviously.

8. Before and after these steps, the exponent and fractional part
must be either separated or packed back into one word.

MULTIPLICATION
Here the procedure is simpler, since there is no necessity to line

up decimal points before, overflow is not possible, and only one
position of underflow is possible. The exponent of the product is
based on the law of exponents that 10“ • 106 = 10(“+6). The only
preliminary adjustment is based on the fact that we are dealing with
an exponent-plus-fifty. When two such exponents are added, fifty
must be subtracted from the sum to correct it. The procedure is:

1. Multiply the two fractional parts. The product will contain
either fifteen or sixteen digits, if each factor was normalized.

2. Add the two exponents and subtract fifty. If the product con­
tains sixteen digits, round to eight and store. No change is needed
in the exponent as computed.

3. If the product contains fifteen digits, try rounding before shifting
to see if this gives sixteen. If not, shift left one place, round, and
store. Decrease the exponent .by one before storing it.

Example
(5112345678)(5345678901)
Fractional part = .0563937003139878
Exponent — (51 + 53 — 50) = 54, uncorrected

Rounding in position nine (from the decimal point) does not
cause carry into the first position, so we round in the tenth, shift
left one, and decrease the exponent by one to give 5356393700.

126 DIGITAL COMPUTER PROGRAMMING

DIVISION
This is about the same as multiplication, except that divide stop

must be considered and the exponents are subtracted according to
10°/106 = 10<a-!”.

Since the fractional parts are always assumed to be in normalized
form, i.e., with no leading zeros, the divisor and dividend will always
have the same number of digits. But the fractional part of the
divisor could still be smaller than the fractional part of the dividend,
which would give divide stop. The simplest solution is always to
shift the dividend one place to the right before dividing, and take
account of this in correcting the exponent of the quotient. The
division procedure is as follows.

1. The fractional part of the dividend is brought into the accumu­
lator and shifted one place to the right before division by the frac­
tional part of the divisor. The quotient will contain either nine or
ten significant digits in the MQ.

2. The uncorrected exponent is the exponent of the dividend, minus
the exponent of the divisor, plus fifty.

3. If the quotient contains nine digits, it is rounded to eight and
no correction made in the exponent.

4. If the quotient contains ten digits, it is rounded to eight, and
one added to the uncorrected exponent.

It is possible on any operation to get a result which lies outside the
allowable range, i.e., it may be smaller in absolute value than 10-51
or larger than 10+49; e.g., division of 10-20 by 10+4°, addition of
.99999999 • 1049 to itself, or multiplication of two very large numbers.
Whereas in normal arithmetic operations this will be rare, it may
happen occasionally as a result of errors in coding or failure to load
data as required. Some provision must be made for these situations.

Usually, floating point machines or subroutines are designed to
stop if an exponent exceeds the maximum. This generally means a
mistake anyway, but even if the result might be anticipated, which
is unlikely, we must stop. There is no way of getting the result into
one word, since the exponent would require three digits and we have
allowed space for only two. In the case of results which are too
small, the problem is that even with fifty added, the exponent would
be negative and, of course, we cannot store the minus sign. In some
systems the machine is stopped as above. In others it is reasoned
that this may normally result fairly often, as in division of zero by
any number larger than one, and rather than stopping, the result
is put into the form of a floating zero and the program continues.

FLOATING DECIAAAL METHODS 127

This is a survey of the operations which must be performed in any
floating point arithmetic system. If the machine being used has
built-in floating point arithmetic, then all of these operations and
contingencies must be provided for in the arithmetic section, which
clearly adds considerable complexity. This is a case in point as
regards the choice between extra work and cost for the designer or
simplicity for the programmer. If the machine under consideration
does not have built-in floating point, then these operations must
all be coded into subroutines, which are long enough to slow the
machine operation down by a factor of perhaps 20 or more over the
speed of fixed point operation.

10.3 TYDAC Floating Point Operations
Writing the arithmetic sections of codes for a built-in floating point

machine is simplicity itself. About the only precaution required is
to be sure all the data to be operated on are in floating point form,
which is a subject of input-output methods discussed in the next
chapter. It is important to note that floating point arithmetic
applies only to data. The “logical” operations associated with address
modification and most loop-testing and counting must still be done
in fixed point. This is because instructions are not in floating point
form, and because we do not wish to view address modification from
the standpoint of overflow and underflow, etc.; also because we want
top speed on red tape instructions.

The following illustration makes use of the four floating point
operations described in the summary of TYDAC instructions in
Appendix 1.

y = e~^ sin ex

for all x between —.99 and +.99 in steps of 0.01. The number
—.99 is in 400, c is in 401, 0.01 is in 402, 1.00 is in 403. The a:’s
should be stored in 500-698; the corresponding y’s in 700-898. A
subroutine to calculate the exponential of a number in the accumu­
lator and return the result to the accumulator starts in 1600; a
similar sine routine starts in 1700. In both cases, the instruction
following the linkage is where the subroutine returns if it cannot
calculate the function because the argument is too large. Index 1
is used to call both subroutines.

A flow chart for the problem might be as illustrated in Figure 1.
It may be observed that floating point operations add no particular

complexity to programming, and completely release the programmer

128 DIGITAL COMPUTER PROGRAMMING

from the decimal point problem. Thus there are fewer steps, and
much less possibility of error.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

410 10 Clear add 400 -.99
411 40 Store acc 405 x storage
412 50 Mem to ind Loc 0, 2
413 42 Load MQ 405
414 72 Fl mult 405 xsquared
415 58 Set ind jump 1600,1 Take exponential
416 00 Halt-jump 0 Error return
417 40 Store acc 406 Temporary
418 42 Load MQ 401
419 72 Fl mult 405 ex
420 58 Set ind jump 1700,1 Sin ex
421 00 Halt-jump 0
422 73 Fl div 406 X/e* = e~^
423 43 Store MQ 700,2 Store y
424 54 Raise ind 1,2 Up index 2
425 10 Clear add 405
426 40 Store acc 499,2 Store x
4X1 70 Fl add 402 Add 0.01 to x
428 40 Store acc 405
429 14 Sub 403 Loop test
430 04 Acc zero jump 432
431 01 Un jump 413
432 Continuation

Note that in some cases (instruction at 429) it is permissible to
add or subtract two floating point numbers using ordinary fixed point
operations. This happens if all we wish to do in an addition or
subtraction is compare the size of two numbers. If the exponent is
written as the first two digits of the number in memory, then an
ordinary fixed point operation will give a result which has the correct
sign of the difference, although the magnitude of the difference will
be all wrong. There is point in doing this where built-in floating
point is not available, since the fixed operation may be some twenty
or thirty times faster than the programmed floating point. And this
is, of course, the reason why it is preferable to write the exponent as
the first two digits rather than the last two.

10.4 Floating Point Subroutines

Floating point subroutines may be used in several ways. The
differences resolve around how the subroutines are called. Possibly
the most obvious way is to specify two operand locations and a result

FLOATING DECIAAAL METHODS 129

location in a calling sequence. -This requires no conventions with
regard to the arithmetic registers, but it does require considerable
memory.space. Four or five instructions (in a single address machine)
are used up getting just one floating point addition or division. It
would seem reasonable to assume that at least one of these factors
is in the MQ when we jump to the subroutine, and that the result
is placed in the accumulator. With such an assumption it is possible
to reduce the calling sequence to just one instruction besides the
linkage.

The symbol “c (index 2)” means “the contents of index 2.”

Figure 1

In a machine with index registers or the equivalent of the set
index jump instruction, an even simpler arrangement is possible.
For the operations a + b, a — b, a’b, a/b, a is always assumed to
be in the accumulator, b is in the MQ, and the result is always
placed in the accumulator.’ It is possible then to write simple sets
of calling sequences. Suppose, for instance, we have to evaluate the
formula

V
mx — n
q 4- x3

130 DIGITAL COMPUTER PROGRAMMING

Under these assumptions, the program could read:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

200 10 Clear add Loc x
201 42 Load MQ Loc x
202 58 Set ind jump Fl mult routine, 1
203 42 Load MQ Loc x
204 58 Set ind jump Fl mult routine, 1
205 42 Load MQ Loc q
206 58 Set ind jump Fl add routine, 1
207 40 Store acc • Temp
208 10 Clear add Loc x
209 42 Load MQ Loc m
210 58 Set ind jump Fl mult routine, 1
211 42 Load MQ Loc n
212 58 Set ind jump Fl subtract subroutine, 1
213 42 Load MQ Temp
214 58 Set ind jump Fl div routine, 1
215 40 Store acc Loc y
216 Continuation

This is a bit long, necessitated by the frequent jumps. It is never­
theless shorter than it would be if a five-word calling sequence had
to be written each time. The way which is most economical of
main program steps, although not of total time, is an interpretive
system as discussed in Chapter 15.

10.5 Summary

A floating decimal system is expensive, whether built in or pro­
grammed as subroutines. If it is built in, it adds perhaps 10% to
the cost of design and construction and adds slightly to the time
required to execute a program (since built-in floating operations take
slightly longer in most machines than fixed operations). If sub­
routines are used, they slow the machine down by a factor of 10 to
40 over fixed point speeds. In spite of these costs, floating point
methods are used extensively. As we noted before, some problems
cannot be done at all otherwise, and most others are greatly simplified.

There is a precaution which should be noted, however. We tend,
in presenting the answers to problems run in floating point, to print
all eight or ten or thirteen “significant” digits. Sometimes the
unwary computer user blithely assumes that all the digits so pre­
sented really are significant, without any consideration of either the
reliability of the numbers that went into the program or the accuracy
of the numerical procedure used in the solution. Suppose, for ex­

FLOATING DECIMAL METHODS 131

ample, that this calculation occurs:

(12345.678 — 12345.567)(9.8765432) = 1.0962963

Clearly, this product is not good to eight digits as shown, since the
subtraction lost five digits. This is no fault of floating decimal, but
with eight digits always printed out, it is easy to overlook the loss of
significance. There is less temptation to do this with fixed point
answers, possibly because it is usually so simple to throw out non­
significant digits in printing. This temptation has led some in the
field to advocate using floating point arithmetic only on problems
which absolutely cannot be done otherwise, such as some matrix
work. This is a healthy reminder, but probably does not represent
a trend. Very likely, most future scientific computers will have
built-in floating point, at least as an optional feature. .

Exercises

1. Rewrite any of the exercises of Chapters 6 and 8, using built-in floating
point and again using subroutines.

2. Write floating point subroutines for all the arithmetic operations. Use
the assumptions of Section 10.4.

11 INPUT-OUTPUT METHODS

11.0 Introduction
The function of getting numbers and instructions in and out of

memory has been deferred to this point because it involves techniques
which are just now available to the reader. It is perhaps difficult to
realize that the part of the machine with which we first have contact
on running a problem should require quite this much background to
lead to a thorough discussion. This is necessary, however, because
input-output programming makes extensive use of address modifica-.
tion, loops, and subroutines—which we have just now covered. Also,
some of the discussions relative to planning the storage location and
output format would not have made much sense earlier in the book.

In this chapter we will discuss four topics: memory layout, output
format, actual machine instructions, and typical subroutines.

11.1 Memory Layout
It is important in most problems of any size to plan ahead on

several matters. Block diagramming or flow charting as discussed
in Chapter 7 represents one form of such planning. Another which
can be critical in a problem which is almost too big for memory (and
is often very helpful on any problem) is planning memory locations.
By this is meant: (1) to assign blocks of memory to different func­
tions, such as main program, all subroutines, input, intermediate
storage, and output; (2) to keep a very careful record of all data
locations. It is necessary to have this done before arranging the
input so that we know where to load the data.

Part of this job must be done before a program is written, part
during the writing. At this point, not having yet reached Chapter 14
and relative programming methods, we are faced at the very outset
of a problem with several questions. Where do we write the first
instructions? In the examples in the text so far, we have picked
locations at random, mainly to emphasize the point that the data and

132

133INPUT-OUTPUT METHODS

instructions can be anywhere in memory. But if we anticipate that
a program will have about 1200 instructions and 800 data words,
and we have a 2000-word memory, it pays not to waste any space by
allowing gaps between sections of the program. There is no absolutely
certain way to avoid this without relative programming, because
there are continual references in any large program to other parts of

000 100 200 300 400 500 600 700 800 900 1000
00
10
20
30
40
50
60
70
80
90

Input

Main program
Output

Subroutines: load,
print, sin, cos, log,
exp., interpolation

Intermediate
storage

Figure 1. Memory allocation chart.

the same program—parts which are often not yet written. The
addresses which define these cross references, however, can be left
blank and filled in later.

A possible procedure for deciding what goes where is:
1. Scan the program to decide which of the “library’’-type sub­

routines will be needed. Add up all the memory space required and
allocate this much, say at the low-numbered end of memory.

2. Start writing the program at whatever location step 1 indicates
will be available.

3. Assign a block of storage to input, of a size which is estimated
to be right. If the space allowed turns out to be excessive, the extra
space can be assigned elsewhere in storage with about the only loss
being the esthetic one of having split up a logical unit of memory into
two parts.

4. Similarly, assign blocks of memory to intermediate storage and
output.

5. If it turns out in writing the main program that a data storage
block is in the way, simply write a jump, at the appropriate point,
to a region which is still free.

This is, just as it sounds, a patience-trying procedure. It is
absolutely necessary only on the type of problem which can just
barely be done on the particular computer of interest. On most
problems, where there is not much question of feasibility, it is still

134 DIGITAL COMPUTER PROGRAMMING

important, but is much simpler because wasting space between regions
does not hurt anything. And finally, to say it for the third time, this
is precisely one of the major reasons for relative programming.

The chart of memory locations might look something like Figure 1.
Assuming for a moment that we use only 1000 words of storage, this
chart says that locations 000 to about 450 are taken up with library
programs, 450 to 710 with the main program, etc. (The relative sizes
are not intended to be representative.)

The second feature of planning memory layout mentioned above
is to keep a careful record of where all the quantities used in the
program are located. Table 1 is a typical chart.

TABLE 1

INPUT

Location
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
Etc.

Quantity
0
1
2
IF

ir/2
12

3600
0.048
0.5

60
53.33

Mp
T2
P2

%N
®i
X2
X3
X4
X6
X6
yi
yz
2/3

Vi
2/5

2/6

This is merely an offhand illustration of what might be the input for
some particular problem; every problem would be different. Decimal

INPUT-OUTPUT METHODS 135

points have been ignored so.far; this is a function of the intended
use for the input and the particular loading program used. This
question is taken up in Section 11.4.

Possibly a word of caution is needed about the use of tables of
input like Table 1. These are often made out during the course of
programming, .the programmer writing down a constant and its loca­
tion as each number is needed. (The loading program and the cards
or tape necessary to get the numbers actually into storage are figured
out later.) Sometimes there is a strong temptation to use a number
in two different ways. Suppose, for instance, that in a loop iterative
procedure, a new guess is calculated each time through the loop by
adding one-half of the difference between two guesses to the latest
guess. The 0.5 at 716 was originally intended for this purpose. Sup­
pose that later in the program the constant 0.5 is needed for other
purposes, and since a convenient 0.5 is already at 716, it is used.
Now the plot thickens. At some time during checkout of the pro­
gram it is discovered that the iteration procedure does not work when
the new guess is calculated as described, so we try taking one-
twentieth of the difference instead of one-half. The simplest way
to make the change is obviously to change the 0.5 at 716, which
perhaps can be done by changing just one punched card. Of course,
all the other places that 0.5 was used are now in error.

This example leads us to suggest labeling each constant, on the
planning sheet, to indicate its purpose if that is not obvious. Table 1
then might appear as in Table 2.

The notes are references to the assumed program. In practice,
the different types of input would be separated. For instance, there
might be a region for the universal constants 0, 1, 2, 3, in floating
point, another for the same in fixed point as address modifiers, another
for constants which are peculiar to the particular program, such as
the 3600, 0.048, 53.33, etc., in Table 2, and another for such numbers
as the ones called flight conditions, which specify the particular case
being calculated and normally change from case to case.

11.2 Output Format Planning

When cards or tape are being read into memory, the only require­
ment is that the rules governing the input medium and the subroutine
in question.be met. It makes no great difference what the cards
look like, as long as the information gets into memory .in convenient
form. With output, however, we are concerned with the ultimate
reader, who may be an engineer or physicist or auditor. The output

question.be

136 DIGITAL COMPUTER PROGRAMMING

scheme must not only satisfy the peculiarities of the machine and
the subroutine being used but must also produce an easily readable
report. •.

TABLE 2

INPUT

Location
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Quantity
0
1
2 ►Ttt/2

12
3600

0.048
0.5

60
53.33

Mp 1
T2 I

P2
%N <

Xi

Constants used in all parts of program

Seconds per hour
Equation 1.8
Iteration constant, equation 1.10
Seconds per minute
Gas constant

Flight conditions

Zt2
X3

X5
Z6
yi
V2
3/3

y±
3/5
3/6
0.5
0.5

Curve fit, gamma vs. temperature

Universal constant, all places
Program constant, equation 3.17

The usual device is called a layout chart. ‘ It has a space for each
digit or character position which can be printed, punched, or typed.
On this chart we can lay out the alphabetical headings, if any, the
number of digits in each number, the line identification, if there is
one, and the location of all decimal points, plus and minus and
dollar signs, etc. This may be done for each line if the lines are
different, or once for the entire output if a standard format is used,
as, for instance, in a floating point system which may be the standard
for all results. Samples of this are shown in reduced form in Figure 2.

The charts are used in planning either printer board wiring or the

1
2 X X X X . X X X X X X X X X . X . X X X X>kx X X X X X X X X X X
3
4
5
6 P R E D C T E D P E R F 0 R IVIAN C E X -4 3 T u R B 0 ~~ EN C A B u L A T 0 R D E S 1 c>N ccIN D 1 T 1 0 N S
7
8 A LT T U D E F U E L S P E E D T E IV p p RE S s F F / F N H A / S H E R G S
9
10 X X r X X X J ■X X X X X X X X X X XX X X X X X X x X X X X X X X
n
12
13
14
15
16
17
18
19 D A T E X X X)(> X A^ N 0 XX X X >t 1 c H E:c K N 0 X X X X X X
20
21 R E G E A R N bX>(X X W--T X X X X X G R 0 s s X X> . X X
22
23 S 1 E A R N X < X X X F c / X X X X X D E D u c X X > X X
24
25 0 E A R N K X X X u r41 ()N X X X X X
26
27 G R 0 S S X X X X X c 5 F X X X X X N E T p A Y X X X X X
28
29
30 N A M E a . C D E F G H 1 J K LIVI N
31
32 0 E P T X X -X X X
33 _ZI

Figure 2. Sample of output planning chart. (Form courtesy Remington Rand Univac Division, Sperry Rand Corporation.)

IN
PU

T-O
U

TPU
T

M
ETHO

DS

138 DIGITAL COMPUTER PROGRAMMING

programming of the output. This is given considerable attention in
the manuals on individual machines. In TYDAC and the text we
shall be content to punch or type each number as it appears in
memory, with little output editing. This, however, is not because
the subject is worthy only of a brushing reference, but because the
subject is almost inextricably bound up in details of particular com­
puters, and because it is treated in the machine manuals.

11.3 TYDAC Console and Typewriter
In discussing the actual operation of TYDAC input and output

functions, the primary question obviously is, How does the first in­
struction get into memory? In everything that has been discussed
so far, it has been assumed that the program somehow got into
memory, and some readers will have noticed that the instructions
which read and punch and type must themselves be in memory. The
answer to the problem involves the console, which is itself an input­
output device of a special sort which will be discussed at this
point.

The functions of the TYDAC console, which are roughly typical,
may be listed in detail. We shall not attempt to draw a picture of
a typical console and call it TYDAC; this subject also varies greatly
from computer to computer and is treated in the manuals.

The contents of several internal registers are displayed in neon
glow tubes on the console. (These would be in a binary coded
decimal—we have never specified exactly what system TYDAC
uses. See Chapter 3.)

1. Accumulator—sign (off means plus) and eleven digits.
2. Multiplier-Quotient register—sign and ten digits.
3. Memory register—sign and ten digits.
4. Location counter—no sign, four digits.
5. Current instruction register—no sign, ten digits.
6. Index registers (two sets of lights)—no sign, four digits each.

All of these contain current contents. During high-speed operation
the lights will flicker much too rapidly to be followed, except in some
cases to- detect patterns as loops are executed. When the program
stops, either because a halt order is encountered or because of a
divide stop or tape stop, then we can inspect the registers at leisure.
They indicate what was in them after the completion of the indicated
instruction.

7. The tape stop light is turned on when there is a discrepancy
between the information on a tape being read and the redundancy

INPUT-OUTPUT METHODS 139

check on the tape. See Chapter 12. It is turned off by the reset
button.

8. The program stop light is turned on when the control circuits
execute a Halt and jump instruction.

9. The divide stop light is turned on when a division is attempted
with a divisor which is not larger than the dividend. It is turned
off by the reset button.

10. The automatic light is on when the machine is in its automatic
mode of operation and is actually executing the instructions in the
program. It goes off if the automatic-manual switch is placed on
manual, the machine stops because of the program, the stop key is
pressed, or the reset button has been pushed and nothing yet loaded.

11. When the automatic-manual switch is on automatic, pressing
the start button will cause the machine to execute the next instruction.
Placing the automatic-manual switch on manual stops the program,
if it has been running, after the current instruction, unless an input
or output operation is in process in which case the machine stops after
completion of the input-output function.

12. The single step key allows the programmer to observe the
operation of his program one step at a time. If the automatic-manual
switch is on manual, pressing the single step key causes execution of
one instruction. If the switch is on automatic, the single step key
has no effect.

13. Ten switches are available which may in effect be interrogated
by the program through the Switch-jump instruction. The switches
are on if down. Any number of switches may be down at once.

14. The break point switch is rotary, with ten positions numbered
0 through 9. It can, of course, be set to only one position at a time.
Its function is described in the summary of TYDAC instructions.

15. The eleven input switches—one sign switch and ten rotary
digit switches—may be used to enter a number or instruction into the
MQ, or to carry out an instruction. Any number or instruction
may be set into the switches. If the enter MQ key is then pressed,
the number on the switches replaces the contents of the MQ. If the
execute console instruction key is pressed, the instruction in the
switches will be executed just as though it were in memory. A
number can be entered into memory by: (1) entering it into the MQ,
then (2) executing from the switches the instruction Store MQ--------- ,
with the appropriate address.

16. Pressing the load card button causes a card to be read, if one
is in the card reader, into locations 0-7. The first ten digits are
read into 0, the next ten into 1, etc. After the card is in memory, a

140 DIGITAL COMPUTER PROGRAMMING

jump to 0 is automatically executed. The program on the first card
ordinarily is a program to load the following cards. See page 145.

17. Pressing the load typewriter button causes eight words to be
entered from the typewriter into locations 0-7, and a jump to 0 to be
executed. If the tape button on the typewriter is depressed, these
will be read from the attached paper tape; if not, the computer will
wait for the operator to type them in manually. If fewer than eight
words are to be typed in, the carriage return key may be pressed
after typing in a word. Remember that this operation applies only
after pressing the load typewriter button; it would probably be fairly
unusual to manually type in the first words of a program this way.
As described later in this chapter, it is possible to call for words from
the typewriter by an instruction in the stored program.

18. Pressing the load tape button causes eight words to be loaded
from magnetic tape 1 into locations 0-7, and a jump to 0 to be
executed. This can be used, as with load card and load typewriter,
to enter a self-loading program into memory which in turn loads
further records.

19. The reset button clears all the registers to zero and turns off
the divide stop, tape stop, and program stop lights, if they have
been on.

20. The reset and clear button performs the above function, as well
as setting all memory locations to +0.

21. Pressing the display button causes the word located at the
address set into the address part of the input switches to be displayed
in the memory register light.

22. Pressing the stop key causes the program to stop after com­
pletion of the current instruction.

The typewriters used on different computers vary considerably.
In general, it is possible to type one word at a time into a memory
location which may be specified at the typewriter keyboard. Type­
writers are ordinarily used with computers which are able to store
alphabetic information in memory, either one character in each digit
position or using two digit positions to represent each character.
Computers intended primarily for scientific work are usually not
directly alphabetic and do not have typewriters, but they may be
made to store alphabetic information for printing headings or as
codes to control the program. This is done by some storage
technique which depends strongly on the particular machine and
the form of representation of alphabetic characters. The largest
computers have specially built typewriters. Several machines use
the Flexowriter, built by the Commercial Controls Corporation.

INPUT-OUTPUT METHODS 141

11.4 TYDAC Input and Output Instructions
Input and output in TYDAC move basically in blocks of eight

words.* The basic scheme is that an input or output unit is specified
by a Select instruction. The Select instruction does not transfer
any information; it simply establishes the circuits and causes the
mechanical parts to begin to move. The eight-word block is actually
moved by a Read or Write instruction which ordinarily immediately
follows the Select. A new Select instruction must be given for each
block, but if a Select follows within a specified time interval after
the preceding Select, the time that is necessary to start the mechanical
parts moving will be saved.

The address of a Select instruction performs a special function,
unlike anything we have seen so far. The address specifies which
input or output device is to be used. The table of addresses is:

ADDRESS . DEVICE

1 Reader
2 Punch
3 Typewriter

11 Tape unit 1
12 Tape unit 2
13 Tape unit 3
14 Tape unit 4

The address of a Read or Write instruction specifies the first of the
eight words, the others being in sequence after that. Thus all we need
to do to read a card into 1100-1107, for instance, is to write:

60 Select 1
61 Read 1100

We should discuss the format of the information on the card, which
is assumed to be a standard eighty-column IBM card, as shown
in Figure 3. The eight numbers on the card would be punched in
columns 1-10, 11-20, 21-30, etc., up to 71-80. The punching of plus
and minus signs varies in practice; a typical scheme might be to
punch an “X” (first row above zero) to signify minus, and a “Y”
(second row above zero, on top row of card) to signify plus. One
or the other would be punched over the first or last digit of the

* In Univac I and II, a tape block is sixty words. In the ELECOM 120, fifty.
In the IBM 701 and 704, the basic unit is one binary number, and all other
transfers have to be built up, which is complicated library programming. The
IBM 702 and 705 are variable word and variable record length machines.

142 DIGITAL COMPUTER PROGRAMMING

number. For purposes of discussion we shall assume that in TYDAC
the sign is punched over the last or low-order digit of each number.
In circuits in the card reader, this is detected and stored in the sign
position of the words in memory.

iiilllill I I
■iiiiiiii i I

|0 0 01111 101 a 0 110 0 0 9 0 0 0 B 0 0 I 0 01 g 0 0 t 0 01 0 0 g 0 0 0 0IIIIIIIIO 0 01010 1 0 0 0 010 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0

99999919919999999999999999919399999999919999993999199999999999999999999999999999ill* ii.ii S» woMsisn v ainaa>iiriissi>ii>miiu<i<iu.a*a«**i>uu!isx>iuuui>uaiiuunu«*iin'luuHn>i*fl

Figure 3. Sample of eighty-column card. (Courtesy International Business
Machines Corporation.)

Note that there is a testing scheme built into the Read instruction.
The description states that normally the first instruction following a
Read instruction is skipped. It will not be skipped if:

1. There are no more cards in the card reader, or
2. Blank tape is found in the typewriter tape reader, or
3. A tape mark is found on a magnetic tape (see Chapter 12). •
This means that we can set up an otherwise untested loop to read

cards indefinitely; when the last card has been read, giving another
Select and Read will cause the following instruction not to be skipped.
We can, of course, arrange to have an Unconditional jump just
following the Read.

For an illustration of the type of program which may be written,
take the following situation. Suppose we have a deck of cards to
be loaded into memory. The eight words on the first card will be
loaded into 0-7 by pushing the load card button. The second card
is to be loaded into 8-15, the third into 16-23, etc. After the last
card is read, a jump to 8 should be executed.

At this point we are looking at the problem “from the outside,”
so to speak, where up until now we have always assumed that a
program had somehow gotten into memory by the time it was to
be executed. In our situation here, we are walking up to a machine
which is completely blank. We must somehow get the first card in,

INPUT-OUTPUT METHODS 143

which must have on it a program which will load the remaining
cards. It should be pointed out that the proposed problem is not
typical of how cards are loaded. This will be taken up in Section
11.5 on typical input-output subroutines.

The program on the first card could be:

constant

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

0 60 Select 1 Prepare to read a
card

1 61 Read 8
2 01 Un jump 8
3 10 Clear add 6 8 in address part
4 19 Add to mem 1 Modify address
5 01 Un jump 0
6 00 Halt-jump 8 Instructional

The word at 2 is the one following read, and will be skipped as
long as there are cards in the reader when the instruction is called
for. ■ When all the cards have been read, the jump to 8 will be
executed as required. The instruction at 3 brings an 8 into the address
part of the accumulator; the “instruction” at 6 is there simply to
provide the constant 8. Note that the program would still fit into
eight words if TYDAC did not have the Add to memory instruction.
With indexing, the program would be:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

0 50 Mem to ind o,l Loads index 1
with 0

1 . 60 Select 1
2 61 Read 8,1
3 01 Un jump 8
4 54 Raise ind 8,1
5 01 Un jump 1
6
7

In this case, indexing saves only the instructional constant. Even
this depends on using the instruction at 0 as the source of a 0 to
load into the index register.

This possibility gives an idea of the general techniques. We shall
look into some subroutines which might actually be used in Section
11.5.

Punching information from memory is simplicity itself. A Select

144 DIGITAL COMPUTER PROGRAMMING

Punch, followed by a Write instruction, punches eight words onto a
card. Loops may be written to punch blocks of memory.

Programming input and output for the typewriter is not much
harder. A block of eight words may be brought in by giving a
Select Typewriter, followed by a Read. If the key on the typewriter
is set to tape, the eight words will be read from the punched paper
tape attached to the typewriter. If not, eight words or fewer may
be typed in manually; if fewer, the carriage return button may be
pushed after the last word desired. Typewriter input may be used
to enter standard programs at high speed. Another common use is
to program the machine to call for one word of input at critical
points through the calculation or to call for a code word to be typed
in if the program fails. This is more commonly done, however, on
the smaller computers, since machine time is so expensive on the
large-scale machines. It is more common to have the computer type
out a few words of comment during or after the solution of a problem.
Under program control, the typewriters used operate in the neighbor­
hood of 600 characters per minute.

