COMPUTER PROGRAMMING
AND AUTOCODES

APPLIED MATHEMATICS SERIES

GENERAL EDITOR . CONSULTING EDITOR

F. BOWMAN, M.A. (Cantab.), M.Sc.Tech. IAN N. SNEDDON, M.A., D.Sc., F.R.S.E.
Formerly Head of the Department of Mathematics Simson Professor of Mathematics

College of Science and Technology, Manchester University of Glasgow

DIFFERENTIAL EQUATIONS
S. V. FAGG, B.Sc., AR.CS., D.I.C.

AN INTRODUCTION TO COMPUTATIONAL METHODS
K. A. REDISH, B.Sc.

VIA VECTOR TO TENSOR
W. G. BICKLEY, D.Sc., F.R.AcS., A.C.G.I, and R. E. GIBSON, Ph.D., A.C.G.I, A.M.LC.E.

HYDRODYNAMICS AND VECTOR FIELD THEORY
Volume 1 Examples in Elementary Methods

Volume 2 Examples in Special Methods
T. H. WISE, M.A.(Cantab.), and D. M. GREIG, M.A.(Cantab.), M.Sc., Ph.D.

INTRODUCTION TO DETERMINANTS AND MATRICES
F. BOWMAN, M.A.(Cantab.), M.Sc.Tech.

PREDICTION AND REGULATION

by Linear Least-Square Methods
P. WHITTLE, M.Sc.(N.Z.), Ph.D. (Uppsala)

AN INTRODUCTION TO THE MATHEMATICS OF SERVOMECHANISMS
J. L. DOUCE, MsSc., Ph.D., AM.LEE.

COMPUTER PROGRAMMING
AND AUTOCODES

D. G. BURNETT-HALL, M.A.

Lecturer-in-charge, Computation Laboratory,
University of Hull

L. A. G. DRESEL, M.A., Ph.D.

Director, Computer Unit,
University of Reading

P. A. SAMET, B.sc., Ph.D.

Director, Computation Laboratory,
University of Southampton

H-'g THE ENGLISH UNIVERSITIES PRESS LTD
102 NEWGATE STREET - LONDON E.C.1

First printed 1964

Copyright © 1964

D. G. BURNETT-HALL
L. A. G. DRESEL
P. A. SAMET

Printed in Great Britain for the English Universities Press Ltd.
by C. Tinling & Co. Ltd., Liverpool, London and Prescot

PREFACE

This book is intended to serve as an introduction to the programming of automatic computers.
In our experience beginners usually find most difficulty in the organizational aspects of a calcula-
tion, rather than in choosing the correct arithmetical operations. For lack of time, courses on
programming given by manufacturers, or at universities and technical colleges, tend to con-
centrate on the coding and conventions of their particular machine, and the beginner is left to
pick up general ideas for himself. Similarly, many books that aim at giving an insight into general
principles postulate a hypothetical computer and then proceed to give a coding course for this
“machine”.

We have tried to overcome these difficulties by dividing this book into three parts. In Part I,
we discuss the planning of a calculation in general terms with no particular machine or pro-
gramming system in mind. This is done entirely by means of examples, and we make no apology
for deliberately using examples that are mathematically very simple. For many people, all contact
with a computer is through a simplified programming system or “autocode”, and although the
task of coding a problem is then much simpler than with machine code, it is often forgotten that
the initial planning needs just as much care and thought. In Part II we describe in some detail
three of the autocodes in common use in Great Britain at the present time. We have kept to the
autocodes with which we are most familiar, and these are also typical of the present state of
development. Finally, in Part III, we give an account of the international programming language
ALGOL. Wherever possible in Parts II and III we have used the same examples as in Part 1. The
chapters of Part II, as also the chapter on ALGOL, are entirely independent of each other and
need not be read consecutively.

It should be stressed that the descriptions of Part II, although detailed, are not intended to be
complete working manuals. It is essential that anyone intending to use a computer should consult
the staff of a computing laboratory before spending time on writing a programme. Operating
systems are not always the same, new facilities may be added, or a programme for the particular
calculation may already be available for general use.

We are grateful in particular to: Elliott Bros. Ltd. and Ferranti Ltd., for permission to publish
information about the autocodes for their machines; Mr. M. Woodger, National Physical
Laboratory, for a most helpful discussion regarding the chapter on Algol; Mrs. H. W. Chamber-
lain and Mrs. A. M. Dunmur, who helped with the testing of Algol programmes; Mrs. M. Jalovy
and Mrs. J. Chapman, who produced a typescript from almost illegible notes. Finally, it is
pleasant to acknowledge the helpfulness and efficiency of the staff of the publishers and printers.

D.G.B.-H.
L.A.G.D.
P.A.S.
Southampton.
January, 1963.

CONTENTS

Part I. Programming

CHAPTER 1
AUTOMATIC COMPUTERS

CHAPTER 2
LOOPS AND COUNTERS

CHAPTER 3
SUFFICES

CHAPTER 4
THE REPRESENTATION OF NUMBERS

CHAPTER 5
AUTOCODES

Part II. Autocodes

CHAPTER 6
THE PEGASUS-SIRIUS AUTOCODE

6.1. General Information. 6.2. Variables, Indices, Instructions. 6.3. Jumps and Labels.
6.4. Functions. 6.5. Some Examples of Programmes. 6.6. Input and Output. 6.7. Beginning
and Ending a Programme, Bracketed Interludes. 6.8. Headings. 6.9. Programme Alter-
ations (Pegasus only). 6.10. Approximate Equality. 6.11. Other Facilities. 6.12. Allowed
Ranges for Numbers and Allocation of Store. 6.13. Allowed Arithmetic and Jump Instruc-
tions.

vii

14

22

29

CONTENTS

CHAPTER 7
THE ELLIOTT 803 AUTOCODE

7.1. Some Introductory Examples. 7.2. Integers and Floating-point Variables. 7.3. Suffices.
7.4. Setting Instructions, START and STOP. 7.5. Input. 7.6. Output. 7.7. A Complete
Programme. 7.8. Summary of Arithmetic and Function Instructions. 7.9. Jump Instruc-
tions and Subroutines. 7.10. Cycle Instructions. 7.11. Checking facilities.

CHAPTER 8
MERCURY AUTOCODE

8.1. Indices. 8.2. Variables. 8.3. Functions. 8.4. Labels and Jumps. 8.5. Cycles. 8.6. Sets

of numbers. 8.7. Switches. 8.8. Hoot, Halt, and End. 8.9. Input. 8.10. Output. 8.11. Sub-
routines. 8.12. Chapters. 8.13. Auxiliary Variables. 8.14. Directives. 8.15. Other

Facilities.

Part III. Algol

CHAPTER 9
ALGOL

9.1. Statements and Identifiers. 9.2. Arithmetic Expressions and Basic Functions. 9.3. for
statements. 9.4. Subscripts and Arrays. 9.5. Blocks, Declarations and Labels. 9.6. Pro-
cedures. 9.7. Conditional Statements and Switches. 9.8. Logical Operators and Boolean
Variables. 9.9. Implementation.

APPENDIX
Paper Tape Codes

REFERENCES AND SUGGESTIONS FOR FURTHER READING

INDEX

viii

42

56

87

101

102

103

PART 1.
PROGRAMMING

CHAPTER 1
AUTOMATIC COMPUTERS

An automatic computer is a machine for doing arithmetic very rapidly and without intervention
by an operator. The speed of modern computers is enormously high and brings within reach the
solution of problems that would otherwise have occupied scientists for very long periods, possibly
months or even years; certainly speed is one of the most striking features of the machines and often
the most publicized. Just as important as the speed, however, and very intimately connected with
it, is the fact that a computer will work automatically once it has been correctly set up to perform
a certain job. This “setting up” procedure, which involves careful planning and investigation of a
complete calculation, is called programming. It is the aim of this book to give an introduction to
this subject.

Before going into any details of how to use a computer, we must describe some of the internal
organization of the machine and how this affects what we can do with it. Everything in this chapter
applies basically to all computers currently available.

We shall start from the observation that a computer works automatically and rapidly, and see
what this implies.

The first deduction is that any fast machine must of necessity be automatic.* The interval
between successive operations must be small, otherwise the benefit of the speed of these operations
is lost. It is therefore not possible to have manual step-by-step control of a fast machine. It follows
that the sequence of operations must be stored inside the machine in some manner. This implies
a store or memory unit to hold the instructions and also a control unit to select and execute these
instructions in the required sequence.

The primary purpose of employing a computing machine is to work with numbers. Generally
we shall require several numbers during a calculation. It therefore becomes necessary to hold
numbers as well as instructions in the store, and in most computers the store used for numbers is
physically the same as that used for instructions. The size of the store depends on many factors,
not least the money available to buy a machine. Faster machines need larger stores so that larger
problems can be tackled. It is generally reckoned that the store must be able to hold at least some
thousands of numbers or instructions.

We shall need input and output devices for our machine, so that information can be passed from
the outside world into the store of the computer and vice versa. Curiously enough, even in this
electronic age, the cheapest methods of rapid input and output involve holes in paper or card-
board. It is possible to convert patterns of holes in paper tape or cards into electrical pulses for
input and to punch such holes from electrical pulses for output. The tape or cards can be prepared
on devices rather like typewriters and various printers can be operated by punched tape or cards.

It goes almost without saying that there must be an arithmetic unit which will perform the
arithmetic operations specified under direction from the control unit. The basic arithmetical
repertoire of a computer is very small. Complicated operations, such as finding a square root or
logarithm, have to be made up from suitable combinations of simpler steps. It is interesting to
notice that with a small number of basic operations, combined in a suitable sequence, we can do
the most complex calculations. This is not all that surprising: an alphabet of 26 letters together

* The converse is not true. An automatic machine need not be fast.
3

4 COMPUTER PROGRAMMING AND AUTOCODES

with some extra symbols enables us to write English, and most other European languages as well.
The sequence of instructions required for a complete calculation is called a programme or program
(which is not an exclusively American term).]

Some, at least, of the machine’s operations must be administrative, not arithmetical, in nature.
In particular, there must be a facility for choosing one of two (or more) possible instructions as the
next to be obeyed. There are many occasions when the course of action required depends on 2
number that has been calculated. For example, the quadratic equation ax?+bx+c = 0 has real
or complex roots depending on whether

b*—4ac>0 or b*—4ac<0,

and we have to do different operations in the two cases. Such situations occur very frequently. .

Since the most easily understood way of writing a programme is to give the instructions in their
natural sequence it has become common practice to call such a test instruction a conditional jump-.
The usual convention is that the jump occurs if the condition is satisficd, otherwise the programme
continues with the next instruction in the sequence. The usual criteria for conditional jumps
include the following: a number being equal to zero, a number being not equal to zero, a number
being positive, equality between two numbers, one number being greater than another.

The conditional jump is also important for another reason. Calculations tend to be repetitive
and it is often necessary to perform the same sequence of operations many times. By introducing a
counter to count the number of times we have obeyed the sequence of instructions, together with
an instruction to test the counter, we can have a loop of instructions which is repeated until the
counter has reached a desired value. A loop gives us a programme with fewer instructions, thereby
saving effort and also storage space, an important consideration as the store is of limited capacity-

The choice implied by a conditional jump instruction is usually one of two alternatives. It is
important to realize that a choice of many alternatives can be reduced to a series of such simple
choices. For example, to determine the suit of a playing card we could ask the questions:

Is the card red?

ﬁ/ \\M

Is the suit Hearts? Is the suit Spades?

Wywo Y#\m

Hearts Diamonds Spades Clubs

This, incidentally, is the basis of the popular game of “Twenty Questions” when only “Yes” and
“No” are allowed as answers: twenty such answers cover 1048576 alternatives. The same technique
also provides a highly efficient method of searching.

It is sometimes required to go to a particular instruction as the next one to be obeyed, irrespec-
tive of any condition. Although this could be achieved by a conditional jump in which the condition
is automatically satisfied, it is more usual to include a special instruction, called an unconditional
Jump.

To sum up, we have shown that to be fully automatic a computer must have

i. a store for instructions
ii. a store for numbers
iii. a control unit

AUTOMATIC COMPUTERS 5

iv. an arithmetic unit, usually capable of addition, subtraction, multiplication and division.
v. input and output devices
vi. conditional (and unconditional) jump instructions.

The way that the various unitslare]connected is shown schematically in Figure 1.1.

Control Unit]

Instructions to be obeyed

Programme St b
Input y— Instructions | Final [Output
Mecchanism 3 Storefar Results Mechanism
Data Numbers
Intermediate
Operands Results
Arithmetic
Unit
(+,=%/)
Fig. 1.1. Sch ic Diagi of a Computer. (Control signals are not shown.)

Computers vary enormously in size and speed. However, the features given above are common
to all computers and are the only essential ones.

CHAPTER 2
LOOPS AND COUNTERS

Because a computer is automatic it is necessary to plan the whole course of the calculation before-
hand. This planning is generally known as programming. As in the planning of any operation we
distinguish two quite distinct parts, the strategy and the tactics. The strategy depends on the chosen
method of solution and has nothing to do with the particular computer that happens to be at hand.
The tactics used to achieve the solution, on the other hand, depend on the facilities available and
should be chosen to exploit these to the best advantage. It is common to call both parts of this
planning programming, but this is unfortunate. In this book we shall use the word programming
for the strategic planning, reserving the term coding for the tactical part of the exercise. This chap-
ter and the next are concerned with programming.

It should be obvious that the first thing to be done when programming a calculation is to write
out, in some detail, what steps are necessary in the solution of the problem. Curiously enough,
many programmers do not regard this as obvious and will start by writing the instructions the
computer will have to perform. For small programmes, written by experienced programmers,
this may be permissible—experience helps one to convert the chosen strategy directly into the
instructions required. Unfortunately it is only too easy to make mistakes in writing programmces,
and such errors are found more quickly if the whole plan of the programme is available. The
principal lesson to be learnt is that mistakes in programming occur mostly in the organization of a
calculation. Such mistakes can often be avoided by presenting the plan of the programme in a
form that is easily checked.

To illustrate this point we shall now consider a simple problem, namely finding the least prime
factor (other than I) of an integer #. One possible approach would be to divide n by prime numbers
in turn until a factor is found. This is not really practical because tables of primes are necessarily
limited and would take too much storage space even for moderate values of n*. So we look for a
method that is applicable to all integer values of .

With the exception of the number 2, all primes are odd numbers. Division by odd numbers in
turn therefore will include division by all odd primes (and by a lot of other numbers as well) and
so will enable us to find prime factors. There is the possibility that n itself is an odd prime. We
could continue dividing by odd numbers until we are dividing by n itself. However, if we have
found no factors by the time we reach \/n then n must be a prime. We can even avoid calculating
\/n by noting that we have just passed /n when the quotient becomes less than the divisor.t
Schematically we can write the whole process in the form of a flow diagram, where each calculating
step is enclosed in a box. Steps requiring decisions are enclosed in boxes with rounded ends.}
The flow diagram of Fig. 2.1 illustrates our procedure. We denote a candidate for a factor by m.

It is not difficult to generalize the process to give all prime factors of n. This is done in Fig. 2.2.
Basically, our process is still to find the least factor of a number. Whenever a factor p has been
found we replace n by the quotient n/p. We then search for a prime factor of this quotient starting
with p as first candidate, since there can be no smaller factor.

* For example, the thousandth prime is only 7907.

t This uses the fact that if n = pq, one factor exceeds +/n and the other is less than 4/n.
$ We shall use this convention throughout the book.

6

LOOPS AND COUNTERS 7

Divide n by 2

yes

no

Divide n by m

Is remainder = 0?

Is quotient < m?

yes

IE! p= i‘ Setp =m chli;lc-i 1; by
| E—||
A Setp=n
end

Fig. 2.1. Flow diagram for calculating p, the least prime factor of n.

Problem for the reader. We use non-prime odd numbers as possible factors, yet the process gives
the least prime factor. Why?

Let us now generalize the problem further still, and suppose that we are asked to produce a
table of prime factors for all numbers n in the range 1<<n<1000. In the flow diagram for this
calculation, shown in Fig. 2.3, we no longer have to write out the complete flow diagram for
factorizing a particular integer. The box called

Sfactorize n

stands for the complete programme of Fig. 2.2. However, any correct programme for factorizing
an integer may be substituted instead.
Normally we shall start and finish every programme by the boxes

and [ond]

sometimes adding a comment about the programme (as in Fig. 2.2). A programme that starts
with begin and finishes with end we shall call a block. We can always use a block as a part of a
larger programme (as in Fig. 2.3), provided that no clashes occur between the names of operands.