The details of tape programming are taken up in Chapter 12.

11.5 Typical Input-Output Subroutines
In this section we shall indicate some typical input-output routines,

and analyze a few in detail. This will give an idea of what is com­
monly done in this area, besides providing some review of coding.

A typical routine loads an indefinite number of cards at addresses
specified on each card, and recognizes a signal to stop reading and
jump into some part of the stored program. Suppose we impose the
following requirements.

1. The loading program must first get itself into memory, i.e., be
a self-loading program based on the load card key described above.

2. If a particular card contains data to be loaded into memory,
the first word on the card will be negative. The address part of the
first word will be the address at which the second word should be
loaded, with the other six going in sequence after that. The first
word itself is not stored anywhere, except temporarily. The index
control part of the first word will be the number of words which are
on this card, which may be from one to seven. This is called the
word count.

3. If a particular card is a “transition card,” i.e., it specifies to
the load program that we now wish to jump into memory and stop
loading, there will only be one word on the card and it will be positive.

INPUT-OUTPUT METHODS 145

The address to which to jump will be punched into the address part
of the first word.

In short, the load program must be able to sense the sign of the
first number to determine whether a given card holds data or is
a transition card. The program to do this without indexing might be:

same format as the cards they load. The first card is loaded into 0-7
when the load card button is pushed. The first nine instructions
are necessary to bring in the other three cards of the load program
and store them consecutively. They are needed only once, and since
we will need eight words of consecutive temporary storage anyway, we

OPERATION OPERATION
location code ABBREVIATION ADDRESS REMARKS

0 60 Select 1 Bring in
1 61 Read 8 second
2 00 Halt-jump 0 card
3 60 Select 1 Bring in
4 61 Read 16 third
5 00 Halt-jump 0 card
6 60 Select 1 Bring in
7 61 Read 24 fourth card
8 00 Halt-jump 0
9 60 Select 1 Bring in data

10 61 Read 0 or transition card
11 00 Halt-jump 9
12 10 Clear add 0 Bring in first address
13 41 Store address 14 from card. Jump to
14 03 Acc plus jump [] transition address if

positive.
15 . 41 Store address 21 If not, store initial

address.
16 30 Acc left 4 Store word count
17 41 Store address 8
18 10 Clear add 31 Initialize loop
19 41 Store address 20
20 10 Clear add [1] Move word from temp.
21 40 Store acc [0000] to perm, storage
22 10 Clear add 31 Modify address
23 19 Add to mem 20
24 10 Clear add 31
25 19 Add to mem 21
26 10 Clear add 8 Modify word count
27 14 Sub 31 counter
28 40 Store acc 8
29 04 Acc zero jump 9 Read new card if zero
30 01 Un jump 20 New word if not zero
31 00 Halt-jump 1 Instructional constant

The load program consists of four cards, which are not in the

146 DIGITAL COMPUTER PROGRAMMING

allow for it in the first eight words by starting the main body of
the program at 9. The reason for the temporary storage is that
until the card full of information is somewhere in memory, we do not
know where to put it since the loading address is right on the card
with the data'. The instructions at 9 and 10 bring in a card into
0-7. 12-14 check whether this is a transition card and, if so, jump
out to, the specified address. If not, step 15 places what must there­
fore be the initial address in instruction 21. Instructions 16 and 17
store the word count in 8, which space is also no longer needed.
18 and 19 initialize the address of the instruction with which numbers
are brought in from temporary storage. 20 and 21 store one word
from temporary storage. 22-25 modify addresses. 26-28 modify
the word counter. If the counter is down to zero, the zero jump
goes back to 9 to bring in the next card. If not, the unconditional
jump goes back to 20 to store another word out of temporary storage.
31 is the constant 1. Data or instructions may be loaded into any
location above 31.

The program is considerably shorter with indexing.

In the light of the previous discussion and the discussion of indexing,

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

0 60 Select 1 Bring in
1 61 Read 8 second
2 00 Halt-jump 0 card
3 60 Select 1 Bring in
4 61 Read 16 third
5 00 Halt-jump 0 card
6 01 Un jump 8
7 00 Halt-jump 0
8 60 Select 1 Bring in data
9 61 Read 0 or transition card

10 00 Halt-jump 8 Back to eight if reader
11 10 Clear add 0 is out of cards
12 41 Store address 13 Check whether transi­
13 03 Acc plus jump [0000] tion card
14 41 Store address 19 Store initial address
15 30 Acc left 4 Store word count
16 51 Acc to ind 0,1 in index 1
17 50 Mem to ind 16,2 Store 0 in index 2
18 10 Clear add 1, 2 Move one word from
19 40 Store acc [0000],2 temp, to perm.

storage
20 54 Raise ind 1,2 Modify
21 57 Eq ind jump 18 Test
22 01 Un jump 8

INPUT-OUTPUT METHODS 147

almost everything here should 'be clear. The address of the instruction
at 17 is the location of another instruction because this is a simple
way to get a zero into the index register without otherwise storing
one. Any location above 22 may be used for instructions or data,
a saving by indexing of nine instructions.

The advantages of such a load program are several. If the indi­
vidual data or instruction cards get out of order, nothing is lost;
the load program can still handle each card separately. The load
program need not know in advance how many cards are to be
loaded, by virtue of the transition card scheme. Individual cards
may be replaced or inserted at will. Corrections may be made in a
deck by punching the correct word on a card and loading it after
the card containing the error. The correction will simply load on
top of the error word and wipe it out.

Most computers have internal electronic speeds much greater than
their input speed. A program like the above could easily be executed
in the time available between reading cards; in other words, the above
program could be executed without slowing down most machines.

Other load programs may have special purposes. In TYDAC we
have assumed that each number going into memory from a card
has exactly ten digits, and, if floating, the number appears punched
in the exponent-plus-fifty form in which it must be stored in memory.
In many computers much more flexibility is possible. About as much
flexibility as we have assumed for TYDAC is the possibility of
loading two five-digit positive numbers per word, and then splitting
them into separate storage locations during the move from temporary
storage to permanent storage. In some large computers it is possible
to read literal decimal points into memory from a card, along with
commas or asterisks to separate successive words, and slashes
(diagonals or virgules) to separate the fractional part from the true
(not plus-fifty) exponent. This allows for almost complete flexibility
in input. A particular card might look like:

1000, 12.6, .— .0047, 22, —1.234567/05, 2.302/—12
The 1000 might be the initial address, at which to load the first
number. The five numbers are loaded into

1000 12.6
1001 —.0047
1002 22.0
1003 —1.234567 • 10B
1004 2.302-10“12

all in correct internal floating point form.

148 DIGITAL COMPUTER PROGRAMMING .

Binary computers use separate load programs to read binary, octal,
or decimal cards; some programs will interpret the numbers on a card
as either octal or decimal, depending on a code number somewhere
on the card.*

Many computers can store alphabetic information in memory.
In some machines this is very simply done; in others it is a matter
of a little extra effort because the machine is only incidentally
alphabetic. For instance, in TYDAC it would be possible to use two
digit positions to store a letter, thus allowing for five letters per
computer word. Load programs may be built, either way, to accept
the alphabetic information from cards.

It is not infrequent for a load program to be written for a special
application. The assembly programs discussed in Chapter 14 always
have their own built-in load program, since the card format is usually
specialized. Some problems may be of such a nature as to require
a special-purpose load program for efficient or feasible operation.

Certain input programs can be called from memory only by a
calling sequence. These would tend not to require a transition card,
since if the programmer wishes he can specify the number of cards to
be read.

Almost all output programs are called by a main program through
a calling sequence. There tends to be a greater variety and/or more
flexibility of output routines, for the reason mentioned previously
that we are more concerned with what the final printed report looks
like to an ultimate reader. In TYDAC we have not assumed a direct
connected printer. Flexibility is available in the machines which are
used to list the cards. Many computers have either a printer which
can print information from memory directly, or the ability to write
output onto magnetic tape and print this tape on a separate machine.
In such computers there is a demand for the wide variety of output
programs.

A fairly typical example of the simplest type of output program
and its calling sequence is as follows. It is desired in TYDAC to
call for a certain block of numbers in consecutive locations to be
punched on cards, in exactly the same format as the cards in the
input example discussed previously. It is intended to punch cards

*The programming of binary computers to load decimal information is
somewhat complex, since it involves knowing in intimate detail the character­
istics of the particular computer. Many of the programmers of binary com­
puters never have occasion to learn the details of loading programs, since these
are usually prepared by one or two programmers for the use of all others.
Such work is interesting and necessary, but it is definitely “graduate level”
coding.

INPUT-OUTPUT METHODS 149

which may be loaded back into the machine for later processing. The
block is identified by its initial and final addresses. The number of
words to punch per card is specified in the calling sequence. If the
last card has less than this number of words, the correct word count
must be put on this card.

The calling sequence might be of the form:

Set index jump or Clear add
n, initial address, final address

That is, the number of words to be punched per card is written as
the operation part, the initial address of the block as the address part,
and the final address of the block as the index control part, of the
instruction immediately following the Set index jump or the linkage.

The program to carry out this function would be slightly more
complex than the loading program detailed above, but there would
not be any radically new principles.

Exercises

1. Complete the planning for any of the medium-sized problems of the
previous chapters. None of these are large enough to involve any problems
of memory space, but the questions remain of memory layout, input cards,
input and output calling sequences, output format, etc. Write out the
input in floating point, as it would appear on the cards of Section 11.5.

2. A special card format has been set up for a problem. It is quite
similar to that of Section 11.5, except that each ten-digit field contains two
positive numbers. The number of five-digit words on the cards is always
even. Write a program to split each ten-digit field into two numbers
which are loaded as integers into successive locations, and recognize a
transition card.

3. Write the output program outlined at the end of Section 11.5.

1 2 MAGNETIC TAPE PROGRAMMING

12.0 Introduction
It frequently happens in preparing problems for computer solu­

tion that we run out of memory space. The 2000 words of TYDAC
would not be nearly enough for many problems—both scientific and
commercial. It could certainly not hold all of the master payroll
file for any medium-sized plant. It could not hold at one time all
the coefficients of a system of fifty simultaneous linear algebraic
equations. And there are many problems that run into more than
2000 instructions, even without consideration of the data.

In each of these situations there is a need for an auxiliary storage
device which can hold many more numbers than the main memory,
but may be considerably slower and must be much cheaper. At
present there are two main devices which fall into this category.
On computers which do not use it as main memory, the magnetic
drum is such a device. A magnetic tape may be used on almost any
computer as auxiliary storage. Other devices are being developed
which promise to give much larger capacities at much lower costs.

12.1 Physical Characteristics of Magnetic Tapes
Magnetic tape for computer use is made either of a plastic base

coated with a magnetic oxide or a bronze steel base plated with an
iron alloy. Binary information is recorded or written on tape by
passing it at high speed over the cores of small windings which
magnetize small areas of the tape. Information is read from the tape
by passing the tape over the same coils and sensing the voltage
induced in them by the magnetized coating. The information
recorded on tape must always be binary, no matter what the repre­
sentation elsewhere in the computer, since in order to gain speed and
reliability only pulses are recorded on tape. In many systems, a zero
is recorded simply as no change in the magnetization at a point;
a one is recorded as a reversal of the magnetization.

150

MAGNETIC TAPE PROGRAMMING 151

In a decimal, nonalphabetic machine like TYDAC, a possible
representation would be to record each decimal digit, in its binary
form, in a row across the tape. In addition, a parity bit would be
recorded along with each group of four bits, as a check on the relia­
bility of tape operation. The parity bit is automatically computed
by the tape control circuits; in TYDAC it is either zero or one,
whichever is required to make an odd number of binary one’s in each
row across the tape. The parity bit is recomputed during tape
reading; if this parity bit is not the same as the one recorded on
tape, the machine stops in the tape stop condition. Thus the TYDAC
tape would have five channels across it; each decimal digit recorded
on tape would be represented by four binary digits and one parity
bit, one in each channel. Figure 1 shows the TYDAC representa­
tion of the number 0123456789.

Since in most computers it is possible to record alphabetic informa­
tion on tape, it may be of interest to note a typical form of representa­
tion. A common system is to assign six bits to each character,
where a character may be a number, a letter, or any of the punctua­
tion or other marks available on the particular machine. The six
bits and the parity bit are then recorded in a row, which requires a
seven-channel tape. A possible representation for the characters
might be:

BINARY CODED BINARY CODED
CHARACTER REPRESENTATION CHARACTER REPRESENTATION

0 1 00 0000 K 1 10 0010
1 0 00 0001 L 0 10 0011
2 0 00 0010 M 1 10 0100
3 1 00 0011 N • 0 10 0101
4 0 00 0100 0 0 10 0110 .
5 1 00 0101 p 1 10 0111
6 1 00 0110 Q 1 10 1000
7 0 00 0111 R 0 10 1001
8 0 00 1000 s 0 11 0001
9 1 00 1001 T 0 11 0010
A 1 01 0001 u 1 11 0011
B 1 01 0010 V 0 11 0100
C 0 01 0011 w 1 11 0101 .
D 1 01 0100 X 1 11 0110
E 0 01 0101 Y 0 11 0111
F 0 01 0110 z 0 11 1000
G 1 01 0111 + 0 01 0000
H 1 01 1000 • 0 10 0000
I 0 01 1001 $ 1 11 0000
J 1 10 0001 Etc.

152 DIGITAL COMPUTER PROGRAMMING

Actual machines have systems along these lines. In some machines
the parity bit is such as to make the number of pulses in a row
even instead of odd.

___Value:
|“| I 00 1 0 I 1 00 11 Parity

___ r 000000001 118
Row_______________ oooo i i i 10054

Channel—*- _________________ 001 1001 10 012
_____ 2ZZZZZLLZZZZZ_________010101010 1

Digit represented: 0123456789

Figure 1. One possible representation of numbers on magnetic tape.

A typical pulse recording density is one hundred or more per inch
in each channel. Tape typically moves past the heads at 100 inches/
sec, in order to obtain sufficiently large pulses when reading. With
such densities and speeds, small defects in the magnetic surfacing
or small errors in tape position can easily lead to faulty recording or
reading of information. It is in order to detect such faults that the
parity bit is used. Permanent flaws in the tape are handled in existing
machines in at least three ways. In one group of computers, the bad
section must simply be discarded, which means that if the flaw is near
the end of the tape it is shortened or if in the middle it is cut into
two smaller sections. A bad spot on a Univac tape is signaled by
a hole punched in the tape, near the flaw. The hole is sensed
photoelectrically and writing or reading is suspended momentarily.
Another small group of machines records on the tape what amounts,
for this purpose, to a signal that the tape in the vicinity is good.
Absence of the signal suspends reading or writing.

It is clear that with only %oo inch between adjacent bits on the
tape, it would be impossible to position the tape accurately enough
to stop between pulses. For this reason, information is always
recorded on tape in records, which are groups of words of some fixed
or variable length. With TYDAC, we assume that a record is made
up of eight words, which, under the assumptions above, would require
less than 1 inch of tape. The interrecord gap, which allows for the
tape to start and stop, would be about the same length as a record.

For some applications it is necessary to record on the tape a signal
that there is no more- information on the tape, or at least not on the
particular section of the tape. This signal is called a tape mark;
it is sensed by the tape unit as part of the read instruction discussed
below.

Magnetic tape is not addressable in the sense that a specific posi­
tion on the tape corresponds to a specific address, as is true of most

MAGNETIC TAPE PROGRAMMING 153

other forms of memory. Basically, it is necessary to know where
each word is located on tape with respect to other words and records
on the same tape. It is not enough to know that the quantities
a, b, c, d, e, /, g, and h are present in a TYDAC record; it is necessary
to know also which quantity is first, which second, etc. It is similarly
necessary to know the relationship between records on a tape.

This statement should be qualified, however. Suppose it is known
that the eight quantities above are always present in every record
on a certain tape, and it is necessary to find the one record in which
a is equal to 167. It would not be difficult to read each record from
tape into memory, then immediately examine the first word of the
record to determine whether this is the record in which a is equal to
167. If not, the next record would be read. Such a procedure can
be programmed for any tape unit; in certain machines there are
special instructions which make the search process nearly automatic.
And in some equipment the search can proceed while the central
part of the computer does something else. In such machines it is
not necessary that the key for which the search is made (a in the
example here) should be the first word of the record.

12.2 Programming Techniques and Subroutines
A block of eight words is written on a TYDAC tape by the two

instructions:
Select A
Write B

where A is 11, 12, 13, or 14 to specify one of the four tapes, and B
is the start of any eight-word sequence in memory. If a block close
to the top of memory is called for, the effect is that the address after
1999 is zero. For instance, if B were 1995, the eight words written
on tape would be 1995, 1996, 1997, 1998, 1999, 0, 1, 2.

Eight words are read from a tape by the three instructions:

Select A
Read B
Un jump C

where A and B are as before, and C is the address to which it is
desired to jump if a tape mark appears on the tape at this point.
If there is no tape mark at the point, then the instruction following
the Read is skipped. It is not essential that the third instruction be
Unconditional jump; if the application is such that the tape mark
never should be sensed, it might be a Halt and jump.

154 DIGITAL COMPUTER PROGRAMMING

The tape mark is written on a tape by the sequence:

Select A
Write mark

No address is required for the Write mark instruction. Observe that
the tape mark is “discovered” and the instruction following the
Read is skipped, only by trying to read a record which is not there.
The instruction following the read is skipped on the last record before
the tape mark, but is not skipped when an attempt is made to read
the next record.

The last instruction which applies specifically to tapes is Rewind.
Once a tape has been written, it is necessary to return to the begin­
ning to read the information. Most real computers either provide
for reading the tape records while the tape is moving backwards, or
have the ability to skip over records in one direction or the other
without reading them. In TYDAC we assume only the Rewind
operation, which moves the tape completely back to the beginning
of the reel. This is accomplished by the single instruction Rewind A,
where A is the desired tape number; no Select is necessary.

The subroutines used in connection with tapes are fairly simple.
A few typical ones are listed; they are not different enough from the
input-output routines discussed in Chapter 11 to warrant detailed
discussion of the codes.

1. Tape write and check sum. A block of memory from an initial
address to a final address is written on a specified tape. As an
additional check on tape reliability, all the words going onto the
tape are “summed” and the sum written as an additional record at
the end of tape. The “sum” need not be a meaningful arithmetic
sum at all, but simply some pattern formed from the words going on
tape which characterizes the words. It might be formed in TYDAC
by adding all the words into the accumulator without any considera­
tion for overflow.

The calling sequence might be:

Set ind jump A, 2
N IA, FA

where A is the start of the subroutine, N is in the operation part
and is the desired tape number, IA is the initial address of the block,
and FA is the final address of the block. The subroutine breaks
the memory block up into eight-word blocks and gives the appropriate
Selects. If the last record does not require eight words, zeros are

MAGNETIC TAPE PROGRAMMING 155

added to fill out the block. An extra tape block contains the check
sum and seven zeros.

No checking system can give complete assurance that no errors
have gone undetected. There is no guarantee that an error in writing
a record will not be compensated for by an error in recomputing the
check sum. The parity check will not detect an error caused by a
failure to read two one’s in one row. The usual point of view on
these matters is that it is impossible to get an absolute check on
anything; the types of errors which would get by the checks imposed
are so extremely unlikely, we hope, that we have virtual assurance
of the accuracy.

2. Tape read and check sum. This could be just the complement
of the above, with a calling sequence exactly the same except the
address of the Set index jump. It would be feasible to write a com­
bined subroutine to read or write. Which to do would be indicated
by jumping to a different location in the same subroutine.

3. Another subroutine might read records into consecutive locations
after a specified initial address until a tape mark was sensed. It
could not very well include check summing.

4. A simulated search program could be devised which would make
TYDAC tapes act like addressable tapes. The calling sequence
might be:

Set ind jump A, 2
N B, C

The first word in each record on tape N is compared with the word in
the accumulator. If a match is found, the record is read into memory
starting at B. If no match is found anywhere on tape, the subroutine
jumps to C to indicate that fact.

5. It is possible to write a self-loading tape read program. The
first record on tape is almost exactly the same as that discussed in
Chapter 11. Since tapes load so much faster than cards, this is
an approach which is used fairly often in computers where it is
possible. And of course in many machines, this is the only way to
get information into memory.

12.3 Typical Tape Applications
There are four main uses of tapes: (1) storage of intermediate

results; (2) self-loading programs; (3) data input and output, on
machines where this is possible; (4) permanent storage of voluminous
data. Some illustrations of these four applications:

1. The multiplication of two 50 by 50 matrices obviously cannot

156 DIGITAL COMPUTER PROGRAMMING

be carried out entirely in the high-speed memory of a machine with
less than about 8000 words of storage. To do the job in a smaller
machine, the elements of the two matrices are stored in the correct
order on two tapes, and the elements of the product matrix stored on
a third as they are computed. If sizes allow, it is much faster to
store one or two of the matrices in high-speed memory.

This application can be considered intermediate storage in the sense
that the elements are read in from cards before computation is begun,
or in the frequent case that the elements are computed by the
program before multiplication.

2. As another illustration of the intermediate storage application,
it is not too unusual to find situations where averages must be com­
piled from many individual calculations. Suppose, for instance, that
some identical calculation is to be made on fifty different sets of
input, and that there are twenty numbers as output for each case.
From the answers, 1000 in all, certain statistical measures must be
computed. The obvious way is simply to dump onto a tape each
set of answers as it is computed. When the last case has been read
in and calculated and stored (the program need not know at this
point how many cases there are), a tape mark is written and the
tape rewound. The statistics, including the total number of cases,
can then be compiled from the answers on tape.

These are illustrations of situations where problems could not be
done without the use of tapes, in the usual sizes of high-speed
memories. Of course, it would be possible to build machines with
much larger high-speed memories, but the cost would be prohibitive.
The question as usual is the economic one: it is preferable to accept
the considerably lower speed and additional complexity of tapes
than to pay for the additional cost of larger high-speed memories.
This sort of decision recurs frequently in the design of computers,
and is the reason why design specifications are set by a team
which includes some persons very familiar with applications and
programming.

3. Another economic consideration arises in the use of self-loading
tape programs. It is usual to find tape speeds which are in the
neighborhood of twenty-five times as fast as card loading speeds.
If a voluminous program has to be loaded from cards frequently,
there is a considerable saving in loading the program instead from
tape. A program has to be set up for tapes, similar to the self­
loading card loader described in the previous chapter; then the
program deck on cards has to be converted to tape. The economic
choice, then, is between the time saved by the faster loading from

MAGNETIC TAPE PROGRAMMING 157

tape and the time consumed in writing the necessary programs and in
converting the program to tape.

4. In some machines, primarily the largest, it is possible to use
auxiliary equipment to prepare tapes. Cards may be read by a
separate card reader and the information written on tape, at the
usual slow card reading speeds, while the computer works at high
speed on something else. The reel of tape may then be removed from
the auxiliary (“off-line”) tape unit, placed on a tape unit which is
connected to the computer (“on-line”), and read in at high speeds.
Output may be handled in reverse fashion. Here the economic choice
is between the cost of on-line reading of cards and printing or punch­
ing answers and the additional cost of the auxiliary equipment. On
large machines this comes out very clearly in favor of the auxiliary
tape equipment.

5. In many applications, particularly in the business or commercial
area, there are voluminous records to be consulted during the course
of the problem. All the information on the policy holders of an
insurance company requires dozens or even hundreds of reels of
tape. All the master payroll data for a plant personnel accounting
application require several reels of tape. These tapes may be pre­
pared by auxiliary equipment or by the computer itself, depending
on the application.

12.4 Conclusion
For a machine with electrostatic or magnetic core memory, a

magnetic drum is an auxiliary storage device with many of the same
economic considerations as tapes. There is no question of a waiting
period of up to 2 or 3 minutes while the correct record is found if a
tape happens to be positioned unfavorably. On many computers,
of course, the magnetic drum is the primary storage device.

Several other types of intermediate speed storage are being in­
vestigated. Some of these promise to hold a great many words, and
still not have excessive access time, i.e., the wait required to get a
particular word located anywhere in the medium. The IBM Random
Access Memory is such a device.

Exercises

1. On tape 1 are 1000 values of x (125 blocks). On tape 2 are 1000
values of y. For each pair of x and y, calculate x2, xy, and y2. For each
pair, write a record on tape 3 which consists of:

158 DIGITAL COMPUTER PROGRAMMING

x
y
X2
xy
y2
0
0
0

Thus, tapes 1 and 2 will be read 125 times to calculate 1000 records which
will be written on tape 3.

2. Suppose that in paragraph 2 of Section 12.3 there are just eight results
(one block) per case, and a variable number of cases with a tape mark at
the end. The eight numbers are

bi
Ct
Ri
Si
Tt
Xi
Vi

where the subscript indicates the case numbers. Write the program to bring
in this information from tape 1 and calculate

n n in in in
E (Ri + S,- + Ti), E X{yi, - E Oi, - E bi, - E *
*•-1 «=i n«=i nt=i n<-i

where n is the number of cases, and must be calculated.
3. Write a self-loading tape program which then loads tape blocks which

are exactly the same as the card format of Section 11.5. This would be
approximately the situation if auxiliary tape equipment were available.

4. Write the program of subroutine 1 of Section 12.2.

5. Write the program of subroutine 3 of Section 12.2.
6. Write the program of subroutine 4 of Section 12.2.

1 3 PROGRAM CHECKOUT

13.0 Introduction
Once a program has been written, it must be verified or checked

out to determine if it actually does the job it is designed for. The
steps of analysis and programming can lead to many logical errors,
i.e., errors in conception or in flow through the problem. The testing
of a loop may be set up improperly or the alternatives to be taken in
certain situations may not have been thoroughly thought out. Pos­
sibly a mathematical procedure will not work in a certain case.

A large source of errors is the actual coding. This part of the
task involves such a great mass of detail that simple mistakes can
easily be made. An operation code may be copied incorrectly or
remembered wrongly. Errors can be made which are simply blunders:
the index control may be omitted, or a two written where there
should be a three, or a tape address indicated which does not exist.
There are so many possibilities of making mistakes that a perfect
program is practically never written.

All these errors must be corrected before right answers can be
obtained. ’ There are several general approaches which may be taken,
and several ways of making the machine help track down the errors.
We shall discuss these in some detail, since checkout is a rather
sizable part of the total cost of preparing a problem for computer
solution.

13.1 Approaches to Checkout
The first attack on the checkout problem may be made before

coding is begun. In order to fully ascertain the accuracy of the
answers, it is necessary to have a hand-calculated check case with
which to compare the answers which will later be calculated by the
machine. This means that stored program machines are never used
for a true one-shot problem. There must always be an element of
iteration to make it pay. The hand calculation may be done at any

159

160 DIGITAL COMPUTER PROGRAMMING

point during programming. Frequently, however, computers are
operated by computing experts who prepare the problems as a service.
for engineers or scientists. In these cases it is highly desirable that
the “customer” prepare the check case, largely because logical errors
and misunderstandings between the programmer and customer may
be pointed up by such a procedure. If the customer is to prepare the
test solution, it is best for him to start well in advance of actual
checkout, since for any sizable problem it will take several days or
weeks to hand-calculate the test.

In view of the time required, it is reasonable to ask why we
bother with a check case. Is it not possible to check the computer’s
answers some easier way?

There are three answers to this. The first is the point mentioned
above, which revolves around the serious communication problem in
a service-bureau or “closed shop” type of computer operation. It
is surprising how frequently misunderstandings can arise about
details. These all have to be ironed out sooner or later, and a detailed
check case is a good way to discover them fairly early.

The second reason revolves around a disastrous type of error
which can be very difficult to catch, namely, the small error that
results in a fairly reasonable answer. ' Suppose that a constant is
entered incorrectly as 1.01 instead of 1.001. This is only about a
1% error, which from a standpoint of reasonableness of final answers
may not be detected by anyone. Often the problem originator
knows within 5% or 10% what the answers ought to be, from general
knowledge of the physical situation—but not within 1%. Yet the
data and numerical methods may be good to 0.1% and be used with
this accuracy assumption. This sort of error is next to impossible to
catch without a detailed, accurate test case. It is worth pointing out
also that errors in input may result in much larger or much smaller
errors in the final answers. If the number above appeared in a
formula such as

„ 14,576
* Cf - 1.001

the error in the final answer would be quite large if Cf were close
to 1.001, but undetectable (and probably harmless) if Cf were 10 or so.

This emphasizes that as far as possible the test case should pick
the situations most likely to point up errors. If possible Cf should
be chosen close to 1. A particularly important consideration is not to
pick values which could cover up other errors. For instance, take

PROGRAM CHECKOUT 161

the formula

y = (a — l)e(l+2)/2 + be~^

If a value of 1.0 is used for a, the final answer is of course inde­
pendent of the first exponential. The answer could come out correctly
even with major errors in the exponential term. Similarly, a b value
of 0 should not be used. Again, if x is chosen larger than 2 or so,
the second exponential term will be nearly 0 and will have little
effect on the result. A major error in the value of b might then go
undetected.

The third reason for a detailed check case revolves around the
importance of many computer applications. Some large problems
may use literally hundreds of hours of computer time, which in itself
is expensive. More important, the results may be the design of
equipment or tests involving in some cases millions of dollars. This
perhaps emphasizes that it is very worthwhile to expend considerable
effort to be positive the answers are right.

The next general approach will become clearer when we discuss
various machine methods: writing the c.ode so it will be easy to
check. This implies keeping intermediate storage in tidy blocks, if,
as usual, memory print is to be the primary checkout tool. It also
sometimes implies writing a less fancy code which will be easier
to follow. This is a bit hard to illustrate; we may simply say that
occasionally it is possible to use tricks in coding which save a few
steps (and give a glow of inner satisfaction) but cause grief when
the problem is put on the machine, particularly if anyone else has
to assist in the checkout.

The third general approach is to make a detailed check of the
code as written, before trying it on the machine. This is aimed at
all types of errors: conceptual, logical, and stupid. Perhaps its
primary mission, however, is to catch the stupid mistakes like wrong
operation codes and addresses.

There are various ways of going about a detailed code check. The
obvious way is for the person who wrote the code to go back over it,
preferably after a few days’ delay between writing and checking.
The coder may simply read the instructions carefully, checking
addresses, constants, loop testing, making sure operations are correct,
ascertaining that the tape was rewound before reading after writing,
etc. Some coders like to draw a second flow chart, working backward
from the Code, and compare it with the original flow chart.

A well-recommended technique is to have someone else do the
checking, with or without drawing a new flow chart. The reason

162 DIGITAL COMPUTER PROGRAMMING

for this is the well-known fact that we tend to become somewhat
entranced with our own mistakes. Reading stale code is uninteresting
at best, and errors do not always exactly stand out from the page.
This is true no matter who reads the code, but it seems to be a lot
harder to check one’s own work. The code is familiar, and there
seems to be a strong tendency to skim over the instructions without
really being critical of each little mark on the page. This corresponds
exactly to the difficulty of proofreading one’s own writing. A second
person does not know what to expect, and is not partially blinded
by what he knows ought to be written in a given instruction. He
is more in a position of trying to read the code and understand
from it what was done; this requires a much more careful reading
than for the original writer to force himself to look it over, trying
to find blunders.

It sometimes works out very satisfactorily for two people to work
on a problem. If one is much more experienced, he will do most of
the original work with the second doing mostly checking (which,
incidentally, is a fine training method for the second person). If the
two are equally qualified, both can write code and check each other’s
work.

This may seem like a large effort for the gain. As may become
more obvious from the discussion in the next section, finding errors
once a problem is on the machine is very expensive. It has been
estimated that on a large machine of the IBM 704 or Univac Scientific
class, each coding error costs between twenty and fifty dollars to
find, including machine time and programmer time. The plan of
using another person to check over codes before attempting the
problem on the computer answers this high cost in two ways. First,
the prechecking cost required to find an error, on the average, is not
as great as the total cost of finding it later. This is because in most
cases the computer costs much more per minute than a programmer
does. The second economic consideration is that the checker is fre­
quently not as highly paid as the original writer, nor as highly skilled.

Tests of accuracy can often be programmed, to be carried out
along with the solution. One technique is to compute each important
quantity twice, using different memory locations and different
sequences of instructions, and compare the answers. If done con­
sistently, this of course requires twice the computer time- to get a
solution. It is usually not done on machines which have extensive
self-checking, such as Univac, or on machines which are felt for other
reasons to be sufficiently reliable. Neither is it often done if there are
other ways of accomplishing the same result with less effort, For

PROGRAM CHECKOUT 163

instance, after solving a system of linear equations it is not very
time-consuming to substitute the answers back into the original
equations to test whether they actually satisfy the system. It would
be more precise to say, satisfy the system within satisfactory limits.
Because of round-off and other errors inherent in digital solutions,
the unknowns will almost never satisfy the system exactly, and some
allowance must be made for this in programming the back substitu­
tion. The same comment applies to other examples of checking
which are not so lengthy as computing the answers twice. After
computing a long chain of tabulated values of some function, it may
be possible to apply an asymptotic formula to check the last value.
If the sine and cosine of an angle are computed in the course of a
problem, the identity sin2 x + cos2 x = 1 can be programmed. The
list could be extended.

The last general approach to the checkout problem which we will
discuss is that of testing all possibilities in a program. Some applica­
tions involve many branches and forks all the way through; any
problem has some alternatives built into it. An engineering cal­
culation may specify that a certain parameter has a limit of one; if
it is calculated as greater, one should be substituted. An accuracy
check might be built into a problem to find the sum of the sine
squared and cosine squared; if the sum is more than 10“7 away
from one, the program should stop. Examples could be multiplied.
The point is, of course, that a program is not necessarily free of all
errors simply because it gets correct answers to one set of input.
As far as feasible, all possibilities in the program must be checked.
Sometimes the nature of the problem is such that this is almost
impossible, particularly if contingencies can occur in pairs or triples.

This again points up a kind of error that may go undetected for
months. A parameter is supposed to have a programmed limit of one,
but the code is wrong so that nothing happens if it is actually greater
than one. For the first 6 months the program is run, this situation
never arises; then a particular set of input results in the parameter
going to 1.04. It may take days to track the trouble down.

Checkout is perhaps a fourth or a third of the total cost of problem
preparation prior to first production running. It is costly and time­
consuming enough to be worthy of more careful planning than it
often receives.

13.2 Machine Checkout Methods
There are several ways to make the computer itself assist in the

checkout procedures. Two of these are simple adaptations of machine

164 DIGITAL COMPUTER PROGRAMMING

features; the others make use of a special-purpose program which
must be in memory along with the program being checked.

The most elementary machine checkout technique is the use of
the single step key. 'It will perhaps be remembered that with the
automatic-manual switch set to manual, pressing the single step key
causes one instruction to be executed. This will be in normal sequence
or a jump, depending on the instruction in the current instruction
register. It is possible also to make a manual jump to any location
via the enter instruction key. Single-stepping consists of getting the
first instruction of interest into the current instruction register, then
repeatedly pressing the single step key and watching what happens.
In many cases it is necessary to copy down certain information
from the registers, such as the actual addresses and contents of index
registers. In some cases the arithmetic may be verified against a
hand-calculated case.

This is unfortunately an extremely expensive method and is seldom
used except on very small sections of programs in order to find errors
which resist more conventional attacks. Besides the high cost of
machine time, the method has the disadvantage that there is no
permanent record of what is happening. Frequently in such cases,
the programmer takes his scratch paper back to his desk to analyze,
only to discover that there was one critical piece of information which
was not copied down.

This is obviated by a tracing program, the next level of sophistica­
tion in checkout. As the name implies, this is a program which must
be in memory along with the program being checked. Its purpose
is to record on tape or printer or punch all the information which a
person using single step might record. A fairly typical tracing
program for TYDAC might punch out on a card the following
information:

Location of instruction.
Operation-address-index control, i.e., current instruction register.
Contents of accumulator.
Contents of MQ.
Contents of memory location specified by address part of

instruction.
Contents of index registers.
All of the arithmetic information is punched or printed as it appears

after the execution of the instruction specified by the location counter
and the current instruction register. All of the information can be
obtained in much less time than it takes to punch it, so that tracing
can proceed at full punching or printing speed. However, this is still

PROGRAM CHECKOUT 165

vastly slower than the high-speed operation of the arithmetic section.
The IBM 650, for instance, can punch only 100 cards per minute,
whereas arithmetic can be carried out at an average of perhaps 25,000
operations per minute. Another way of illustrating this is to point
out that the single loop used as the first example in Chapter 6, which
simply added fifty numbers, would take almost 10 minutes to trace
at 100 cards per minute.

We need not be concerned as yet with the details of how the tracing
program operates; it is an interpretive method, as discussed in
Chapter 15. It is controlled by jump instructions just as the program
is; in other words, it gives a record or trace of what went on at each
point through the program. It is subject to the rather obvious limita­
tion that no sequences of instructions may be traced which depend on
timing of mechanical parts. For instance, a Select instruction must
be followed within a certain time limit by a read or write, so there
would be no time to trace these.

Since tracing is so slow, it is often desirable to make it a selective
process, where only some of the instructions are traced. It is not
too difficult to design the trace program so that it automatically skips
over input-output instructions where there would be timing problems.
The program can be designed to accept information as to where to
start tracing, such as the location of the first instruction to be traced.
The information can be more complete, consisting of a table of
regions of instructions to be traced. In some machines, instructions
may have either a plus or a minus sign. This choice can often be
used to control tracing; instructions might be written with plus signs
if they are to be traced, minus if not. This demands foresight in
the code writing, since what will be selectively traced must be
established in advance. A usual procedure would be to plan to trace
the instructions which compute significant intermediate answers. It
is possible to change the signs of the affected instructions during
checkout, but this is not too convenient.

The procedure allowed by some trace programs, of specifying
regions to be traced, gives more flexibility. The regions to be traced
are usually signaled by punching initial and final addresses on control
cards. These can quite simply be inserted in the deck, or removed,
as the checkout progresses and different sections of the program
become of primary interest.

Tracing is not only expensive but it very often does not give all
the information needed. A trace may show that a certain loop
contains wrong addresses. The programmer sitting at his desk with
no more information than the trace may wish to know what happened

. 166 DIGITAL COMPUTER PROGRAMMING

in an early section of the program which set up the initialization.
Since it is almost never possible to trace an entire program—which
might literally require hours of computer time—he probably has no
printed record at all of what happened in that initialization. With
the clue of where the error is, he may be able to go back to the
instructions in question and figure out the trouble without the printed
record, but often he cannot. What is really needed is a listing of
what the instructions in question looked like after the trouble arose.

A listing of a consecutive section of memory, either numbers or
instructions, is called a memory print, or often, a memory dump.
It has the characteristic of some tracing programs of being highly
selective: as little or as much of memory may be dumped as may
be pertinent. At any one point it gives a great deal more informa­
tion than tracing does. A significant point here is that the memory
dump does give information at one point. In this sense it is funda­
mentally different from tracing. We may say that tracing gives a
dynamic record of what happened at each instruction as the program
was executed. It is a sort of vertical record: a little information at
many points. The dump is a sort of horizontal record: it gives a
complete cross section consisting of much information at a few points.
This often requires a partial memory dump at several points through
the program.

The break point switch is frequently a help in such situations. To
review, this is a rotary switch on the console which may be set to one
of ten positions, 0 through 9. A test instruction is used to “interro­
gate” this switch. If the switch is set to 3, say, and the instruction

Break jump a, 3

is given, the machine will stop. When the start button is pressed,
the next instruction is taken from a. If the switch is set to any other
position, the next instruction in normal sequence is taken, and there
is no stop.

This instruction may be used to control a memory dump by
inserting Break jump instructions at points in the program where
information is needed. The switch can be set to different positions
as checkout proceeds.

To understand this more fully, we must discuss how memory dump
programs operate. One fairly common technique requires the initial
and final addresses of a region to be entered manually into the MQ.
Under this plan, when a Break jump stops the machine, the operator
specifies the region (s) to be printed or punched and makes a manual
jump to the start of the dump program. The dump program stops

PROGRAM CHECKOUT 167

after completion, at which point the operator makes a manual jump
back to the .instruction following the Break jump. Depending on the
circumstances, he may change the setting of the break point switch
before starting the program again, to prepare to get another dump
when and if the program arrives at another critical juncture. In this
case the important feature of the Break jump is not the jump,
but the stop.

Another way of using the instruction requires more foresight as to
what information may be needed during checkout, but saves con­
siderable console fiddling. It is possible to print or punch sections
of memory by using a program called from memory. The plan is
to have in memory several calling sequences to dump sections of
storage; the addresses in the Break jump are the addresses of the
appropriate calling sequence. At the end of each group of calling
sequences is an Unconditional jump back to the instruction following
the appropriate Break jump. All the operator has to do now is
push the start button when the stops occur, and possibly change
the setting of the break point switch before doing so.

These break points, at which memory is dumped or other informa­
tion is obtained, are simply critical spots in the program, at which a
little information may tell a great deal about the process.

A memory dump may be used in two ways. We have discussed how
to use it to get information during the execution of a program. It is
also employed to get information after completion of a program, or
when it unexpectedly “dies” during a checkout run. In either situa­
tion it is desirable to have a complete listing of all numbers and in­
structions to use as reference in tracking down troubles. It is also
very desirable to have the contents of all registers at the time of the
breakdown so that the immediate fault can be pinpointed.

As a final indication of the time comparison between tracing and
dumping, we may observe that the entire 2000 words of TYDAC could
be punched in the format discussed in Chapter 11 in 3 minutes at 100
cards per minute. In the same time, only 300 instructions could be
traced, which in a program with extensive looping would be a very
small part of the total number of instructions to be executed. And
even in the same time, the memory dump would give much more
pertinent information. We may safely say that memory dumping is
a much more sophisticated approach to the checkout problem. A
common tendency is for new programmers to learn tracing first, and
to misuse it very badly. The experienced programmer uses tracing
occasionally, for small parts of a program, but only after other meth­
ods have failed to locate the trouble.

168 DIGITAL COMPUTER PROGRAMMING

Special-purpose diagnostic programs can be designed which com­
bine the best features of all these techniques, and at the same time
allow quite flexible control. Some of these depend on special features
of machines;* one will be described which could be used on any
machine, and the TYDAC in particular.

A reasonable name for the program might be “dynamic diag­
nostic.” It has the following characteristics:

1. Small regions to be traced may be specified by an initial and
final address entered on a card.

2. At any point in the program which is not limited by timing re­
quirements, a memory dump of several sections of memory may be
called for.

3. At any memory dump a simple code, punched on the card which
calls for the dump, will call for punching out the contents of all
registers.

4. Items 2 and 3 may be done only a limited number of times
through a loop, or not until a specified number of times through, ac­
cording to a code punched in the same card.

5. Provision may be made to get certain information if the program
breaks down—which we might call “post-mortem” information. By
entering a “post-mortem control” card, we may ask for the contents of
the arithmetic and control registers, a dump of specified sections of
memory, and a count of the number of times certain instructions were
executed.

All of the above except the last are carried out automatically dur­
ing execution of the program. There are no stops as when the branch
switch is used, but the execution of the program is slowed down by
any tracing or dumping and by internal red tape operations associated
with counting the number of executions, etc. The fact that much
of the operation of the diagnostic work is carried on simultaneously
with the operation of the program being checked is the basis of the
word “dynamic.”

The post-mortem information is wanted only after the program
breaks down, and since this cannot be predicted, a manual jump is
required to start the post-mortem punching. The dynamic diagnostic
program itself would occupy several hundred storage locations. This
space could not be used unless there was information to go into the
program which would not be needed during checkout aiid which could
be entered later. This would not usually happen, so we must admit
that we have given up a significant fraction of memory to the check­
out problem.

* Such as the trap jump on the IBM 704.

PROGRAM CHECKOUT 169

To be more specific about how such a program would work, the
details of input and output will be discussed.

The deck for dynamic diagnostic checkout would consist of:
1. The card loading program discussed in Chapter 11.
2. The deck being checked out, including all data.
3. The diagnostic program, which would load on normal cards.

The last card would be a transition to the dynamic diagnostic
program.

4. The program transition card.
5. The various control cards for dynamic traces or dumps, plus

any post-mortem controls.
All these would load at full speed before any diagnostic procedure

began. The program transition card and the control cards would be
loaded by the diagnostic program; the program transition card would
not immediately be executed, but the information on it would be
stored for use after the controls were loaded. It is important to note
that these control cards are taken to be control cards only because of
their position in the deck, and because they are loaded by a special
input program in the dynamic diagnostic.

The output of the program is fairly straightforward. In TYDAC
it would be a deck of cards which would be listed on a tabulator.
Any sections of tracing would be obvious enough. Dumps would be
in standard memory output form with initial addresses and seven
numbers per line. Contents of registers would be punched out in
much the same format as a line of tracing. Counts of the number of
times an instruction was executed would punch with the instruction
location in the address part and the count in the index control part.

13.3 Conclusion
There are many programs available for actual machines to assist

in checkout. Properly used, they can save much personnel time and
practically eliminate aimless console fiddling. These programs will
become more and more sophisticated as experience is gained in
their use.

14 RELATIVE PROGRAMMING METHODS

14.0 Introduction
In writing programs up to this point, we have written addresses

exactly as they appear when the instructions are later executed by
the control circuits. This is called absolute coding. It has been
mentioned in earlier chapters that we usually do not wish to write
absolute addresses, but prefer to defer the decision as to where instruc­
tions and data actually fit in memory by writing relative addresses.

To illustrate the point, suppose we are starting a program which is
anticipated to take 1500 steps including library subroutines. We
begin writing instructions at 400 to avoid an assumed diagnostic pro­
gram. About the tenth step requires that a square root be calculated,
but of course the square root program has not been written yet, and
even if a library routine is to be used we do not yet know where a
convenient location for it will be. We are faced with two choices:
(1) leave the jump address blank and fill it in later, or (2) make an
estimate of where the routine would fit and write that address. The
first solution involves making fairly thorough notes, because there
will be many blank addresses and a correspondingly large possibility
of error. The second solution is no solution at all, because the guesses
would ordinarily be so bad that many gaps and overlaps would occur.

This last suggests the problem of making changes in an absolute­
language program, which is a second motivation toward relative
coding. If a missing instruction is discovered halfway through a
long program, we are faced with the unhappy choice of either re­
numbering all the following instructions while being careful to change
any addresses which might be affected, or jumping out to a clear
section of memory, adding the instruction, and jumping back.
Neither is particularly satisfactory.

A third incentive for avoiding absolute coding is the problem of
relocation. This may be illustrated with a simple loop. Suppose we
merely need a loop to clear to zero all of memory between 1000 and

170

RELATIVE PROGRAMMING METHODS 171

1999. The following would do the job quite simply:

50 contains 0
51 contains 1
52 contains Store MQ 2000

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

0 42 Load MQ 50
1 43 Store MQ 1000
2 10 Clear add 51
3 19 Add to mem 1
4 14 Sub 52
5 04 Acc zero jump 7
6 01 Un jump 1
7 Continuation

This loop was written in locations 0 through 6. Suppose now some­
one wished to borrow the program, but had other things in 0-400 and
needed to relocate the program with the constants in 401—403 and the
program in 404—410. He might wish to save himself the trouble of
figuring out the logic, and try instead to set up a semimechanical
procedure for changing the addresses. He would rapidly discover,
however, that there are three kinds of addresses in this program:

1. Those affected by the change in location of the program: instruc­
tions 3, 6, and 7.

2. Those affected by the change in location of the data: 0,2, and 4.
3. Those affected by neither: 1.
In most programs there would be a fourth category of addresses:
4. Those which could not be affected by any relocation process,

since they do not refer to memory: shift and input-output instruc­
tions.

All of these categories would have to be handled differently in mov­
ing a section of a program from one location to another.

Thus we see three reasons for preferring relative over absolute
addresses: (1) many addresses are not known (absolutely) at the
time they are needed; (2) it is quite difficult to make a change in a
long absolute program after it is written; (3) relocation of an absolute
program is not easy. A relative programming system helps to allevi­
ate all these problems, as we shall see.

14.1 TYDAC Relative Programming System
The fundamental idea of the relative programming system to be

presented here is as follows. In writing locations and addresses, we
set up a number of regions, each of which is identified by a two-digit

172 DIGITAL COMPUTER PROGRAMMING

code number. Each region may be thought of as a block of memory.
The absolute address of the first word of the block is called the
origin, and all other locations in the region are relative to that origin.
The point of the method is that the origin can be assigned by the
programmer, but it need not be done until after the program is com­
pleted and all the needed information is available. The whole pro­
gram is first written in terms of regions, with addresses relative to
the origins of the regions. Then the origins of the different regions are
assigned, often by the machine, and the relative locations and
addresses converted to absolute.

For instance, region 10 might be used for the locations of the
instructions of a subroutine. The first relative location in the region
would be 0000, and we would write the combined location as 10.0000
with the decimal point added for clarity. The following locations
would be 10.0001, 10.0002, etc. Regions would also be set up for all
temporary and permanent storage, and a dummy region assigned for
addresses which never change, such as shifts. When the program was
completely written in this form, origins would be assigned in such
a manner as to allow just enough space for each region with no gaps
or overlap. If region 10 were to start just after a diagnostic routine
which used 0-399, the origin of region 10 would be 400. Then the
locations which were previously written as 10.0000, 10.0001, etc.,
would become 400, 401, etc. Origins would be assigned for all other
regions, and relative locations and addresses converted to absolute.
This conversion, which is almost always done by the machine, is
called assembly.

In many relative coding systems, great flexibility is allowed in the
form of the region symbols. Here we are using a simple system of
two digit numbers. A few of the regions are assigned conventions;
these are of course completely arbitrary, since the instructions are
never executed in relative form by the machine.

1. Region 00 is reserved for addresses which are invariant, such
as shift and input-output addresses.

2. Region 01 is reserved for temporary storage which may be used
in any part of the program.

3. Region 02 is used for all permanent storage required by the pro­
gram. The very commonly required address modifying constants
zero and one are ordinarily stored in the first two locations, namely
02.0000 and 02.0001.

4. Region 03 is reserved for instructional constants, i.e., numerical
constants which are entered as instructions. For instance, pi to nine

RELATIVE PROGRAMMING METHODS 173

decimals could be entered as the instruction Acc right (31) 4159,2654.
Even though it went in as an instruction it would behave perfectly
well as a number. This particular usage would be less common than
entering an instruction which is used for loop testing, etc.

5. Regions 04 through 09 are not used.
6. Regions 10 through 99 may be used for instructions or data as

needed. Each subroutine would ordinarily be a separate region.
As an elementary example, the loop mentioned earlier could be

written:

02.0000 contains 0
02.0001 contains 1
03.0000 contains Store MQ 00.2000

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

10.0000 42 Load MQ 02.0000
10.0001 43 Store MQ 00.1000
10.0002 10 Clear add 02.0001
10.0003 19 Add to mem 10.0001
10.0004 14 Sub 03.0000
10.0005 04 Acc zero jump 10.0007
10.0006 01 Un jump 10.0001
10.0007 Continuation

The address of instruction 10.0001 is written 00.1000, i.e., as an
absolute address, because this is a special-purpose program. No re­
location would be likely which would change that address, since the
purpose of the program is simply to clear the upper half of memory.

Writing programs in this form helps to avoid the three problems
mentioned earlier. The problem of not knowing the necessary ab­
solute addresses at the time of writing is obviously eliminated. The
question of making changes is not completely eliminated, but greatly
reduced, by the fact that ordinarily we break up the regions in small
enough pieces so that even if renumbering is necessary, it is not so
bad because there is less to renumber. In many relative coding
systems, it is not necessary to write location symbols for every in­
struction location, but only for those to which reference is made
elsewhere in the program; making changes then requires no renumber­
ing. The relocation problem is reduced to the much simpler one of
merely assigning new origins.

The mechanics of the assembly procedure are:
1. The instructions in relative form are punched on cards according

to a format such as:

174 DIGITAL COMPUTER PROGRAMMING

Columns 1-6:
Columns 7-8:
Columns 9-14:
Columns 15-21:
Columns 22-80:

Relative location
Operation code
Relative address
Index control
Comments

On many computers these comments could be alphabetic; they are
the “remarks” written off to the side as a reminder of what happens
at each step. In the example below, the remarks are very detailed;
often they are much more sketchy.

2. The origins, as needed, are determined and punched on cards
in a format similar to that of the instruction cards.

3. A deck is loaded which is made up of:

A. The assembly program
B. Origin cards
C. Instruction cards

4. The program is assembled, i.e., converted to absolute locations
and addresses, inside high-speed memory. This process includes
breaking up the relative information as it appears on the cards and
operating appropriately on the region numbers, etc.

5. A deck containing seven absolute instructions per card is
punched. •

The problem has not been solved at this point; we merely have an
absolute program on cards which may be put into a deck with data
to actually do a calculation. This may well seem like a great deal
more trouble than it is worth. Actually, however, the mechanical
parts of the procedure become quite automatic and the programmer
is left with the appreciable gains in'convenience that have been dis­
cussed. Some of the operating details of the method will perhaps
be clarified by consideration of an example.

14.2 Relative Programming Illustration
Suppose we have a simple table preparation problem:

y = ex V1 4- a:2
for x between 0.0 and 1.0 in steps of 0.1. A subroutine to take the ex­
ponential of a floating point number in the accumulator starts at
40.0000; a square root routine starts at 45.0000. In both cases the
instruction following the linkage is an error return, for an x too large
or less than 0 respectively. The answers will be punched by the
routine mentioned in Chapter 11.

RELATIVE PROGRAMMING METHODS 175

stant 11

A floating point program could be as follows.

OPERA­
LOCA­ TION OPERATION •
TION CODE ABBREVIATION ADDRESS REMARKS

10.0000 10 Clear add 02.0002 Initialize x to 1.0
10.0001 40 Store acc 01.0000. Location of x
10.0002 50 Mem to ind 03.0000,00.0002 Load index 2 with 11
10.0003 10 Clear add 01.0000 Bring in x
10.0004 58 Set ind jump. 40.0000,00.0001 Jump to exp routine
10.0005 00 Halt-jump 00.0000 Error return
10.0006 40 Store acc 01.0001 . Store exp x temp.
10.0007 42 Load MQ 01.0000 Compute
10.0008 72 Fl mult 01.0000 x squared
10.0009 70 Fl add 02.0002 Add 1.0
10.0010 58 Set ind jump 45.0000,00.0001 Compute square root
10.0011 00 Halt-jump 00.0000 Error return
10.0012 33 Long right 00.0010 ' IntoMQ
10.0013 72 Fl mult 01.0001
10.0014 40 Store acc 20.0000,00.0002 Store result
10.0015 10 Clear add 01.0000 Subtract
10.0016 71 Fl sub 02.0003 0.1
10.0017 40 Store acc 01.0000 From x
10.0018 55 Lower ind 00.0001,00.0002 Test whether last
10.0019 56 Zero ind jump 10.0003,00.0002 y computed
10.0020 58 Set ind jump 50.0000,00.0001 Punch routine
10.0021 07 20.0001,20.0011 7 numbers per line
10.0022 00 Halt-jump 00.0000 Program end
02.0000 00 00.0000 Zero
02.0001 00 00.0001 Address-modifying

one
02.0002 51 00.1000 Floating one
02.0003 50 00.1000 Floating one-tenth
03.0000 00 00.0011 Instructional con-

(Note: If the data to be entered were voluminous, they would probably be
entered with a special-purpose loading program, rather than assembling the
data as in this example.)

This is the program as it would be written. In order to assemble
it, the programmer would need only to assign some origins, punch
this information in a suitable form, and put the cards into a deck
with the assembly program and cards for the subroutines. The ori­
gins are assigned primarily according to the rule that regions must
not overlap. Suppose that in order to avoid a diagnostic program
we start the program at 400. Since the program proper takes twenty-
three locations, region 02 could start at 423; 03 could start at 427; 20
could start at 428; and since region 20 has eleven locations, the sub-

176 DIGITAL COMPUTER PROGRAMMING

routine 40 could start at 439. The origins of 45 and 50 would depend
on the number of instructions in these subroutines. Suppose we assign
the origins 480 and 527. We must put 01 somewhere, say 600. The
complete table of origins is then

Region Origin
10 400
02 423
03 427
20 428
40 439
45 480
50 527
01 600

It will be observed that the assignment of these origins is quite
arbitrary; we could have put the whole program starting at 1450;
the order of the regions could have been entirely different.

When these origins are punched on cards and combined with the
instruction cards and the cards of the assembly program, the program
is ready to be assembled. The output of assembly would be the
complete listing of everything on the original cards plus the absolute
location and instruction, plus a deck of absolute cards ready to be
loaded into the computer.

In most computers it is possible, with more or less difficulty, to
enter alphabetic information and at least get it back out; in many
machines extensive manipulation with alphabetic information is
possible. In most cases, we would get the alphabetic comments back
on the assembly listing.

If such an ability were assumed for TYDAC, the assembly listing
for the problem above (with the origins assumed), would be as follows.
The columns on the extreme right are, from left to right, the absolute
location, operation code, absolute address, absolute index control.
The subroutines are not shown.

(Continued on next page)

10.0000 10 Clear add 02.0002 Initialize x to 1.0 0400 10 0425 0000
10.0001 40 Store acc 01.0000 Location of x 0401 40 0600 0000
10.0002 50 Mem to ind 03.0000,00.0002 Load index 2 with 11 0402 50 0427 0002
10.0003 10 Clear add 01.0000 Bring in x 0403 10 0600 0000
10.0004 58 Set ind jump 40.0000,00.0001 Jump to exp routine 0404 58 0439 0001
10.0005 00 Halt-jump 00.0000 Error return 0405 00 0000 0000
10.0006 40 Store acc 01.0001 Store exp x temp. 0406 40 0601 0000
10.0007 42 Load MQ 01.0000 Compute 0407 42 0600 0000
10.0008 72 Fl mult 01.0000 x squared 0408 72 0600 0000
10.0009 70 Fl add 02.0002 Add 1.0 0409 70 0425 0000

RELATIVE PROGRAMMING METHODS 177

10.0010 58 Set ind jump 45.0000,00.0001 Compute square root 0410 58 0480 0001
10.0011 00 Halt-jump 00.0000 Error return 0411 00 0000 0000
10.0012 33 Long right 00.0010 IntoMQ 0412 33 0010 0000
10.0013 72 Fl mult 01.0001 0413 72 0601 0000
10.0014 40 Store aco 20.0000,00.0002 Store result 0414 40 0428 0002
10.0015 10 Clear add 01.0000 Subtract 0415 10 0600 0000
10.0016 71 Fl sub 02.0003 0.1 0416 71 0426 0000
10.0017 40 Store acc 01.0000 From x 0417 40 0600 0000
10.0018 55 Lower ind 00.0001,00.0002 Test whether last 0418 55 0001 0002
10.0019 56 Zero ind jump 10.0003,00.0002 y computed 0419 56 0403 0002'
10.0020 58 Set ind jump 50.0000,00.0001 Punch routine 0420 58 0527 0001
10.0021 07 20.0001,20.0011 7 numbers per line 0421 07 0429 0439
10.0022 00 Halt-jump 00.0000 Program end 0422 00 0000 0000
02.0000 00 Halt-jump 00.0000 Zero 0423 00 0000 0000
02.0001 00 Halt-jump 00.0001 Address-modifying one 0424 00 0001 0000
02.0002 51 00.1000 Floating one 0425 51 1000 0000
02.0003 50 00.1000 Floating one-tenth 0426 50 1000 0000
03.0000 QO Halt-jump 00.0011 Instructional constant 11 0427 00 0011 0000

In other relative programming systems, it is not always necessary
to locate all regions by giving origins if the instructions may be
assigned locations in sequence as they are read. This greatly reduces
the difficulty of inserting additional instructions. Quite often, alpha­
betic information is used, either as part of the regional identification
or in a fairly flexible system which allows limited use of symbols
which amount to ordinary English. It is not too uncommon to find
some error-checking built in. For instance, almost all indexing in­
structions require an index control; the assembly program might
make a note if one were not written. Many other variations are
possible. Some further discussion of the subject may be found in
Chapter 18 on automatic coding.