We meet the phrases “Replace ... by...” and “Set... = ...” (and really they are the same)

COMPUTER PROGRAMMING AND AUTOCODES

Divide n by 2

yes

Print ‘2’
Replace n by n/2

—

Divide n by m

Is remainder = 07

yes
A

Print m Is quouent less
Replace n by nfm lhan m?
no
Replace m
bym + 2
| I—

Fig. 2.2. Flow diagram for factorizing an integer.

Problem for the reader. Should one take any precautions against (i) n = 0, (ii) n<0?

so often that it is convenient to have a common notation for them. We shall use the symbol :=
mean “‘becomes equal to” (or ““is replaced by” or “is set equal to”).

The three programmes illustrated so far show one of the commonest features of all computer
programmes, the repeated cycle of instructions, or loop. In Figs. 2.1 and 2.2 we have a loop that is
obeyed until a particular criterion is satisfied and it is not known beforehand how many cycles
will be necessary. The last example shows a loop where we know in advance how many times we
have to go round and we count until we have done the process the right number of times.

LOOPS AND COUNTERS 9

zi=z+m
calculate f(x,y,z)

factorize n

Is k = 1000?

no yes no

Replace k by k + 1 @ I end z l

end (Isn=m?

yes no

Fig. 2.5. Evaluation of
f(x,y,2) for \t[arying values
of z.

Fig. 2.3. Flow diagram for factorizing
all integers between 1 and 1000.

end

Fig. 2.4. Procedure for cal-
n
culating (l+’—') .

Problem for the reader. Our table is for n in the range 1<<n<<1000. Why is it necessary to introduce
k in Fig. 2.3?

Often we have a programme where there is a loop inside another loop. To illustrate this, we
consider the evaluation of
n
()
n

forn = 1,2,3,...,m, without using logarithms. A possible procedure for this calculation is shown
in Fig. 2.4. Note that the number of times we go round the inner loop on any occasion is equal to
the number of times we have been round the outer loop.

This programme illustrates, incidentally, some good points of technique. The new value of is

8 COMPUTER PROGRAMMING AND AUTOCODES

Divide n by 2

yes

Print 2’
Replace n by n/2

—

Divide n by m
Is remainder = 0?
yes
~
Print m Is quotient less
Replace n by njm than m?
Isn=1? yes, no
Replace m
1o Jes bym + 2
|

Fig. 2.2. Flow diagram for factorizing an integer.

Problem for the reader. Should one take any precautions against (i) n = 0, (i) n<0?

so often that it is convenient to have a common notation for them. We shall use the symbol := to
mean “becomes equal to” (or ““is replaced by” or “is set equal to”).

The three programmes illustrated so far show one of the commonest features of all computer
programmes, the repeated cycle of instructions, or Joop. In Figs. 2.1 and 2.2 we have a loop that is
obeyed until a particular criterion is satisfied and it is not known beforehand how many cycles
will be necessary. The last example shows a loop where we know in advance how many times we
have to go round and we count until we have done the process the right number of times.

LOOPS AND COUNTERS 9

zi=z4+m
calculate f(x,p,=

factorize n

Is k = 1000?

no yes no

Print a
Replace k by k + 1 gj enil 2
end (Isn=m?

yes

Fig. 2.5. Evaluation of
f(x,y,2) for varying values
yes no of z.

Fig. 2.3. Flow diagram for factorizing
all integers between 1 and 1000.

end

Fig. 2.4. Procedure for cal-
n
culating (1+’1') o

Problem for the reader. Our table is for n in the range 1<n<1000. Why is it necessary to introduce
k in Fig. 2.3?

Often we have a programme where there is a loop inside another loop. To illustrate this, we
consider the evaluation of
n
n

forn = 1,2,3, .. .,m, without using logarithms. A possible procedure for this calculation is shown
in Fig. 2.4. Note that the number of times we go round the inner loop on any occasion is equal to
the number of times we have been round the outer loop.

This programme illustrates, incidentally, some good points of technique. The new value of n is

COMPUTER PROGRAMMING AND AUTOCODES

Zi=zZ+m

calculate fix,p,z)

end =

yes

end y I

Fig. 2.6. Evaluation of f(x,y,z)
for varying values of y and z.

Zi=z+m
calculate f(x,y,=

Isz=12"1
yes no

lend.\'

Fig. 2.7. Evaluation of f(x,y,2)
for range of values of x,y,z.

LOOPS AND COUNTERS 11

calculated at the beginning of the outer loop; if it were calculated just before the test for the end,
this test could no longer be “Is n = m?”. (What should it be?)

Secondly, by proper setting of the starting value of a (outside the inner loop) we are able to use
the same inner loop for all values of n. The seemingly more natural choice

a:=1+—l-
n

would require special treatment when n = 1.

This raises the question of how it is possible to anticipate what the appropriate starting values of
operands should be. The answer is simple, even if somewhat unexpected: start writing the pro-
gramme in the middle and then work outwards! The innermost loop of a programme should be
written first, as this determines what has to be set outside it.

To illustrate this, we shall consider the problem of tabulating a function f(x,y,z), first for fixed
values of x and y, with z going in steps of size m from z; to z;. Fig. 2.5 shows how to do this.
Now suppose that we wish to extend our table to take account of varying values of y. For the
moment x is still fixed, but y is to go from y, to y, in steps of /, and for every value of y we go
over the whole range of z. Our programme is shown in Fig. 2.6. Finally, we wish to vary x in
steps of k from x, to x,. The values of x must be changed outside the loop controlled by y. This is
done in Fig. 2.7.

It should be noticed that if there are several loops, one inside the other, the order in which
counters controlling the loops are set has to be the reverse of the order in which the counters are
tested. Fig. 2.7 shows this very clearly.

Our next example shows how the operation of finding a square root (which is rarely included
among the basic machine operations) can be built up from a suitable combination of simpler
steps. We use the fact that if y is any approximation to /a, a better approximation* is given by

, z=4(y + aly).
We may start with an arbitrary value of y and repeatedly improve the approximation. If we wish
to evaluate \/a to 8 figures, we continue until

| y—2 | <(0-00000001) x =
as in Fig. 2.8.

Our next example requires that numbers be read into the computer. We shall write
X 1= input

to read a number. This is to be understood as reading the first number available at the input,
setting x equal to this value and leaving the computer ready to read the next number.

A commonly occurring problem in statistics is to estimate the mean m, variance v, and standard
deviation s of a population when only a sample is available. If the members of the sample are the
n numbers x,,X,, . . . ,X, the requisite formulae are

* A proof is given in most books on numerical analysis, such as Redish [3].
If a = 2, the sequence could be I, 1-5, 1-4167, 1-414207, 1-41421356 which is correct to 8 decimal places.

12 COMPUTER PROGRAMMING AND AUTOCODES
The calculation of v is simplified by noting that

n n
xt—nm? = Y xt—m| ¥ x).
i=1 i=1

We shall therefore find the sum of the x’s and the sum of their squares.

We assume that the data are available in the order n, xy, x5, . . . , X,, i.e. the first number tells
us how many x’s are to follow. This is convenient as our programme will then work for any
number of x’s, no matter how many. The flow diagram for our calculation is shown in Fig. 2.9.
We use b and ¢ for accumulating the sums Zx; and Zx?. Note that b and ¢ must initially be made
equal to zero.

¥ (r—m)? = 3
i=1 =

i=1

}

begin mean, variance,
standard deviation

n = input

{

I begin square root of a—l

oS
nnn
cox

b:=b+d
c:=c+(dxd)
pi=p-1
Is |y—z|<107822 Isp=0?
yes yes no

@@ W é’c/'i (bxm))(n—1)
Y

Fig. 2.8. Flow diagram for finding
z=+/a.

end mean, variance,
standard deviation

¥

Fig. 29. Calculation of mean,
variance, standard deviation.

LOOPS AND COUNTERS ' 13

It is interesting to notice that the programme shown above requires storage space for only one
value of x at a time. It can therefore be used for samples where the number of x’s far exceeds the
storage capacity of the computer.

CHAPTER 3
SUFFICES

In the examples of the previous chapter there was no need to deal with sets of numbers, only with
individual numbers. Many problems in mathematics, however, require that we repeat a particular
sequence of operations with many numbers. Symbolically this is easily managed by suffices, and
computers have facilities for using this powerful technique.

There is a small typographical difficulty. In writing mathematics we use symbols like a;, using the
spatial layout on the page to carry extra information, to say nothing of italics, bold print, etc. The
devices that are used for preparing input to a computer rarely cater for anything more sophisticated
than printing on onc level. Most of them print capitals only, as upper and lower case are expensive
luxuries, and even then the range of symbols will not include much beyond the alphabet and the
digits 0 to 9. These considerations do not affect the argument. Our mathematics is just as easily
intelligible if we write a(i) instead of a,.*

To operate on the “next member” of the sequence we have to change the appropriate suffix and
we do this by an ordinary arithmetic instruction. This immediately suggests a loop of instructions
to deal with successive members, the test for leaving the loop being a simple one to see what value

has been reached by the suffix. Some examples will make this clearer. The programme is shown in
Fig. 3.1.

Example 1. Add up the numbers a,,a,, . . . ,a,.
Example 2. Evaluation of the polynomial
p(x) = apxX"+a, X" "' +. . .+a,_,x+a,

for a given value of x. Here we have an example where we enter the loop at a point that is not the
natural beginning, as shown in Fig. 3.2

In organizing a calculation for a computer we must take account of the order in which the data
are presented. In the previous example, it is first of all necessary to read the cocfficients of the
polynomial and place them as a(0),a(1), . . . ,a(n) in the computer’s store. The next two programmes
(Fig. 3.3) show how the n+1 coefficients could be read and then stored in the required order
inside the computer.

If we were to use the programme of Fig. 3.3a to read coefficients available in the order
@pdn_y, « . « 40;,do then the programme of Fig. 3.2 would evaluate the unwanted polynomial

aX"+a,- X"+, . . 4a,x+a,.

The programmes of Figs. 3.2, 3.3 use the quantity », the degree of the polynomial. How is this
to be supplied to the programme? One way, of course, is to write the programme to evaluate
polynomials of a given (fixed) degree. This, however, would mean that we should have to have a
separate programme for every possible value of n. Also, if we had to evaluate polynomials of
different degrees in the course of one programme it would be necessary to incorporate several
copies of the procedure for evaluating a polynomial. This takes up valuable space. It is more
economical to give n as part of the initial data, together with any other parameters that may
occur, e.g. the values of x for which we wish to evaluate p(x). The main advantage is the more

* No special meaning is attached to the shape of the brackets.

14

SUFFICES 15

general applicability of our programme, as the same set of instructions can now be used whatever
the value of (as in the example of Fig. 2.9).

begin sum

begin polynomial p(x)

——
i:=0 ii=i+1
p:=0 pi=pxx

p = p+a(i)

Isi=n?

'es no
end sum y i

i snomial p(x
Fig. 3.1. Programme end polynomia p(x)

for z a,. Fig. 3.2, Programme to cvaluate a polynomial.

i=1
Problem for the reader. Check that the method of Fig. 3.2 (“nested multl;gh.cauon") is more
economical in multiplications than a method which first evaluates all the requisite powers of x.

begin coeff. input (1) begin coeff. input (2)

a(i) 1= input

Is i<0?

|end coeff. inpur (2) I
Y
Fig. 3.3(a). Input of co- Fig. 3.3(b). Input of co-
ell}igciems(agvai?fblie in the efficients available in the

order ay,a,, . . . ,an. order anGn-y, « . .+ 1,00,

16 COMPUTER PROGRAMMING AND AUTOCODES

The next example (Fig. 3.4) is a complete programme for tabulating a polynomial of degree’n
for the values xq,Xo+#, . . . ,Xo+rh. This programme incorporates the programmes of Figs. 3.3a

and Fig. 3.2. The data must be presented in the order
NyAgydyy « « « 5 Gpeg,@nXg,h,T

because this is the sequence in which the corresponding input instructions are obeyed.

I begin tabulation of p(x)]
coefficient input (1)

X 1= input
h = input Read xo,/1,r in that order
ri= input

polynomial p(x)

lﬂ'd tabulation of p(x) I

Fig. 3.4. Tabulation of polynomial p(x) for various values of x.

In this programme all quantities that are used are presented to the programme as input data.
The programme is therefore completely general and can be used for any desired values of n,%g,h,r.
.In all the preceding examples we have enclosed all the steps of a programme in boxes. Although
this device is helpful to the beginner, it is too clumsy for general use and we shall now abandon it.
Another simplification that we shall make in the written form of our programmes concerns the

SUFFICES 17

alternative routes to be followed after a test instruction. The method used so far, namely drawing
arrows to the appropriate points, cannot be employed for communicating with a computer; also
itis awkward to use in a programme that cannot be written on a single sheet of paper. The simplest
alternative is to give a label to those instructions to which we wish to refer. This label can then be
used in a test instruction, together with appropriate wording, such as “if". . . then go to . . .
else .. .”.* At this stage we shall not make any definite rules about labels but we adopt the con-
vention that they are to be terminated by a colon when they precede an instruction.

The problem of having numbers in the right order in the store is more involved when we have
a two-dimensional array, such as the elements of a matrix. The numbers presented to an input
device can be read only as a single sequence. We have to decide the order in which the numbers
are to be read and how such an array is to be stored as a single sequence (which need not be the
same as at input). This is the subject of the next example.

We suppose that the cocfficients a;; of the m x n matrix A are available column by column at
the input device. For checking purposes every column will be followed by a “column check-sum”
which is the sum of the previous m numbers. This serves two purposes, to check that the matrix
has been correctly prepared for the computer, and also as a simple check against malfunctioning
of the input device itself.

begin matrix input

m := input
n := input
k:=0
=
column: ji=j+1
i:=0
s:=0
read: k:=k+1
=i+l
a(k) := input
s 1= s+a(k)
if i # m then go to read else continue
b := input
s:i=s5-b

if s # O then go to error else continue

if j # n then go to column else go to exit
error: stop (check-sum failure)
exit: end matrix input

Fig. 3.5. Input of an m X n matrix with check-sums.

11 12

For the 2x2 matrix) the numbers presented to the input are in the sequence

21 22
11,21,32,12,22,34; the matrix elements are stored in the order 11,21,12,22. Normally some emer-
gency action would follow after a check-sum failure, such as trying a second time, but this need
not concern us here. It is important to realize that it is possible to get a check-sum failure without

. Tlllis slightly curious form of wording is chosen to conform with the conventions of ALGOL (described in
rt 111).

18 COMPUTER PROGRAMMING AND AUTOCODES

any part of the computer working incorrectly, as rounding errors will gen}erallly give a check-sun:
that does not agree exactly with the sum of the elements. To overcome this dlfﬁculty we often pu
a tolerance on the check-sum and are prepared to accept the computer’s input if the .number
s—b is smaller than this tolerance. This topic is discussed in Chapter 4, where we consider the
representation of numbers inside the machine.

The next example concerns finding the largest of a set of positive numbers, a(1), a(2), a(3),. cees
a(n). As this will usually be part of a larger programme, we assume that the a’s and n are available
in the store.)

The method consists of finding which is the largest of the first k numbers and then comparing
this with the next possible candidate a(k+1) to determine the largest of the first &+ 1 numbers.
We start this process with k = 2 and repeat it until all numbers have been examined. The pro-
gramme uses m to record the position of the largest element at each stage.

begin max. search n
k:=1
m:=1
next: k:=k+1
if a(m)>a(k) then go to test clse continue

m:=k
test: if k # n then go to next else continue
b := a(m) (b is largest element)

end max. search n

Fig. 3.6. Programme to find the largest element of a sequence.

Problems for the reader. What happens if n = 1 and how should one deal with this case? What
happens if there are two clements that are equal and largest ? .

The method of the preceding example gives us the value of the largest element and also its posi-
tion in the sequence. This is required in the next example, where we sort a sequence of positive
numbers into ascending numerical order.

begin sort n
largest: if n = 1 then go to cxit else continue
max. search n (Programme of Fig. 3.6)
a(m) := a(n)
a(n) := b
n:=n-—1
go to largest
exit: end sort n

Fig. 3.7. Programme for sorting n positive numbers.

As a method of sorting numbers the above is very slow. Its main virtue is that the only storage
space used for numbers other than the a’s is that for . The number of operations is proportional
to 4n*. There are far more efficient methods available, where the number of operations is propor-
tional to n log,n but they require more storage space and are not so easy to understand. However,
the fact that we can use a computer to sort numbers is very important for commercial applications
of a computer. The numbers involved could be invoice serial numbers, for instance, which have to

SUFFICES 19

be put into their correct order. It is not difficult to adapt the above programme so that it is not
only the serial numbers that are moved around in the store, but also the information associated
with them.

An interesting possibility arises if the labels are given in a (partly) numerical way, for instance
as stage 1, stage 2, etc. It would be useful to be able to write instructions like

go to stage (s)

where s has been set, or even evaluated, somewhere in the programme. This is indeed possible and
such a programming device is called a switch. The use of a switch is illustrated in the next example.