Exercises

1. Rewrite any of the medium-sized problems of the previous chapters in
relative form. On at least one program, assign origins and “assemble”
the program by hand, i.e., convert to absolute locations as in the text
example.

2. There is a small error in the program of Section 14.2. Probably the
program should be rewritten when such a mistake is discovered; for practice,
however, find a “fix” for the mistake which requires only changing one digit
somewhere in the program or in the origins. How would this error have
manifested itself during checkout?

15 INTERPRETIVE PROGRAMMING METHODS

15.0 Introduction
Often problems must be done which basically require a different

type of operation than is available in the computer at hand. For
instance, a problem in electric transients may require extensive use
of complex arithmetic. In writing such a program there are several
choices.

The complex arithmetic may be done by writing out the required
arithmetic on the real and imaginary parts, each time a complex
operation is needed, according to the usual formulas:

(A + Bi) ± (C 4" Di) = (A ± C) + (B ± D)i

(A + Bi)- (C + Di) = (AC - BD) + (BC + AD)i

A + Bi (AC 4- BD) (BC - AD) .
C + Di (C2 + D2) + (C2 + D2) *

The real and imaginary parts would be stored in separate locations.
Writing out the required operations would get to be burdensome,
and we would be inclined to turn very quickly to subroutines.

For each complex operation, there are four input numbers and two
output, counting all real and imaginary parts. We could assume
that one of the two complex numbers has its real part in the accumu­
lator and its imaginary part in the MQ; the result could be returned
to the same registers. Thus there is only one complex number to be
specified in the calling sequence. A program is shown which evaluates

„ , Tr. [(A + Bi) 4- (C 4- Di)][E 4- A]
x + r‘ " 7

by means of subroutines starting at:

Complex addition: 20.0000
Complex multiplication: 21.0000
Complex division: 22.0000

178

INTERPRETIVE PROGRAMMING METHODS 179

The calling sequence in each case is

Set ind jump n, 1
Halt-jump, loc real, loc imaginary

where n is the first instruction in the appropriate subroutine. The
eight constants are stored in order in 40.0000 through 40.0007. x goes
into 41.0000, y into 41.0001.

opera- Operation
LOCA­ TION ABBREVIA­ INDEX
TION CODE TION ADDRESS CONTROL REMARKS

10.0000 10 Clear add 40.0000 A
10.0001 42 Load MQ 40.0001 B
10.0002 58 Set ind jump 20.0000 00.0001 To add routine
10.0003 00 Halt-jump 40.0002 40.0003 Add C + Di
10.0004 58 Set ind jump 21.0000 00.0001 To multiply

routine
10.0005 00 Halt-jump 40.0004 40.0005 Multiply by

E + Fi
10.0006 58 Set ind jump 22.0000 00.0001 To divide routine
10.0007 00 Halt-jump 40.0006 40.0007 Divide by

G + Hi
10.0008 40 Store acc 41.0000
10.0009 43. Store MQ 41.0001

This is a considerable saving in space and trouble over writing
out the steps each time, as is always true with subroutines. Never­
theless, there is still considerable red tape to the program. At best
it is necessary to write a calling sequence to do each complex opera­
tion. Bringing any number into the arithmetic registers, or storing
the registers, takes two operations per complex number. If there is
a great deal of complex arithmetic, we begin to wish there were
some way to cut down the number of instructions to be written—even
at the expense of a slower program.

15.1 A TYDAC Interpretive System

Interpretive programming is actually an extension of the calling
sequence idea. It may be recalled from earlier chapters that we
characterized a linkage as a way of telling a subroutine where we
came from, and a calling sequence as a way of telling a subroutine
not only where we came from but what to work on. “Instructions”
10.0003, 10.0005, and 10.0007 in the example have this function. In
a calling sequence there must be an understanding between the
writer of the subroutine and the writer of the main program as to

180 DIGITAL COMPUTER PROGRAMMING

the exact form and length of the calling sequence. In an interpretive
program, there is an understanding as to format, but not length.
Once the jump has been made to the interpretive program, the “in­
structions” following the linkage are interpreted one by one until a
special instruction is encountered which tells the interpretive pro­
gram to break out of the sequence. The “instructions” following the
linkage are no more than the code words they are in a calling
sequence; the interpretive program has to come back to find out what
it is supposed to do. However, the “instructions” (or pseudo instruc­
tions) also tell the interpretive program what to do with the numbers,
so that the instructions written following the linkage give the ap­
pearance of instructions in a new type of computer with altogether
different characteristics.

We will describe a TYDAC complex arithmetic program in order
to illustrate these ideas.

The interpretive program is located at 90.0000. The linkage

Set ind jump 90.0000, 1

gets one into the interpretive mode. The “instructions” following
the linkage should be of the form:

+XX xxxx xxxx
Operation Real part location Imaginary part location

The “operation” is totally unrelated to the TYDAC operation code,
since it is interpreted just as are the address and index control. The
operation list is:

00 Take next instruction as real language No addresses needed
01 Clear complex accumulator No address
02 Add
03 Subtract
04 Multiply
05 Divide
06 Exponential No address
07 Sine No address
08 Unconditional jump 1 address
09 Real part zero jump 1 address
10 Imag. part zero jump 1 address
11 Store

Instruction 00 is the signal to the interpretive program that the
interpretive section is finished and that the next instruction is an
ordinary TYDAC instruction. 01 calls for clearing of the “complex
accumulator” which has nothing to do with the “real” TYDAC

INTERPRETIVE PROGRAMMING METHODS 181

accumulator, but is rather two locations in memory. The real
accumulator is used extensively during the interpretation and the
arithmetic of the complex operations, but locations in memory must
be assigned to carry the result of each complex operation during the
bookkeeping of interpretation. 02 through 05 call for the arithmetic
operations. 06 and 07 take the stated function of the number in
the complex accumulator and place the result back there; thus no
data address is required. 08, 09, and 10 are jumps; only one address
is required, but it must be the location of an interpretive instruction
since the program will still be in the interpretive mode after the
jump. 11 stores the complex accumulator.

The example above may now be written simply:

OPERATION OPERATION INDEX
LOCATION CODE ABBREVIATION ADDRESS CONTROL

10.0000 58 Set ind jump 90.0000 00.0001
10.0001 01 Clear acc
10.0002 02 Add 40.0000 40.0001
10.0003 02 Add 40.0002 40.0003
10.0004 04 Mult 40.0004 40.0005
10.0005 05 Divide 40.0006 40.0007
10.0006 12 Store 41.0000 41.0001
10.0007 00 Out
10.0008 Real language continuation

This is a saving of only two steps, but it is evident that the com­
parison is poor mostly because there are few operations in this
example.

A fairly large number of types of interpretive programs have been
written. Among them are floating decimal routines, matrix algebra,
tracing as mentioned in Chapter 13, double precision discussed in
Chapter 16, indexing, and multiple addressing. A tracing routine
is an interpretive system since it goes to the program being traced
only to pick up each instruction in turn and interpret it. A pseudo
accumulator, pseudo MQ, pseudo control registers, even a programmed
operation decoder, all have to be provided. The interpretive program
in this case has a built-in output program as an integral part.

15.2 Internal Operation of an Interpretive Routine
It may be of interest to some readers to know how an interpretive

system works “on the inside.” Therefore, a possible program for
TYDAC complex arithmetic routine is presented below. It is some­
what long; it may be omitted without loss of continuity.

182 DIGITAL COMPUTER PROGRAMMING

The first task is to define memory locations for the various registers.
These are:

Real part of accumulator: 30.0000
Imaginary part of accumulator: 30.0001
Real part of word specified by address: 30.0002
Imaginary part of word specified by address: 30.0003
Location counter: Index 1
Current instruction register: 30.0004

The pseudo accumulator is the only arithmetic register; the result
of each operation is returned there, including multiplication and
division. No pseudo MQ is therefore provided. The real and imagi­
nary parts of the word specified by the address of the pseudo instruc­
tion are obtained and stored as shown. The current (pseudo)
instruction and its location must be stored in order to keep track
of where the interpretive program should look for its next instruction
at each point.

The very first order of business on jumping into the interpretive
routine is to increase index 1 by 1 so that it contains the location
of the first pseudo instruction. Then the instruction is obtained
and the words specified by the two addresses are obtained and stored
—even though it may turn out that not both are really addresses.
It is simpler to get these words in all cases and then decide whether
to use them than to have to obtain them in ten different places if
needed. Next, the operation code must be interpreted to decide what
is to be done on this operation. This is accomplished by use of a
jump table, a very useful technique in such a situation. It was
mentioned in passing in Chapter 5 on address 'computation. The
table looks like:

11.0000 01 Un jump First instruction of jump out routine
11.0001 01 Un jump First instruction of clear routine
11.0002 01 Un jump First instruction of add routine
11.0003 01 Un jump First instruction of subtract routine
11.0004 01 Un jump First instruction of multiply routine
11.0005 01 Un jump First instruction of divide routine
11.0006 01 Un jump First instruction of exponential routine
Etc.
These correspond to the pseudo operation codes defined on page 180.

All that the interpretive routines have to do is use the operation
part of the pseudo instruction to decide where to jump to in the
above jump table, which in turn jumps to the appropriate part of
the interpretive routine for this particular instruction. The final
part consists of the individual routines to do the various operations.

INTERPRETIVE PROGRAMMING METHODS 183

The program follows. A few details of some of the individual routines
are given after the programs. All numbers are assumed to be in
floating point.

Jump Table

11.0000 01 Un jump 70.0000 Jump out
11.0001 01 “ “ 71.0000 Clear
11.0002 01 “ “ 72.0000 Add
11.0003 01 “ “ 73.0000 Subtract
11.0004 01 “ “ 74.0000 Multiply
11.0005 01 “ . “ 75.0000 Divide
11.0006 01 “ “ 76.0000 Exponential
11.0007 01 “ “ 77.0000 Sine
11.0008 01 “ “ 78.0000 Un jump
11.0009 01 “ “ 79.0000 Real zero jump
11.0010 01 “ “ 80.0000 Imag. zero jump
11.0011 01 “ “ 81.0000 Store

OPERA-
LOCA- TION
TION CODE

OPERATION
ABBREVIATION ADDRESS REMARKS

90.0000 54 Raise index 00.0001,00.0001
90.0001 10 Clear add 00.0000,00.0001 Bring in current

90.0002 40 Store acc 30.0004
pseudo instruction

90.0003 41 Store address 90.0009 Prepare to get real

90.0004 33 Long right 00.0004
part

90.0005 11 Add 03.0000 Loc 11.0000
90.0006 41 Store address 90.0013 Prepare to get oper­

90.0007 32 Long left 00.0008
ation code

90.0008 41 Store address 90.0011 Prepare to get imag.

90.0009 10 Clear add [00.0000]
part

Get real part
90.0010 40 Store acc 30.0002
90.0011 10 Clear add [00.0000] Get imag. part
90.0012 40 Store acc 30.0003
90.0013 01 Un jump [00.0000] To jump table

70.0000 01

Jump
Un jump

Out Routine
00.0001,00.0001

71.0000 10

Clear Routine
Clear add 02.0000 Loc 0

71.0001 40 Store acc 30.0000
71.0002 40 Store acc 30.0001
71.0003 01 Un jump. 90.0000

(.Continued on next page)

184 DIGITAL COMPUTER PROGRAMMING

Add Routine
72.0000 10 Clear add 30.0000 A
72.0001 70 Fl add 30.0002 A+C
72.0002 40 Store ace 30.0000
72.0003 10 Clear add 30.0001 B
72.0004 70 Fl add 30.0003 B + D
72.0005 40 Store ace 30.0001
72.0006 01 Un jump 90.0000

Subtract Routine
73.0000 10 Clear add 30.0000 A
73.0001 71 Fl sub 30.0002 A—C
73.0002 40 Store acc 30.0000
73.0003 10 Clear add 30.0001 B
73.0004 71 Fl sub 30.0003 B — D
73.0005 40 Store acc 30.0001
73.0006 01 Un jump 90.0000

Multiply Routine

74.0000 42 Load MQ 30.0001 B
74.0001 72 Fl mult 30.0003 BD
74.0002 40 Store acc 01.0000 Temporary
74.0003 42 Load MQ 30.0000 A
74.0004 72 Fl mult 30.0002 AC
74.0005 71 Fl sub 01.0000 AC - BD
74.0006 40 Store acc 01.0001 Real part temporary
74.0007 42 Load MQ 30.0001 B
74.0008 72 Fl mult 30.0002 BC
74.0009 40 Store acc 01.0000 Temporary
74.0010 42 Load MQ 30.0000 A
74.0011 72 Fl mult 30.0003 AD
74.0012 70 Fl add 01.0000 BC + AD
74.0013 40 Store acc 30.0001
74.0014 10 Clear add 01.0001
74.0015 40 Store acc 30.0000
74.0016 01 Un jump 90.0000

Divide Routine
75.0000 42 Load MQ 30.0002 C
75.0001 72 Fl mult 30.0002 C2
75.0002 40 Store acc 01.0000 Temporary
75.0003 42 Load MQ 30.0003 D
75.0004 72 Fl mult 30.0003 D2
75.0005 70 Fl add 01.0000 C2 + D2
75.0006 40 Store acc 01.0000 Temporary •
75.0007 42 Load MQ 30.0000 A

(.Continued on next page)

INTERPRETIVE PROGRAMMING METHODS 185

75.0008 72 Fl mult
75.0009 40 Store acc
75.0010 42 Load MQ
75.0011 72 Fl mult
75.0012 70 Fl add
75.0013 73 Fl div
75.0014 43 Store MQ
75.0015 42 Load MQ
75.0016 72 Fl mult
75.0017 40 Store acc
75.0018 42 Load MQ
75.0019 72 Fl mult
75.0020 71 Fl sub
75.0021 73 Fl div
75.0022 43 Store MQ
75.0023 10 Clear add
75.0024 40 Store acc
75.0025 01 Un jump

30.0002 . AC
01.0001 Temporary
30.0001 B
30.0003 BD
01.0001 AC+ BD
01.0000 Real part
01.0001 Temporary
30.0000 A
30.0003 . AD
01.0002 Temporary
30.0001 B
30.0002 BC
01.0002 BC — AD
01.0000 Imag. part
30.0001
01.0001
30.0000
90.0000

Since both the exponential and sine functions of a complex variable
require the evaluation of sines, cosines, and exponentials, subroutines
for the sine and exponential are written separately. The cosine is
obtained from:

cos x = sin (x + tt/2)

The exponential is calculated from:

ex = 1 + £ + L2 + ?!+...
1 + + + +

by the recursion formula:

term 0 = 1

term n = - (term n — 1)
n

The process is continued until a term is less than 10-7. The
sine series is:

. x3 xs x7
smI-x-3! + 5!-7i+‘"

The recursion formula is:

term 1 = x

term 2, 4, 6, • • • =0
——

term n = —r:-------— (term n — 2)
(n)(n - 1)

186 DIGITAL COMPUTER PROGRAMMING

which again is continued until a term is less in absolute value than
10~ 7. This is not representative of the methods used in high-speed
machines for computing transcendental functions. Many short cuts
would ordinarily be used (see Chapter 17).

With x in accumulator in floating point and e® to be left in accumu­
lator in floating point, the program is:

With x in floating in accumulator and sin x to be left in accumu-

OPERA- •

LO CA- TION OPERATION
TION CODE ABBREVIATION ADDRESS REMARKS

91.0000 40 Store acc 01.0010 Store x
91.0001 10 Clear add 12.0000 Floating 1.0
91.0002 40 Store acc 01.0011 Term 0
91.0003 40 Store acc 01.0012 Factorial
91.0004 40 Store acc 01.0013 Summation

(= e® eventually)
91.0005 10 Clear add 01.0011 Term n — 1

Term n — 1
91.0006 73 Fl div 01.0012 n

91.0007 72 Fl mult 01.0010 - (term n — 1)n
91.0008 40 Store acc 01.0011 New term n
91.0009 70 Fl add 01.0013 New summation
91.0010 40 Store acc 01.0013
91.0011 10 Clear add 12.0000 Floating 1.0
91.0012 70 Fl add 01.0012
91.0013 40 Store acc 01.0012 Add 1 to factorial

counter
91.0014 10 Clear acc 12.0003 IO"7
91.0015 15 Sub abs 01.0011
91.0016 03 Acc plus jump 91.0018 Jump out if converged
91.0017 01 Un jump 91.0005
91.0018 10 Clear add 01.0013 Put e® in accumulator
91.0019 01 Un jump 00.0001,00.0002

(Continued on next page)

lator in floating point, the program is:

OPERA-
LOCA­ TION OPERATION
TION CODE ABBREVIATION ADDRESS REMARKS

92.0000 40 Store acc 01.0011 Term 1
92.0001 40 Store acc 01.0013 Summation
92.0002 42 Load MQ 01.0011
92.0003 72 Fl mult 01.0011 _2x
92.0004 40 Store acc 01.0010

INTERPRETIVE PROGRAMMING METHODS 187

92.0005 10 Clear add 12.0001 Floating 2.0
92.0006 40 Store acc 01.0014 n — 1
92.0007 10 Clear add 12.0002 Floating 3.0
92.0008 40 Store acc 01.0015 n
92.0009 13 Clear sub 01.0011 —Term n — 2

—Term n — 2
92.0010 73 Fl div 01.0014 (n - 1)

92.0011 72 Fl mult 01.0010
—z2(tenn n — 2)

(n - 1)

92.0012 73 Fl div 01.0015
—z2(tenn n — 2)

(n — l)(n)
92.0013 43 Store MQ 01.0011 Term n
92.0014 10 Clear add 01.0013
92.0015 70 Fl add 01.0011 New summation
92.0016 40 Store acc 01.0013
92.0017 10 Clear add 12.0003 10-7
92.0018 15 Sub abs 01.0011 Test convergence
92.0019 03 Acc plus jump 92.0026
92.0020 10 Clear add 01.0014 Modify n, n — 1
92.0021 70 Fl add 12.0001 Floating 2.0
92.0022 40 Store acc 01.0014
92.0023 70 Fl add 12.0000 Floating 1.0
92.0024 40 Store acc 01.0015
92.0025 01 TJn jump 92.0009
92.0026 10 Clear add 01.0013
92.0027 01 TJn jump 00.0001,00.0002

Complex Exponential Routine
gCA+Bi) — gA cog p _]_ £g4 gjjj p

76.0000 10 Clear add 30.0000 A
76.0001 58 Set ind jump 91.0000,00.0002 eA
76.0002 40 Store acc 01.0000
76.0003 10 Clear add 30.0001 B
76.0004 58 Set ind jump 92.0000,00.0002 sin B
76.0005 40 Store acc 01.0001
76.0006 10 Clear add 30.0001 B
76.0007 70 Fl add 12.0004 B + ir/2
76.0008 58 Set ind jump 92.0000,00.0002 cos B
76.0009 33 Long right 00.0010
76.0010 72 Fl mult 01.0000 eA cos .8
76.0011 40 Store acc 30.0000 Real part
76.0012 42 Load MQ 01.0001 sin 2?
76.0013 72 Fl mult 01.0000 eA sin B
76.0014 40 Store acc 30.0001 Imag. part
76.0015 01 Un jump 90.0000

(.Continued on next page)

188 DIGITAL COMPUTER PROGRAMMING

Sine Routine

eB 4- e~B . . . eB - e~Bsin (A + Bi) -

77.0000 10 Clear add 30.0000 A
77.0001 58 Set ind jump 92.0000,00.0002 sin A
77.0002 40 Store acc 01.0000
77.0003 10 Clear add 30.0000 A
77.0004 70 Fl add 12.0004 A + tt/2
77.0005 58 Set ind jump 92.0000,00.0001 cos A
77.0006 40 Store acc 01.0001
77.0007 10 Clear add 30.0001 B
77.0008 58 Set ind jump 91.0000,00.0001 eB
77.0009 40 Store acc 01.0002
77.0010 10 Clear add 12.0000 Floating 1.0
77.0011 73 Fl div 01.0002 l/eB = e~B
77.0012 43 Store MQ 01.0003
77.0013 10 Clear add 01.0002 e3
77.0014 70 Fl add 01.0003 e3 + e~B

77.0015 73 Fl div 12.0001 e3 + e~B
2

77.0016 72 Fl mult 01.0000 Beal part
77.0017 40 Store acc 30.0000
77.0018 10 Clear add 01.0002 e3
77.0019 71 Fl sub

Fl div
01.0003
12.0001

e3 — e~B
e3 - e~B77.0020 73 2

77.0021 72 Fl mult 01.0001 Imag. part
77.0022 40 Store acc 30.0001
77.0023 01 Un jump 90.0000

Unconditional Jump Routine

78.0000 50 Mem to ind 90.0009,00.0001
78.0001 01 Un jump 90.0001

Real Part Zero Jump

79.0000 10 Clear add 30.0000 A
79.0001 04 Acc zero jump 79.0003
79.0002 01 Un jump 90.0000
79.0003 50 Mem to ind 90.0009,00.0001
79.0004 01 Un jump 90.0001

Imaginary Part Zero Jump

80.0000 10 Clear add 30.0001 B
80.0001 04 Acc zero jump 80.0003

{Continued on next page)

INTERPRETIVE PROGRAMMING METHODS 189

80.0002 01 Un jump 90.0000
80.0003 50 Mem to ind 90.0009,00.0001
80.0004 01 Un jump 90.0001

Store Complex Accumulator

81.0000 50 Mem to ind 90.0009,00.0002
81.0001 10 Clear add 30.0000
81.0002 40 Store acc 00.0000,00.0002
81.0003 50 Mem to ind 90.0011,00.0002
81.0004 10 Clear add 30.0001
81.0005 40 Store acc 00.0000,00.0002
81.0006 01 Un jump 90.0000

Instructional Constant

03.0000 00 Halt-jump 11.0000

Constants

12.0000 1.0 Floating
12.0001 2.0 it

12.0002 3.0 11

12.0003 0.0000001 “
12.0004 tt/2 It

An actual interpretive complex arithmetic might have a few more
instructions. It was felt that these present the idea of how an
interpretive routine works, and possibly provide a little insight into
the work of “library” or utility programming.

15.3 Conclusion
It is worth pointing out that every interpretive instruction must be

interpreted each time it is carried out. We have added about ten
instructions (in the interpreter) for every complex operation simply
to save the extra writing of calling sequences—which would be faster
in machine time. There is another technique which is sometimes
preferable, called compiling; this is discussed a little more fully in
Chapter 18. In compiling, the interpretive instructions are inter­
preted only once, before actual execution of the problem, and the
compiler substitutes calling sequences for the pseudo instructions.
Once the pre-execution phase is done, we have both the advantage
of a simple main program and efficient machine operation. On the
other hand, this can run into large memory requirements, so large,
in fact, that tapes must become an integral part of the system. If
this happens, the compiling idea loses its attractiveness unless we

190 DIGITAL COMPUTER PROGRAMMING

are dealing with a machine where the arithmetic speed is not appre­
ciably faster than tape transfer rates. On recent large machines,
the arithmetic speeds are so high (and often, memory so large)
that it is more efficient to waste the time involved in interpreting
each pseudo instruction each time it appears.

Exercises

1. Using the interpretive complex arithmetic system in the text, write
a program to evaluate:

. (A 4- Bi)e(C+D<) - (E + Fi) sin ((? + Hi)
x + yi~ (j + Ki)(L + Mi) ± (P + Qi)

The plus sign in the denominator is to be taken if Q is positive, the minus
if Q is negative. Assume locations for all the constants.

2. Using the text interpretive scheme and assuming any other subroutine
which may be needed, write subroutines to convert between polar and
rectangular forms, according to the formula:

(A + Bi) = Re"
where R = +VA2 + B2, 0 = tan-1 B/A, A = RcosO, and B = Rsin6.

(Is it possible to take the sine of a real number using the complex sine
interpretive program?)

3. Set up an interpretive floating point system, using subroutines written
as an exercise of Chapter 10.

4. A program to generate music on a high-speed computer might use
an interpretive scheme like this:

Set ind jump loc prog, 1
n m
n m
n m

In each interpretive instruction, n determines the duration of the note
and m the pitch. Each is basically controlled by repetitions of a loop.
Write an interpreter for the duration (operation code) part only, as
follows. A loop which consists of exactly nine instructions, not including
any multiplications or divisions, is to be repeated exactly n times. If nine
instructions are not needed, pad the loop out somehow.

16 DOUBLE PRECISION ARITHMETIC

16.0 Introduction
There is a class of computer problems which cannot be handled

satisfactorily using only eight or ten decimal digits in each arithmetic
operation. Problem data are never that accurate, but the nature of
the operations carried out may demand that more digits be kept in
the intermediate stages—even though they will be discarded at the
end. The typical situation where this arises is matrix work: matrix
inversion, eigenvalue calculation, curve fitting, linear programming.
It is not too unusual to find matrices of a hundred rows or columns
or higher. In several of the matrix applications, the total number
of arithmetic operations is proportional to the third power of number
of rows or columns. An application requiring several million arith­
metic operations can accumulate so much round-off error that the
answers may have only one or two significant digits. (if any) even
though the input was good to four places and eight were kept at all
intermediate steps. Depending on the exact numbers appearing in
the problem, it is possible to lose all significance in just a few hundred
arithmetic operations.

Another type of problem requiring more digits in the calculation
involves the differences of very large numbers. Take a series like

r fc' _______
uX) 2 232 ! 252!3!

This series for a Bessel function converges for all x, but if we try
to calculate Ji (25), for example, from this series, we may find our­
selves attempting to subtract numbers of the order of a million and
still come out with seven decimals in the difference! In this example
we would turn to an asymptotic expression, but there are cases where
there is no choice but to try to evaluate the series.

What we need, then, is a simple way to carry twenty digits in each
arithmetic-operation in a machine built to hold only ten* This

.♦ Of course, this would be no problem at all in the IBM 702 or 705, since the
length of numbers is completely variable.

191

192 DIGITAL COMPUTER PROGRAMMING

is usually done by an interpretive program which takes two consecu­
tive locations for each number and does simple arithmetic and
possibly a little logic. The main work of the program, however, is
doing one arithmetic operation on two numbers stored in four
different places while keeping the signs straight.

Since twice as many digits as there are in one computer word are
kept in each operation, and . the number of digits is a measure of
the precision of a number, this technique is called double precision
arithmetic. Triple precision is used in some applications, particularly
in machines with short words. Some double precision routines are
floating point. We shall describe one which is fixed point.

16.1 Arithmetic Basis of Methods and TYDAC Codes
We shall denote the two numbers in an arithmetic operation as

AiA2 and BiB2, where Ai is the more significant ten digits in one
storage location and A2 is the less significant ten digits in the next
higher numbered location. The twenty-digit numbers are all con­
sidered to be less than one, i.e., fractions.

The problem in addition and subtraction concerns signs.

(AiA2) + (BiB2) = (Ai + Bi) + (A2 + B2)
The first problem is easily solved: what happens if A2 + B2 contains
eleven digits? The addition can be arranged:

10 Clear add Loc A2
11 Add Loc B2
33 Long right 10
11 Add Loc Ai
11 Add Loc Bi

If overflow does occur, the one will go into the overflow position and
be shifted into the last position of the accumulator by the long right
10. If the two numbers have the same sign, the twenty-digit sum
now appears in the accumulator and MQ. We have assumed that
all numbers are less than one, which means that scaling has eliminated
the possibility of overflow here. If overflow does occur, the machine
must be programmed to stop.

The problem is a bit more complicated if the two numbers have
different signs, either by subtraction or because the signs are different
in an addition.

(AiA2) - (BiB2) - (Ai - Bi) + (A2 - B2)

The problem is that the two parts of the answer may not be of the

DOUBLE PRECISION ARITHMETIC 193

same sign. For instance, consider the subtraction

10000000009000000000
—40000000005000000000

which gives, in two parts,

(—3000000000) + (+ 4000000000)

The correct sum is, of course,

—29999999996000000000

but how do we generalize this and instruct the machine accordingly?
The rule is that if the two parts (Ax —Bx) and (A2 — B2) are

of different signs, (A2 — B2) must be complemented, and one added
to or subtracted from the last position of (+i — Br) depending on
whether (Ax — Bj) is negative or positive respectively.

An outline program for double precision addition follows. Sub­
traction would require only a prior sign reversal of the subtrahend.

(Continued on next page)

LOCA­ OPERATION OPERATION
TION CODE ABBREVIATION ADDRESS z REMARKS

10.0000 10 Clear add Loc Az
10.0001 11 Add Loc Bz
10.0002 33 Long right 00.0010
10.0003 11 Add Loc Ai
10.0004 11 Add' Loc Bi
10.0005 40 Store acc Loc Ci Store result; will be
10.0006 43 Store MQ Loc Cz corrected if necessary
10.0007 03 Acc plus jump 10.0010 (Ai — Bi) positive
10.0008 05 MQ sign jump 10.0019 (Az — Bz) positive
10.0009 01 Un jump 10.0026 Both negative; no cor­

rections
10.0010 05 MQ sign jump 10.0026 Both positive; no cor­

rection
10.0011 14 Sub Loc 1 (Ai — Bi) positive and
10.0012 02 Ov jump 10.0028 (Az — Bz) negative
10.0013 40 Store acc Loc Ci Correction
10.0014 10 Clear add Loc 1
10.0015 30 Acc left 00.0010 1 into overflow pos.
10.0016 11 Add Loc Cz Complement Cz
10.0017 40 Store acc Loc Cz
10.0018 01 Un jump 10.0027 Corrections finished
10.0019 11 Add Loc 1 (Ai — Bi) negative and
10.0020 02 Ov jump 10.0028 (A 2 - Bz) positive
10.0021 40 Store acc Loc Ci Correction
10.0022 10 Clear sub Loc 1
10.0023 30 Acc left 00.0010 —1 into overflow pos.

194 DIGITAL COMPUTER PROGRAMMING

10.0024 11 Add Loc C2
10.0025 40 Store acc Loc C2 Complement C2
10.0026 02 Ov jump 10.0028
10.0027 01 Un jump Back to main prog, or

interpreter
10.0028 00 Halt-jump - —

In multiplication the sign control problem is taken care of by
algebra and the machine, since the partial products will all be of
the same sign. The formula is

(AiA2)(J51^2) ~ ■'4-1-®! 4* AjB2 4" ^2-®!

A2B2 is omitted since it can at most have an effect of one in the
twentieth digit. In some machines it is not difficult to include the
effect, but in TYDAC it is not worth the trouble. The products AiB2
and A2Bt have ten zeros in front, with respect to the product AxBi.

Division is based on the approximation:

LOCA­ OPERATION OPERATION
TION CODE ABBREVIATION ADDRESS REMARKS

11.0000 42 Load MQ Loc Ai
11.0001 16 \ Mult Loc Bi
11.0002 40 Store acc 01.0000 Temporary
11.0003 43 Store MQ 01.0001 Temporary
11.0004 42 Load MQ Loc Ai
11.0005 17 Mult round Loc B2
11.0006 40 Store acc 01.0002 Temporary
11.0007 42 Load MQ Loc Bi
11.0008 17 Mult round Loc A2 AaBi
11.0009 11 Add 01.0002 4“ A iB2
11.0010 11 Add 01.0001 Less significant half of

A1B1
11.0011 33 Long right 00.0010
11.0012 11 Add 01.0000 More significant half of

A1B1
11.0013 40 Store acc Loc Ci
11.0014 43 Store MQ Loc C2
11.0015 01 Un jump Out Finished

- = A - A / 1 \ ~ A (1
B Bi 4~ B2 Bi I B2 j Bi \ Bi)

Division of a double-length dividend by a single-length divisor
is easily enough performed by a second division—dividing the re­
mainder from a first division by the original divisor. Once A/Bi

DOUBLE PRECISION ARITHMETIC 195

and (1 — have been calculated, the double precision multi­
plication routine can be used to multiply them and get the final
quotient.

LOCA­ OPERATION OPERATION
TION CODE ABBREVIATION ADDRESS REMARKS

12.0000 10 Clear add Loc Ai
12.0001 42 Load MQ Loc As
12.0002 18 Divide Loc Bi
12.0003 43 Store MQ Loc Ai Prepare for double

length multiplication
12.0004 42 Load MQ Loc 0
12.0005 18 Divide Loc Bi
12.0006 43 Store MQ Loc Az
12.0007 10 Clear add LocO
12.0008 42 Load MQ Loc Bz
12.0009 18 Divide Loc Bi
12.0010 43 Store MQ 01.0000 Temporaiy
12.0011 42 Load MQ Loc 0
12.0012 18 Divide Loc Bi
12.0013 43 Store MQ 01.0001
12.0014 10 Clear add Loc 1
12.0015 30 Acc left 10 1 into overflow pos.
12.0016 14 Sub 01.0001
12.0017 33 Long right 10
12.0018 11 Add Loc 9999999999
12.0019 14 Sub 01.0000 1 - (B2/Bi)
12.0020 40 Store acc Loc Bi
12.0021 43 Store MQ Loc Bz
12.0022 01 Un jump 11.0000 Jump to multiply

16.2 An Interpretive Routine

Such a system would almost always be written into an interpret! ve
system. The three routines above would be simply the working
sections of such a routine. Without writing the detailed code, which
would not be too different from the one in the last chapter, we may
describe a typical double precision routine.

All data addresses refer to the first of two consecutive locations.
The more significant ten digits are in the location specified by the
address; the less significant ten in the following location. Addresses
in the interpretive system are three digits only. The instructions are
“three-address,” i.e., there are three locations in memory specified
in each instruction. Each instruction is made up of

operation ABC

196 DIGITAL COMPUTER PROGRAMMING

(The fact that this interpretive system is three-address is not
necessarily typical.)

There might be eight operations:

CODE OPERATION

1 Add
2 Subtract
3 Multiply
4 Divide
5 Plus jump
6 Zero jump
7 Shift right
8 Shift left

FUNCTION

C'(A)+C(B)->C'(C)
C(A) - 0(B)-*0(0
C(A)-C(B)->C(C)
C(A) -J- 0(B)->C(C')
If C(A) > 0, take next instruction from C
If C(A) = 0, take next instruction from C
Shift C(A) C places to right and place result in B
Shift C(A) C places to left and place result in B

A few notes are in order. 0(A) + C(B) —>C(C) means that the
number specified by the first address (A) is added to the number
specified by the second address (B) and the result is placed in loca­
tion C. The jumps examine the number at A and take the next
(interpretive) instruction from C, not contents of C. In other words,
C is the usual address of a one-address jump instruction. The shifts
operate on the C (A) and place the shifted number in B; the number
of shifts is specified by C. A and B can of course be the same. If
C is zero, the instruction simply moves a number from one location
to another.

These instructions are the same total length as a regular TYDAC
instruction, but they do require three addresses and a different format.
The interpretive routine would not be especially complicated.

This program is fairly representative. It does depend to a certain
extent on the particular features of a machine, such as addition
with the overflow position and a conditional jump to test the sign of
the MQ.

Exercises

2

1. Using the interpretive system of Section 16.2, write a program to
evaluate

a + Vl + ®2y =-----------------

All numbers are double length. Assume locations for these and any other
needed constants. The heart of the problem is, of course, writing the
double precision square root program.

2. Write the interpretive part of the system of Section 16.2.

197DOUBLE PRECISION ARITHMETIC

3. Using the series for (x) mentioned in Section 16.0 and the interpre­
tive system of Section 16.2, write a program to evaluate the series. Estimate
the significance lost in calculating Jj/100) due to subtraction of large,
nearly equal numbers.

4. Write the approximation formulas and logic for a triple precision
program. If desired, write the triple precision program also, either as
subroutines or as an interpretive program.

17 MISCELLANEOUS PROGRAMMING

TECHNIQUES

17.0 Introduction
This chapter is a collection of various methods in programming

and coding which do not fall logically into other chapters. The items
are all fairly common problems in computing. Although the ideas
presented are not complex, they do represent a considerable amount
of effort to a person who may have to rediscover them.

17.1 Using a Code Number to Pick One of n Alternatives
It is not too uncommon to find situations where there are several

alternative paths at a given point in a problem, of which one must
be chosen on the basis of some number in memory. An example
occurred in Chapter 15 in the complex arithmetic interpretive routine,
where one of thirteen subroutines had to be chosen on the basis of
a code number between zero and twelve. Another might be a choice
of several computational procedures to be made on the basis of which
of several intervals brackets a number. Another might be a choice
of where to store a tally, depending on the size of a number.

All of these come under the general heading of branches or forks.
In terms of flow charts, the situation is that we have some type of
comparison block, out of which proceed two or more arrows for the
n alternatives. Several techniques are available in this area, which
will be illustrated by examples. The method used with each example
is not meant to be the only applicable method, or even the best one.
The choice of a method must, as usual, be based on the economic
balance of computer memory space, computer time and cost, and
programming time and cost.

FUNCTIONAL RELATIONSHIP BETWEEN CODE NUMBER AND ADDRESS
About the simplest case is a set of alternatives which can be

related to the controlling code number by a simple formula. An
example occurred in Chapter 5 on address computation. Suppose

198

MISCELLANEOUS PROGRAMMING TECHNIQUES 199

that one of ten constants stored in 02.0000 through 02.0009 must be
placed in 01.0010, depending on whether the code number in 01.0005
is 0 through 9. This is simplicity itself, since the functional relation­
ship is simply: address of clear add instruction = 02.0000 + contents
of 01.0005.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS
10.0000 10 Clear add 01.0005
10.0001 11 Add 03.0000
10.0002 41 Store address 10.0003
10.0003 10 Clear add . [00.0000]
10.0004 40 Store acc 01.0010

where 03.0000 contains

00 Halt-jump 02.0000

Many applications of this technique apply where the functional
relationship is more complicated. The primary task is recognizing
and defining the relationship.

ZERO-JUMP TESTING OF A CODE NUMBER
Take the situation where a jump must be made to one of four

sections of a program, starting at 11.0000,12.0000,13.0000, or 14.0000,
depending on whether a code number in 01.0000 is 4, 5, 6, or 7
respectively. The starting points are not separated by equal amounts,
so there is no possible formula defining the jump address. For no
more than this many possibilities, the shortest method is to make a
zero-jump test of the size of the code number:

Contents of 02.0002 = 4 with same decimal point as code
Content of 02.0001 = 1 with same decimal point as code

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS

10.0000 10 Clear add 01.0000
10.0001 14 Sub 02.0002
10.0002 04 • Acc zero jump 11.0000
10.0003 14 . Sub 02.0001
10.0004 04 Acc zero jump 12.0000
10.0005 14 Sub 02.0001
10.0006 04 Acc zero jump 13.0000
10.0007 14 Sub 02.0001
10.0008 04 Acc zero jump 14.0000

200 DIGITAL COMPUTER PROGRAMMING

JUMP TABLE
If the list of possibilities in the above is much longer, the jump

table method of Chapter 15 is shorter in space and certainly in time.
Since such a scheme typically appears in the heart of an interpretive
system which is used a great many times in one problem, time savings
of a few milliseconds can become very important.

The idea is simply to synthesize a functional relationship by
setting up a table of jumps to the appropriate sections. There will
still be no equal amounts between the starting locations of the various
sections, but there will be a simple system to the locations of the
jumps in the jump table. The code on page 183 is an adequate
example of this technique.

TABLE LOOK-UP WITH MORE COMPLICATED CODE
These methods are satisfactory if the code is a simple integer.

Suppose now that on the basis of a fractional number in 01.0000 we
have to make the following choice:

IF THE NUMBER IS BETWEEN:

0.000 and 0.175
0.175 and 0.347
0.347 and 0.689
0.689 and 0.900
0.900 and 0.999

jump to:
22.0000
23.0000
24.0000
25.0000
26.0000

This is not in the least farfetched. An immediate example that comes
to mind is the determination of step rates in a pension calculation.
On at least one machine, the IBM 650, such a problem is no problem
at all. The table look-up feature allows us to store two tables in
memory. The code number is placed in one of the arithmetic
registers and a table look-up instruction given. The machine auto­
matically searches through the table of arguments until it finds an
argument from the table which is equal to or larger than the given
code (argument). The address of this location is placed in another
of the arithmetic registers. Knowing the relative locations of the
two tables (arguments and functions), the address of the correct
function can easily be computed. The same problem may also be
handled by the following method.

STRAIGHT SEARCH WITH MORE COMPLICATED CODE
When table look-up is not available, other techniques may be used.

The most straightforward is to test the code size by subtraction and
plus jumps. For instance, with the above example:

: I I • I
MISCELLANEOUS PROGRAMMING TECHNIQUES 201

LOCATION
OPERATION

CODE
OPERATION

ABBREVIATION ADDRESS REMARKS

10.0001 10 Clear add Loc 0.175 > i i. I
10.0002 14 Sub 01.0000 Code ' iji'.l
10.0003 03 Acc plus jump 22.0000 'll!
10.0004 10 Clear add Loc 0.347 i i

10.0005 14 Sub 01.0000 Code
10.0006 03 Acc plus jump 23.0000 ; I • i
10.0007 10 Clear add Loc 0.689 | I 1
10.0008 14 Bub 01.0000 Code
10.0009 03 Acc plus jump 24.0000 1 i

10.0010 10 Clear add Loc 0.900 j; l

10.0011 14 Sub 01.0000 Code
10.0012 03 Acc plus jump 25.0000 i i
10.0013 01 Un jump 26.0000 a H

This last assumes that the number is less than 1.0000, and therefore
if not less than 0.900 it must be between 0.900 and 0.999.

A few instructions may be saved in such a program by omitting
all but the first Clear add and adding in only the differences between
adjacent table values:

10.0001 10 Clear add Loc 0.175 S ’}
10.0002 14 Sub 01.0000 Code
10.0003 03 Acc plus jump 22.0000 B ; f-
10.0004 11 Add Loc 0.172 0.347 — 0.175
10.0005 03 Acc plus jump 23.0000
10.0006 11 Add Loc 0.342 0.689 — 0.347
10.0007 03 Acc plus jump 24.0000
10.0008 11 Add Loc 0.211 0.900 - 0.689
10.0009 03 Acc plus jump 25.0000
10.0010 01 Un jump 26.0000

BINARY SEARCH
The above is satisfactory until the table gets long and we realize

that if the code happens to lie near the high end of the table, we
shall spend considerable time looking in the wrong place. The next
method continually splits the table in half and decides which of
these halves it should look in next. This can never require more
than log2 n tests, where n is the next power of 2 larger than the
number of items in the table. Thus for a table with fifty items
we never have to make more than six tests, where by the previous
method .we would expect to average twenty-five. The larger the
table, the more attractive this becomes, obviously.

The actual coding of the method is a bit more complicated, how­
ever. For concreteness, suppose we have a table like that on

202 DIGITAL COMPUTER PROGRAMMING

page 200, except that there are sixty-five entries (64 intervals), in
ascending order in 20.0000 through 20.0064. A code which is known
to be within the range of the table is stored in 21.0000. The binary
search requires us to determine whether the code is larger or smaller
than the number in 20.0032. If smaller, then we wish to know
whether it is larger or smaller than the number in 20.0016; if larger,
whether it is larger or smaller than the number in 20.0048, etc. This
can be done with a loop but perhaps it will be simpler to follow if
we write it out in straight-line fashion.

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS
10.0000 13 Clear sub 20.0032
10.0001 11 Add 21.0000
10.0002 33 Long right 00.0000
10.0003 10 Clear add 02.0002 Loc 16
10.0004 32 Long left 00.0000
10.0005 11 Add 10.0000
10.0006 41 Store address 10.0007
10.0007 13 Clear sub (0000]
10.0008 11 Add 21.0000
10.0009 33 Long right 00.0000
10.0010 10 Clear add 02.0003 Loc 8
10.0011 32 Long left 00.0000
10.0012 11 Add 10.0007
10.0013 41 Store address 10.0014
10.0014 13 Clear sub [0000]
10.0015 11 Add 21.0000
10.0016 33 Long right 00.0000
10.0017 10 Clear add 02.0004 Loc 4
10.0018 32 Long left 00.0000
10.0019 11 Add 10.0014
10.0020 41 Store address 10.0021
10.0021 13 Clear sub [0000]
10.0022 11 Add 21.0000
10.0023 33 Long right 00.0000
10.0024 10 Clear add 02.0005 Loc 2
10.0025 32 Long left 00.0000
10.0026 11 Add 10.0021
10.0027 41 Store address 10.0028
10.0028 13 Clear sub [0000]
10.0029 11 Add 21.0000
10.0030 33 Long right 00.0000
10.0031 10 Clear add 02.0006 Loc 1
10.0032 32 Long left 00.0000
10.0033 11 Add 10.0028
10.0034 41 Store address 10.0035

(.Continued on next page)

MISCELLANEOUS PROGRAMMING TECHNIQUES 203

10.0035 10 Clear add [0000]
10.0036 14 Sub 21.0000
10.0037 33 Long right 00.0000
10.0038 10 Clear add 10.0035
10.0039 05 MQ sign jump 10.0041
10.0040 11 Add 02.0001 Loc 1

The address of the table value just larger than the code is now
in the address part of the accumulator. Note that the long right
and left shifts are simply for the purpose of attaching a sign to a
number. The address of zero means that no shift takes place—only
the sign changes. This is an illustration of the old saying about
skinning cats: the obvious way to do this job was with plus jumps,
but the program would have been five steps longer. Note also that
this program is self-initializing. The address of the first instruction
is never changed, and all of the computed addresses “bootstrap”
from that one. This actually would not be so hard to work into a
loop, particularly with indexing to get the 16, 8, 4, 2, and 1, but it
would be a little hard to follow.

DECISION ON BASIS OF A MORE COMPLEX FUNCTION OF CODE
Sometimes a functional relationship can be established which is a

bit more cumbersome than the examples above, but which is still
worth the trouble. Suppose for an example that one of the answers
in a Monte Carlo calculation is the cosine of an angle. Since in
this type of problem there may be thousands or even millions of
individual cases, we need a tabulation of how many of the cosines
fall into the range 0.000-0.025, how many fall in the range 0.025-
0.050, etc., up to 0.975-1.000. Suppose that the tally of the number
of cosines falling into the first range is stored in 15.0000, the tally
of the number falling into the second range is stored in 15.0001, etc.
What sort of a functional relationship can be set up here? Consider
the formula:

Tally address = 15.0000 + integral part of: (40)(cosine)

If the cosine is less than 0.025, 40 times it will be less than one and
the integral part of the product will be zero. If the cosine is equal
to or greater than 0.025 but less than 0.050, the integral part of the
product will be one, etc. So if the cosine is in the accumulator as
a fixed point fraction and we are required to add a tally of one in
the appropriate location, the following program will do the job:

204 DIGITAL COMPUTER PROGRAMMING

10.0000 33 Long right 00.0010 Into MQ
10.0001 16 Mult 02.0010 = Loc 40
10.0002 11 Add 03.0000 = Loc 15.0000
10.0003 41 Store address 10.0005
10.0004 10 Clear add 02.0001 Loc 1
10.0005 19 Add to mem [0000]

02,0010 is assumed to be the location of 40, stored as 000040.0000,
which will place the decimal point of the product between the sixth
and seventh position of the accumulator; in other words, the integral
part of the product will end up already in the address part of the

! accumulator.

17.2 Alternators
Sometimes it is necessary to carry out an operation only every

other time through a section of the program. It is possible to test
a counter for evenness or count to two in a simple loop, but there
is a trick which is so simple as to be almost elegant. Suppose 16.0000
contains a +1 at the start of the program. The second, fourth, sixth,
etc., times through, we are required to jump to 32.0000; the other

Continuation

times to continue in sequence. This program does the job

i 13 Clear sub 16.0000 +1 to start
40 Store acc 16.0000
03 Acc plus jump 32.0000

The first time through, the Clear subtract of the positive number
will give a negative number in the accumulator at the third step.
Next time, Clear subtract of what is now a negative number leaves
a positive number there and the plus jump is taken. .

17.3 Floating to Fixed Point Conversion
Sometimes it is necessary to convert a number from floating form

to fixed. For instance, it may be more convenient to enter all num­
bers in a calculation in floating point form, either for uniformity in
filling out data sheets or because of the requirements of the loading
program which must be used. But if one of the input numbers is
actually a code number which must be used in address computation,
usually the form must be changed.

In some computers there are special-purpose instructions which
make this very simple. We have not assumed any such instruction
in TYDAC, and it may be instructive to see how it could be done

MISCELLANEOUS PROGRAMMING TECHNIQUES 205

by programming. For concreteness, suppose the code number is
actually an integer. If it is between 0 and 9, its form in memory
will be 51.X000 0000. If it is between 10 and 99, its form will be
52.XX00. 0000. If it is between 10,000,000 and 99,999,999 its form
will be 58.XXXXXXXX. This last is not likely, to say the least,
but if it should happen, we would need only to delete the exponent
to have the number already in fixed point form with the units digit
in the units position in a word. This suggests that to do the con­
version, we need to shift the fractional part to the right a number
of. places equal to the difference between 58 and the number’s
exponent. A program like the following would do the trick:

OPERATION OPERATION
LOCATION CODE ABBREVIATION ADDRESS REMARKS

10.0000 10 Clear add Loc 61 0000 0000
10.0001 15 Sub abs Loc code
10.0002 31 Acc right 00.0004 Into address
10.0003 41 Store address . 10.0006 part
10.0004 10 Clear add Loc code
10.0005 30 Acc left . 00.0003 To delete
10.0006 31 Acc right [0000] exponent

The fixed point integer is now in the accumulator with its units
digit in the last position of the accumulator. The exponent of the
code was subtracted from 61 rather than 58 to compensate for the
left shift of 3 which was necessary to delete the exponent. Note
also that, as written, the conversion will work whether the code is
positive or negative.

The converse problem of converting a fixed point integer to floating
point form is handled quite simply by the feature of the built-in
floating point addition which shifts the fractional part of the sum
left, if it has leading zeros, after the addition. The only point to
watch is the possibility of a negative code.

10.0000 10 Clear add Loc 58 0000 0000
10.0001 12 Add abs Loc code
10.0002 70 Fl add Loc 58 0000 0000
10.0003 42 Load MQ Loc code
10.0004 32 Long left 00.0000

The first two steps convert the code number into an unnormalized
floating point form. The third does nothing but normalize it, i.e.,
it brings the first nonzero digit into position three of the accumulator.
The last two instructions put the sign back if it was negative.

206 DIGITAL COMPUTER PROGRAMMING

If the number is not an integer, analysis can show in a similar
manner how many shifts are necessary.

17.4 Function Evaluation
In any scientific calculation there are almost always transcendental

functions to be evaluated. Several alternative methods are available.

TABLE LOOK-UP
In some applications and using certain equipment, the best way

may be to store a table of values of the function at certain values of
the argument—which is also in memory. Usually interpolation is
used, either linear or a higher order formula. It may be feasible to
store entries at closer spaced values of the argument where the
function is changing rapidly. The locating of the values in the table
which surround the argument of current interest may be done by any
of the methods of Section 17.1—which now appears in a more
general light.

POWER SERIES EVALUATION
Many functions of interest are defined quite simply by Maclaurin

or Taylor series. For any function which converges as one over n
factorial, this is about the best way in most calculators. In the
functions commonly encountered, this includes the exponential, sine,
cosine, hyperbolic sine and cosine, and some of the Bessel functions.
Other functions may be evaluated this way, but there is usually
a better way: logarithm and inverse trigonometric functions,
particularly.

For any of these, a reduction of the size of the argument is usually
worth the trouble because it speeds convergence and requires fewer
terms. Some of the many identities which may be used for the
purpose are:

sin x = sin (2/ctt + x)

ex =

tan-1 x = ir/2 — tan-1 —
x

tan-1 x = ir/6 — tan-1
1/V3 - a;
1 + x/a/3

log, (a-n”) = p + logn a

MISCELLANEOUS PROGRAMMING TECHNIQUES 207

There are at least three approaches to evaluating these series.
The first is to start at the “front” and compute until a term too small
to have any significance appears. This is a sort of running test of
convergence which guarantees that no more terms will be computed
than are needed. On the other hand, the loops involve more opera­
tions than the next method. This method requires an estimate of
the maximum number of terms based on the maximum anticipated
size of the argument. The truncated series is factored:

, x . x2 x3 x4 xs x6
eS=1 + l! + 2! + 3!! + 4! + 5! + 6!

The factored series is then evaluated “from the inside out,” which
is also called nesting.

If this method is used on a series which converges as 1/n, such
as inverse tangent, the factored form is:

x3 xs x7
tan-1 x = x- ~ + — - —

o O 7

= x[l - a:2[i - x2[l - a*™

There are many such factorizations, which may be discovered by a
little experimentation.

The third approach is a variant of either of these. It is the
question of whether to obtain the integers needed in any of these
approaches by computing them in the loop or by storing them. Of
course, storing costs space, but it can save three or more steps each
time through if indexing is available. If not, there is little gain in
storing the integers.

Often these series can be made to do double duty. By changing
all the signs to plus in the sine series, we get the hyperbolic sine.
By dividing the argument by 2 and making a minor change in the
form of the series, the sine becomes a Bessel function. Sometimes it
is more convenient to program the change in the series than to write
out both forms.

CONTINUED FRACTIONS
An expession which for many functions converges faster and over

a wider interval than does the continued product or series above

208 DIGITAL COMPUTER PROGRAMMING

is the continued fraction. This technique is fully discussed in
reference 20;* an example may be given to illustrate the form.

, x
tan-1 x ----------- z-------------------------

+ 7 ! (fa)a

etc.

Only ten terms are required to get tan-1® to eight places for
x between 0 and 1. Several hundred terms of the power series
would be required to get the same accuracy.

RATIONAL APPROXIMATION
It is possible to find reasonably short rational algebraic expressions

which will represent a function to some degree of accuracy over a
certain range of the argument. For instance,

tan-1 x = 0.9999,7726® - 0.3326,2347®3
+ 0.1935,4346®5 - 0.1164,3287®7
+ 0.0526,5332®9 - 0.0117,2120®“

is good to six decimals for ® between — 1 and 4-l.f This is, of
course, enormously shorter than the power series, and about a tossup
with the continued fraction.

♦As a small example of the technique, we may note the derivation of the con­
tinued fraction for V2.

\/2 = 1 + V2 - 1
= 1 + (y/2 - 1)(V2 + 1)/(V2 + 1)
= 1 + (2 - 1)/(V^ + 1)
= 14-1/(V2 + 1)

2 + vm
1

t From Approximations for Digital Computers, Cecil Hastings, RAND Cor­
poration, Santa Monica, Calif., 1955. This book describes the methods, of
finding rational approximations to functions, and contains a valuable collection
of many functions which have already been approximated.

MISCELLANEOUS PROGRAMMING TECHNIQUES 209

Depending on the difficulty of evaluating other formulas for the
same function, and particularly on memory restrictions, rational
approximations may be very attractive. It seems to most of us to
be no easy task to obtain the coefficients, but fortunately much of
this has already been done.

NEWTON’S METHOD
Again depending on the relative case of evaluating certain forms,

it may be desirable to evaluate some functions by Newton’s method.
For instance, a logarithm can be calculated by repeated application
of the formula:

, a — ex<
xi+i = Xi 4------ -—

e*
xn = log. a

Since an exponential is often considerably easier to evaluate than a
logarithm, this may be the best way out in some situations. It
obviously is most effective when the inverse of the desired function
is very much easier to calculate than the function itself.

. Exercises

1. Write a subroutine to make a binary search of a table in memory which
is in ascending order. The calling sequence is:

Set ind jump Loc program, 1
Halt-jump Loc given x
Halt-jump IA
Halt-jump FA

The table starts at IA (initial address) and ends at FA (final address).
The address of the table value just larger than the given x should be left in
the address part of the accumulator. The table values are all positive and
distinct, but nothing is known about the size of the table. It may be a few
words long or a few hundred. Note that the table may have a number of
entries which is not simply related to a power of 2. This must be written as
a loop, and a thorough flow chart will be necessary.

2. A fraction x in location 500 may be between —1 and 4-1. If it is:
— 1.0 < x < —0.9, tally 1 in 600
—0.9 < x < —0.8, tally 1 in 601
—0.8 < x < —0.7, tally 1 in 602

4-0.9 < x < 1.0, tally 1 in ?

210 DIGITAL COMPUTER PROGRAMMING

3. Devise a three-way "alternator” which will jump to 1800 the third,
sixth, ninth, etc., times through the program but will continue in sequence
otherwise.

4. Find a factorization and write a loop to evaluate:
—3. X , X X ,8^® = ®-- + ---+•••

In r (r D <« “ 1)2 F " 1)3 <« “ 1)4 1
In® = (® - 1)------- - ---- +----- - --------------- ---- + •••

where (0 < x < 2)
. , , x3 , 1-3®5 , 1-3-5®7 ,sin is = x + —+

TM._i (x/2)2 , (®/2)* (®/2)6
J0\.x) — 1 • 12.22 ^2.22.32 "r ’ “

5. Write a loop to evaluate the continued fraction expansion for tan-1 x
given in the text.

6. Develop a formula and write a program to evaluate sin-1 x by Newton’s
method.

1 8 AUTOMATIC CODING

18.0 Introduction
In most scientific computing, the personnel costs are roughly equal

to the machine costs. As another generalization we may say that
half the computer time is spent in checkout, the other half in actual
production running to get answers. These statements are subject to
many qualifications, but it is probably safe to say that more of the
cost of scientific computing comes before the start of production
than after.

Since this is true, it seems reasonable to try to find ways of reducing
the effort of problem preparation and checkout. We have discussed
at some length the checkout problem, and how special-purpose pro­
grams can be used to assist in the process. The intention of this
chapter’s subject matter is similar: to develop ways of making the
machine do as much as possible of the routine work of coding, which
is what machines should be doing anyway.

There are various definitions of automatic coding. Under the
broadest definition, automatic coding is any technique which makes
coding easier or faster. Under a more restrictive definition, auto­
matic coding is a process whereby instructions to the machine are
written in a “language” which is somewhat like the working language
of the user, such as mathematics or ordinary English. This
“language” may be nothing like the machine’s instructions, and the
computer has to be programmed to make the translation. In between
these two definitions are tool programs which have the broad re­
quirement that the instructions have at least a vague resemblance
to machine instructions, but which will do considerably more than
simply translate to actual machine language from a notation slightly
more convenient for the coder.

18.1 Coding Aids
Under the heading of techniques which are of assistance in writing

code are included some of the techniques already discussed. For
211

212 DIGITAL COMPUTER PROGRAMMING

instance, any interpretive system is in a sense automatic coding.
After all, by simply writing one pseudo instruction, the machine is
directed to carry out many actual instructions, and certainly the task
of coding has been simplified—but that hardly constitutes automatic
coding. Some interpretive systems are designed to do much more
per interpretive instruction than the example in Chapter 15. It is
fairly common to~find interpretive systems which do some combina­
tion of the following:

1. “Change” a one-address machine to multiple address.
2. Provide floating point in a machine which does not have it

built in.
3. Provide indexing where it is not built in.
All of these make coding easier and shorter. Most such systems'

are considerably easier to learn than is actual machine language
coding.

A relatively minor technique which might be mentioned under this
heading is the fairly common practice of writing a two-or-three-letter
code instead of the actual numerical code. Rather than writing
10 Clear add, we might simply write CLA. This would serve as a
reminder of what the operation is, and later be translated, by the
computer, to the required 10.

Another technique in this category is the writing of data in a
convenient form. A floating decimal 2.0 in TYDAC eventually
appears as 5120000000 in memory. With suitable programs it is
possible to write numbers in ordinary form, including exponents if
desired.

2.0
-.0002

2, 3(=2-103) •
2000
2, -6(=2-10~6)

The use of relative addresses is sometimes included under the
heading of automatic coding. As applied to the form presented in
this text, this is stretching the definition slightly. As applied to the
next section it is perhaps appropriate.