Suppose that we are given an angle 0 (in degrees) between 0° and 360°, and wish to find sin 6,
but that the only programme we have for evaluating a sine requires that the angle is between 0°
and 90°. We thereforc have to reduce 0 to an angle in the first quadrant but have to keep informa-
tion about the value of 0 so that we can find the correct sign to attach to our result.

begin any quadrant
q := (integer part of 0/90)+ 1
go to quadrant (q)

quadrant 4: 0 := 360—-0

go to quadrant (1)
quadrant 3: 0:=0-180

go to quadrant (1)
quadrant 2: 0:=180—-0
quadrant 1: Sfi=sin0

go to sign (q)
sign 3: sign 4: fi=—=f
sign 1: sign 2: end any quadrant

Fig. 3.8. Example of a switch. sin 6 stands for any prggrammc that evaluates the sine of an angle in the first
quadrant.

A point to notice in this example is that it may be helpful to give two different labels to one
instruction. Programmes to evaluate trigonometric functions of angles in any quadrant are avail-
able for all computers; the above example gives an indication of the type of calculation that has
to be done by such a programme.

Our last example in this chapter gives an important variation of a switch, by showing how it is
Possible to use one programme as a block at several points in a larger programme although only
a single copy of this block is stored.

We return to an earlier example, the factorization of an integer n (Fig. 2.2 on page 8). The
process of trying a possible factor m is the same whether m is even or odd, and so we could use the
same instructions in the two cases. This would make our programme appear as shown in Fig. 3.9.
As can be seen we have had to write out twice (and store twice in the computer) the instructions
for testing /. The only significant difference is the name of the label we go to if r # 0. The use of
a switch allows us to store only one copy of these instructions and is shown in Fig. 3.10.

A set of instructions that is stored only once, but can be entered from several points and ends
with a jump to one of several places, is called a subroutine. The indication of where to return to in
the main programme is known as a /link.

If we try to use the polynomial evaluation programme of Fig. 3.2 for different polynomials, we
have an apparent difficulty because the coefficients are to be in particular places in the store. As a

20

odd:

next:

prime:
exit:

case 1:

case 2:

prime:

trial:

exit:

COMPUTER PROGRAMMING AND AUTOCODES

begin factorize n
m:=2
divide: ~ q := integer part of njm
r:=n-—-mxgq
if r # 0 then go to odd else continue

print m
ni=gq
go to divide
m:=3
trial: q := integer part of njm

r:=n-mxq

if r # 0 then go to next else continue

print m

n:=gq

go to trial
if n = 1 then go to exit else continue
if g<m then go to prime else continue
mi=m+2
go to trial
print n
end factorize n

Fig. 3.9. Factorization'of an integer (again).

begin factorize n
m:=2
k:=1
go to trial
m:=3
k:=2
go to trial
if n = 1 then go to exit else continue
if g<m then go to prime else continue
m:i=m+2
go to trial
printn
go to exit
g := integer part of nlm
r:=n-—mxq
if r # O then go to case (k) else continue
print m
n:=gq
go to trial
end factorize n

Fig. 3.10. Factorization of an integer, using a programme switch.

SUFFICES 21

result, this block could not easily be used as a subroutine to evaluate two different polynomials
in the course of the same programme. In the different autocodes described in Part 11 we overcome
this kind of difficulty by specifying the position of a,, the leading coefficient. ALGOL, described
in Part III, has an elegant method of solving this very common problem, by introducing the
concept of a formal parameter.

CHAPTER 4

THE REPRESENTATION OF NUMBERS

In the preceding chapters no mention has been made of the accuracy* we can expect from a com-
puter. Only a finite number of digits can be used to represent a given number and so all calcula-
tions can be carried out only to limited, even if high, accuracy. Most machines are designed to
use the same number of digits for all numbers and are then said to have a fixed word-length.t For
fixed word-length machines we can typically expect 10 decimal digits to be used. The fixed number
of digits used to represent a number in a fixed word-length computer puts a limit on the range of
values the numbers may take. For example, the largest positive integer represented by 10 digits is
+9999999999. We say that overflow occurs when a number goes outside the permitted range, and
numbers appearing in our calculations have to be scaled so that overflow does not occur. It may be
extremely difficult to do this scaling adequately and to overcome this difficulty we often use
floating-point arithmetic. In this system numbers are represented by a certain number of significant
digits together with a scaling factor, typically a power of 10, to give the position of the decimal
point. For example, could be represented with 10 significant digits in any of the following
(equivalent) forms:—

3141592654 x 10° = 0-003141592654 x 103
= 31-41592654 x 10~!
= 0-3141592654 x 10*.

Floating-point arithmetic also gives a limited permitted range of numbers but the limit now
depends on how many digits are used for the exponent in the scaling factor. Two decimal digits
for the exponent would allow numbers as big as 10°° and as small as 10~°°; such a range is
sufficient for most calculations.

Some numbers, however, are known to be integers small enough to be represented exactly by
the number of digits used. Examples are numbers used as counters for repeating loops of instruc-
tions and the suffices we use to refer to sets of numbers. For such integers there is no need to us¢
any scale factors and we can use fixed-point arithmetic. On several machines, especially the more
recent models, floating-point arithmetic is achieved by circuitry, and is then comparable in speed
with fixed-point arithmetic. A machine equipped only with fixed-point facilitics can be pro-
grammed to carry out floating-point arithmetic but calculations are then very much slower.

The necessity for using finite word-length affects the accuracy we can achieve. Most numbers
cannot be represented exactly by the number of digits allowed and so there will be rounding errors
associated with our numbers. Results calculated from rounded numbers will again be in error and
so errors are propagated throughout a calculation. This is a problem of numerical analysis, not
of computer programming, though of course programmes should be written so that the best
numerical methods available are used. The choice of methods is outside the scope of our book.

A consequence of the propagation of errors is that comparisons between numbers will not be
exact. For example, if x is to go from 0 to 1 (both of which can be represented exactly) in steps of

* Computational accuracy is meant, not mechanical reliability. Modern computers work reliably for long periods
and generally include some circuitry to check that no malfunctioning has occurred.
t Some computers have a variable word-length.

22

THE REPRESENTATION OF NUMBERS 23

1/12 = 0-0833333333, correct to only 10 decimals, our last value is 0:9999999996, and in a test of

the form
ifx=1then...else...

we should find that x never takes the exact value 1. This particular difficulty can be overcome in
various ways. The best method is to use integers to count exactly how many times the value of x
has been increased; another way is to change the test from an equality into an inequality and
adjust the limit, e.g.
if x>095 then...else...
A further consequence of the truncation of our numbers is that check-sums, as in the programme
of Fig. 3.5 (on page 17), can in general only be satisfied to within a certain tolerance.
It should be noticed that the order in which we perform operations may have an appreciable
effect, as can be seen from the following example: working to nine significant figures,
(1-23456789 + 123456789) — 123456788 = 123456790 — 123456788
= 2-00000000
but
1:23456789 + (123456789 — 123456788) = 1-23456789 + 1-00000000
= 223456789,

where in both cases the term in brackets is evaluated first. The computer may not give any indica-
tion that accuracy has decreased through loss of significant figures, and so we see that floating-
point working has the danger that it may give spurious accuracy.

For design reasons many machines work in binary, that is, in the scale of 2, rather than in the
more familiar decimal scale. The conversion from the decimal used outside the machine to the
binary uscd internally, and vice versa, is performed by the machine itsclf. Everything that has been
said carlicr about the limitations of representing numbers by only a finite number of decimal
digits applies cqually to machines that work in binary. The conversion of numbers from one scale
to another brings its own errors, which can be regarded as further rounding errors. Fractions
that are exact in a finite number of digits in decimal need not be so in binary (or any other scale,
for that matter). Thus in decimal § = 0-2, whereas in binary* ¢ = 0-0011001100110011 ...

We now consider briefly the way information enters and leaves a computer. The most common
methods usc paper tape or punched cards. The problems, such as they are, are slightly different in
the two cases.

The most widespread form of paper tape at the present has characters consisting of up to 5 holes,
not including a sprocket hole, across its width.t A code with 5 holes to represent different charac-
ters allows only 32 different symbols. This is regarded as inadequate and so we normally have two
codes, called *“Letters” and *“Figures™, each of 30 characters. The remaining two characters cause
no printing but merely change a printer from one code to the other. They are generally called the
“Figure Shift” and *‘Letter Shift” characters. The tape is read serially, character by character. All
characters after “Figure Shift” are regarded as being in the “Figures” code until a ““Letter Shift”
character is encountered; thercafter, the code is “Letters” until we reach a *“Figure Shift”. The
order in which the characters appear on the tape is the same as their order on a printed page.
There are some symbols that can be punched on the tape to control the layout of printing. These
special symbols are used to put spaces between items (*“Space” or Sp) and to arrange for printing
to start at the beginning (““Carriage Return” or Cr) of a new line (“‘Line Feed” or Lf); it is not
possible to turn back to a previous line.

* The k' digit after the point has the value 2-*so that } is 2-3 4 2-4 4 2-7 4- 2-% |
t Wider tapes, with 7 or 8 holes, are now becoming avallable they allow a bigger mngc of characters.

24 COMPUTER PROGRAMMING AND AUTOCODES

Paper tape allows a wide variety of printing layout because this is automatically controlled by
the symbols appearing on the tape. The speed of printing is not very high, being comparable to a
good typing speed. Frequently, therefore, computers do not have such a printer attached direct!y
but only a paper tape punch which can operate several times faster than a printer, and the tape 1s
then printed away from the machine.

Unfortunately there has been no standardization between manufacturers regarding the tapc
code used on their machines, nor are the extra symbols necessarily the same.

Punched cards contain a number of columns (usually 80) and rows (usually 12) in which holes
may be punched. The normal card thus has 960 positions for holes.

The rows are labelled* Y,X,0,1,...,9. A hole in a numbered row has the value of that number,
c.g. the 5-row indicates a 5, the other two rows are used for + and —. Letters are coded by having
two holes punched in the same column. Again, there is a profusion of codes. Printers worked by
punched cards are capable of printing the whole of one line at the same time and are therefore
often called line printers. All the information on a card is printed together, every card causing the
printing of a new line. There is therefore no need to have “Carriage Return” and “Line Feed”
symbols. Spaces between numbers are managed mechanically by a control panel on the printer.
A different problem arises because of the limited width of a card and the fact that many com-
puters using cards are not capable of using all the columns. This imposes a very rigid format on
input and output, compared to the flexibility of paper tape. Numbers have to be in certain speci-
fied positions on the card, with a predetermined number of figures, and instructions all have to take
the same number of characters. On the other hand, card-operated printers can be extremely fast
and are much faster than character-by-character printers.

These differences between cards and paper tape arise primarily from their quite different original
uses. Paper tape has been used for a long time in communication networks (“Telex” for example)
before it was adopted for use as a computer input/output medium. Punched cards are very com-
mon in commercial use and were in fact originally developed for census work. Different columns
can be used easily to designate different properties, so that the layout itself carrics information.

* This is one system only; there arc several others. All agrec on 0, 1, . . ., 9, the variations affecting the naming
and significance of the other two rows.

CHAPTER 5

AUTOCODES

The preceding chapters have described in some detail, and almost entirely by examples, how to
set about planning a programme. The next problem is to translate such a plan into action, that is, to
put the programme into a form acceptable to the machine. In all our programmes so far we have
made liberal use of words and symbols, so the question arises: “Can we communicate with a
computer in this way?”

If we consider the computer to be just a large piece of expensive circuitry, the answer is certainly
““No”. As was mentioned in Chapter 1, very few basic arithmetic operations are included in the
computer’s repertoire. The locations in the store are identified by numerical addresses and, simi-
larly, the operations are all numbered and instructions are held entirely in numerical form.* It is
perfectly possible to write programmes in this style, often called “machine language” or “machine
code”, once one knows it well enough. However, a great deal of very detailed clerical work is
involved because all internal administration of the programme has to be attended to by the
programmer (strictly, by the coder), and it is very easy to make mistakes in this process. For
general use by the non-specialist this system is too difficult and often rather frightening.

Quite early in the development of computers it was realized that the machine itself could be
made to help in the clerical work of coding. It was found possible to write programmes that made
the computer appear to other users as if it had most of the facilities for dealing with programmes
written in commonly occurring symbols. The earliest of these programmes were interpretive in
that they never made a machine code programme from the symbolic instructions but translated
and cxecuted every instruction each time it was encountered. These interpreters tend to be slow, as
translation is time-consuming when every word has to be looked up in a dictionary every time it
occurs. Later, more ambitious programmes called compilers became available. These produce a
machine language programme from the symbolic instructions without executing any of them
until the process of compilation is complete. The resulting programme is in the machine’s
normal code and does not have to be recompiled subsequently. The efficiency of compiled
programmes is in general comparable to the work of an average programmer writing in machine
language.

Such programming systems exist for many computers and are usually called autocodes. The
usc of an autocode will certainly save time in writing the programme. Further time is likely to be
saved at the stage known as development, i.e. testing the programme on the computer to remove
errors; these will be easier to locate, and fewer in number, than if the programme had originally
been coded in machine language. However, the final programme may take longer to run at the
production stage. This difference may be small (as on the Ferranti Mercury and the Elliott 803 com-
puters) or comparatively large (as on the Ferranti Pegasus). For programmes that are used on
relatively few occasionst this may be less important than the saving in development time.

Any autocode programme consists of a series of instructions in which one number is calculated

* The exact nature of this representation does not concern us, nor is it the same for different machines. However,

the idea is not unfamiliar as, for example, all telephone numbers are essentially numerical. It is just that WHI 1212
is casier to remember than 944 1212,

t Programmes that are to be used very frequently are generally written in machine code: often the user has only
to supply the data without knowing how the programme works.

B 25

26 COMPUTER PROGRAMMING AND AUTOCODES
from some others which have been calculated earlier. Often, the new number is the result of evalu-
ating a formula and several numbers appear on the right hand side, e.g.
x 1= (—b++/b*—4dac)|2a.
For some autocodes it is permissible to write such a formula as a single instruction. If, however,

we were to do this evaluation by hand, or with a desk calculator, we would find that at each stage
we deal with at most two numbers and the above formula is then worked out in several steps, as

d:=bxb
e:=axc
e:=4xe
d:=d-e
d:= \/d
d:= —b+d
e:=2xa
x :=dfe

Any calculation can be broken down into such steps, and the simpler autocodes require instruc-
tions like this.

In Part 11 we present information about three autocodes in common use in Britain, namely
those for the Ferranti Pegasus and Sirius, Elliott 803, and Ferranti Mercury computers.

The very profusion of autocodes has led to an attempt to set up an international computer
language, ALGOL (for algorithmic /anguage), to be used as a method of communication between
programmers and also between programmers and machines. The writing of an ALGOL compiler
for any particular machine is a big and complicated job and much programming effort is being
directed towards the construction of such compilers. It is likely that ALGOL will be the main
programming language of many computers. An introduction to ALGOL is given in Part 111

PART II
AUTOCODES

CHAPTER 6
THE PEGASUS-SIRIUS AUTOCODE

6.1. General Information

Pcgasus and Sirius are the names of computers made by Ferranti Ltd., of Manchester. Pegasus is
a medium-sized, medium-speed machine with a magnetic drum store of 8192* words capacity,
working in fixed-point binary arithmetic, with a word length of 39 binary digits which corresponds
to 11 decimal places. Sirius is a more compact machine, working in decimal. The store is normally
4000 words but is extendable to a theoretical maximum of 10000 words, a word holding 10 decimal
digits. Both machines use paper tape as their input and output media, using the code given in the
Appendix. The autocodes used for the two machines are practically identical and everything in
this chapter applies to both unless otherwise stated.

6.2. Variables, Indices, Instructions

The autocode is very simple. Results are calculated from one or two numbers previously found,
cither by one of the simple arithmetic operations (+,—, X,/), or by some of the more common
mathematical functions. Two types of number are recognized by the autocode, namely variables
and indices. The variables are floating-point numbers and are used for doing most of the arith-
metic. They are called

W, vl v2, .44

Indices are integers that are used for counting and as suffices (in the sense of Part I). They are
denoted by
n0, nl, n2,...

The allowed range of values of variables and indices is given in section 6.12 (page 40). It is possible
to use the indices as suffices of variables as in

val, v(1+n2), ...

where the value of the index determines which particular variable is meant. We are restricted to
the form v(1+n2) and are not allowed the mathematically equivalent v(n2+1). Similarly the
index must always be added, although its value may be negative, i.e. v(100—n5) is forbidden, but
v(200+n6) may be used with negative values of n6 provided that the suffix is positive. We may
even write v(— 1 +n2), i.e. the constant part may be negative, so long as the suffix is positive.

The index used is often called a modifier. Only one index is allowed as a modifier for any variable.
It is not possible to use indices to refer to other indices, i.e. n(1 +n2) is not allowed.

Arithmetic instructions are written in the form illustrated by

vl =v2+v3
or
nl =nl-1,
every instruction being written on a new line. The symbol = is used instead of the := of

Part 1. A variable or index appearing on the right-hand side of an instruction is unchanged unless

* Early models have a smaller drum, with only 5120 words.
29

30 COMPUTER PROGRAMMING AND AUTOCODES

it is also to be the result of the operation. It is not permitted to mix variables and indices in an
instruction, except as explained below. This rule is most easily remembered by noting that the
numbers taking part in the arithmetic called for by an instruction are of the same type. The full
list of allowed arithmetic instructions is given in the table in section 6.13.

In instructions involving variables we may replace a variable occurring on the right-hand side
by an unsigned number, so that

W0 = vl x3:14159

is allowed. The *“="" symbol may, if desired, be followed by a minus sign, to give the negative
result. Such a minus sign may not follow another arithmetic symbol, so that +0 = —v1 x 3:14159
is in order but v0 = vl x —3-14159 is not.

Rules for instructions involving indices are exactly similar. An index may be replaced by an
integer, i.e. a number without a decimal point.

We may change a variable into an index, and vice versa, by the instructions

v0 =nl
no = vl (nearest integer)
V0 = nl/n2

The usual rules apply: we may replace variables by numbers, indices by integers and a minus sign
may follow the equals sign. These are the only instructions where indices and variables occur as
cqual partners. The index 70 is changed by all input instructions (section 6.6) and so can be used
only as a temporary store. On Sirius 0 is more rapidly available than the other indices, and so it is
advantageous to use it as a modifier or counter wherever possible.

6.3. Jumps and Labels

Instructions to which jumps are to be made are given numerical labels, numbered 0,1,2, ... The
first instruction of a programme is automatically given the label 0 and need not be labelled ex-
plicitly by the programmer. The labels may be allocated in any order and need not be consecutive.
1t is not permitted to give the same label to different instructions, nor does it make sense to do so.*
A label is written before the instruction to which it refers and is terminated by a right-bracket,).
In Pegasus, but not Sirius, an instruction may be given more than one label if desired.

In Part I we used the words go to and if in our conditional jumps. These are replaced in this
autocode by an arrow and a comma. Jump instructions are written in the form

-1
read as “go to label 1" (unconditional jump) or
=1, vI>v2

read as “go to label 1 if v1>12" (conditional jump). There is no comma in the unconditional
jump instruction. In the case of conditional jumps, if the condition is not satisfied the programme
continues with the instruction immediately following (in fact, else continue is understood).

Conditional jumps can be made up with the symbols =, #, > and >, but not < and < which
are not included in the Ferranti teleprinter code. We are only allowed to compare numbers, not
expressions, and we may only compare like with like. Minus signs may be included on either side
of the condition. A jump instruction may itself be labelled. Examples of permitted jump instruc-
tions are

* If Pegasus reads an instruction bearing a label which has already been allocated, the label is attached to the
later instruction.

THE PEGASUS-SIRIUS AUTOCODE 31

=1, v1>—-v2
=1, n1#0
-1, vl =12

1)-1, v(1+n2) = 0.

The last of these is an example of a loop stop; obviously no further progress will be made in the
programme if v(1+4n2) = 0. A loop stop can be used to indicate that something has gone wrong
with a calculation, e.g. that the required operations on the given data would produce nonsense. A
full list of allowed jump instructions is given in section 6.13. Jump instructions that would appear
reasonable but are not permitted include (among others) =1, v1 > nl and =1, vl > v2+v3 and
=1, vl =v2/10.

The destination indicated in a jump instruction may depend on an index, e.g.

—nl
—(1+n2), —v1=>v(5+nT).

This form can be used to implement the *“programme switch” described in chapter 3.
As an example of a simple sequence of instructions we now give the coded version of the square
root procedure of Fig. 2.8. We assume that a is given as vl and we denote the result by v2.

v2=1
1)v0 =12
v2 = vl/v2
v2 = v0+v2
v2 = v2/[2
W = v0—
v3 = v2x 0-00000001
=2, v0>0
W=-v

2) =1, v0>v3
Fig. 6.1. Coded programme for finding a square root.
6.4 Functions

We frequently require the absolute value of a number, and so the autocode includes a special
function MOD to find it, so that we can replace the instruction (in Fig. 6.1)

-2, v0>0
W= -0

by
v0 = MOD w0

and the label 2 is now unnecessary. In fact, calculation of a square root is so common a require-
ment that the autocode can find a square root directly and the whole programme of Fig, 6.1 cnn
be replaced by the single instruction .

v2 = SQRT vl

This saves time and space, as the instructions for finding a square root are now machine code
instructions, whereas autocode instructions would have to be interpreted into machine code
instructions.

Several of the more common functions may be used directly in the autocode. The full list is

32 COMPUTER PROGRAMMING AND AUTOCODES
given in section 6.13. For any function only one variable may be written on the right-hand side.
The only function that may be used with indices is MOD, e.g.

nl = MOD n2.
The result is, as usual, of the same type as the numbers occurring on the right-hand side. As
before, a minus sign is permitted after the equals sign but not elsewhere.

6.5 Some Examples of Programmes

The next coded example is the programme of Fig. 2.4, to find (1 + 1/n)" without using logarithms.
We assume that n3 contains the value m.

nl=0
1)nl = nl+1
vi=1
n2 = nl
v2 = 1/n2
v2 =142
2) vl = v1x2
n2 =n2-1
—2,n2# 0
PRINT vl
—=1,nl #n3
STOP

Fig. 6.2. Autocode programme for (1+1/n)" without logarithms.

It should be noted that the output instruction is not quite correct as it stands; the full form of the
PRINT instruction is given below. The example has also introduced a new instruction,
STOP.
This does what it says. The machine will halt until the “Run Key” on the console is operated.
(Compare the WAIT instruction of the Elliott 803 autocode, chapter 7).
We can simplify and shorten the above example by using the functions LOG and EXP. This
allows us to avoid the inner loop of the programme.

nl=0

1)nl =nl+1
vl =nl
v2 = 1/vl
v2=14v2
v2 = LOG v2
v2 = vlxy2
vl = EXP »2
PRINT vl
—1,nl #n3
STOP

Fig. 6.3. Simplified programme for (14 1/n)" using logarithms.

Our next example of a sequence of coded instructions is the polynomial evaluation programme
of Fig. 3.2 (page 15). We shall assume that x is given as v1 and the coefficients are given as v100,
v101, v102, . .. (i.e. a, as v100, a, as v101, etc.), and that n, the degree of the polynomial, is given
as nl. We shall denote the result by 0.

THE PEGASUS-SIRIUS AUTOCODE 33

n0=0
W=0
-1
2) n0 = n0+1
W =10xvl
1) v0 = v0+v(100+n0)
=2, n0 # nl
PRINT vl
PRINT 0

Fig. 6.4. Evaluation of a polynomial (Ist version).

We could make this polynomial evaluation work with coefficients anywhere in the store by
asking that the location of a, is given by n2 (in the example above we would have n2 = 100). The
programme now appears as

n0 = n2
n3 = nl+n2
Ww=20
-1
2) n0 = n0+1
w0 = v0xvl
1) v0 = v0+vn0
—=2,n0 # n3
PRINT vl
PRINT w0

Fig. 6.5. Evaluation of a polynomial (2nd version).

As a last example before discussing the input and output instructions we give the coded version
of the sorting programme of Fig. 3.7 (page 18), which puts ay, a,, . . ., a, into ascending order. We
assume that n is given as n1 and that the sequence of a’s starts with vn2. Our programme can then
appear as follows:

—4,nl =1
n0 = nl+n2
n0 = n0—1
3)nd4 = n2
n3 =n2
1) nd = nd+1
—2, vn3>vnd
n3 = nd
2) =1, n4 # n0
v = wn3
vn3 = vnd
vn4 = V0
n0 = n0—1
—3,n0 # n2
4) STOP

Fig. 6.6. Sort into ascending order.

34 COMPUTER PROGRAMMING AND AUTOCODES

Notice that a,, is effectively v(n1+n2—1). This programme uses v0 as temporary storage. All
programmes require some intermediate results and as a general rule, working space should be at
one end of the available storage space. This device puts no unnatural restrictions on the amount of
space available for data. It is good practice to leave the low-numbered variables as general working |
space.

6.6 Input and Output
Single numbers may be read into the machine by the instructions

nl = TAPE
or (any n or v may be used)

vl = TAPE
No minus sign is allowed after the equals sign. This instruction reads a single number, starting
with a signt and finishing with either a Space symbol or the Carriage Return—Line Feed
symbols. The data tape is left ready to read the next number that appears on the tape—exactly
our convention of Part I with :=input. Decimal points are punched only if necessary. Incorrect
forms of punching cause the computer to stop.

It is possible to read more than one number by a single instruction. To read 15 numbers we can
write

vl = TAPE 15
which places the numbers in v1,v2, . . . ,v15 respectively. Similarly we may write
nl = TAPE 10

to read 10 indices. We may go even further and write

vl = TAPEn2 or nl = TAPE n2
where the number of numbers to be read depends on the value of n2. In this case #2 must be greater
than zero. The form nl = TAPE n2 is in order as the value of n2 is taken before a possible re-

placement occurs. The form vl = TAPE n2 is often used when the data tape carries information
about how much data there is to follow, as for instance in the sequence

n2 = TAPE
vl = TAPE n2
This is much faster, and more clegant, than the equivalent sequence
n2 = TAPE
n3 =0
1) v(14+n3) = TAPE
n3 =n3+1
=1, n3 # n2

There is also a form of the input instruction that deals with cases where the amount of data is
not specified in the programme. We write
vl = TAPE*
and numbers are read, and stored in consecutive variables, until the special character L is en-
countered on the tape. At this point the computer stops reading numbers and proceeds to the next
instruction. As we will often want to know how many numbers have been read, this count is
automatically placed in n0.

+ On Sirius, the + sign may be omitted.

THE PEGASUS-SIRIUS AUTOCODE 35

All input instructions set n0 equal to the number of numbers read by that input instruction
whenever it is met, and all instructions will finish reading when they encounter L on the tape. If
an L occurs before any numbers have been read, input stops and the value of 10 is correctly set to
zero.

If the input instruction finds the character Z the tape stops. This is a temporary stop only and the
computer can continue with this input instruction when the controls are operated (unlike L which
signifies the end of input by this instruction). Z should always be put at the end of a data tape.

Pegasus and Sirius each have two tape readers and it is possible to read data from either. To
read from the second reader we use the word TAPEB instead of TAPE in the input instructions.
This is the only change required. It is perfectly possible for a programme to use both readers.

Output is achieved by instructions like PRINT vl or PRINT nl where again any variable or
index may be used. Actually no printing occurs, as neither Pegasus nor Sirius has a direct printer,
but the results are punched on paper tape which can subsequently be printed. Only one result can
be punched at a time.

The PRINT instruction as given so far is not complete. We have to give a “‘style number” which
controls the page layout, i.e. where a number is to be printed in relation to the previous result, and
also the position of the decimal point and whether we require fixed or floating-point printing. The
style number is a four digit number made up of 3 components, a,b,c to give

1000a + 205 + ¢ (note the 20)

where b is the number of places required before the decimal point (possibly zero), ¢ is the number
of places required after the decimal point (possibly zero) and a is 1,2,3 or 4 according to the follow-
ing table:

New Line | Same Line

Floating-Point | a =1 =2

Fixed-Point a=3 a=4

“New Line” printing is preceded by Carriage Return—Line Feed (CrLf) whereas “‘Same Line”
has two Space symbols (SpSp) before the number. On Pegasus signs are always punched, but
Sirius punches Sp instead of + signs. Fixed-point printing should be used when the magnitudes
occurring can be estimated. In fixed-point, if too many figures are required before the decimal
point, spaces are printed instead; if too few figures are allowed before the point the style is auto-
matically changed to the floating-point style with the same b and ¢ (and the page layout is spoiled
but this is a minor matter). No decimal point is punched if ¢ = 0, but if 5 = 0 a zero is punched
before the decimal point. All output is correctly rounded. For indices only two style numbers are
relevant, 3000 and 4000; in spite of their curious appearance they cause fixed-point printing always
allowing four digits and a sign. The style number may be given as an index, so that instructions
like
PRINT vl, n2

are permitted.

Fixed-point output may be read directly on a subsequent occasion as a data tape for another
programme. It should be noticed, however, that the PRINT instruction precedes a number by
CrLf or SpSp, whereas the input instructions require such symbols as terminating characters. The
last number punched therefore has no terminating character; this has to be supplied separately,

36 COMPUTER PROGRAMMING AND AUTOCODES
either on tape-editing equipment or by using the special symbols X and S described below.
Floating-point output cannot be read by an = TAPE instruction.

As an example of a programme involving both input and output, we now give the autocode
version of the statistical programme of Fig. 2.9.

STOP
nl = TAPE
n2 = nl
vl=0
v2=0

1) v3 = TAPE
vl = vl+v3
v3 =v3xv3
v2 = v2+v3
n2 =n2-1
—-1,n2#0
v3 =nl
v4 = v1/v3
vS =vlxv4
v2 = v2—v§
v3 =v3-1
v2 = v2/v3
v3 = SQRT 3
PRINT nl, 3000

PRINT 14, 1026
PRINT 2, 2026
PRINT v3, 2026
-0
Fig. 6.7. Autocode programme for mean, variance and standard deviation.

The style number of the PRINT instructions ensures that the number of terms is printed on a
line by itself and that the mean, variance, and standard deviation appear on the next line, in
floating-point form, with one figure before and six following the decimal point. For a general
programme the floating-point style is essential as there is no way of estimating the magnitude of
the results.

The STOP instruction has been deliberately placed at the beginning of our programme. While
the programme tape is being read into the computer, it is not possible to place the data tape in the
reader. The STOP instruction allows us a pause during which we can insert the tape in the reader.
(Compare the WAIT instruction of Elliott 803 autocode, chapter 7). It is a good habit to start a
programme with the instruction STOP.

The way of finishing the programme may appear somewhat odd. However, it does what is
required as the programme duly comes to a halt on the STOP instruction (labelled 0). Moreover,
we are now ready to deal with the next batch of data.

A common requirement is the introduction of extra gaps, either horizontally or vertically, into
the layout of printed results, and the autocode caters for this. By placing an X for Carriage Return-
Line Feed, or an S for Space, in front of an arithmetic instruction (i.e. any instruction that
*calculates™ and produces a result), we get additional control over the appearance of our printing.

THE PEGASUS-SIRIUS AUTOCODE 37

Only one X or S may be attached to one instruction and if this instruction happens to be labelled
it is advisable to write the letter after the right bracket that terminates the label.

Often we wish to inspect intermediate results of a calculation, especially while the programme is
still being developed and there are suspected errors in it. Such optional printing is available and is
obtained by writing XP or SP in front of an arithmetic instruction. For variables we then get
floating-point printing with 9 decimal places, either on a new line or on the same line as the
previous printing, i.e. XP and SP correspond to PRINT style numbers 1009 and 2009 respectively.
For indices the printing is the usual fixed-point index printing. It is possible to suppress XP and
SP printing from the control switches on the computer console, and for this reason it should never
be used for general output. We may not have more than one of X, S, XP and SP attached to any
instruction.

6.7 Beginning and Ending a Programme, Bracketed Interludes

When an autocode programme is to be read into the computer we have to tell the autocode where
the programme starts and where it ends. At the start of all our programmes we write the symbols

J1.0 (for Pegasus)
or
Jvl (for Sirius)

After reading these introductory symbols* the instructions of the programme are read into the
computer. At this stage they are being stored but not yet obeyed.

In Pegasus autocode it is possible to enclose a sequence of autocode instructions in brackets.
Such a sequence is called a bracketed interlude. When the closing bracket,), is read the computer
starts obeying the first instruction of the interlude and continues with the other instructions of the
interlude. One of these can be a jump to a labelled instruction outside the interlude in which case
the interlude is left. This gives us

(=0)

as a possible way of entering our programme. This interlude consists of a single instruction which
jumps to label 0. It is the most commonly used way of entering a programme.

If the interlude does not end with a jump the computer will continue to read instructions after
the interlude has been obeyed. The new instructions are stored in the place previously occupied
by the interlude and all trace of this is lost. This gives us the reason for actually wanting an inter-
lude in the first place; an interlude is a way of having a piece of programme obeyed once, leaving
some parameters set to particular values to be used by the main programme, and not taking up
valuable space after its work has been finished.