18.2 Higher Level Assistance
The second general classification of automatic coding consists of

programs which do more than merely simplify the task, but which
require instructions somewhat like machine instructions. These

AUTOMATIC CODING . 213

include the more complete assembly programs, compilers, and
generators, or some combination of these.

The advanced-type assembly programs are, generally speaking,
“professionals’ ” programs. Once understood, they are very power­
ful in the hands of an experienced programmer, and produce fast­
running, efficient programs. On the other hand, to the completely
uninitiated, they can be fairly difficult to learn. •

All of these intermediate-type tools allow relative addresses. On
some, this means only that numerical addresses are written—but
these are not the actual locations which are eventually used. In
others, the system is along the lines of the relative addressing
described in Chapter 14, with occasionally a little more or less
flexibility. Sometimes a special code is used to indicate the type of
addresses. In the most flexible assemblies, a variable size alpha­
numeric address is used. For instance, acceptable addresses might
be A, HERE, PT/PS, ALPHA, TEMP, EQUAT, DATA, P2, T4,
14Q87, EQU14, etc. In addition, it might be allowable to write
symbols such as the above followed by a plus or minus sign and
an integer. For instance, if TEMP is the symbol for the start of a
region of temporary storage, addresses for the following locations
could be written TEMP + 1, TEMP + 2, TEMP + 3, etc. On some
systems it is possible to refer to an instruction shortly before or
after the current location by some such symbol as * + 2 or *—4.
That is, a sequence might read:

Clear add LOCN
Sub LOC2
Store address * + 1
Clear add []

The address of the third instruction simply means that the address
is to be stored in the next instruction.

In most of these systems, little need be done to establish the
meaning of the symbols. Often it is necessary only that every symbol
appear as the location part of some instruction. It is usually possible,
if desired, to specify the absolute equivalent of any symbol. In
almost all of these assembly programs the operation code is written
as a mnemonic code which is interpreted and translated by the
assembly program. .

A compiler is a program (often a part of an assembly program)
which can bring many instructions into the final program when
signaled by a single instruction in the original program. As an
example, there may be provision for a special pseudo instruction to

214 DIGITAL COMPUTER PROGRAMMING

the compiler which says in effect, “At this point bring the specified
subroutine into the final program, and consider this as the absolute
equivalent of the symbol used for this subroutine.” This implies that
at any point in the program where a subroutine is needed, the pro­
grammer must write a linkage: a Set index jump type, or whatever
is required in the particular machine. In the more sophisticated
compilers, the programmer need only write a pseudo instruction; the
compiler program brings in the required subroutine at some point
where space is available and sets up the necessary linkage or return
address. The compiler will take into account the fact that there
may be many references to the same subroutine.

This difference in the operation of compilers points up another
fact. What the programmer writes may be translated into machine
instructions in a one-to-one fashion with a few exceptions, or it may
be translated in a one-to-many fashion. If the latter, the compiling
program is essentially interpreting the original program, but pro­
ducing a final program which is not interpretive when it finally runs
on the machine. See the comment in Section 15.3.

A generator is a program, working as part of an assembler or
compiler, which produces a subroutine from certain basic information.
For instance, if the programmer wants to print some answers, he
may be required to specify only where the numbers are in memory,
how many columns he wants, the spacing on the page, how many
decimals he wishes, and perhaps how he wants the rows identified.
This information can be condensed into two or three words in a
calling sequence or a pseudo instruction. Then the generator takes
over, decodes the information in the calling sequence and produces a
subroutine to print as specified. The required subroutine is entered
into the program at some convenient point. Actually, the same thing
may be done by a subroutine which is part of the operating program
and which is called each time it is needed. The latter is slower, but
takes less memory space.

18.3 True Automatic Coding
A few programs are available, and more are proposed, which accept

information in a form which looks nothing like machine instructions,
and translate it into machine instructions which will solve the
problem. There are several areas where such work is being done,
but it has seemed best not to describe any of the operating programs
in detail. So much is being done currently that any description
would be badly outdated before it could get into print. Some reports

AUTOMATIC CODING 215

available at the time of writing are listed in the bibliography. Some
of the features of these may be illustrated with examples.

The automatic coding systems directed toward scientific calcula­
tions accept problem statements in a form similar to ordinary mathe­
matical language. An example is given in the manual for FORTRAN
(Mathematical FORmula TRANslating System), developed largely
by John Backus and his associates at IBM. The problem is to find
the largest of a set of numbers entered from cards into the IBM 704,
and print the largest value.

The entire input to FORTRAN is:
DIMENSION A(999)
FREQUENCY 30(2,1,10), 5(100)
READ 1, N, (A(I), I - 1,N)

1 FORMAT (I3/(12F6.2))
BIGA = A(l)

5 DO 20 I = 2,N
30 IF (BIGA-A(I)) 10,20,20
10 BIGA — A(I)
20 CONTINUE

PRINT 2, N, BIGA
2 FORMAT (22H1 THE LARGEST OF THESE 13, 12H NUMBERS

IS F7.2)
STOP 77777

This would specify input, the loop which finds the largest value,
and output.

The automatic coding systems for commercial data processing are
aimed at accepting a problem statement in ordinary business English,
although in a necessarily restricted vocabulary. An example of input
to such a program might be:

TABULATE AMOUNT-OF-INSURANCE PREMIUM NUMBER-OF-
POLICIES BY POLICY-ACCOUNT BRANCH YEAR PLAN AGE.

This statement would be translated by a compiler-generator program
into a set of actual machine instructions for the particular computer
involved. This program is one of many produced under the direction
of Dr. Grace Hopper at the Remington Rand Univac Division of
Sperry Rand Corporation. This particular program, however, is prob­
ably not typical of the automatic programming systems which are
actually being used in the data-processing area; most programs in
actual use are somewhat less ambitious.

This has been a most sketchy description of some very interesting
work which may well bring about a revolution in programming.

216 DIGITAL COMPUTER PROGRAMMING

18.4 Algebra Programs
There have been a few experiments, to the time of writing, in the

area of entering algebraic symbols, performing algebraic operations,
and putting out algebraic symbols. No numerical constants need ap­
pear anywhere; the work is actually algebraic manipulation of literal
quantities. The best publicized effort in this area is the Analytical
Differentiator, developed by Harry Kahramanian. It accepts coded
information describing formulas in differential calculus, and computes
(again in literal symbols) the successive derivatives of the expres­
sions. Further work is being done in this area, as well as in other
branches of nonnumerical calculation.

18.5 Conclusion
The ultimate goal of automatic coding or programming is to free

the computer user completely from all the detailed work of coding.
It should eventually be possible, for many problems at least, to
write ordinary English or mathematics and have the machine prepare
its own detailed programs. Some problems will probably always be
outside the scope of such tools, and there will always be some rules
about how to present the English or mathematics to the machine,
but a great deal of the burden should some day be removed.

The reader need not feel, however, that this is an anticlimactic
ending to a book on the details of computer programming. It will
be some time before such programs are in general use. It may be
a very long time indeed before a completely versatile automatic
programming system is available for medium-sized machines like the
IBM 650 and the DATATRON. And remember that the writing of
the translation programs themselves requires very highly skilled
coding. The techniques presented in this text will be of value to
many computer users for some time to come.

NUMERICAL OPERATION CODES FOR TYDAC

INSTRUCTION
TYPE CODE ABBREVIATION OPERATION

00
01
02
03

Halt-jump
Un jump
Ov jump
Acc plus jump

Halt and jump
Unconditional jump
Overflow jump
Accumulator plus jump

JUMP 04
05
06
07

Acc zero jump
MQ sign jump
Break jump
Switch jump

Accumulator zero jump
Multiplier-quotient sign jump
Break point jump
Switch jump

ARITHMETIC

10
11
12
13
14
15
16
17
18
19

Clear add
Add
Add abs
Clear sub
Sub
Sub abs
Mult
Mult round
Divide
Add to mem

Clear and add
Add
Add absolute value
Clear and subtract
Subtract
Subtract absolute value
Multiply
Multiply and round
Divide
Add to memory

SHIFT

30
31
32
33

Acc left
Acc right
Long left
Long right

Accumulator left shift
Accumulator right shift
Long left shift
Long right shift

ROUND, STORE,
MQ, TRANSFER

35
40
41
42
43
44

Round
Store acc
Store address
Load MQ
Store MQ
Block tr

Round
Store accumulator
Store address
Load multiplier-quotient
Store multiplier-quotient
Block transfer

INDEX

50
51
52
53
54
55
56
57
58

Mem to ind
Acc to ind
Ind to mem
Ind to acc
Raise ind
Lower ind
Zero ind jump
Eq ind jump
Set ind jump

Load index from memory
Load index from accumulator
Store index in memory
Store index in accumulator
Raise index
Lower index
Zero index jump
Equal index jump
Set index and jump

INPUT, OUTPUT

60
61
62
63
64

Select
Read
Write
Rewind
Write mark

Select
Read
Write
Rewind tape
Write tape mark

FLOATING POINT

70
71
72
73

Fl add
Fl sub
Fl mult
Fl div

Floating add
Floating subtract
Floating multiply
Floating divide

218

Appendix

1 SUMMARY OF TYDAC INSTRUCTIONS

The first line of the description of each instruction consists of the
full name, the abbreviation which is used in the text, an A to
.signify the address, an I if an index register may be specified, a B
if the last four digits are used for some other purpose than to
specify an index register, and the numerical operation code of the
instruction. The operation codes were chosen arbitrarily and have
no significance in themselves. The term effective address (for which
the symbol E is used) means the address A plus the contents of the
index register I. If no index register is specified, then the terms
address and effective address are equivalent.

OPERATION ABBREVIATION CODE

Halt and jump Halt-jump A 00

The machine stops. When the start button on the console is pressed
the next operation is taken from location A.

. Unconditional jump Un jump A, I 01

The next instruction is taken from location E, regardless of where
the current instruction is located.

Overflow jump Ov jump A, I 02

If the overflow position contains any digit but zero, the next in­
struction is taken from location E; if it is a zero, the next instruction
is taken in normal sequence.

Accumulator plus jump Acc plus jump A, I 03

If the sign of the accumulator is plus, the next instruction is taken
from location E; if it is negative, the next instruction is taken in
normal sequence. Zero is always positive in TYDAC.

219

220 DIGITAL COMPUTER PROGRAMMING

Accumulator zero jump Acc zero jump A, I 04
If the accumulator contains all zeros, including the overflow posi­

tion,, the next instruction'is taken from location E; otherwise, in
normal sequence.

Multiplier-quotient sign jump MQ sign jump A, I 05

If the sign of the MQ is plus, the next instruction is taken from
location E; if negative, in normal sequence.

Break point jump Break jump A, B 06
A “break point switch” on the console has ten positions, 0 through 9.

One of the nine positions 0 through 9 may be specified by B. If the
switch is set to the position specified by B, this instruction will cause
the machine to stop. When the start button on the console is pressed,
the next instruction is taken from location A. If the switch is not
set to position B, the next instruction is taken in normal sequence.

Switch jump Switch jump A, B 07

There are ten switches on the console, numbered 0 through 9.
If the switch specified by B is down, the next instruction is taken
from location A. If the switch is up, the next instruction is taken
in normal sequence. This is the same as Break point jump except
that the machine does not stop before jumping, and more than one
switch may be down at one time.

Clear and add Clear add A, I 10
The word at the effective address replaces the contents of the

accumulator. The overflow position is cleared; the word at the
effective address is unchanged.

Add Add A, I 11

The word at the effective address is added algebraically to the
contents of the accumulator.. Overflow is possible. The word at
the effective address is unchanged.

Add absolute value Add abs A, I 12

The word at the effective address is treated as a positive number
and added algebraically to the contents of the accumulator. Over­
flow is possible. The word at the effective address is unchanged.

Clear and subtract Clear sub A, I 13

The negative of the word at the effective address replaces the

APPENDIX 1 221

contents of the accumulator. The word at the effective address is
unchanged.

Subtract Sub A, I 14
The word at the effective address is subtracted algebraically from

the contents of the accumulator. Overflow is possible. The word
at the effective address is unchanged.

Subtract absolute value Sub abs A, I 15
The word at the effective address is treated as a positive number

and subtracted algebraically from the contents of the accumulator.
Overflow is possible. The word at the effective address is unchanged.

Multiply Mult A, I 16
The accumulator is cleared. The word at the effective address

is multiplied algebraically by the contents of the MQ. The product
is formed in the accumulator and MQ, the more significant digits
being in the accumulator. The accumulator and MQ both have the
correct sign, i.e., positive if both factors were of same sign, negative
otherwise. The original contents of the MQ are lost in the process
of multiplication. Overflow is not possible. The word at the effective
address is unchanged.

Multiply and round Mult round A, I 17
Same as Multiply except that a ten-digit rounded product is formed

in the accumulator. Rounding is accomplished by adding (sub­
tracting if accumulator is negative) one to the last position of the
accumulator if the first digit in the MQ is five or greater.

Divide Divide A, I 18

The contents of the accumulator and MQ, taken as one twenty­
digit register, are divided by the word at the effective address. The
quotient appears in the MQ with correct algebraic sign; the re­
mainder appears in the accumulator with the sign of the dividend.
Division will take place only if the divisor is larger in absolute value
than the contents of the accumulator; otherwise, the MQ is cleared,
the division is not attempted, and the machine stops with the divide
stop light on.

Add to memory Add to mem A, I 19.

The number at the effective address is added to the accumulator
and the sum stored at the effective address. Accumulator overflow
is possible; if it occurs, the .“sum” in memory is incorrect.

222 DIGITAL COMPUTER PROGRAMMING

Accumulator left shift Acc left A, I 30

The contents of the accumulator, including the overflow position,
are shifted left E places. Digits shifted out of the overflow position
are lost. The accumulator sign is unchanged. Zeros are entered at
the right as the number is shifted. E may not exceed 99.

Accumulator right shift Acc right A, I 31

The contents of the accumulator, including the overflow position,
are shifted right E places. Digits shifted past the right end of
the accumulator are lost. Zeros are entered at the left. The accumu­
lator sign is unchanged. E may not exceed 99.

Long left shift Long left A, I 32

The contents of the accumulator and MQ, taken as one twenty-one­
digit register, are shifted left E places. The sign of the accumulator
is made the same as that of the MQ. Digits shifted out of the
first position of the MQ enter the last position of the accumulator.
Digits shifted out of the overflow position are lost. Zeros are
entered at the right. E may not exceed 99.

Long right shift Long right A, I 33

The contents of the accumulator and MQ, taken as one twenty-one­
digit register, are shifted E places to the right. The sign of the MQ
is made the same as that of the accumulator. Digits shifted out of
the last position of the accumulator enter the first position of the
MQ. Digits shifted out of the last position of the MQ are lost.
Zeros are entered at the left. E may not exceed 99.

Round Round 35

If the high order digit of the MQ is five or greater, one is added
to the last position of the accumulator; otherwise, nothing is done.
If the accumulator is negative, the one is subtracted instead of
added. No address is needed.

Store accumulator Store acc A, I 40

The contents of the accumulator, including the sign position, but
not including the overflow position, replace the word at the effective
address. The accumulator is unchanged, but whatever was at the
effective address is lost.

Store address Store address A, I 41

The address part (positions 3-6, counting from the left) of the

APPENDIX 1 223

accumulator replaces the corresponding positions of the word at the
effective address. The accumulator, as well as the other positions
of the word at the effective address, are unchanged. The sign of
the accumulator is immaterial.

Load multiplier-quotient Load MQ A, I 42
The word at the effective address replaces the contents of the

MQ. The word at the effective address is unchanged.
Store multiplier-quotient Store MQ A, I 43
The contents of the MQ, including sign, replace the word at the

effective address. What was at the effective address is lost.
Block transfer Block tr A, B 44
The eight words starting at A are transferred to the eight locations

starting at B. The accumulator and MQ are unchanged.
Load index from memory Mem to ind A, B 50

The number in the address part (positions 3-6) of the word at
A replaces the contents of index register B. The word at A is
unchanged.

Load index from accumulator Acc to ind A, B 51

The number in the address part (positions 3-6) of the accumulator
replaces the contents of index register B. The accumulator is un­
changed. The “address” A is not used on this instruction; any
number may be written in these positions.

Store index in memory Ind to mem A, B 52
The contents of index register B replace the address part (posi­

tions 3-6) of the word at A. The index register, the accumulator,
and the other positions of the word at A are unchanged.

Store index in accumulator Ind to acc A, B 53
The contents of index register B replace the address part (positions

3-6) of the accumulator. The index register and other positions of
the accumulator are unchanged. The address A is immaterial.

Raise index Raise ind A, B 54
The number A (not contents of A) is added to index register B.

For this purpose, the next number after 9999 is 0.
Lower index Lower ind A, B 55
The number A (not contents of A) is subtracted from index register

224 DIGITAL COMPUTER PROGRAMMING

B. If the result would normally be negative, the index register will
contain 9999 minus the difference, i.e., the ten’s complement.

Zero index jump Zero ind jump A, B 56

If index register B does not contain zero, the next instruction is
taken from location A; otherwise in normal sequence.

Equal index jump Equal ind jump A 57

If the two index registers do not contain' the same number, the
next instruction is taken from location A; otherwise in normal
sequence.

Set index and jump Set ind jump A, B 58

The contents of the location counter replace the contents of index
register B. The next instruction is taken from location A.

Select Select A 60

The input or output device designated by A is readied to transmit
information to or from high-speed memory. No information is
transferred by this instruction alone; the circuits are established and
the mechanical parts begin to move.

The designations are:
f

A INPUT-OUTPUT DEVICE

1 Card reader
2 Card punch
3 Typewriter

11 Tape unit 1
12 Tape unit 2
13 Tape unit 3
14 Tape unit 4

Note that A is not an “address” in the sense of specifying a location
in memory. Only one input-output device may be selected at one
time.

Read Read A, I 61

An eight-word block is brought into the eight locations beginning
at the effective address, from whichever device was specified by the
last Select operation. This is either: one IBM card, one eight­
word block from any tape unit, or eight words from the typewriter.
Whatever was at the locations specified is of course lost. .

The instruction following a read instruction is normally a jump.
This is automatically skipped unless (a) a tape mark is sensed on

APPENDIX 1 225

tape; or (b) no more cards are in the reader, or (c) there is blank
paper tape in the tape reader on the typewriter.

Write Write A, I 62

An eight-word block beginning at the effective address is transferred
to whichever output device was specified by the last select operation.
This is either: one IBM card punched; one eight-word block written
on any tape unit, or one line typed on the typewriter. The words
in memory are unaffected.

Rewind tape Rewind A 63

The tape specified by A (11, 12, 13, or 14) is rewound to the
beginning of the reel.

Write tape mark Write mark A 64
A symbol is written on the tape specified by A, to indicate that

no more information is to be written on the tape. The tape mark
is sensed by the tape unit and controls whether the instruction im­
mediately following a read instruction is executed.

Floating add Fl add A, I 70

The augend is assumed to be in the accumulator. The word at
the effective address is added algebraically to the augend in. the
accumulator. The word at the effective address is unchanged. The
MQ is used during the operation and any previous contents will be
destroyed. If the two numbers are equal in absolute value but of
opposite sign, the result will be all zeros—both exponent and frac­
tional part. If the result is larger in absolute value than 1050, the
machine will stop with the “exponent” light on and the arithmetic
registers will contain numbers which cannot be used meaningfully in
any further operations. The result is always in normalized form; i.e.,
the first digit of the fractional part is nonzero.

Floating subtract Fl sub A, I 71

Same as floating add except that the word at the effective address
is subtracted algebraically.

Floating multiply Fl mult A, I 72

The multiplier is assumed to be in the MQ. The word at the
effective address is multiplied algebraically by the word in the MQ.
The word at the effective address is unchanged. The product appears
in the accumulator; the multiplier (in the MQ) is lost in the opera­
tion. If either factor is zero, the result will be a floating point

226 DIGITAL COMPUTER PROGRAMMING

zero. If the result is outside the allowable exponent range (too large
or small), the machine will stop with the “exponent” light on and
the arithmetic registers will contain numbers which cannot be used
meaningfully in any further operations.

Floating divide Fl div A, I 73

The dividend is assumed to be in the accumulator, and is divided
algebraically by the word at the effective address. The word at the
effective address is unchanged. The quotient appears in the MQ;
the dividend in the accumulator is lost during the operation. If the
dividend is zero, the quotient will be zero, regardless of the size of
the divisor—which is the exception to the next statement. If the
result lies outside the allowable exponent range (too large or small),
the machine will stop with the “exponent” light on and the arithmetic
registers will contain numbers which cannot be used meaningfully
in any further operations. If division by zero is attempted, the
division will not be performed, the MQ will be cleared, and the
machine will stop with the divide stop light on.

Appendix

2 MINIMUM ACCESS PROGRAMMING

A2.0 Introduction
In any machine using a delay or recirculating-type memory, an

ordinary program wastes considerable time. A magnetic drum takes
a certain length of time to make a complete revolution. If the
particular address specified by an instruction is not just ready to go
under the reading head when it is called for, the arithmetic and
control circuits must simply wait for the drum to turn. If no efforts
are made to avoid this situation, the average wait will be half the
time required for one drum revolution. The same considerations
apply to a sonic or acoustic (mercury tank) memory, and to a
lumped-parameter delay-line memory.

From an idealistic viewpoint the solution is to use magnetic cores
and avoid the whole problem. Unfortunately, however, these are
more expensive than a drum memory' of the same size. Many medium­
sized machines use magnetic drums as main memory and will no
doubt continue to do so for many years to come. What can be done
to eliminate or reduce the lost time?

There are two methods at present, which will be described briefly.
Both are in the class of things which depend in large measure on
the details of particular computers. We can only outline the prin­
ciples, and observe that the individual manufacturers have published
methods for their equipment.

A2.1 Fast Access Loops
The first method to be described depends on the availability in

the computer of small sections of memory which have considerably
lower access time than the main memory. “Access time” is the time
required to get a number from memory into the arithmetic or control
circuits, after the control circuits have called for it.

In a mercury delay-line memory, a small part of the storage may
consist of tanks which are physically shorter than the main memory.

227

228 DIGITAL COMPUTER PROGRAMMING

The time required for a sound wave to travel from one end to the
other is shorter, of course, as is the average access time. In a mag­
netic drum, it is possible to place a reading head quite close to a
writing head, and arrange the associated circuitry so that informa­
tion read is returned back to the writing head. This is interrupted
only when information is being read into the loop. The effect is
to provide the equivalent of a much faster drum, with possibly one-
fifth the delay of the main drum. The high-speed section may
actually be a different type of memory, such as magnetic cores.

However the fast access loop may be built, it is used to speed up
operation by placing much-used parts of the program in it. There
are usually single instructions which transfer a block of instructions
from the main memory to the rapid access portion. Thus a subroutine
may be read over to the rapid access section just before it is executed.
The transfer takes time, but not nearly as long as the time which
would be wasted by waiting in main memory.

The high-speed loops may also be used to store certain constants
which are frequently used, but this requires more planning, along
the lines of the next section.

A2.2 Minimum Access Techniques
The second technique for reducing operating time in a delay-type

memory is not independent of the first, if both are available. It is
the technique of placing data and instructions, so far as possible, in

Figure 1. Schematic of the arrangement of information on a typical magnetic
drum.

the locations where there will be the least delay when they are
needed. This seems fairly obvious, but it turns out to be a bit of
work, and is often done only when the problem is fairly large.

To understand the principle of the method consider Figure 1,
showing an enlarged section of a magnetic drum. This schematic
of drum addresses shows that numbers are recorded on the drum in

APPENDIX 2 229

parallel “tracks.” Each track has a reading and a writing head.
Typically, there are twenty tracks on the drum, with fifty numbers
recorded in each track. The figure shows a small section of three
tracks. The first track starts at 0000 and runs through 0049; track
two runs from 0050 to 0099. Details of design can differ here, but
usually the timing is such that corresponding addresses in the twenty
tracks are all available for reading at the same time. That is, the
addresses 0013, 0063, 0113, 0163, etc., are exactly equivalent from
a timing standpoint.*

This is the first essential of minimum access programming. The
second is knowledge of the time required by each operation. (Time
is usually measured in something like “word times,” which is the
time required to execute one basic machine function.) Then, knowing
where the current instruction is located, and how much time will
elapse between reading the instruction off the drum and needing the
data specified by the address, we can plan the optimum location
for the data. If, in addition, the machine is built on the one-plus-
one address system, where the second address specifies the location
of the next instruction, we can calculate the time required by the
current instruction and plan the optimum location for the next
instruction also. “Planning the optimum location” means to calcu­
late the amount of turning of the drum until a number or instruction
is needed. Then one of the twenty equivalent drum addresses is
chosen for the data—an address which will appear under the reading
heads at just exactly the right time to require no waiting. The process
is the same for the next instruction unless the instructions are taken
sequentially. Of course, the data and instructions will be scrambled
all over memory and must be loaded accordingly. This confuses
the input problem somewhat.

There are other complications. Certain instructions require a
variable amount of time, depending on either the address or the size
of the data. A shift instruction takes more or less time, depending
on the number of shifts. In most decimal machines, the time for
multiplication or division depends on the particular digits of the
multiplier or quotient. This cannot in general be predicted, except
perhaps in making estimates that a certain multiplier will always

* On some drums used in big machines, the drum locations are not indi­
vidually addressable. However, a drum in such a machine is not used to store
instructions while they are being executed.'

The addresses in a track need not be located sequentially. It may facilitate
the minimum access problem to “interlace” the addresses, so that sequential
addresses are located at wider intervals around the drum. This may be done
whether the drum is used for main or auxiliary memory.

230 DIGITAL COMPUTER PROGRAMMING

have six leading zeros, and therefore the upper bound on the multipli­
cation time can be estimated. A conditional jump instruction often
cannot be made optimum with respect to both alternatives. The
jumps to subroutines, which have to be in fixed locations, cannot
usually be optimum. Certain much-used constants may be placed
in the drum in four or five places to reduce waiting for them, but
even then there will ordinarily be some delay.

This process can be tied in with the use of rapid access memory
if available. Sometimes this adds complications because there are
two things to worry about instead of one. On the other hand, the
use of rapid access loops alone may represent enough saving of time
by itself that optimum programming of the slow memory is ignored.

In any case, minimum access programming adds considerably to
the complexity of programming. It is used only where it holds
promise of enough saving of machine time to be worth the trouble.
Prime examples are any library program: floating decimal, function
evaluation, etc. In these cases, very great pains may be taken to
save time. As an example, an estimate may be made of the average
time in a multiplication or division so as to try to optimize the
program even in a part which is inherently unpredictable.

The ideal procedure is to design a program which translates a
program written sequentially (no attempt to optimize) into a mini­
mum access program. This is done as a preliminary step, and may
include some of the features of relative programming and an assembly
program.

Appendix

3 EXTERNALLY PROGRAMMED COMPUTERS

A3.0 Introduction
The early computers were all externally programmed machines.

From Babbage’s Analytical Engine to Mark I to the ENIAC to the
SSEC, “programming” was effected by external wiring or paper
tapes or cards. As mentioned previously, the biggest single advance in
computer design was the stored program principle, on which all large-
scale general-purpose machines are now based.

There is a point in the size spectrum, however, below which it is
not economical to build a stored program machine. There is a
definite need for machines with about a hundred words of data
storage and speeds between three and a hundred operations per
second, including data access. Several computers in this category
are very widely used; there are some few thousands of them in
existence.

These machines are built on three or four principles. One of these
is fairly unimportant now—the punched paper tape. It is used
only on some older machines, and as a strictly auxiliary control for
some of the smaller machines.

A3.1 Wired Program Computers
A number of the small machines are controlled by a removable

plugboard which contains many wires. The wires are flexible connec­
tors with metal tips which extend through to the back of the board
and touch spring contacts in the machine. The plugboards are
removable; there are ordinarily many of them with each machine,
one for each recurring problem.

Storage is much more limited than in the stored program machines,
for three reasons: (1) no instructions are stored in memory, (2)
ordinarily a single group of calculations is done for each card as the
card is read so that there is need for less storage, and (3) being in

231

232 DIGITAL COMPUTER PROGRAMMING

an in-between category, it is not feasible to use memories which
have a low cost-per-digit, so memory is quite expensive.

Basically, these machines carry out a group of arithmetic opera­
tions on each card. There may be ten or twenty or a hundred
arithmetic operations, which calculate a man’s net pay or a cosine.
With certain exceptions noted below, it is usual for the machine to
do about the same calculation on each card. The calculation is
completed in the time between reading successive cards. In most
machines, data are. read from one card at the same time the results
for the previous card are being punched. Answers thus are punched
back on the same card from which the data were read. There are
many exceptions, however.

A calculation is carried out by a series of steps, each of which is
set up by a few wires on the plugboard. A typical section of a
program might be:

1. Reset accumulator
2. Add
3. Subtract
4. Store and reset
5. Load MQ
6. Multiply
7. Round
8. Add
9. Store

Storage 6
Storage 8
Storage 10
Storage 4
Storage 5
Position 4
Storage 10
Storage 11

Position 5
Position 5

Each step would require from one to three wires. On the plugboard,
there are three or four holes corresponding to each step; wires are
run from these holes to other holes which control storage or shifting
or the arithmetic registers.

There may be from twenty to something over a hundred of these
steps. Two variations of this basic one-step-after-the-other scheme
are possible. First are the suppression tests. Details vary, but it
is usually possible to make a test for zero, plus, or minus. If the
test is satisfied, then a wire from a “suppression exit” to holes for
following steps will cause those steps to be suppressed, i.e., not
executed. By this means it is possible to set up two or more alterna­
tive programs, then choose which to execute by a suppression test.

The second variation is to repeat a basic set of steps, after making
some change in the numbers in storage. For instance, the square
root iteration can be set up very nicely on such a machine. A few
“initializing” steps at the start are suppressed on the repetition.
Repeating is stopped as soon as suppression tests show that the
process has converged.