The Sirius autocode recognizes (—0) but otherwise the interlude facility cannot be used. The
instructions of an interlude are not lost if no further instructions are read. Thus the interlude

(=0)
not only enters our programme but we also have the instruction
-0

as the last instruction of our programme, so that it will automatically return to the instruction
‘labelled 0.

* They are in the computer’s machine code and direct it to start at the beginning of the autocode compiler, which
then starts reading instructions.

38 COMPUTER PROGRAMMING AND AUTOCODES

6.8 Headings

(i) Name

It is possible to give a programme a name. This is punched at the beginning of the programme,*
and must be preceded by the letter N. The end of the name is specified by punching ‘“‘blank tape”,
at least two consecutive figure-shift characters. When the programme is read into the computer the
name is copied on to the output tape but the name itself is not stored. Data may also have a name,
preceded by the letter N and terminated by blank tape as above.

Headings and descriptions may be copied on to the output tape by this facility. On Pegasus this
is the only way (in autocode) of copying texts. It is possible to use an input instruction to copy
headings without reading any numbers, by giving “data” consisting of the name, which is copied,
and then the character L to signify that input is to end. As all input instructions destroy the original
contents of 10 the way causing least loss of information is

n0 = TAPE or n0 = TAPEB

(ii) TEXT (Sirius only)
The Sirius autocode allows texts to be stored as part of the programme. At a point in the pro-
gramme where we wish to punch a text during operation of the programme we write the word
TEXT followed by the symbols we wish to print. For example,

TEXT

DATA INCONSISTENT
would cause the words DATA INCONSISTENT to be printed when the programme is obeyed,
but not when the programme is read. A text is limited to a maximum of 50 characters. It is termin-
ated by two consecutive figure shift characters.

(i) Date (Pegasus only)

The date is normally stored in Pegasus. It may be punched on the output tape, to give a record of
when a programme was run, by putting the character D at the very beginning of the programme
tape, normally before the name and certainly before the J1.0. D may not appear on a data tape.

6.9 Programme Alterations (Pegasus only)
It is, unfortunately, only too easy to make mistakes in writing programmes. Corrections can be
made by editing the programme tape but sometimes only a few instructions need to be corrected.
The Pegasus autocode allows this, without the necessity of repunching the whole programme.
After the programme has been read into the store a tape with corrections can be fed in. We have to
tell the computer which instructions are to be changed. This is done by saying where the instruc-
tion is relative to a labelled instruction. For example, 3, 5 refers to the 5th instruction after that
labelled 3 and to change it we write

ALTER 3,5

New instruction
Such a tape is called an ALTER sequence and must be headed by the symbols

J1.2
To alter the instruction labelled 3 we could write either
ALTER 3,0 or more simply ALTER 3
* J.e. before J1.0 or Jvl.

THE PEGASUS-SIRIUS AUTOCODE 39

Every ALTER affects only one instruction, and to change two consecutive instructions we have
to write e.g.

ALTER 3,5

New instruction

ALTER 3,6

New instruction

Only one J1.2 is necessary, or indeed allowed, at the start of the ALTER sequence and we finish
by an interlude to enter the programme as before.

Example 1. J1.2
ALTER 3,5
v3 = vSxv(l +n2)
(=0)

changes an instruction and then enters the programme at label 0.

Example 2. J1.2
ALTER 3,1
3)v5 =v5x10

(=0

moves the label 3 from one instruction to another.t The instruction itself may be changed as well,
of course.
The ALTER facility is not available on Sirius.

6.10 Approximate Equality

In Chapter 4 we mentioned the fact that because of rounding errors numbers will not be repre-
sented exactly inside the machine. As a consequence it is most unlikely that tests for equality
between two computed numbers will ever be satisfied. To overcome this difficulty the autocode
includes tests for approximate equality of variables to a specified number of significant digits. The
instructions are written like
=1, =*v3and -1, 2 #* 3 .

where the number of significant digits to which the test is applied is given in #0. For Pegasus this
is given as a number of binary digits, 0<<n0<28;1 for Sirius 70 is the number of decimal digits,
0<<n0<C8. It is essential that the numbers occurring in these test instructions are non-zero.

If there is any danger of cither number in such a comparison being exactly zero, it is necessary
to add a non-zero constant to both sides and then make the comparison. For example, to make a
jump if vl is approximately equal to zero, we could use

vl = vl1+1
=1, vl =*1

to obtain a valid comparison.

6.11 Other Facilities

We have described most of the commonly used features of the Pegasus/Sirius autocode. For other
facilities, which include how to read further instructions, scaling of numbers at input and combin-

1 See section 6.3 regarding two instructions with the same label. .
{ To convert this to decimal digits multiply by 0-3; for example 20 binary digits correspond to 6 decimal digits.

40 COMPUTER PROGRAMMING AND AUTOCODES

ing autocode with machine code, the reader should consult the Ferranti publications dealing with
Pegasus and Sirius autocodes.

6.12 Allowed Ranges for Numbers and Allocations of Store

Pegasus Sirius
Indices —8191<n<<8191 | —5x10°<n<<5% 10°
Variables 10777 <|v|<107¢ | 10730<|v|<10%°
orv=20 orv=20

On Pegasus the range quoted for variables is the decimal equivalent of the range used in binary.

Pegasus Sirius

Labels 102, numbered O, . . ., 101 As for Pegasus, but space
is needed only for those
labels actually used.

Indices 28, numbered 70, . . ., n27 28, numbered nO0, . .., n27
Variables 1380, numbered V0, . . ., v1379 |\ This depends on the com-

piled programme. The
Instructions 594 autocode prints out the

(210 on small drum machines) amount of space available.

6.13 Allowed Arithmetic and Jump Instructions

Simple Arithmetic

vl =2 nl = n2
vl = v2+443 nl = n2+n3
vl =v2—v3 nl = n2-n3
vl = v2x13 nl = n2xn3
vl =1v2/v3 nl =n2[n3
nl = n2*n3 (remainder of n2/n3)
nl =12 (nearest integer)
vl =n2
vl =n2[n3

Functions
vl = MOD v2

vl = INT »2 (integer part)
vl = FRAC v2 (fraction part)
vl = SQRT v2

THE PEGASUS-SIRIUS AUTOCODE 41

vl = SIN v2

vl = COS v2

vl = TAN v2 (argument in

vl =CSCi2 radians)

vl = SEC v2

vl = COT »2

vl = ARCSIN »2 (in range —{n<x<4n)

vl = ARCCOS v2 (in range 0<x<m)
vl = ARCTAN »2 (in range —in<x<4n)

vl = LOG v2 (natural logarithm)
vl = EXP v2 (e

vl = EXPM 2 (€™

nl = MOD n2

Notes: INT v2<v2, FRAC v2>0

Jump Instructions
—1 (unconditional jump)

=1, +v2>4v3 =1, £v2>+v3

=1, +v2 = +v3 =1, +v2 # +v3

=1, +n2>+n3 =1, +n2>+n3

=1, +n2 = +n3 =1, +n2 # +n3

=1, +v2 =* +v3 [Agreement to n0 significant binary digits (Pegasus) or decimal
=1, £v2 =" +v3 digits (Sirius)]

Further information can be found in reference [8].

CHAPTER 7

THE ELLIOTT 803 AUTOCODE

The basic Elliott 803 computer has a store of 4096 words on magnetic cores, but this is extendable
to 8192 words; each word has 39 binary digits. Five-hole paper tape is used for input and output,
but punched card input and output and magnetic film backing store can also be provided.

An automatic floating-point unit is available as an optional extra, and this will make most auto-
code programmes run considerably faster; the programmes themselves are written in precisely the
same form in either case, but the translating programme (compiler) used will be such as to take
advantage of the floating-point unit if it has been fitted.

7.1 Some Introductory Examples .
We shall start by giving the autocode instructions needed to evaluate (1 +ili) forn=1,2,...,m,

following the method shown in the flow diagram Fig. 2.4 of page 9:

N=0
)N =N+l1
A=1
P=N
B=1I/N
B=1+B
2) A = A*B
P=P-1
JUMP IF P>0@2

LINE
PRINT A

JUMP IF N<M@1

Fig. 7.1. Evaluation of (l +’!.)'I forn=1,2,...,m.

It will be seen that in the Elliott autocode we use the single symbol = instead of : =, and that the
multiplication sign is represented by an asterisk (viz. the instruction labelled 2 above). Each
autocode instruction is written on a line of its own, and those that are destinations of jump
instructions are labelled by means of a reference number followed by a right-bracket. The instruc-
tion LINE ensures that the next number to be printed starts a new line.

The arithmetic instructions of the Elliott autocode are limited to having not more than two
numbers (operands) to the right of the = sign, and for this reason we had to write the two instruc-
tions

B=1/N
=1+B
for the operation b := l+'~li.

The instructions given above can however be considerably simplified by using the special

facilities which the autocode provides for organizing loops, as follows:
42

THE ELLIOTT 803 AUTOCODE 43

CYCLE N = 1:1:M
A=1

B =1I/N

B=1+B

CYCLEP = N:-1:1
A = A*B

REPEAT P

LINE

PRINT A

REPEAT N

Fig. 7.2. Evaluation of (l +,l—l)" forn=1,2,..., m. (2nd version).

It is important to realise that to each CYCLE instruction there must be oneand only one corres-
ponding REPEAT instruction to indicate the end of the loop. The CYCLE instruction specifies
the initial value, the stepping value, and the final value of the controlled variable, and the corres-
ponding REPEAT instruction must again contain the name of this variable. Our example (Fig.
7.2) shows a cycle within a cycle, and the reader should note how the REPEAT instructions refer
to the controlled variables in the reverse order, i.e.

CYCLE N...... CYCLE P...... REPEAT P...... REPEAT N

The two sets of instructions given so far are essentially the same as regards the arithmetic
operations to be carried out by the computer. However, for very large values of M the repeated
multiplications would be rather time-consuming, and it would be faster to make use of logarithms.
The repertoire of the autocode includes a set of basic functions (a full list is given in section 7.8),
and in particular it can evaluate (natural) logarithms and exponentials. We could therefore write
the procedure as follows:

CYCLEN = 1:1I:M

B=1I/N
B=1+B
B=LOGB
B = N*B
A =EXPB
LINE
PRINT A
REPEAT N

.
Fig. 7.3. Evaluation of (1 +,1,) using logarithmic function.

7.2 Integers and Floating-point Variables

The autocode treats numbers as being either in integer form or in floating-point form. This dis-
tinction is fundamental to the internal working of the computer, and has already been discussed in
chapter 4. Any integer n in the range

—274 877 906 944 < n < 274 877 906 943

can be represented in integer form. Numbers in floating-point form, on the other hand, can have
magnitudes up to 4 x 1077, and they need not be whole numbers. They may be considered as being

44 COMPUTER PROGRAMMING AND AUTOCODES

numbers like 0-274 877 907 x 10'2 and are represented to an accuracy of between 8 and 9 signifi-
cant decimals.* Numbers of magnitude less than about 4 x 10~77 are replaced by zero.

Numbers written on the programme sheet in numerical form are called constants. They should
be written in ordinary decimal notation but should not normally have more than eleven digits
altogether. Numbers in floating-point form may be written as constants thus:

Sor50 99-9 —42-3 -125 -000124 —-125

For constants in integer form, decimal points are not permitted even if followed by 0’s.

Numbers other than constants (as defined above) arise as a result of the operations carried out
by the computer, and such numbers are called variables; it should be noted that this includes
numbers read into the computer from data tapes by means of the READ instructions. Variables
are represented by letters of the alphabet, just as in ordinary mathematical notation. However,
only capital letters should be used since the teleprinter equipment which transcribes the programme
has no lower case. We shall continue to use the word “number’” as meaning either a constant or a
variable.

The Elliott autocode allows the user complete freedom as to the choice of letters for his vari-
ables, and any variable may have a suffix attached to it (see section 7.3). The setting instructions
SETS and SETV are used to declare which variables represent numbers in integer form and which
represent floating-point variables in any particular programme.

Thus the setting instruction

SETV NAPBM

would indicate that all the variables used in the procedure of Fig. 7.1 (or of Fig. 7.2) are in floating-
point form; in fact, this was assumed in writing these procedures, as we shall now explain.

The variables and constants occurring in any arithmetic instruction must all be of the same form,
i.e. they must cither all be floating-point, or else all be in integer form. Division of numbers in integer
form is not permitted, on the grounds that it could give rise to a non-integral result. It is clear there-
fore that the instruction

B =1/N

implies that both B and N must be in floating-point form and the instruction P = N then forces
P into the same form. A constant like 1 or 2 will automatically be interpreted as a floating-point
constant if it is part of an instruction involving floating-point variables.

1t may be noted that it is perfectly permissible to use floating-point variables for numbers which
actually take only integral values, as has been done for P, N and M above. The question now arises
as to whether this could introduce rounding errors. All integers up to 22° (which is just over
4 10°) will be accurately represented in floating-point form and any arithmetic operations with
such integers will give an exact result provided the result is itself an integer in the range -2 10
+2%9.

To convert a variable I from integer form to floating-point form we use the instruction

A =STAND I

which is said to standardize 1. It is important to realize that in this instruction the variables A and |
are of an entirely different form, even though they both represent the same numerical value. We
are now in a position to re-write the procedure of Fig. 7.2 so as to have N, P, and M in integer
form, by simply replacing the instruction B = 1/N by the two instructions

* The representation of these numbers inside the computer gives an accuracy of 28 significant binary digits, with
a possible error in the 29th digit.

THE ELLIOTT 803 AUTOCODE 45

B = STAND N
B=1/B

The only other instruction which allows us to change from one form of variable to the other is
I=INTA

which, when A is positive, puts I equal to the integral part of A (defined as the greatest integer not
exceeding A). The autocode departs from the usual mathematical definition in the case of negative
values of A, for which INT A gives “minus the integral part of the modulus of A”. The variable I
in the instruction [= INT A may be taken to be of either integer or floating-point form, according
as to whether it is declared under SETS or SETV.

7.3 Suffices

The use of suffices was discussed in chapter 3, and as an example we now give the autocode instruc-
tions corresponding to Fig. 3.1 for adding the sequence of numbers a,, a,, . .., a,.

B=0

CYCLEI = 1:I'N
B = B+A(l)
REPEAT 1

The autocode will also accept Al as an alternative form of writing A(I), and when the suffix is
zero it may be omitted altogether, so that A(0) and A0 denote the same variable as A. The various
forms of suffices are shown in the table below, in which the numbers 7 and 8 may be replaced by
any other positive integer constants, and in which I and J denote variables in integer form (but
without any further suffix attached to them).

A(0) or A0 or A

A(7) or A7
A(D) or Al
A(I+7) or A(7+])
A(I=7)

A(7-1)

A(I+J) and A(I-))
A(TD)

A(71+8) or A@B+TI)
A(71-8) and A(8-T7I)
A(71+]) or AWJ+71)
A(71=]) and A(J-T7I)
Fig. 7.4. Table of allowed forms of suffices.

The forms of suffix shown in the first five lines of this table are known as simple suffices, and
those in the first two lines are numerical suffices; we shall need to refer to this classification in
connection with some restrictions on the use of suffices (e.g. section 7.10).

Variables occurring in a suffix must be in integer form, and suffices should not be allowed to
take negative values. The reader should note that the notation for multiplication inside a suffix,
as in A(7I) or A(71+1J), differs from the notation in an arithmetic instruction such as K = 7*J,
where the asterisk must be used. Further, the product of two variables, such as I*J, is not permitted
as a suffix.

46 COMPUTER PROGRAMMING AND AUTOCODES

As another example, we give the autocode instructions for evaluating the polynomial
P =aX"+a\x" '+ ... +a,_,x+a,

by the method of nested multiplication discussed in connection with Fig. 3.2 on page 15. We
assume that the variables X, A, Al, ... A(N), and N have the values of x, ay, a, . . . , a,, and n
respectively, and that N is in integer form (and not less than 1):

P=A

CYCLEI = 1:1:N

P = pP*X

P =P+Al

REPEAT |

7.4 Setting Instructions, START and STOP

During the process of “translation” the autocode compiler must assign storage locations to all the
variables, and to do this it nceds to know the range of suffices that will be required with each of the
letters used. This information must be supplied at the beginning of a programme in the setting
instructions; these also define which variables are to be in integer form and which in floating-point
form.
Thus the setting instructions for the procedure for adding the sequence of numbers ay, aj, . .., a,

(cf. page 45) might be

SETS IN

SETV A(200)B

which indicates that the variables 1 and N following SETS are in integer form, that the variables
A and B following SETV are in floating-point form, and that 201 storage locations are to be re-
served for the sequence
A, Al, A2, ..., A200 .

all of which will be in floating-point form. Note that the setting instructions have to give the maxi-
mum numerical value taken by cach suffix, and that this value (if it is not zero) must be put in
brackets. Errors due to allowing suffices to become larger than indicated in the setting instructions
will not be detected by the autocode. If a programme with the above setting instructions were to
call for B2, this would be interpreted as Al, while A201 would be interpreted as N. This will cause
the programme to behave in unexpected ways.