APPENDIX 3 233

Comparing this with the stored program machines, we see that
“instructions” here consist of wires. These obviously cannot be
“modified.” “Loops” consist of repeating the entire program, and
suppressing unwanted sections. This almost precludes any extensive
loops-within-loops. Storage is very limited, so that scientific prob­
lems requiring extensive storage have to be set up with complicated
card-handling procedures. (Much very good work was done this
way, however, before the large machines were available.) And
finally, the number of steps is quite limited. If more steps are
required, intermediate answers must be punched out and the new
cards run through with a different board—which is obviously a
clumsy process. Today, most such machines are used in “commercial”
applications: payroll, utility billing, inventory records, etc.

A3.2 Card Programmed Calculators
In the broadest sense, a card programmed calculator is any card

machine which does a particular operation as called for by an
instruction card, and concurrently with card reading. This can in­
clude any small card machine. Several operations such as arithmetic
and elementary functions can be wired into a general-purpose control
panel; a control punch on each card specifies which operation to
perform on this card.

However, the name in just this form almost always implies a
combination of several pieces of IBM equipment. The name is
usually capitalized and usually abbreviated to CPC. While the in­
tention of this book has not been to describe existing equipment, this
particular machine is in such wide use that a page in this connection
would not be out of order.

The IBM CPC consists of four units:
1. A modified tabulator, which reads cards, prints answers, stores

seven or eight numbers, and performs much of the logic of decoding
the operation code and controlling the rest of the machine.

2. An electronic calculator unit which does practically all the
arithmetic (usually floating) and function evaluation. It has only
enough internal electronic storage for the manipulations required
in the floating point, etc., and just barely enough for that.

3. A card punch which can punch the results stored in the tabulator.
4. From one to five separate storage units, each capable of storing

sixteen numbers of ten digits each. These are universally called
iceboxes.

These are the basic components. Exactly how they function in a

I

234 DIGITAL COMPUTER PROGRAMMING

computing system depends entirely on how three plugboards are
wired. A great many different systems have been devised in the
time the CPC has been operating. The differences are largely matters
of varying needs in diverse applications.

A scientific CPC application is usually built around a three- or
four-address programming system. Each instruction card has
punched on it an operation and several addresses; the important
thing to remember is that the specified operation is carried out as the
card is read by the tabulator. Never are instructions stored in
memory as in stored program machines, except in a special case or
two which are not representative. This does mean that the machine
can operate no faster than cards can be read, but then such machines
are much cheaper and somewhat easier to program than stored
program machines.

The only logic possible is to conditionally switch over to another
set of instructions on the same cards. In other words, a certain
card may call for a test of the sign of the last result: if positive,
columns 21-30 may be read for instructions; if negative, columns
51-60 may be read. Often this means simply that under one of
the conditions some cards are simply skipped over, as with a stored
program jump instruction.' In the CPC, the big difference is that
we “skip over” by reading the cards anyway, at the usual speed,
without doing anything. This again illustrates the major advantage
of stored program computers.

This is not to say, however, that wired program and card pro­
grammed machines are on their way out. It simply means that if
the machine is big enough to support the expense of stored program
storage and control elements, then it should be stored program.
For many smaller applications the earlier machines are still more
economical; they are fast enough, and are very reliable. There are
literally thousands of these in operation and more are being built.

A3.3 Pinboard Machines
This last illustration is not too different from the wired program

machines described in Section A3.1. To the author’s knowledge,
only one machine is built on this idea, the Burroughs E101. Here,
a “step” consists of a line on a removable board. Rather than
inserting wires, however, it is only necessary to insert pins into
appropriate holes to call for the desired functions and storage. It
is capable of about the same amount of logical manipulation as the
typical wired program equipment, aided by some special operations.

APPENDIX 3 235

Speed is intermediate between the card programmed and wired pro­
gram machines. Floating decimal does not seem to be feasible,
although the way the machine is used, floating decimal is not really
needed. Numbers are entered into a keyboard which looks like
an ordinary desk calculator. Answers print on typewriter-type
carriage. Magnetic tapes are optional. The pinboard machine is
actually something of a cross between a very large desk calculator
and a medium-sized electronic calculator.

APPENDIX 4. OCTAL-DECIMAL INTEGER CONVERSION TABLE

0000 0000
to to

0777 0511
(Octal) (Decimal)

Courtesy Internation­
al Business Machines
Corporation

0 1 2 3 4 5 6 7

0000 0000 0001 0002 0003 0004 0005 0006 0007
0010 0008 0009 0010 0011 0012 0013 0014 0015
0020 0016 0017 0018 0019 0020 0021 0022 0023
0030 0024 0025 0026 0027 0028 0029 0030 0031
0040 0032 0033 0034 0035 0036 0037 0038 0039
0050 0040 0041 0042 0043 0044 0045 0046 0047
0060 0048 0049 0050 0051 0052 0053 0054 0055
0070 0056 0057 0058 0059 0060 0061 0062 0063

0100 0064 0065 0066 0067 0068 0069 0070 0071
0110 0072 0073 0074 0075 0076 0077 0078 0079
0120 0080 0081 0082 0083 0084 0085 0086 0087
0130 0088 0089 0090 0091 0092 0093 0094 0095
0140 0096 0097 0098 0099 0100 0101 0102 0103
0150 0104 0105 0106 0107 0108 0109 0110 0111
0160 0112 0113 0114 0115 0116 0117 0118 0119
0170 0120 0121 0122 0123 0124 0125 0126 0127

0200 0128 0129 0130 0131 0132 0133 0134 0135
0210 0136 0137 0138 0139 0140 0141 0142 0143
0220 0144 0145 0146 0147 0148 0149 0150 0151
0230 0152 0153 0154 0155 0156 0157 0158 0159
0240 0160 0161 0162 0163 0164 0165 0166 0167
0250 0168 0169 0170 0171 0172 0173 0174 0175
0260 0176 0177 0178 0179 0180 0181 0182 0183
0270 0184 0185 0186 0187 0188 0189 0190 0191

0300 0192 0193 0194 0195 0196 0197 0198 0199
0310 0200 0201 0202 0203 0204 0205 0206 0207
0320 0208 0209 0210 0211 0212 0213 0214 0215
0330 0216 0217 0218 0219 0220 0221 0222 0223
0340 0224 0225 0226 0227 0228 0229 0230 0231
0350 0232 0233 0234 0235 0236 0237 0238 0239
0360 0240 0241 0242 0243 0244 0245 0246 0247
0370 0248 0249 0250 0251 0252 0253 0254 0255

0 1 2 3 4 5 6 7

0400 0256 0257 0258 0259 0260 0261 0262 0263
0410 0264 0265 0266 0267 0268 0269 0270 0271
0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311
0470 0312 0313 0314 0315 0316 0317 0318 0319

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0350 0351
0540 0352 0353 0354 0355 0356 0357 0358 0359
0550 0360 0361 0362 0363 0364 0365 0366 0367
0560 0368 0369 0370 0371 0372 0373 0374 0375
0570 0376 0377 0378 0379 0380 0381 0382 0383

0600 0384 0385 0386 0387 0388 0389 0390 0391
0610 0392 0393 0394 0395 0396 0397 0398 0399
0620 0400 0401 0402 0403 0404 0405 0406 0407
0630 0408 0409 0410 0411 0412 0413 0414 0415
0640 0416 0417 0418 0419 0420 0421 0422 0423
0650 0424 0425 0426 0427 0428 0429 0430 0431
0660 0432 0433 0434 0435 0436 0437 0438 0439
0670 0440 0441 0442 0443 0444 0445 0446 0447

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463
0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479
0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495
0760 0496 0497 0498 0499 0500 0501 0502 0503
0770 0504 0505 0506 0507 0508 0509 0510 0511

236
DIG

ITA
L

CO
M

PUTER
PR

O
G

R
A

M
M

IN
G

1000
to

1777
(Octal)

0512
to

1023
(Decimal)

0 1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519
1010 0520 0521 0522 0523 0524 0525 0526 0527
1020 0528 0529 0530 0531 0532 0533 0534 0535
1030 0536 0537 0538 0539 0540 0541 0542 0543
1040 0544 0545 0546 0547 0548 0549 0550 0551
1050 0552 0553 0554 0555 0556 0557 0558 0559
1060 0560 0561 0562 0563 0564 0565 0566 0567
1070 0568 0569 0570 0571 0572 0573 0574 0575

1100 0576 0577 0578 0579 0580 0581 0582 0583
1110 0584 0585 0586 0587 0588 0589 0590 0591
1120 0592 0593 0594 0595 0596 0597 0598 0599
1130 0600 0601 0602 0603 0604 0605 0606 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 0616 0617 0618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 0630 0631
1170 0632 0633 0634 0635 0636 0637 0638 0639

1200 0640 0641 0642 0643 0644 0645 0646 0647
1210 0648 0649 0650 0651 0652 0653 0654 0655
1220 0656 0657 0658 0659 0660 0661 0662 0663
1230 0664 0665 0666 0667 0668 0669 0670 0671
1240 0672 0673 0674 0675 0676 0677 0678 0679
1250 0680 0681 0682 0683 0684 0685 0686 0687
1260 0688 0689 0690 0691 0692 0693 0694 0695
1270 0696 0697 0698 0699 0700 0701 0702 0703

1300 0704 0705 0706 0707 0708 0709 0710 0711
1310 0712 0713 0714 0715 0716 0717 0718 0719
1320 0720 0721 0722 0723 0724 0725 0726 0727
1330 072Q 0729 0730 0731 0732 0733 0734 0735
1340 0736 0737 0738 0739 0740 0741 0742 0743
1350 0744 0745 0746 0747 0748 0749 0750 0751
1360 0752 0753 0754 0755 0756 0757 0758 0759
1370 0760 0761 0762 0763 0764 0765 0766 0767

0 1 2 3 4 5 6 7

1400 0768 0769 0770 0771 0772 0773 0774 0775
1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807
1450 0808 0809 0810 0811 0812 0813 0814 0815
1460 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 0837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 0894 0895

1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935
1650 0936 0937 0938 0939 0940 0941 0942 0943
1660 0944 0945 0946 0947 0948 0949 0950 0951
1670 0952 0953 0954 0955 0956 0957 0958 0959

1700 0960 0961 0962 0963 0964 0965 0966 0967
1710 0968 0969 0970 0971 0972 0973 0974 0975
1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 1003 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

A
PPEN

D
IX 4

OCTAL-DECIMAL

01234567

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500
2110 1096 1097 1098 1099 1100 11Q1 1102 1103 2510
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530
2140 1120 1121.1122 1123 1124 1125 1126 1127 2540
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560
2170 1144 1145 1146 1147 1148 1149 1150 1151 2570

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650
2260 1200 1201 1-202 1203 1204 1205 1206 1207 2660
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750
2360 1264 1265 1266 1267 1268 1269 1270 1271 2760
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770

INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7

1280 1281 1282 1283 1284 1285 1286 1287
1288 1289 1290 1291 1292 1293 1294 1295
1296 .1297 1298 1299 1300 1301 1302 1303
1304 1305 1306 1307 1308 1309 1310 1311
1312 1313 1314 1315 1316 1317 1318 1319
1320 1321 1322 1323 1324 1325 1326 1327
1328 1329 1330 1331 1332 1333 1334 1335
1336 1337 1338 1339 1340 1341 1342 1343

1344 1345 1346 1347 1348 1349 1350 1351
1352 1353 1354 1355 1356 1357 1358 1359
1360 1361 1362 1363 1364 1365 1366 1367
1368 1369 1370 1371 1372 1373 1374 1375
1376 1377 1378 1379 1380 1381 1382 1383
1384 1385 1386 1387 1388 1389 1390 1391
1392 1393 1394 1395 1396 1397 1398 1399
1400 1401 1402 1403 1404 1405 1406 1407

1408 1409 1410 1411 1412 1413 1414 1415
1416 1417 1418 1419 1420 1421 1422 1423
1424 1425 1426 1427 1428 1429 1430 1431
1432 1433 1434 1435 1436 1437 *1438 1439
1440 1441 1442 1443 1444 1445 1446 1447
1448 1449 1450 1451 1452 1453 1454 1455
1456 1457 1458 1459 1460 1461 1462 1463
1464 1465 1466 1467 1468 1469 1470 1471

1472 1473 1474 1475 1476 1477 1478 1479
1480 1481 1482 1483 1484 1485 1486 1487
1488 1489 1490 1491 1492 1493 1494 1495
1496 1497 1498 1499 1500 1501 1502 1503
1504 1505 1506 1507 1508 1509 1510 1511
1512 1513 1514 1515 1516 1517 1518 1519
1520 1521 1522 1523 1524 1525 1526 1527
1528 1529 1530 1531 1532 1533 1534 1535

2000
to

2777
(Octo!)

1024
to

1535
(Decimal)

238
D

IG
ITA

L
C

O
M

PU
TER

PR
O

G
R

A
M

M
IN

G

0 1 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543
3010 1544 1545 1546 1547 1548 1549 1550 1551
3020 1552 1553 1554 1555 1556 1557 1558 1559
3030 1560 1561 1562 1563 1564 1565 1566 1567
3040 1568 1569 1570 1571 1572 1573 1574 1575
3050 1576 1577 1578 1579 1580 1581 1582 1583
3060 1584 1585 1586 1587 1588 1589 1590 1591
3070 1592 1593 1594 1595 1596 1597 1598 1599

3100 1600 1601 1602 1603 1604 1605 1606 1607
3110 1608 1609 1610 1611 1612 1613 1614 1615
3120 1616 1617 1618 1619 1620 1621 1622 1623
3130 1624 1625 1626 1627 1628 1629 1630 1631
3140 1632 1633 1634 1635 1636 1637 1638 1639
3150 1640 1641 1642 1643 1644 1645 1646 1647
3160 1648 1649 1650 1651 1652 1653 1654 1655
3170 1656 1657 1658 1659 1660 1661 1662 1663

3200 1664 1665 1666 1667 1668 1669 1670 1671
3210 1672 1673 1674 1675 1676 1677 1678 1679
3220 1680 1681 1682 1683 1684 1685 1686 1687
3230 1688 1689 1690 1691 1692 1693 1694 1695
3240 1696 1697 1698 1699 1700 1701 1702 1703
3250 1704 1705 1706 1707 1708 1709 1710 1711
3260 1712 1713 1714 1715 1716 1717 1718 1719
3270 1720 1721 1722 1723 1724 1725 1726 1727

3300 1728 1729 1730 1731 1732 1733 1734 1735
3310 1736 1737 1738 1739 1740 1741 1742 1743
3320 1744 1745 1746 1747 1748 1749 1750 1751
3330 1752 1753 1754 1755 1756 1757 1758 1759
3340 1760 1761 1762 1763 1764 1765 1766 1767
3350 1768 1769 1770 1771 1772 1773 1774 1775
3360 1776 1777 1778 1779 1780 1781 1782 1783
3370 1784 1785 1786 1787 1788 1789 1790 1791

0 1 2 3 4 5 6 7

3400 1792 1793 1794 1795 1796 1797 1798 1799
3410 1800 1801 1802 1803 1804 1805 1806 1807
3420 1808 1809 1810 1811 1812 1813 1814 1815
3430 1816 1817 1818 1819 1820 1821 1822 1823
3440 1824 1825 1826 1827 1828 1829 1830 1831
3450 1832 1833 1834 1835 1836 1837 1838 1839
3460 1840 1841 1842 1843 1844 1845 1846 1847
3470 1848 1849 1850 1851 1852 1853 1854 1855

3500 1856 1857 1858 1859 1860 1861 1862 1863
3510 1864 1865 1866 1867 1868 1869 1870 1871
3520 1872 1873 1874 1875 1876 1877 1878 1879
3530 1880 1881 1882 1883 1884 1885 1886 1887
3540 1888 1889 1890 1891 1892 1893 1894 1895
3550 1896 1897 1898 1899 1900 1901 1902 1903
3560 1904 1905 1906 1907 1908 1909 1910 1911
3570 1912 1913 1914 1915 1916 1917 1918 1919

3600 1920 1921 1922 1923 1924 1925 1926 1927
3610 1928 1929 1930 1931 1932 1933 1934 1935
3620 1936 1937 1938 1939 1940 1941 1942 1943
3630 1944 1945 1946 1947 1948 1949 1950 1951
3640 1952 1953 1954 1955 1956 1957 1958 1959
3650 1960 1961 1962 1963 1964 1965 1966 1967
3660 1968 1969 1970 1971 1972 1973 1974 1975
3670 1976 1977 1978 1979 1980 1981 1982 1983

3700 1984 1985 1986 1987 1988 1989 1990 1991
3710 1992 1993 1994 1995 1996 1997 1998 1999
3720 2000 2001 2002 2003 2004 2005 2006 2007
3730 2008 2009 2010 2011 2012 2013 2014 2015
3740 2016 2017 2018 2019 2020 2021 2022 2023
3750 2024 2025 2026 2027 2028 2029 2030 2031
3760 2032 2033 2034 2035 2036 2037 2038 2039
3770 2040 2041 2042 2043 2044 2045 2046 2047

3000
to

3777
(Octal)

1536
to

2047
(Decimal)

A
PPEN

D
IX 4

239

OCTAL-DECIMAL INTEGER

4000
to

4777
(Octal)

2048
to

2559
(Decimal)

0 1 2 3 4 5 6 7

4000 2048 2049 2050 2051 2052 2053 2054 2055
4010 2056 2057 2058 2059 2060 2061 2062 2063
4020 2064 2065 2066 2067 2068 2069 2070 2071
4030 2072 2073 2074 2075 2076 2077 2078 2079
4040 2080 2081 2082 2083 2084 2085 2086 2087
4050 2088 2089 2090 2091 2092 2093 2094 2095
4060 2096 2097 2098 2099 2100 2101 2102 2103
4070 2104 2105 2106 2107 2108 2109 2110 2111

4100 2112 2113 2114 2115 2116 2117 2118 2119
4110 2120 2121 2122 2123 2124 2125 2126 2127
4120 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 2145 2146 2147 2148 2149 2150 2151
4150 2152 2153 2154 2155 2156 2157 2158 2159
4160 2160 2161 2162 2163 2164 2165 2166 2167
4170 2168 2169 2170 2171 2172 2173 2174 2175

4200 2176 2177 2178 2179 2180 2181 2182 2183
4210 2184 2185 2186 2187 2188 2189 2190 2191
4220 2192 2193 2194 2195 2196 2197 2198 2199
4230 2200 2201 2202 2203 2204 2205 2206 2207
4240 2208 2209 2210 2211 2212 2213 2214 2215
4250 2216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231
4270 2232 2233 2234 2235 2236 2237 2238 2239

4300 2240 2241 2242 2243 2244 2245 2246 2247
4310 2248 2249 2250 2251 2252 2253 2254 2255
4320 2256 2257 2258 2259 2260 2261 2262 2263
4330 2264 2265 2266 2267 2268 2269 2270 2271
4340 2272 2273 2274 2275 2276 2277 2278 2279
4350 2280 2281 2282 2283 2284 2285 2286 2287
4360 2288 2289 2290 2291 2292 2293 2294 2295
4370 2296 2297 2298 2299 2300 2301 2302 2303

CONVERSION TABLE

0 1 2 3 4 5 6 7

4400 2304 2305 2306 2307 2308 2309 2310 2311
4410 2312 2313 2314 2315 2316 2317 2318 2319
4420 2320 2321 2322 2323 2324 2325 2326 2327
4430 2328 2329 2330 2331 2332 2333 2334 2335
4440 2336 2337 2338 2339 2340 2341 2342 2343
4450 2344 2345 2346 2347 2348 2349 2350 2351
4460 2352 2353 2354 2355 2356 2357 2358 2359
4470 2360 2361 2362 2363 2364 2365 2366 2367

4500 2368 2369 2370 2371 2372 2373 2374 2375
4510 2376 2377 2378 2379 2380 2381 2382 2383
4520 2384 2385 2386 2387 2388 2389 2390 2391
4530 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
4550 2408 2409 2410 2411 2412 2413 2414 2415
4560 2416 2417 2418 2419 2420 2421 2422 2423
4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 2432 2433 2434 2435 2436 2437 2438 2439
4610 2440 2441 2442 2443 2444 2445 2446 2447
4620 2448 2449 2450 2451 2452 2453 2454 2455
4630 2456 2457 2458 2459 2460 2461 2462 2463
4640 2464 2465 2466 2467 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2484 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

4700 2496 2497 2498 2499 2500 2501 2502 2503
4710 2504 2505 2506 2507 2508 2509 2510 2511
4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 2525 2526 2527
4740 2528 2529 2530 2531 2532 2533 2534 2535
4750 2536 2537 2538 2539 2540 2541 2542 2543
4760 2544 2545 2546 2547 2548 2549 2550 2551
4770 2552 2553 2554 2555 2556 2557 2558 2559

240
D

IG
ITA

L
C

O
M

PU
TER

PR
O

G
R

A
M

M
IN

G

5000
to

5777
(Octol)

2560
to

3071
(Decimol)

0 1 2 3 4 5 6 7

5000 2560 2561 2562 2563 2564 2565 2566 2567
5010 2568 2569 2570 2571 2572 2573* 2574 2575
5020 2576 2577 2578 2579 2580 2581 '2582 2583
5030 2584 2585 2586 2587 2588 2589 2590 2591
5040 2592 2593 2594 2595 2596 2597 2598 2599
5050 2600 2601 2602 2603 2604 2605 2606 2607
5060 2608 2609 2610 2611 2612 2613 2614 2615
5070 2616 2617 2618 2619 2620 2621 2622 2623

5100 2624 2625 2626 2627 2628 2629 2630 2631
5110 2632 2633 2634 2635 2636 2637 2638 2639
5120 2640 2641 2642 2643 2644 2645 2646 2647
5130 2648 2649 2650 2651 2652 2653 2654 2655
5140 2656 2657 2658 2659 2660 2661 2662 2663
5150 2664 2665 2666 2667 2668 2669 2670 2671
5160 2672 2673 2674 2675 2676 2677 2678 2679
5170 2680 2681 2682 2683 2684 2685 2686 2687

5200 2688 2689 2690 2691 2692 2693 2694 2695
5210 2696 2697 2698 2699 2700 2701 2702 2703
5220 2704 2705 2706 2707 2708 2709 2710 2711
5230 2712 2713 2714 2715 2716 2717 2718 2719
5240 2720 2721 2722 2723 2724 2725 2726 2727
5250 2728 2729 2730 2731 2732 2733 2734 2735
5260 2736 2737 2738 2739 2740 2741 2742 2743
5270 2744 2745 2746 2747 2748 2749 2750 2751

5300 2752 2753 2754 2755 2756 2757 2758 2759
5310 2760 2761 2762 2763 2764 2765 2766 2767
5320 2768 2769 2770 2771 2772 2773 2774 2775
5330 2776 2777 2778 2779 2780 2781 2782 2783
5340 2784 2785 2786 2787 2788 2789 2790 2791
5350 2792 2793 2794 2795 2796 2797 2798 2799
5360 2800 2801 2802 2803 2804 2805 2806 2807
5370 2808 2809 2810 2811 2812 2813 2814 2815

0 1 2 3 4 5 6 7

5400 2816 2817 2818 2819 2820 2821 2822 2823
5410 2824 2825 2826 2827 2828 2829 2830 2831
5420 2832 2833 2834 2835 2836 2837 2838 2839
5430 2840 2841 2842 2843 2844 2845 2846 2847
5440 2848 2849 2850 2851 2852 2853 2854 2855
5450 2856 2857 2858 2859 2860 2861 2862 2863
5460 2864 2865 2866 2867 2868 2869 2870 2871
5470 2872 2873 2874 2875 2876 2877 2878 2879

5500 2880 2881 2882 2883 2884 2885 2886 2887
5510 2888 2889 2890 2891 '2892 2893 2894 2895
5520 2896 2897 2898 2899 2900 2901 2902 2903
5530 2904 2905 2906 2907 2908 2909 2910 2911
5540 2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935
5570 2936 2937 2938 2939 2940 2941 2942 2943

5600 2944 2945 2946 2947 2948 2949 2950 2951
5610 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 2961 2962 2963 2964 2965 2966 2967
5630 2968 2969 2970 2971 2972 2973 2974 2975
5640 2976 2977 2978 2979 2980 2981 2982 2983
5650 2984 2985 2986 2987 2988 2989 2990 2991
5660 2992 2993 2994 2995 2996 2997 2998 2999
5670 3000 3001 3002 3003 3004 3005 3006 3007

5700 3008 3009 3010 3011 3012 3013 3014 3015
5710 3016 3017 3018 3019 3020 3021 3022 3023
5720 3024 3025 3026 3027 3028 3029 3030 3031
5730 3032 3033 3034 3035 3036 3037 3038 3039
5740 3040 3041 3042 3043 3044 3045 3046 3047
5750 3048 3049 3050 3051 3052 3053 3054 3055
5760 3056 3057 3058 3059 3060 3061 3062 3063
5770 3064 3065 3066 ■3067 3068 3069 3070 3071 K5

A
PPEN

D
IX 4

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079
6010 3080 3081 3082 3083 3084 3085 3086 3087
6020 3088 3089 3090 3091 3092 3093 3094 3095
6030 3096 3097 3098 3099 3100 3101 3102 3103
6040 3104 3105 3106 3107 3108 3109 3110 3111
6050 3112 3113 3114 3115 3116 3117 3118 3119
6060 3120 3121 3122 3123 3124 3125 3126 3127
6070 3128 3129 3130 3131 3132 3133 3134 3135

6100 3136 3137 3138 3139 3140 3141 3142 3143
6110 3144 3145 3146 3147 3148 3149 3150 3151
6120 3152 3153 3154 3155 3156 3157 3158 3159
6130 3160 3161 3162 3163 3164 3165 3166 3167
6140 3168 3169 3170 3171 3172 3173 3174 3175
6150 3176 3177 3178 3179 3180 3181 3182 3183
6160 3184 3185 3186 3187 3188 3189 3190 3191
6170 3192 3193 3194 3195 3196 3197 3198 3199

6200 3200 3201 3202 3203 3204 3205 3206 3207
6210 3208 3209 3210 3211 3212 3213 3214 3215
6220 3216 3217 3218 3219 3220 3221 3222 3223
6230 3224 3225 3226 3227 3228 3229 3230 3231
6240 3232 3233 3234 3235 3236 3237 3238 3239
6250 3240 3241 3242 3243 3244 3245 3246 3247
6260 3248 3249 3250 3251 3252 3253 3254 3255
6270 3256 3257 3258 3259 3260 3261 3262 3263

6300 3264 3265 3266 3267 3268 3269 3270 3271
6310 3272 3273 3274 3275 3276 3277 3278 3279
6320 3280 3281 3282 3283 3284 3285 3286 3287
6330 3288 3289 3290 3291 3292 3293 3294 3295
6340 3296 3297 3298 3299 3300 3301 3302 3303
6350 3304 3305 3306 3307 3308 3309 3310 3311
6360 3312 3313 3314 3315 3316 3317 3318 3319
6370 3320 3321 3322 3323 3324 3325 3326 3327

0 1 2 3 4 5 6 7

6400 3328 3329 3330 3331 3332 3333 3334 3335
6410 3336 3337 3338 3339 3340 3341 3342 3343
6420 3344 3345 3346 3347 3348 3349 3350 3351
6430 3352 3353 3354 3355 3356 3357 3358 3359
6440 3360 3361 3362 3363 3364 3365 3366 3367
6450 3368 3369 3370 3371 3372 3373 3374 3375
6460 3376 3377 3378 3379 3380 3381 3382 3383
6470 3384 3385 3386 3387 3388 3389 3390 3391

6500 3392 3393 3394 3395 3396 3397 3398 3399
6510 3400 3401 3402 3403 3404 3405 3406 3407
6520 3408 3409 3410 3411 3412 3413 3414 3415
6530 3416 3417 3418 3419 3420 3421 3422 3423
6540 3424 3425 3426 3427 3428 3429 3430 3431
6550 3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447
6570 3448 3449 3450 3451 3452 3453 3454 3455

6600 3456 3457 3456 3459 3460 3461 3462 3463
6610 3464 3465 3466 3467 3468 3469 3470 3471
6620 3472 3473 3474 3475 3476 3477 3478 3479
6630 3480 3481 3482 3483 3484 3485 3486 3487
6640 3488 3489 3490 3491 3492 3493 3494 3495
6650 3496 3497 3498 3499 3500 3501 3502 3503
6660 3504 3505 3506 3507 3508 3509 3510 3511
6670 3512 3513 3514 3515 3516 3517 3518 3519

6700 3520 3521 3522 3523 3524 3525 3526 3527
6710 3528 3529 3530 3531 3532 3533 3534 3535
6720 3536 3537 3538 3539 3540 3541 3542 3543
6730 3544 3545 3546 3547 3548 3549 3550 3551
6740 3552 3553 3554 3555 3556 3557 3558 3559
6750 3560 3561 3562 3563 3564 3565 3566 3567
6760 3568 3569 3570 3571 3572 3573 3574 3575
6770 3576 3577 3578 3579 3580 3581 3582 3583

6000
to

6777
(Octal)

3072
to

3583
(Decimal)

242
D

IG
ITA

L
C

O
M

PU
TER

PR
O

G
R

A
M

M
IN

G

0 1 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591
7010 3592 3593 3594 3595 3596 3597 3598 3599
7020 3600 3601 3602 3603 3604 3605 3606 3607
7030 3608 3609 3610 3611 3612 3613 3614 3615
7040 3616 3617 3618 3619 3620 3621 3622 3623
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647

7100 3648 3649 3650 3651 3652 3653 3654 3655
7110 3656 3657 3658 3659 3660 3661 3662 3663
7120 3664 3665 3666 3667 3668 3669 3670 3671
7130 3672 3673 3674 3675 3676 3677 3678 3679
7140 3680 3681 3682 3683 3684 3685 3686 3687
7150 3688 3689 3690 3691 3692 3693 3694 3695
7160 3696 3697 3698 3699 3700 3701 3702 3703
7170 3704 3705 3706 3707 3708 3709 3710 3711

7200 3712 3713 3714 3715 3716 3717 3718 3719
7210 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 3729 3730 3731 3732 3733 3734 3735
7230 3736 3737 3738 3739 3740 3741 3742 3743
7240 3744 3745 3746 3747 3748 3749 3750 3751
7250 3752 3753 3754 3755 3756 3757 3758 3759
7260 3760 3761 3762 3763 3764 3765 3766 3767
7270 3768 3769 3770 3771 3772 3773 3774 3775

7300 3776 3777 3778 3779 3780 3781 3782 3783
7310 3784 3785 3786 3787 3788 3789 3790 3791
7320 3792 3793 3794 3795 3796 3797 3798 3799
7330 3800 3801 3802 3803 3804 3805 3806 3807
7340 3808 3809 3810 3811 3812 3813 3814 3815
7350 3816 3817 3818 3819 3820 3821 3822 3823
7360 3824 3825 3826 3827 3828 3829 3830 3831
7370 3832 3833 3834 3835 3836 3837 3838 3839

0 1 2 3 4 5 6 7

7400 3840 3841 3842 3843 3844 3845 3846 3847
7410 3848 3849 3850 3851 3852 3853 3854 3855
7420 3856 3857 3858 3859 3860 3861 3862 3863
7430 3864 3865 3866 3867 3868 3869 3870 3871
7440 3872 3873 3874 3875 3876 3877 3878 3879.
7450 3880 3881 3882 3883 3884 3885 3886 3887
7460 3888 3889 3890 3891 3892 3893 3894 3895
7470 3896 3897 3898 3899 3900 3901 3902 3903

7500 3904 3905 3906 3907 3908 3909 3910 3911
7510 3912 3913 3914 3915 3916 3917 3918 3919
7520 3920 3921 3922 3923 3924 3925 3926 3927
7530 3928 3929 3930 3931 3932 3933 3934 3935
7540 3936 3937 3938 3939 3940 3941 3942 3943
7550 3944 3945 3946 39'47 3948 3949 3950 3951
7560 3952 3953 3954 3955 3956 3957 3958 3959
7570 3960 3961 3962 3963 3964 3965 3966 3967

7600 3968 3969 3970 3971 3972 3973 3974 3975
7610 3976 3977 3978 3979 3980 398 r 3982 3983
7620 3984 3985 3986 3987 3988 3989 3990 3991
7630 3992 3993 3994 3995 3996 3997 3998 3999
7640 4000 4001 4002 4003 4004 4005 4006 4007
7650 4008 4009 4010 4011 4012 4013 4014 4015
7660 4016 4017 4018 4019 4020 4021 4022 4023
7670 4024 4025 4026 4027 4028 4029 4030 4031

7700 4032 4033 4034 4035 4036 4037 4038 4039
7710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087
7770 4088 4089 4090 4091 4092 4093 4094 4095

7000
to

7777
(Octol)

3584
to

4095
(Decimal)

A
PPEN

D
IX 4

244 DIGITAL COMPUTER PROGRAMMING

APPENDIX 5. OCTAL-DECIMAL FRACTION CONVERSION
TABLE

OCTAL DEC. OCTAL DEC.

.000 .000000 • 100 .125000

.001 .001953 • 101 .U6953

.001 .003906 • 102 .128906
.003 .005859 .103 .130859
.004 • 0078U .104 .132812
.003 .009765 .105 .134765
.006 .011718 .106 .136718
.007 • 0U671 .107 .138671
.010 .015625 .110 .140625
.011 .017578 • 111 .142578
.OU .019531 • 112 .144531
.0U .021484 • 1U .146484
•014 • 0U437 .114 .148437
.0U •025390 • 115 •150390 !
.016 .027343 .116 .152343
.017 .029296 .117 .154296
.020 • 03U50 .120 .156250
.021 .033203 .121 .158203
.0U .035156 .U2 .160156
.0U .037109 .123 .162109
.024 .039062 .124 .164062
.025 • 0410U .125 .166015
.026 .042968 • U6 .167968
.027 .044921 .127 .169921
.030 .046875 .130 .171875
.031 .048828 .131 .173828
.032 .050781 .132 .175781
.033 .052734 .133 .177734
.034 .054687 .134 .179687
.035 .056640 .135 .181640
.036 .058593 .136 .183593
.037 .060546 .137 .185546
.040 .062500 .140 .187500
.041 .064453 • 141 .189453
.042 .066406 .142 .191406
.043 .068359 .143 .193359
.044 • 0703U .144 • 1953U
.045 .072265 .145 .197265
.046 .074218 .146 .199218
.047 .076171 .147 .201171
.050 .078125 .150 .203125
.051 .080078 .U1 .205078
.052 .082031 .152 .207031
.053 .083984 .153 .208984
.054 .085937 .154 .210937
.055 .087890 ,U5 .212890
.056 .089843 .156 .214843
• 057 .091796 • U7 .216796
.060 .093750 .160 .218750
.061 .095703 .161 .220703
.062 .097656 .162 .222656
.063 .099609 .163 .224609
.064 .101562 .164 .226562
.065 . 1035U .165 .228515
.066 .105468 .166 .230468
.067 .107421 .167 .232421
.070 .109375 .170 .234375
.071 .111328 .171 .236328
.072 .1U281 .172 .238281
.073 .115234 .173 .240234
.074 .117187 • 174 .242187
.075 ,119140 .175 1244140
.076 .121093 .176 .246093
.077 .123046 .177 .248046

OCTAL DEC. OCTAL DEC.

.200 .250000 .300 .375000
• 201 .251953 .301 .376953
.202 .253906 .302 .376906
.203 .255859 .303 .380859
.204 .257812 .304 .382812
.205 .259765 .305 .384765
.206 .261718 .306 .386718
.207 .263671 .307 .388671
.210 .265625 .310 .390625
• 211 .267578 .311 .392578
.212 .269531 .312 .394531
.213 .271484 • 313 .396484
.214 .273437 • 314 .398437 1
.215 .275390 .315 .400390
.216 •277343 .316 .402343
.217 .279296 .317 .404296
.220 .281250 .320 .406250
• 221 .283203 .321 .408203
.222 •285156 .322 .410156
,223 .287109 .323 .412109
.224 •289062 .324 •414062
.225 •291015 .325 .416015
.226 .292968 .326 .417968
.227 .294921 • 327 .419921
.230 .296875 .330 .421875
.231 .298828 • 331 .423828
.232 .300781 .332 •425781
.233 .302734 .333 .427734
.234 .304687 .334 .429687
.235 .306640 .335 .431640
.236 .308593 • 336 .433593
.237 .310546 .337 .435546
.240 .312500 .340 .437500 i
.241 .314453 .341 .439453
.242 .316406 .342 .441406
.243 .318359 .343 .443359
.244 .320312 .344 .445312
.245 .322265 .345 .447265
.246 .324218 • 346 .449218

1 .247 .326171 .347 .451171
.250 .328125 ’ .350 .453125
.251 .330078 .351 .455078
.252 .332031 .352 .457031
.253 .333984 .353 .458984
.254 .335937 .354 .460937
.255 .337890 .355 .462890
.256 •339843 • 356 .464843
.257 .341796 .357 .466796
.260 .343750 .360 .468750
.261 .345703 .361 .470703
.262 .347656 .362 .472656
.263 .349609 .363 .474609
.264 .351562 .364 .476562
.265 .353515 .365 .478515
.266 .355468 .366 .480468
.267 . .357421 .367 .482421
.270 .359375 .370 .464375
.271 .361328 .371 .486328
.272 •363281 .372 .488281
.273 .365234 .373 .490234
.274 .367187 .374 .492187
.275 .369140 .375 .494140
.276 .371093 .376 .496093
.277 .373046 .377 .498046

APPENDIX 5 245

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. * OCTAL DEC. ‘ - OCTAL DEC.

.000000 .000000 ' .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202, .000495, .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 ■ .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 . .000306 .000755
.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .0001X6 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 ,000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 , .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 1 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 : .000223 .000560 .000323 .000805

.000024 .000076 • .000124 ,000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 . .000087 .000127 ,000331 i .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 * .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 • .000831

.000033 . .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 ; .000236 .000602 .000336 .000846

.000037 .000118 .000137 .000362 ; .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 • .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370. .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 . .000143 .000377. i .000243 .000621 .000343 . .000865

.000044 .000137 .000144 .000381 t .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 I .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 • .000250 .000640 .000350 .000865

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 . .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411. .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419. .000256 .000663 .000356 .000907
| .000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 ,000183 .000160 .000427 .000260 ,000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 1 .000265 .000690 .000365 .000934

.000066 .000205 ■ .000166 .000450 .000266 .000694 .000366 .600938

.000067 .000209 .000167 .000453 i .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 - .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949

.000072 .000221 . *000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 ,000480. .000276 .00,0724 .000376 .000968

.000077 .000240 .000177. .000484 .000277 .000728 .000377 .000972

246 DIGITAL COMPUTER PROGRAMMING

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC.

.000400 .000976 .000500 .001220

.000401 .000980 .000501 .001224

.000402 .000984 .000502 .001228

.000403 .000938 .000503 .001232

.000404 .000991 .000504 .001235

.000405 .000995 .000505 .001239

.000406 .000999 .000506 .001243

.000407 .001003 .000507 .001247

.000410 .001007 .000510 .001251

.000411 .001010 .000511 .001255

.000412 .001014 .000512 .001258

.000413 .001018 .000513 .001262

.000414 .001022 .000514 .001266

.000415 .001026 .000515 .001270

.000416 .001029 .000516 .001274

.000417 .001033 .000517 .001277

.000420 .001037 .000520 .001281

.000421 .001041 .000521 .001285

.000422 .001045 .000522 .001289

.000423 .001049 .000523 .001293

.000424 .001052 .000524 .001296

.000425 .001056 .000525 .001300*

.000426 .001060 .000526 .001304

.000427 .001064 .000527 .001308

.000430 .001068 .000530 .001312

.000431 .001071 .000531 .001316

.000432 .001075 .000532 .001319

.000433 .001079 .000533 .001323

.000434 .001083 .000534 .001327

.000435 .001087 .000535 .001331

.000436 .001091 .000536 .001335

.000437 .001094 .000537 .001338

.000440 .001098 .000540 .001342

.000441 .001102 .000541 .001346

.000442 .001106 .000542 .001350

.000443 .001110 .000543 .001354

.000444* .001113 .000544 .001358

.000445 .001117 .000545 .001361

.000446 .001121 .000546 .001365

.000447 .001125 .000547 .001369

.000450 .001129 .000550 .001373
• .000451 .001132 .000551 .001377

.000452 .001136 .000552 .001380

.000453 .001140 .000553 .001384

.000454 .001144 .000554 .001388

.000455 .001148 .000555 .001392

.000456 .001152 .000556 .001396

.000457 .001155 .000557 .001399

.000460 .001159 .000560 .001403

.000461 .001163 .000561 .001407

.000462 .001167 .000562 .001411

.000463 .001171 .000563 .001415

.000464 .001174 .000564 .001419

.000465 .001178 .000565 .001422

.000466 .001182 .000566 .001426

.000467 .001186 .000567 .001430

.000470 .001190 .000570 .001434

.000471 .001194 .000571 .001438

.000472 .001197 .000572 .001441

.000473 .001201 .000573 .001445

.000474 .001205 .000574 .001449

.000475 .001209 .000575 .001453

.000476 .001213 .000576 .001457

.000477 .001216 .000577 .001461

OCTAL DEC. OCTAL DEC.

.000600 .001464 .000700 .001708

.000601 .001468 .000701 .001712

.000602 .001472 .000702 .001716
.000603 .001476 .000703 .001720
.000604 .001480 .000704 .001724
.000605 .001483 .000705 .001728
.000606 .001487 .000706 .001731
.000607 .001491 .000707 .001735
.000610 .001495 .000710 .001739
.000611 .001499 .000711 .001743
.000612 .001502 .000712 .001747
.000613 .001506 .000713 .001750
.000614 .001510 .000714 .001754
.000615 .001514 .000715 .001758
.000616 .001518 .000716 .001762
.000617 .001522 .000717 .001766
.000620 .001525 .000720 .001770
.000621 .001529 .000721 .001773
.000622 .001533 ,000722 .001777
.000623 .001537 .000723 .001781
.000624 .001541 .000724 .001785
.000625 .001544 .000725 .001789
.000626 .001548 .000726 .001792
.000627 ,001552 .000727 .001796
.000630 .001556 .000730 .001800
.000631 .001560 .000731 .001804
.000632 .001564 .000732 .001808
.000633 .001567 .000733 .001811
.000634 .001571 .000734 .001815
.000635 .001575 .000735 .001819
.000636 .001579 .000736 .001823
.000637 .001583 .000737 .001827
.000640 .001586 .000740 .001831
.000641 .001590 .000741 .001634
.000642 .001594 .000742 .001638
.000643 .001598 .000743 .001842
.000644 .001602 .000744 .001846
.000645 .001605 .000745 .001850
.000646 .001609 .000746 .001853
.000647 .001613 .000747 .001857
.000650 .001617 .000750 .001861
.000651 .001621 .000751 .001865
.000652 .001625 .000752 .001869
.000653 .001628 .000753 .001873
.000654- 1001632 .000754 .001876
.000655 .001636 .000755 .001880
.000656 .001640 .000756 .001884
.000657 .001644 - .000757 .001888
.000660 .001647 .000760 .001692
.000661 .001651 .000761 .001895
.000662 .001655 .000762 .001899
.000663 .001659 .000763 .001903
.000664 .001663 .000764 .001907
.000665 .001667 .000765 .001911
.000666 .001670 .000766 .001914
.000667 .001674 .000767 .001918
.000670 .001678 .000770 .001922
.000671 .001682 .000771 .001926
.000672 .001686 .000772 .001930
.000673 .001689 .000773 .001934
.000674 .001693 .000774 .001937
.000675 .001697 .000775 .001941
.000676 .001701 .000776 .001945
.000677 .001705 .000777 .001949

Appendix

6 BIBLIOGRAPHY

1. Proceedings of the Joint Computer Conferences. Published by American
Institute of Electrical Engineers, 33 West 39th Street, New York 18, N. Y.
(Reprints of the papers presented at the Joint Computer Conferences of the
American Institute of Electrical Engineers, Institute of Radio Engineers, and
Association for Computing Machinery, which are currently being held twice a
year. Papers cover every phase of computing: design, application, digital,
analog, new product announcements, etc.)

Periodicals
2. Proceedings of the IRE. Published monthly by Institute of Radio En­

gineers,- 1 East 79th Street, New York 21, N. Y.
3. Journal of the Association for Computing Machinery. Published quarterly

by the Association, 2 East 63rd Street, New York 21, N. Y.
4. Journal of the Operations Research Society of America. Published quar­

terly by the Society, Mount Royal and Guilford Avenues, Baltimore 2, Md.
5. Automatic Control. Published monthly at 430 Park Avenue, New York 22,

N.Y.
6. Control Engineering. Published monthly by McGraw-Hill Publishing

Company, 330 West 42nd Street, New York 36, N. Y.
7. Automation. Published monthly by Penton Publications, Penton Building,

Cleveland 12, Ohio.
8. Computers and Automation. Published ten times a year by Edmund C.

Berkeley and Associates, 36 West 11th Street, New York 11, N. Y.
9. Data Processing Digest. Published monthly by Canning, Sisson and

Associates, 1140 South Robertson Boulevard, Los Angeles 35, Calif.
10. Computing News, published semimonthly by Jackson W. Granholm,

12805 64th Avenue South, Seattle 88, Wash.

Books and Other Publications
11. Berkeley, Edmund C., Giant Brains, or Machines That Think, John Wiley

and Sons, New York, 1949. (General description of computing equipment
available at time of writing.)

12. Berkeley, Edmund C., and Lawrence Wainwright, Computers, Their
Operation and Applications, Reinhold Publishing Corporation, New York, 1956.
(In many ways a sequel to Giant Brains, brought up to date and with more
emphasis on applications.)

247

248 DIGITAL COMPUTER PROGRAMMING

13. Booth, Andrew D., and Kathleen H. V. Booth, Automatic Digital Com­
puters, Butterworths Scientific Publications, London, 1953. (Design and
applications.)

14. Bowden, B. V., editor, Faster than Thought, Sir Isaac Pitman & Sons, Ltd.,
London, 1953. (History, theory, descriptions, applications. A symposium.)

15. Canning, Richard G., Electronic Data Processing for Business and Industry,
John Wiley and Sons, New York, 1956. (Management-language discussion of
how to select and use computers in the data-processing area.)

16. Eckert, Wallace J., and Rebecca Jones, Faster, Faster, International Busi­
ness Machines Corporation, New York, 1955. (Nontechnical description of the
NORC, a very large and fast scientific computer.)

17. Kozmetsky, George, and Paul Kircher, Electronic Computers and Manage­
ment Control, McGraw-Hill Book Company, Inc., New York, 1956. (Discusses
the impact of computers and other information-handling devices on manage­
ment.)

18. Levin, Howard S., Office Work and Automation, John Wiley and Sons,
New York, 1956. (Discusses the effect of automation on the information­
gathering and -processing function of business.)

19. Richards, R. K., Arithmetic Operations in Digital Computers, D. Van
Nostrand Company, New York, 1955. (Mostly logical design, i.e., the flow of
information through the circuits of a computer, rather than actual electronic
circuit design.)

20. Wall, H. S., The Analytic Theory of Continued Fractions, D. Van Nostrand
Company, New York, 1948. (Mathematical technique mentioned in Chapter 17.)

21. Wilkes, M. V., Automatic Digital Computers, John Wiley and Sons,
New York, 1956. (General introduction to logical design, with chapters on
descriptions of computers, programming, and operation. Readable without
knowledge of electrical engineering.)

22. Wilkes, M. V., D. J. Wheeler, and S. Gill, The Preparation of Programs
for an Electronic Digital Computer, Addison-Wesley Press, Boston, 1951. (De­
scribes programming for the EDSAC.)

23.-------- , The Fortran Automatic Coding System for the IBM 704, Inter­
national Business Machines Corporation, New York, 1956. (Technical descrip­
tion of the program mentioned in Chapter 18.)

24.-------- , The X-l Assembly System, Remington Rand Univac Division,
Sperry Rand Corporation, New York, 1956. (Technical description of a program
along the lines of those mentioned in Chapter 18.)

INDEX

Abacus, 6
Absolute programming, 170
Absolute values, 18, 75
Access time, 27, 157, 227
Accumulator, 6, 7, 16, 18, 27, 68, 138
Accumulator left shift instruction, 26,

222
Accumulator plus jump instruction,

25, 26, 219
Accumulator right shift, instruction,

222
Accumulator zero jump instruction,

76, 220
Accuracy of program, 162
Add absolute value instruction, 18, 75,

220
Add instruction, 16, 17, 220
Add to memory instruction, 80, 143,

221
Addition tables, 35
Address, 13, 25, 26, 27, 68, 115, 152
Address computation and modifica­

tion, 67, 82, 105, 112, 113
Address of the address, 115, 116
Aiken, Howard, 8
Alphabetic information, 148, 151, 176
Alternators, 204
Analytical Differentiator, 216
Analytical Engine, 8, 231
Arabic number system, 31
Arithmetic unit, 1, 6, 7, 8
Assembly methods, 148, 172, 176, 213
Assertion box, 91
Asymptotic formulas, 163, 191
Attitude survey illustration, 93
Automatic coding, 211
Automatic light, 139

Automatic-manual switch, 139, 164
Automatic Sequence Controlled Cal­

culator, 8
Auxiliary memory, 2, 3, 5, 7
Auxiliary tape equipment, 157
Averaging illustration, 107, 156

Babbage, Charles, 6, 8
Backus, John, 215
Base, of numbers, 31, 32
Base register, see Index register
B-box, see Index register
Bell computers, 49
B-lines, see Index register
Binary coded decimal, 47, 138. See

also Decimal digit codings
Binary numbers, 26, 30, 148
Binary search, 201
Bi-quinary numbers, 6, 47, 49
Bit, 30
Block transfer instruction, 223
Box, see Address
Break point jump instruction, 166, 220
Break point switch, 139, 166
Bucket, see Address
Burroughs E101, 234

Calling sequence, 114, 148, 179
Cambridge University, 9
Card Programmed Calculator, 233
Carriage return key, 140
Cell, see Address
Census Bureau, U. S., 8
Channel, 151
Check case, 159
Checkout, 11, 77, 135, 159, 211
Check sum, 154

249

250 INDEX

Choice box, 89
Choices, elementary computer, 26,

98
Clear add instruction, 16, 220
Clear subtract instruction, 18, 220
Closed shop operation, 160
Code, 4
Coding, see Programming
Command, see Instruction
Compiling, 189, 213
Complement subtraction, 36
Complex arithmetic, 178, 181
Computing part of loop, 75, 77, 81
Conditional jumps, 25
Console, 138
Continued fractions, 207
Control, 1, 6, 7
Convergence, 206
Conversion, of fractions, 42

of integers, 40
of number bases, 30, 32, 39, 50

Counter, in loops, 76, 77, 146
Counting, 34
CPC, 233
Current instruction register, 6, 7, 138

Data reduction, 12, 107
DATATRON, 47, 216
Debugging, see Checkout
Decimal digit coding, bi-quinary, 49

8-4-2-1, 47
Excess-three, 47
2-4-2*-l, 47, 48
Two-out-of-five, 47, 48

Decimal point fixed in middle of the
word, 53

Decimal point location, 17, 52
Decisions, elementary computer, 3, 26,

98
Decoding, of instructions, 3
Delay-line storage, 3, 9, 27, 227
Diagnostic programs, 163, 168
Difference Engine, 8
Display button, 140
Divide instruction, 22, 24, 55, 221
Divide stop, 23, 55, 63, 121
Divide stop light, 139
Double precision methods, 181, 191
Duotricenary numbers, 31
Dynamic diagnostic, 168

Eckert, J. P., 8
EDSAC, 9
EDVAC, 9
Effective address, 98, 99, 114, 219
ELECOM, 14, 48
Electrostatic storage, 3, 9, 27, 157
End-around-carry, 37
ENIAC, 8, 9, 37, 50, 231
Enter MQ key, 139
Equal index jump instruction, 101,224
Errors in loop writing, 77, 106, 159
Excess-three coding of decimal digits,

47
Execute console instruction key, 139
Exponent, in floating point, 122
Exponential, 92, 185
Exponent-plus-fifty, 122, 147

Fast access loops, 227
Final address, 154, 168
Fixed connector, 90
Flaws, magnetic tape, 152
Flexowriter, 140
Floating add instruction, 128, 205, 225
Floating divide instruction, 128, 226
Floating multiply instruction, 128, 225
Floating point methods, 6,53,118,121,

147, 181, 192, 204, 212
Floating subtract instruction, 128, 225
Flow charts, 87, 132, 161
FORTRAN, 215
Fractional part, in floating point, 122
Fractions, binary, 32
Function box, 88 .

Generators, 213, 214
Graphic method, 56

Halt and jump instruction, 82, 83,115,
219

Halt box, 90
Harvard University, 8
Hexadecimal numbers, 31
Hollerith, Herman, 8
Hopper, Grace, 215
Horizontal record, 166

IBM card, 141, 142
IBM 650, 49, 165, 200, 216
IBM 701, 9

INDEX 251

IBM 702, 122, 191
IBM 704, 9, 162, 168, 215
IBM 705, 9, 122, 191
Ice box, 233
Index control, 14, 78, 99, 177
Index register, 6, 7, 98, 138
Initial address, 144, 154, 168
Initializing part of loop, 75, 77,81,146,

166, 203, 232
In-out box, 90
Input, 1, 5, 7, 9, 15, 30, 118, 132
Input switches, 139
Instruction, 2, 4, 9, 14, 67, 68, 211
Instructional constant, 78
Integers, 33, 34
Intermediate storage, 155, 161
International Business Machines Cor­

poration, 8
Interpolation, 81, 102
Interpreting, of instructions, 3
Interpretive programming methods,

178, 195, 212
Interrecord gap, 152
Iteration, 79, 135, 159

Jacquard loom, 8
JOHNIAC, 37
Jump table, 68, 182, 200
Jumps, 25, 66, 68, 98, 112

Kahramanian, Harry, 216
Key, magnetic tape, 153

Labeling connector, 91
Layout chart, 136, 137
Leibnitz, 6
Libraries, of subroutines, 118, 230
Linear interpolation, 81, 102
Linkages, 111, 179
Load card button, 139
Load index from accumulator instruc­

tion, 100, 223
Load index from memory instruction,

100, 223
Loading programs, 142
Load MQ instruction, 24, 223
Load typewriter button, 140
Location, see Address
Location counter, 6, 7,16,17,138

"Loe" symbol, 69
Logical errors, 159
Long left shift instruction, 71, 203, 222
Long right shift instruction, 26, 203,

222
Loops, 25, 66, 74, 82, 233
Lower index instruction, 223

Maclaurin series, 206
Magnetic cores, 3, 9, 27, 30, 157
Magnetic drums, 3, 27, 150, 157, 227
Magnetic tape, 1, 5, 7, 9, 30, 141,

150
Mantissa, in floating point, 122
Mark I, 8, 231
Mark II, 47
Mark III, 48
Mark IV, 14
Massachusetts Institute of Technol­

ogy, 9
Matrix algebra, 181,191
Mauchley, J. W., 8
Memory, 1; 3, 5, 7, 8, 9
Memory dump, 166, 167, 168
Memory print, 166, 167, 168
Memory register, 19, 22, 138
Memory to index instruction, 100
Mercury storage, 3, 9, 227
MINIAC, 47
Minimum access programming, 228
Modifying part of loop, 75, 77, 81, 146
MONROBOT, 47, 53
Monte Carlo, 203
Moore School of Electrical Engineer­

ing, 8
MQ, 6, 7, 19, 27, 71, 138, 139
MQ sign jump instruction, 193, 220
Multiplication, by powers of two or

ten, 26
Multiplication tables, 38
Multiplier-quotient, see MQ
Multiply instruction, 19, 54, 221
Multiply round instruction, 24, 221

National 102-D, 14, 47
Nesting, 105, 207
Newton-Raphson method, 79, 209
Nine’s complements, 37
Normalize, 124, 205
Numerical analysis, 10

252 INDEX

OARAC, 48
Octal numbers, 31, 32
Octonary numbers, 33
Off-line tape equipment, 157
On-line tape equipment, 157
Operation, 14
Optimizing designs, 12
Order, see Instruction
Origin, 172
Output, 1, 6, 7, 9, 30, 118, 132
Output planning chart, 136, 137
Overflow, 17, 54, 63

in floating point, 123
Overflow jump instruction, 193, 219

Paper tape, 1, 8, 9, 74, 231
Parity bit, 151, 152, 155
Pascal, 6
Pigeonhole analogy, 13
Pin board, 234
Place value, 31, 32
Plugboards, 8, 9, 74, 231
Polynomial evaluation, 105
Post mortem, 168
Post office analogy, 13
Power series, 206
Power supply, 4
Preset, method in loops, 79
Prime numbers, 11
Program, 4
Programming, 10, 11, 27, 74, 80
Program stop light, 139
Pseudo instruction, 78, 180, 182
Pulse recording, 150, 152
Punch, on TYDAC, 141
Punched cards, 1, 8, 9, 30, 74, 231

Quaternary numbers, 33

Raise index instruction, 100, 223
Random access memory, 157
Rational approximation, 208
Reader, on TYDAC, 141
Reading, 1, 30
Read instruction, 141, 153, 224
Reasonable errors, 160
Reconversion, 37, 46

number of binary places to give
exact, 47

Records, magnetic tape, 152

Red tape operations, 98, 117, 168, 179
Reference marks, 91
Region, 171
Register, 3
Relative programming, 132, 133, 134,

170, 213
Relays, 8
Relocation, 170, 171
Reset and clear button, 140
Reset button, 140
Reset, method in loops, 79
Rewind tape instruction, 154, 225
Roman number system, 31
Rounding, 22, 55, 124
Round instruction, 56, 222
Row, 152

Scale factor method, 59, 60, 80
Scientific representation, 121
Select instruction, 141, 153, 165, 224
Self-loading programs, 155, 156
Sequential control, 8
Set index and jump instruction, 101,

113, 224
Shifting, 3, 26, 53, 55
Sign control, 18, 22, 25, 27, 75, 165,

192
Significant figures, 52, 53, 121, 124, 130
Significant part, in floating point, 122
Simulation, 12
Sine, 185
Single stop key, 139, 164
Speeds, arithmetic, 27
Sperry Rand Corporation, 9
Square root, 79, 111, 118
Stop key, 140
Storage, see Memory
Store accumulator instruction, 16, 17,

18, 76, 222
Store address instruction, 69, 75, 76,

222
Store index in accumulator instruc­

tion, 100, 223
Store index in memory instruction,

100, 223
Store MQ instruction, 24, 223
Stored program computer, 4, 9, 52, 66,

74, 231
Subroutines, 111, 118, 122, 128, 153,

170, 214, 230

INDEX 253
Substitution box, 90, 92
Subtract absolute value instruction,

18, 221
Subtract instruction, 18,221
Subtraction tables, 36
Suppression tests, 232
Switches, in flow charting, 92
Switch-jump instruction, 139, 220

Table look-up, 200, 206
Tape button, 140
Tape mark, 142, 152, 153
Tape stop, 151
Tape stop light, 138
Taylor series, 206
Temporary storage, 59, 146
Ten’s complements, 36
Testing part of loop, 75, 77, 81
Three-address instructions, 76,195
Tracing, 164, 167, 181
Track, on magnetic drum, 229
Transition card, 144, 146, 169
Triple precision, 192
TYDAC, 5, 13, 27

block diagram, 7
numerical operation codes, 218, 219

Typewriter, 140,141,144

Unconditional jump instruction, 25,
219

Underflow, in floating point, 124
Univac, 37, 48, 152,162, 215

Variable connector, 89
Vertical record, 166
Von Neumann, John, 9

Weight, in binary coding, 47
Whirlwind, 9
Word, 4, 13
Word count, 144
Write instruction, 141, 153, 225
Write tape mark instruction, 154,

225
Writing, 4

X-punch, 141

Y-punch, 141

Zero index jump instruction, 101,
224