There is also a setting instruction SETF which lists the basic functions used in the programme
(see section 7.8), and finally there is the SETR instruction which gives the maximum reference
number attached to an instruction. The SETR instruction must always be given as the last of the
setting instructions.

At the end of any complete autocode programme there must be something to tell the compiler
that the process of translation is complete. This is done by means of the word START, followed by
the reference number of the instruction at which the programme is to be entered when the trans-
lated programme is “‘run”. Note that the reference number 0 is not allowed.

Many autocode programmes end with

STOP
START 1
The instruction STOP will be translated into one which, during the running of the translated pro-

gramme, will stop (i.e. end) the computation and give a high pitched note on the loudspeaker.
START 1is not translated as an instruction of the programme.

THE ELLIOTT 803 AUTOCODE 47
7.5 Input

Most programmes are designed so as to work with parameters or other numerical data supplied
on a separate data tape. The instruction READ A causes the next number on the tape in the tape-
reader to be read and its value to be assigned to the variable A. Such a number will consist of a
sequence of decimal digits (with or without a decimal point) terminated either by carriage return
and line feed or by two or more space symbols. These alternative forms for terminating numbers
make it possible to have data tapes printed out cither in the form of a single column or as several
tabulated columns. Single spaces are ignored by the READ instruction, so that we may arrange
digits in groups for ease of reading, as in 1 000 000.

The READ instruction provides three further facilities:

(i) label:* In order to identify the data being read, we may put a /abel on a data tape in the
form of a set of (punched) characters which are copied directly on to the output tape as the data
tape is read. Such a label must be preceded by an = sign and terminated by the character b/}
When an instruction like READ A encounters the = sign, it will cause all characters up to the next
bl to be copied on to the output tape and will then go on to read the next number on the data
tape and make A equal to this number.

(ii) trigger: It is often convenient to have a device to indicate the end of a sequence of numbers
on a data tape, and to cause the programme to jump to another instruction. This may be done by
placing a trigger, consisting of an integer constant followed by a left-bracket, on the data tape.
When a READ instruction encounters a trigger such as 5(, it causes a jump to the instruction with
reference number 5.

(iii) stop: When a READ instruction encounters a right-bracket on a data tape it causes the
computer to stop in the same way as a STOP instruction.

Conventions for punching numbers on data tapes. Negative numbers are preceded by a minus sign,
but in the case of positive numbers the plus sign is optional. Not more than eleven} decimal digits
may be punched for cach number, and the end of a number must be indicated either by the
characters Cr Lf or by Sp Sp, as explained at the beginning of this section. As an alternative to the
ordinary decimal notation we may also punch the number represented by a x 10 in the form a/p,
so that 0-00000001 could be punched as +1/—7 oras 1/—8. Note that floating-point numbers
may be put in this form only on a data tape; on a programme sheet the oblique stroke would
denote division.

Whereas the READ instruction reads numbers together with their terminating characters, there
is also an instruction INPUT I which will read a single character from the tape and set the integer [
cqual to the numerical value of this character as defined in the Elliott tape code (see Appendix).

7.6 Output

The standard output instructions cause characters to be punched on the output tape, and this tape
may subsequently be printed out by a teleprinter while the computer is doing another job. How-
cever, we shall find it convenient to describe the output instructions in terms of what is finally
printed by the teleprinter.

A PRINT instruction is used to print the numerical value of a variable, and this instruction also
specifies how many decimal places are to be printed. In all cases negative numbers are preceded by
a minus sign, whereas for positive numbers a space is printed instead of a plus. Non-significant
leading zeros are also replaced by spaces, unless they come after a decimal point. All numbers are

* In the Elliott autocode specification, *“label” does not mean “‘reference number®.

t Blank tape, i.e. no holes, which in Elliott code is not the figure-shift character.
{ But integers up to 274 877 906 943 arc accepted.

48 COMPUTER PROGRAMMING AND AUTOCODES

followed by two spaces, so that output and input tapes are compatible, enabling us to use an output
tape directly as the data tape for another programme.

For variables in floating-point form there are three different kinds of style available, as illustrated
by the following instructions. In each case we shall show how a number equal to —n would be
printed. Round-off on the last decimal place printed is automatic.

PRINT A,8 prints A with eight digits, the decimal point being placed in the appropriate position,
as in —3-1415927.

PRINT A,2:6 prints A with two digits in front of and six digits after the decimal point, as in
— 3-141593.

PRINT A,5/ prints A as a fraction to five decimal places (starting with a decimal point), followed
by an oblique stroke and a decimal exponent (given to two digits), as in —-31416/ O1.

For variables in integer form there is only one kind of style, as illustrated by PRINT N,5 which
will print N as five decimal digits; if necessary, spaces will be printed in front of the number to
make up for missing digits, thus enabling us to tabulate results in columns.

The number of decimal places to be printed may also be controlled by the programme itself in
instructions of the form

PRINT Al

PRINT A,l:]

PRINT A,l/
in which I and J are variables in integer form.

It may happen that the number to be printed is too large to be represented in the specified style;
e.g. the instruction PRINT A,2:1 is not appropriate for printing the number 103-4. In such cases
the printing will move to a new line on the page and print a question mark followed by the output
corresponding to PRINT A,9/ or, in the case of variables in integer form, that corresponding to
PRINT A,12.

If no style is specified, the instruction PRINT A will adopt the style used for the variable of the
same form (i.e. integer or floating-point) last printed. If no such variable has been printed the style
adopted is PRINT A,4 for integer form, or PRINT A,9/ for floating-point form.

The following instructions are used to control the layout of results on the printed page (which
allows up to 68 characters per line):

LINE causes the printer to begin a new line,
LINES N causes the printer to begin N lines further on,
SPACES N causes the printer to move N spaces to the right,

where N may be either a constant or a variable in integer form, but not less than one.

It is useful to incorporate a title to identify the programme, and subtitles to act as headings for
particular results or columns of results. This can be done by the instruction TITLE, followed by a
space and then the heading to be printed, and terminated by the symbol 4/ for “‘blank”. At run-
time this causes everything between the space and the blank to be punched on to the output tape,
with the character for figure shift added at the end.

Finally there is the instruction OUTPUT N to punch just one character, namely the one whose
“numerical value” in the tape code (see Appendix) corresponds to the value of N, where N may be
a constant or a variable in integer form having at most a numerical suffix. Printing is in terms of
figure shift characters unless a letter shift has been punched by means of OUTPUT 31. Such a
letter shift would need to be cancelled by means of OUTPUT 27 before the next PRINT instruc-
tion is obeyed, unless a TITLE instruction intervenes. To run out blank tape we use OUTPUT 0
in a cycle.

THE ELLIOTT 803 AUTOCODE 49
7.7 A Complete Programme

We shall now give a programme for estimating the mean and standard deviation of a set of num-
bers given on a data tape. The method is similar to that discussed in connection with Fig. 2.9 on
page 12, but we do not now require the number n for the size of the sample to be given on the data
tape. Instead, we assume that the set of numbers to be read is terminated by the trigger

A(
which is punched at the end of the data tape, and we shall count the numbers as we read them in.

SETS N
SETV ABCP
SETF SQRT
SETR 4

HN=0
B=0
Cc=0

2) READ A
B =B+A
A= A*A
C=C+A
N =N+I1
JUMP @2

4) LINE
TITLE N = b/
PRINT N4
P = STAND N
A = B/P
LINE .
TITLE MEAN = b/
PRINT A,6
A = A*B
A=C-A
P=P-1
A=AJP
A =SQRT A
LINE
TITLE DEVIATION = b/
PRINT A,6
WAIT
JUMP @1
START |

Fig. 7.5. Mean and standard deviation.

When all the numbers making up the sample have been read, the trigger 4(, which terminates the
data, causes a jump to the instruction with reference number 4, and the programme then calculates
and prints the sample size, mean, and standard deviation.

The instruction WAIT causes the computer to stop and emit an audible hoot until a certain

50 COMPUTER PROGRAMMING AND AUTOCODES

button is pressed on the keyboard ; subsequently the programme continues with the next instruction,

which in our example is JUMP @ 1. The purpose of this is to give us time to place a new data tape

in the tape reader and to carry out the same calculation on a further sample. By using the label

facility (see section 7.5) on the data tapes, we can arrange for the name of each sample to be printed
. out just ahead of the results calculated from it.

As autocode programmes are not self-starting, it is not necessary to provide a WAIT instruction
for putting in the first data tape. To start the programme, the operator has to press certain buttons
on the keyboard. In the same way, whenever the computer has come to a STOP or WAIT, the
programme may be re-entered manually at any instruction which has a reference number.

7.8 Summary of Arithmetic and Function Instructions

Basically there are only five arithmetic operations in the autocode, as shown in the following
instructions:

A=B A=-B

A =B+C A = -B+C

A =B-C A= -B-C

A = B*C A = —B*C
floating-point only: A = B/C A = —BJC

The expressions on the right of the = sign never involve more than two numbers, but one or both
of these may be a constant. The instructions will make the variable on the left of the = sign take
the value of the expression on the right. The variables and constants in such an instruction must
all be of the same form, i.e. they must either all be in floating-point or clse all be in integer form.
Division of numbers in integer form is not allowed. The variables may have any kind of suftix,
and for this reason the operation of multiplication is denoted by an asterisk in an arithmetic
instruction, e.g. A = B*C.

The autocode includes facilities for evaluating functions by means of the following instructions:

A =L0G X natural logarithm to the base e
A = EXPX exponential
A = SQRT X square root
where X must be in units of 180°, so that to find the sine of an angle of

ik AN 8 D degrees we write:
A = COS X & '
A = TANX o= it

A =SINX
A = ARCTAN X evaluates A in units of 180°
B = INT X integral part as defined in section 7.2
A = FRACX fractional part, equal to *X minus INT X"
B=MODC modulus (absolute value)
A = STAND 1 standardization of an integer as defined in section 7.2

In this table of function instructions, A and X must both be in floating-point form; the variable B
in B=INT X and in B = MOD C may be of either integer or floating-point form, but in
B = MOD C we must have B and C both of the same form. The variables may have any kind of
suffix, but the arguments (X, C, or 1) cannot be replaced by an arithmetic expression, not even by
—X. However, the forms

A = —LOG X

and so on are permitted, and the arguments may be replaced by constants (positive or negative).

THE ELLIOTT 803 AUTOCODE 51

The functions used should normally be listed under SETF, but the abbreviation TRIG should
be used to cover any or all of SIN, COS, and TAN. The functions MOD and STAND need not be
included in the SETF list.

If, when the programme is run, the argument X in A = SQRT X or in A = LOG X has a
negative value, then the computer will give an error indication in the form of a continuous output
of the symbol 5 or 2 on the output punch. Other error indications will be given when the numbers
to be calculated lie outside the range represented in the computer, or when a division by zero is
attempted.

7.9 Jump Instructions and Subroutines
The simplest jump instructions are unconditional, such as
JUMP @3 or JUMP @K

which means jump to the instruction whose reference number is 3 (or is cqual to the current value
of K). In the instruction JUMP @K the variable K must be of integer form, and is not allowed to
have a suffix; this instruction may be used as a switch, as explained in chapter 3.

The autocode provides a great variety of conditional jump instructions. Thus

JUMPIFA =B @3

has the effect of a jump if A = B, and is ignored if A # B. We also have the opposite instruc-
tion
JUMP UNLESS A = B @3

which jumps if A # B and is ignored if A = B.

In these jump instructions the condition A = B looks formally the same as an arithmetic
instruction. In fact the autocode allows jump instructions with conditions in the form of any of the
arithmetic instructions or function instructions listed in the previous section; note that this implies
that the equal sign in the condition must be preceded by just a single variable (no0f a constant).
However, jump instructions test for equality without actually changing the variable on the left
side. Tests for equality should not be used on floating-point variables, since these are subject to
rounding errors as explained in chapter 4.

The autocode also allows tests for inequality with the symbols < or > which may be substituted
for the = sign in any of the forms discussed. However, the symbols <, #, > are not available in
the autocode, and it is for this reason that the instruction JUMP UNLESS is sometimes useful.
Thus we can write

JUMP UNLESS A>B+C @3

to have the effect of jump if A<B+C.
The following are just a few examples of permissible jump instructions:

JUMP IF A>SQRT B @4

JUMP IF J<MOD | @8

JUMP UNLESS J = 3*I @K

JUMP IF A(71+J))< —=BJ-C(7]) @K

Where the destination of the jump is specified by a variable, like K, this must be in integer form
and is not allowed to have a suffix.

The reference numbers used as the destinations of jumps may be any unsigned integers other
than zero, and they may appear in any sequence in the programme. The largest such integer used

52 COMPUTER PROGRAMMING AND AUTOCODES

must be stated in SETR, but it is not necessary to use all the integers up to this value as reference
numbers in the programme.

A subroutine is a sequence of instructions which may be used at several points of a programme,
but is stored only once. It is often convenient to write a programme in the form of a main pro-
gramme which “calls in” one or more subroutines to do specific jobs. The use of a subroutine
involves two jumps, one to jump from the main programme to the beginning of the subroutine,
and the other to jump from the end of the subroutine back to the point where the main programme
is to continue. For the first of these jumps the autocode instruction

SUBR K

is used, where K may be a constant or a variable in integer form, but must not have a suffix. This
will cause a jump to the subroutine which starts with the instruction whose reference number
corresponds to the value of K. The last instruction to be obeyed in such a subroutine must be
followed by the instruction
EXIT
which will cause a jump back to the instruction immediately after the last SUBR instruction to have
been obeyed.
SETS I
SETV NMQR
SETF FRAC
SETR 6
1) TITLE FACTORIZE b/
CYCLE I = 4:1:500
LINES 2
PRINTI, 3
TITLE = bl
N = STAND I
M=2
SUBR 5
M=3
2) SUBR 5
JUMPIFN =1 @4
JUMP IF Q<M @3
M=M+2
JUMP @2
3) PRINT N,3:0
4) REPEAT I
STOP
5)Q = N/M
R = FRACQ
JUMP IF R>0 @6
PRINT M,3:0
N=Q
JUMP IF N>1 @5
6) EXIT
START 1

Fig. 7.6. Factor table for integers up to 500.

THE ELLIOTT 803 AUTOCODE 33

A subroutine must always be left via an EXIT instruction; if it has several branches, these may
be terminated by separate EXIT instructions. The autocode allows subroutines within subroutines
up to six in depth. If this depth is exceeded, an error indication will be given when the programme
is run.

The use of a subroutine is illustrated by the programme for factorizing integers in Fig. 7.6,
which uses the method discussed in connection with Fig. 3.10 on page 20.

7.10 Cycle Instructions
The most general form of a “Type 1” cycle instruction is

CYCLE A = B:C:D

REPEAT A

where the controlled variable A may have any kind of suffix, but the variables B, C, D on the right
may have simple suffices only. Any of the variables B, C, D may of course be replaced by constants,
orby —B, —C, or =D.

Some examples of the use of such cycle instructions were given in section 7.1. The precise
definition of these CYCLE instructions depends on whether the controlled variable A is in integer
or in floating-point form.

If A is in integer form, then of course B, C, and D must also be in integer form and such that
(D-B)/C is a non-negative integer. The loop (i.e. the instructions between the CYCLE and the
REPEAT) will be performed 1+ (D— B)/C times, corresponding to the sequence of values A = B,
B+C, B+2C, ..., D, and the programme then continues with the instruction immediately after
the REPEAT. If the condition on (D —B)/C is not satisfied the cycle continues indefinitely.

Similarly, if A is in floating-point form, then B, C, and D must also be in floating-point form,
and the intention of the programme will be to perform the loop for the sequence of values

A=B,B+C,B+2C,...asfaras D.

However, owing to round-off errors in floating-point arithmetic, the sequence of values of A
calculated in the computer might not have any term that is exactly equal to D. For this reason the
CYCLE instruction will identify the term in the sequence nearest to D and, on reaching this term,
will replace it by the exact value of D.
To perform a loop for the N values of the arithmetic progression
A =B,B+C,B+2C,...,B+(N-I)C
we may usc the VARY instruction
VARY A = B:C:N

REPEAT A

in which N must always be a positive integer (not zero), either a constant or a variable in integer
form. Because the VARY instruction does not need to make any ‘“‘end-adjustment”, it will be
somewhat faster than the corresponding CYCLE instruction when A is in floating-point form.

54 COMPUTER PROGRAMMING AND AUTOCODES

It is not advisable to change the values of A, C, or D inside a loop; for details of the effects of
doing this the reader should consult the manufacturers’ specification [7].

If the values to be taken by the controlled variable do not form an arithmetic progression, we
may use a “Type 2" cycle instruction in which we give an explicit list of the values to be taken by
the controlled variable, e.g.

CYCLE A =11, 13,17, 19, 23, 29

REPEAT A

We may have cycles within cycles to a combined depth of five, a VARY instruction counting as a
cycle. If the autocode programme is compiled on to tape (two-pass) instead of into the store
(load-and-go), then the “Type 1" CYCLE instructions are exempt from this restriction, but the
combined depth of “Type 2" CYCLE and of VARY instructions must not exceed five.

7.11 Checking Facilities

The purpose of writing an autocode programme is to run it on the computer. This is done in two
stages. In the first stage, called translation, the autocode programme is translated automatically
into an equivalent machine-code programme, which may either be stored ready to be obeyed
(load-and-go) or punched out on tape to be fed into the computer subsequently in stage two (/wo-
pass). During the first stage the computer reads the autocode programme one instruction at a
time, and translation will stop if the computer detects any clerical error or inconsistency in the
autocode programme. Such errors must then be corrected and the whole process of translation
started again.

In stage two the translated programme is run. i.e. the computer executes the instructions of this
programme, and this may show up further errors. To help in detecting such errors the autocode
provides two further facilities, called check and trace respectively.

The instruction CHECK A provides an optional print facility, which will print the value of A
if the “B-button” on the keyboard is down both in translation and in running. The printing will
be in the style of PRINT A,9/ for floating-point variables and of PRINT A,12 for variables in
integer form. To distinguish this optional printing, each value is printed at the beginning of a
new line, preceded by an asterisk.

The trace facility is also controlled by the setting of a certain button on the keyboard, and may
be used to study the sequence in which groups of instructions in the programme are actually being
obeyed. It will print out the reference number of any numbered instruction whenever such an
instruction is obeyed, each reference number being printed on a new line and followed by a right-
bracket. In the case of cycles, the reference number (if any) of the CYCLE or VARY instruction
will be printed only when entering it for the first loop, while the reference number (if any) of the
REPEAT instruction will be printed at the end of each loop performed.

Conclusion

The account given in this chapter is based on the specification of the Mark 3 Autocode published
in July 1962. This autocode also contains instructions for controlling a second input/output
channel and a magnetic film backing store which may be fitted as optional extras to the 803 com-
puter. There are also facilities for incorporating blocks of machine code in an autocode pro-

THE ELL1IOTT 803 AUTOCODE 55
gramme. For details of these additional instructions and facilities we refer the reader to the manu-
facturers’ specification [7].

Finally it should be pointed out that there is a Library of standard programmes, some of which

may be incorporated in an autocode programme as subroutines, while others are complete pro-
grammes in themselves.

CHAPTER 8
MERCURY AUTOCODE

Introduction

Mercury is a computer designed at Manchester University and built by Ferranti Ltd. It was one
of the first British computers to have floating-point arithmetic built into its arithmetic unit, and it
was given a larger immediate-access store than earlier machines. Thus it became the first British
computer for which an efficient autocode compiler could be written. Most Mercury programmes
are written in autocode, and it is normally reckoned that a programme written in Mercury auto-
code will take less than twice the time of the most efficient programme in machine language for the
same job.

The original autocode compiler for Mercury was written by a group at Manchester University,
led by Dr. R. A. Brooker. Since then a number of computer centres have made their own additions
to the compiler, with the unfortunate result that there is no standard Mercury autocode. The
version described in this chapter, known as CHLF 3,* is used on a number of Mercury com-
puters, and will also be available on Atlas.

In Mercury autocode, calculations can be carried out on two types of numbers called variables
and indices. Variables are normally used, as they can take any value up to 6 x 107¢ in modulus,
and their accuracy can be 9 significant (decimal) figures. The value of an index, on the other hand,
can only be a small integer in the range from —512 to +511. Indices are therefore used almost
exclusively for counting.

8.1 Indices
There are 24 indices in the computing store of Mercury. Their names are

I J K L M NOU PG QR ST
'V KL M N O PP Q R § T
An indext never has a suffix (section 8.2).
Typical instructions carrying out arithmetic on indices are

I=J

K=L-2

R =8S+T-MN+13
M = SPQR +ST-2N
N =N+1

Such instructions replace the value of the index on the left of the = sign by the expression on the
right: they do not change the values of the indices appearing on the right. It will be seen that = is
the symbol for “becomes”, replacing the combination := used in Part I.

*The initials stand for C.E.R.N. Geneva, A.E.R.E. Harwell, London University, and R.A.E. Farnborough: the
3 refers to the number of magnetic drums.
t A useful mnemonic is IT. Letters in this range denote indices: outside this range they denote variables.

56

MERCURY AUTOCODE 57

The name index expression is given to the right-hand side of an equation which sets the value of
an index. Certain restrictions apply to it.

(1) Multiplication signs are omitted.
(2) No division is possible and the division sign / is forbidden.
(3) Brackets and powers are not allowed.
(4) Variables must not be used.
(5) Constants may appear, but they must be integers.
(6) Any number of terms may appear on the right-hand side so long as the teleprinter can print
it on one line (a limit of 68 printed characters).

Arithmetic with indices is exact. It is for this reason that the use of division, variables and non-
integral constants is not allowed.*

The result of an index calculation must lie between —512 and +511. If it does not, the com-
puter gives a wrong result within this range, differing from the correct result by a multiple of
1024. Thus if N = 30, the instruction M = NN sets M = 900—1024 = —124,

8.2 Variables
Arithmetic with variables is always rounded.} The method of rounding is a little unusual, and has
the unfortunate consequence that arithmetic with exact numbers gives an inexact result. For in-
stance, the sum of 4 and 7 turns out to be 1142725 and the product of 4 and 7 becomes
28+3 x 2724, However, most calculations are carried out with numbers which are stored to the full
accuracy of the machine and have already been rounded. Results derived from them will also need
to be rounded, and the method used does this successfully.

509 variables are provided in the computing store} of Mercury, the 29 special variables and
480 main variables. The special variables, which are always available to the programmer, are
denoted by

A B CDEVFGHUV WXY Z =
A/ B CDEFGHUV WX Y Z

The machine sets the value of 7 to be 3:14159265 initially: it can be changed by programme, but
it will return to this value each time a change of chapter (section 8.12) occurs. There is no variable
n'.
The names of the main variables consist of a letter and a suffix, e.g. A;,. The letter can be any
one of the fifteen letters for variables, ABCDEFGHUYV WXY Z or =; the suffix is nor-
mally written on the same line as the letter, e.g. A12, because the teleprinters used in preparing
programmes cannot print suffices below the line. The names of main variables have to be declared
at the head of a programme by the main-variable directives described in section 8.14,

In the written programme the suffix of a main variable may include an index. Suffices are limited
to the following forms:

Integer e.g. Al2,
Index e.g. Al,
(Index + integer) e.g. A(I+12) and A(I-12).

i L4 lr; ?}4«]:{mur§ division never gives an exact result, so an equation like T = 6/R could not be relied upon to set
2 31 = 4.
t But see page 59 for the use of the ~ symbol. .
$ The magnetic drums provide storage for a large number of auxiliary variables, described in section 8.13.

[+]

58 COMPUTER PROGRAMMING AND AUTOCODES

Brackets must enclose the compound suffix in the last case, and the index must precede the integer.
It will be seen that the suffix cannot have the complexity allowed for an index expression: even
A(1+)) and A(—1+12) are forbidden.

The cflect of an instruction using a main variable such as A(I+12) depends on the current value
of the index I on each occasion it is obeyed. If I = 10 when the instruction

A(l1+7) = BI+D(1-7)
is obeyed, the effect is the same as
Al7 = B10+D3.

Practical applications of this technique are described in section 8.6.

Special and main variables are separate entities, so that X and X0, for instance, are different
variables. But the effect of including a variable in any instruction is the same whether a special or
main variable is used. The spccial variables are normally used for individual numbers, and the main
variables for sets of numbers. If, for example, a table of some function had to be calculated for a
range of values of the argument, the argument could be stored as a special variable, perhaps X,
and the function values in a set of main variables, such as FO, F1, etc.

Typical instructions which set variables are

X = X0

C=D-E+]J (even though J is an index)

F = GH-3-519W(K +27)+13/X12

B17 = —7-2IASW3/Y(J+2)+3-751JIXX'X0/I+ T -9
X =X+H

Only the variable on the left of the = sign in any instruction is changed. The name general
expression will be given to the right-hand side of an instruction setting a variable. Certain restric-
tions apply to it.

(1) Multiplication signs are omitted. In each product of several items, the sequence should be
number, indices, variables. Otherwise ambiguities could arise because suffices are written on the
same line as the variable to which they are attached. The convention in Mercury autocode is that a
number or index following a main-variable letter is a suffix to that letter; thus A12Y mecans
(A12)x Y, not AxI12xY.*

(2) The division sign / is allowed, but only one item, whether a constant, index or variable, may
follow it. If a complicated denominator is needed, it should be calculated in an earlier instruction,
or clse the YDIVIDE instruction (see section 8.3) should be used.

(3) Powers are not allowed and the use of brackets is reserved for compound suffices of main
variables. Thus X = W(Y +Z3) must be written out as X = WY + WZZZ.

(4) Constants may appear in any term on the right-hand side. (Their usec as the denominator in
a division should be avoided: it is quicker to multiply by the reciprocal.)

(5) Indices may appear as numbers in a general expression (whereas variables may not appear
in an index expression).

(6) The size of a general expression is limited by the length of one line on the teleprinter, 68
printed characters.

. ::}l(zl(’L ayvoids this confusion by insisting on multiplication signs and putting all suffices in square brackets,
c.g. 2] X Y.

MERCURY AUTOCODE 59
; a
Example. Given a and x, calculate y = §(x+§).

One instruction is sufficient:
Y = 0-5X+0-5A/X.
Note that we cannot write A/2X on account of rule (2) above.
Example. Calculate y = (1+0-2507213x+0-0292732x%+0-0038278x3)~*.
(This can be used as an approximation to e™*.)

Y = 0-0038278X +0-0292732
Y = YX+0-2507213

Y = YX+1
Y=YY
Y=YY
Y=1Y

Fig. 8.1,

The programme of Fig. 8.1 shows three ways in which greater efficiency in calculations can be
obtained.
(i) The apparently shorter programme

Y = 0-0038278XXX +0-0292372XX +0-2507213X + 1
Y=YYYY
Y=1Y

takes longer to obey and needs more space in the store of the computer to hold it, largely because
it carries out 9 multiplications instead of 5.

(ii) Division is a slow process—the instruction Y = 1/Y takes about 3 milliseconds to carry out,
as long as the previous five instructions in Fig. 8.1—and so the number of divisions should be
reduced to a minimum.

(iii) In formulae like Y = YX+1orY = Y/X+ B, which add products (or quotients) and single
items, it is better to place the single items at the end, because the compiler then provides a more
efficient translation.

Exact Arithmetic with Variables

The values of variables cannot be stored exactly unless they are integers, and arithmetic with
variables is normally rounded. However, if the sign = replaces = in any instruction which evalu-
ates a general expression, unrounded arithmetic will be used. This facility enables us to obtain
exact results for addition, subtraction and multiplication (but not division) of variables which
represent whole numbers exactly.

8.3 Functions

So far we have broken down calculations into series of simple arithmetical instructions. It would be
inconvenient to have to do this if the expressions to-be calculated involved functions such as
exponentials, sines or square roots. The functions provided in Mercury autocode for setting a
variable are shown in Table 8.1.

c*

60 COMPUTER PROGRAMMING AND AUTOCODES

Y = ¢ SQRT(V) +./V, provided V>0 Note 1.

Y =y LOG(V) log.V, provided V>0 Note 1.

Y =y EXP(V) exp V, provided V<177. Note 1.

Y = ¢ SIN(V) sin V.

Y =y COS(V) cos V.

Y =y TAN(V) tan V.

Y =y MOD(V) V|, i.e. +Vif V>0, —V if V<O.

Y =y SIGN(V) +1if V>0, —1if V<O.

Y = ¢ INTPT(V) [V]; i.e. nearest integer < V. Note 2.

Y = ¢y FRPT(V) V-—[V] Note 2.

Y = ¢ DIVIDE(U,V) % Note 3.
= ¥ ARCTAN(U,V) tan"(%) Note 4.

Y = ¢ RADIUS(U,V) +,/(U*+V?)
Y =y POLY(V)JALN A;+A;4;V+A14,V3+ ... +A.4 V™ Note 5.
Y =y PARITY(S) +1if Siseven, —1if Sis odd. Note 6.

Y can be replaced by any variable.
U,V can be replaced by any general expression.

Table 8.1. Basic functions in Mercury autocode.
Notes.

1. See section 8.14 for the action taken if an impossible value is given to V.

2. IfV=+426, yINTPT(V) = +2, ¥ FRPT(V) = +06
IfV=-26, ¢y INTPT(V) = -3, ¢ FRPT(V) = +04
IfV=+3 ¢ INTPT(V) = +3, ¢ FRPT(V) =0.

3, ¢ DIVIDE can be used where the denominator is a general expression, whereas the division
symbol / can have a denominator of one item only.

4. The argument is U' not - . The result Y lies in the quadrant for which sin Y, cos Y have the

same signs as U, V rcspccuvely. —n<Y<+n. (y ARCTAN is arranged to give the correct
argument of the complex number U+iV and ¢ RADIUS its modulus.)

5. Y = POLY(V)ALN evaluates the polynomial of degree N whose coefficients are A; (the
constant term), A4y, A2, - - « Ar4n (coefficient of the highest power), for the argument V.
N can be replaced by any index or integer, A; by any main variable: compound suffices,
e.g. B(I+3), are allowed.

6. S can be replaced by any index expression.

It is important to reproduce the spelling and punctuation of Table 8.1 exactly.* Any mistake
will give trouble to the autocode compiler, which may refuse to translate the instruction or, worse
still, translate it incorrectly.

An equation to set the value of a variable can have either a function or a general expression on
the right-hand side, but not both. The programme to calculate y = a cos x+b sin x must be

* Except that spaces may be inserted anywhere, e.g. Y = y ARC TAN (U,V).

MERCURY AUTOCODE 61

Y =y COS(X)
Z = ¥ SIN(X)
Y = AY+BZ
1+2,/x

7)-—; log (1+/x+x).

Z =y SQRT(X)

Y = ¢ LOG(1+Z+X)

Z = ARCTAN(1-732050808,2Z+1)

Y = 1-1547005384Z—0-3333333333Y
Note that this programme introduces only the one variable Z as *“working space”. This illustrates
how the amount of working space used in any calculation may be kept down by using the place for
the final result to hold some of the intermediate results as well, and also by replacing one inter-
mediate result by another, as soon as the first result is no longer required.

There is one function which sets the value of an index from a variable. This is
I =y INTPT(V)
where I can be replaced by any index, V by any general expression. The need for this arises because
variables cannot be used in index expressions. If, for example, the value of the variable n3 is known
to be an integer, and some loop of instructions is to be obeyed 273 times, the instruction
N = ¢ INTPT(2a3)

enables us to set the index N to this value for purposes of counting.

Two functions y MAX and ¢ MIN, which find the largest and smallest of a set of numbers, are
described in section 8.6.

Example. Calculate y = % tan“(

8.4 Labels and Jumps

In Part I we explained the need for jumps in our sequences of instructions and for labels marking
the instructions which jumps lead to. In Mercury autocode, instructions can have a /abel attached
by having a number (up to 127*) and a right-bracket symbol written before the instruction; e.g.
to attach label 21 to an instruction, we write

21) X0 = X0+H.
The labels may appear in any order in the programme; if ten labels are used it is not necessary that
they should be 1, 2, 3, . .. 10 in this sequence, nor indeed that the first ten numbers should be

used. Obviously we must not affix the same label to two different instructions, but one instruction
can have several different labels.
To jump unconditionally to the instruction labelled 21 we write
JUMP 21
(A right-bracket must not be written after the label number.) If the jump is to be made only if a
condition is satisfied, we write a comma after the label number, followed by the condition: e.g.
JUMP 21, A>BO0.
There are a number of restrictions on the condition that may be written in such an instruction.

(1) The comparison sign may be >, >, = or #. (< and < signs are not provided in the tele-
printer code.)

(2) Only a single item may be written on each side of the comparison sign; arithmetic expressions
are not allowed.

* Labels 0 and 100 have special uses; see section 8.14.

62 COMPUTER PROGRAMMING AND AUTOCODES

(3) The comparison should always be between like items, variable with variable (or constant),
index with index (or integer).

Thus, of the following conditional jump instructions, the first five are permissible and the last three
are not.

JUMP1, AI2>B3

JUMP 23, C = X(1+5)

JUMP 45, 2-718>V7

JUMPT9, 1#1J

JUMP 15, T' =27

JUMP 37, W>=K

JUMP 60, K>3'5 not allowed.

JUMP 99, WO0+WI = 12-3
The second instruction is allowed because X(I+5) is a single variable with a compound suffix (sce
section 8.2).

It is dangerous to expect two variables to be exactly equal, because of the rounding errors
incurred in calculating them, as is explained in chapter 4. For practical purposes, therefore, only
the = sign* should be used in comparing variables.

Example. Calculate the square root of A.
The flow diagram of Fig. 2.8 is coded as follows:
Z=1
NY=2
Z = 0-5Z+0-5A/Z
Y = ¢ MOD(Y-2)
E = 0-00000001Z
JUMP 7, Y>E

. A% i " 2
Example. Calculate (l te forn = 1,2,3. .. m without using logarithms.

We assume that the value of m is already known.

N=0
)N =N+1
A=1
B =1+1/N
=N
2)A =AB
P=P-1
JUMP2,P#0
PRINT(A)1,8 (Explained in section 8.10)
JUMPI,N# M

Fig. 8.2. Calculation of (l+;l,)'-ﬁrsl programme.
8.5 Cycles
In the outer loop of the above example, N increases in steps of 1 until it reaches the value M; in

the inner loop P decreases from N in steps of 1 until it reaches the value 1. This demonstrates the
very common type of loop in which an index increases or decreases in equal steps.

* There is no significant difference between > and > in this context, but the former is translated more efficiently.

MERCURY AUTOCODE 63
Mercury autocode provides a simple way of coding such loops. The instruction

I=PQR or [=P(-QR
is placed at the beginning of the loop, and

REPEAT
is written at the end. Then the programme

.......... Instructions in the loop
.......... which do not change I.

l n
Example. Calculate (1+ ;,) forn = 1,2,3...m, using the cycle-setting and REPEAT instructions.
The inner loop of this programme is

P = N(-D1
A =AB
REPEAT
The full programme is therefore as shown in Fig. 8.3.
N = I()M
A=1
B=1+1/N
P =N(-DI Inner Outer
A =AB loop loop
REPEAT
PRINT (A) 1.8
REPEAT]

Fig. 8.3. Calculation of (I +’!')"—second programme.

It will be seen that the cycle-setting instruction does not need a label and the REPEAT does not
specify which cycle-setting instruction it returns to. This might be thought ambiguous in the case

64 COMPUTER PROGRAMMING AND AUTOCODES

of a cycle within a cycle. However no difficulty arises so long as the programme has been coc%cd
correctly, starting with the innermost loop, then the loop which encloses it, thgn tl?c loop which
encloses that one, and so on. The final appearance of the programme is shown in Fig. 8.4.

——J =LM)N

———REPEAT
Fig. 8.4. Cycles within cycles.

The connections between cycle-settings and REPEATS are shown by arrows in Fig. 8.4. It
will be seen that there must be an equal number of cycle-setting and REPEAT instructions and
cach REPEAT is connected to the last “unattached” cycle-setting instruction. It is this latter r'ule
that the compiler programme uses when translating the autocode programme into mac'hlne
language and so it is unnecessary to provide a label to link cycle-setting and REPEAT instructions.

There are some points to note about the instruction I = P(+ Q)R and its associated REPEAT.
(1) I must be an index; P, Q and R may be indices or integers. Variables are not allowed.

(2) If Q or R are indices, they must be different from 1.

(3) Only Q may be preceded by a + or — sign. .

(4) Negative integers may not be written in place of P or R, but indices written in thesc positions
may have negative values.

(5) Cycles may be used within cycles: a **nest” of eight cycles is allowed.

(6) Where one cycle lies within another, different indices must be used for the counters of the cycles.

(7) There must be an equal number of cycle-setting and REPEAT instructions.

(8) A jump to the instruction 1 = P(+ Q)R sets I = P and starts the cycle. L.

(9) A jump to the instruction REPEAT makes the computer test whether I = R; if not, 1 is in-
creased by +Q and the cycle repeated. 3

Suppose now that J is to increase from —1 to (N—1) in steps of 1. We cannot write

J = —1(1)N~1, because P may not be replaced by a negative integer, nor may any index formula
such as (N—1) be used for R. So the instructions must be
K=N-1
J= -1
J=J1)K

Similarly, if S is to decrease from MN to 0 in steps of N, we write

MERCURY AUTOCODE 65
S = MN
= S(—N)0
Example. Print the roots of x2—2bx+r = Oforr = 0,1,2,...n.
The roots are x = bini—r. For r<b? they will be real, for r>b? they will be a complex

conjugate pair. We shall print real and imaginary parts of the complex pair on the same line, but a
pair of real roots will be printed on successive lines.*

In Fig. 8.5 we construct the programme without using a cycle-setting instruction.

~

yes no

a:=a a:=J-a

Print (6—a) Print b and a
Print (b+a)

Isir=u?

Fig. 8.5. Flow diagram for solution of x* — 2bx + r =0,

The corresponding Mercury autocode programme, using a cycle-setting instruction, is:

C=BB

R = ()N
NEWLINE
A=C-R

JUMP 1, A>0
A = ¢y SQRT(-A)
PRINT(B)0,8
PRINT(A)0,8
JUMP 2

1) A =y SQRT(A)
PRINT(B—-A)0,8
NEWLINE
PRINT(B+A)0,8

2) REPEAT

Fig. 8.6. Programme for solution of x* — 2bx +r = 0.

* The instruction NEWLINE arranges that the next number printed starts a new line, see section 8.10.

66 COMPUTER PROGRAMMING AND AUTOCODES

The instruction JUMP 2 in Fig. 8.6 must not be replaced by REPEAT. If it were, there would be
more REPEATS than cycle-settings in any programme of which this might form part, and the
REPEAT labelled 2) would be matched with some other cycle-setting instruction than the one
intended.

This example shows that, where a conditional jump inside a cycle chooses between two courses
of action, the two branches must meet again at the REPEAT, if not before.

8.6 Sets of Numbers

A set of numbers will always be stored as main variables. If, for example, B3,B4,...B16,B17isa
set of 15 numbers, we can place their sum in C by the instructions:

Cc=0
J =317
C=C+BJ
REPEAT

By this use of suffices we need only one addition instruction in a loop obeyed 15 times, rather than
15 separate addition instructions.
A flow diagram for the evaluation of y = @px"+a, X"~ '+ ... +a,_,x+a, was given in Fig.
3.2 (page 15). It is a simple matter to write the corresponding programme in Mercury autocode.*
Y=0
I =0(I)N
Y = YX+AI
REPEAT
The use of compound suffices is not restricted to the right-hand side of an equation: a variable
may have a compound suffix wherever it occurs, e.g. in a comparison, or on the left-hand side of
an equation.

Example. Find the largest of the set of numbers Alf, ... AN. (See Fig. 3.6.)

M=1
K = 2(I)N
JUMP 12,AM>AK
M=K
12) REPEAT
B = AM

Fig. 8.7. Largest clement of a sequence.

However, Mercury autocode provides a function y MAX to replace this programme. The result
of the instruction M = ¢ MAX(AO,I,J) is the position of the largest number in the set ALA(I+1),
... AJ, not the number itself. A similar instruction, M = ¢ MIN(AO,LJ), finds the smallest in
the set. In both these instruction AO must be the name of a main variable with suffix zero; I and
J may be indices or integers; M must be an index. In practice we should use ¥ MAX in preference
to the programme of Fig. 8.7.
[Example. Sort the numbers A1,A2, ... AN into ascending order, using the above programme to
find the largest element. (See Fig. 3.7.)

* [n practice we would use the function y POLY, but this requires the constant term to have the smallest suffix.

1 Sets of main variables always include a variable with suffix 0; it is wasteful not to use A0, but Fig. 3.6 does not
include it.

MERCURY AUTOCODE 67

JUMP 99,N =1
N = N(-1)2
M=1
K = 2(I)N
JUMP 12, AM>AK
M=K

12) REPEAT
B = AM
AM = AN
AN=8B
REPEAT

99 eeen..

Fig. 8.8. Sort into ascending sequence.

Mercury autocode does not make provision for a two-dimensional array of numbers as such,
since a variable cannot be given a pair of suffices. Instead, the array has to be stored as a single
sequence of numbers, and the position of a particular element has to be calculated from an index
expression.

Example. The m x n matrix A is punched on tape, column by column, with column check-sums.
Read this matrix and store it column by column in A1,A2, ..., A(mn), using the flow-diagram
of Fig. 3.5.

We assume that m and n are already known, and that check-sums should be accurate to 7 deci-
mal places: the programme will jump to label 77) when an error occurs. We shall use the instruc-
tion READ(X) which reads one number and stores it as X.

K=1

J = 1(I)N

A=0 For column sum
I=1(I)M

READ(AK)

A = A+AK

K =K+1

REPEAT

READ(B) Column-sum on tape
B = MOD(A-B)
JUMP 77,B>0-0000001
REPEAT
Fig. 8.9. Matrix read and stored column by column.

It is not necessary always to store the data in the same sequence as that in which they are
presented on the data tape. For example, the same m x n matrix A could be stored with the ele-
ments of each row in consecutive variables, even though it would still have to be read off the data
tape column by column. In this case it would be necessary to calculate the position of a,; in the row-
by-row array from the index formula

K = NI+J-N.

68 COMPUTER PROGRAMMING AND AUTOCODES
8.7 Switches
A switch chooses one of several courses of action in a single jump instruction. To do this in
Mercury autocode, we need the concept of a label store.

In each block* of a Mercury autocode programme, some instructions are labelled. When this
programme is translated into machine language, a list is made of these labels and of the positions
of the corresponding instructions in the translated programme. The instruction

I)=1)
takes the value of L, looks up the corresponding label in this list, and temporarily changes index 1
into a label store by placing in it the position of label L in the translated programme. (I can be

replaced by the name of any index, L by any index or integer.)
When this instruction has been obeyed, the instruction

JUMP (1)
jumps to the label whose position is held in label store I.

Example. Given an angle a (in degrees) between 0° and 360°, find sin a using the programme of
Fig. 3.8. In this programme we assume that the function ¢ SIN gives the sine of an angle in radians
between 0 and n/2 only.

Q = ¢ INTPT (0-0111111111A+1) Quadrant number

)=Q) Set label store 1
JUMP(I) Switch:
4) A = 360—-A fourth quadrant
JUMP 1
3)A=A-180 third quadrant
JUMP 1
2) A =180-A second quadrant
1) X = SIN (0:01745329252A) first quadrant
Q=0Q+4
)=0Q)
JUMP(I) Switch:
N8 X = -X third and fourth quadrant
5)6) HALT first and second quadrant

Fig. 8.10. Reduction to first quadrant.

8.8 Hoot, Halt, and End

The instruction HOOT plays a certain note on the loudspeaker for one second before the next
autocode instruction is obeyed. The instructions HOOT 1, HOOT 2, . . . HOOT 8, play the res-
pective notes of one octave of a major scale, each note for one second. HOOT 8 gives the highest
note (the same note as HOOT).

The instruction HALT makes the computer wait until the operator presses a key on the console;
then the next autocode instruction is obeyed. An intermittent note is played on the loudspeaker to
attract the operator’s attention.

The instruction END terminates the execution of any autocode programme; it causes a high
note to be played on the loudspeaker. It differs from HALT in that it is impossible to continue a
programme after END has been obeyed.

* A chapter (section 8.12) or a routine (section 8.11).

MERCURY AUTOCODE 69
8.9 Input

The normal medium for input and output of numbers on Mercury is 5-hole punched paper tape.
Numbers such as — 12-34 are punched on a data tape character by character; they must be followed
by a terminator, either CrLf or SpSp. (A single Sp in any number is ignored in Mercury autocode;
this allows the printing of numbers like + 1 00000 00000 in a more legible form.) Negative numbers
are preceded by a minus sign, but in the case of positive numbers the plus sign is optional.

Numbers to be stored as variables may also be punched in the floating-point form a,p for
ax 10P; thus —0-00000001 could be punched as —0-1,—7 or —1,—8. Numbers to be stored as
indices must be punched in fixed-point form without a decimal point.

Numbers which appear as constants in the programme must be punched in fixed-point form
only. They do not require a terminator.

Every tape, whether programme or data, should end with the character —. The machine halts
on reading this; then, when the operator presses a key, it continues reading the tape. By using this
character we allow time for the operator to change tapes in the tape reader.

The READ instruction is used for the input of numbers to the computing store. In the form
READ(X) it reads the first available number on the data tape and sets the variable X to have that
value, leaving the data tape in position for the next number to be read. (X can be replaced by any
variable.) In similar fashion, the instruction READ(I) sets the index I to the value of the number
read.

A sequence of numbers may be read by a cycle of instructions: for example,

I=1(DN
READ (X(I-1))
REPEAT
reads N numbers and stores them as the set of main variables X0 to X(N—1).
Example. Find the mean, variance and standard deviation of a set of #n numbers. (See Fig. 2.9,
page 12.)
1) READ(N)
B=0
C=0
P=I1(I)N
READ(D)
B=B+D
C=DD+C
REPEAT
U = B/N
V =y DIVIDE (-BU+C,N-1)
W = ¢ SQRT(V)
NEWLINE
PRINT (U) 0,8
PRINT (V) 0,8
PRINT (W) 0,8
JUMP 1

Fig. 8.11. Mean, variance and standard deviation.

Programmes should usually be designed so that, when calculations with one set of data are
complete, a jump to an earlier part of the programme makes the machine read and process another

COMPUTER PROGRAMMING AND AUTOCODES

< 2 ssas e the programme of Fig. 8.11 the single instruction JUMP 1 is sufficient. No HALT
smectom s required, even if the sets of numbers are on different tapes, so long as the symbol —
~ rwmchad at the end of each tape. It must also be punched at the end of the programme tape.

= ortunately there is no facility in Mercury autocode for reading a sequence of numbers with
& marier to indicate the end of the sequence, comparable to the 0 = TAPE* instruction in the
Pegasus-Sirius autocode or the trigger facility of the Elliott 803 autocode. If a general programme
= 1o be designed to read a sequence whose length is not known at the time of programming, onc
aliernative is to specify that the sequence must be preceded on the data tape by an integer whose
value is the number of numbers in the sequence. (This method was used in the programme of
Fig. 8.11)

A better alternative, available when the numbers lie in a certain range, is to end the sequence
by a number outside the range; for example, a set of positive numbers could be ended by a nega-
tive number. The advantage of this alternative is that the numbers can be counted by the machine,
thus eliminating a possible source of human error.

Mercury can have several tape readers connected to it. These input channels are numbered 1,2,
etc. and the programme can select channel 2, for example, by the instruction

CHANNEL 2 R.

Once this has been obeyed all READ instructions* read from channel 2 until a different
CHANNEL n R instruction is obeyed. When input takes place before a channel is sclected,
channel 1 is used: in particular, the programme tape is read through channel 1.

8.10 Output

The output instructions cause characters to be punched on the output tape, and this tape may
subsequently be printed away from the computer.t However, we shall find it convenient to describe
the output instructions in terms of what is finally printed by the teleprinter.

The instruction

PRINT (V) M,N

is used to print the numerical value of the general expression V, and it also specifics the style of
printing to be used. In all cases numbers are rounded before being printed. Non-significant zcros
in front of the decimal point are replaced by spaces, except that a single digit 0 is printed when the
integer part of the number is zero. Negative numbers are preceded by a minus sign immediately
before the first digit, whereas for positive numbers a space is printed instead of a plus sign. All
numbers are followed by two spaces, so that output and input tapes are compatible and we can
use an output tape dircctly as the input tape for another programme.

If M # 0, the number is printed in fixed-point form, with M digits in front of the decimal
point and N digits after it. However, if the number to be printed is too large for the style specified,
all the digits of the integer part and N digits of the fractional part are printed; since extra charac-
ters are printed, the layout on the printed page is disturbed. (If more than 15 integer digits are
needed, floating-point printing is used instead.)

If M = 0. the number is printed in floating-point form, with one digit in front of the decimal
point and N digits after it.

As examples, we show in Fig. 8.12 the printing caused by various PRINT instructions. (The
special variable # normally has the value 3-14159265.)

* And the ¢10(A,U) instruction described in section 8.13.
+ Most Mercury computers do not have a printer attached directly to them.

MERCURY AUTOCODE 71

PRINT (—m) 1,4 —3.1416
PRINT () 3,5 3.14159
PRINT (/100) 3,8 0.03141593
PRINT (—1000m) 2,4 —3141.5927
PRINT (-7) 04 —3.1416, 0
PRINT (/100) 0,6 3.141593, —2
PRINT (0) 0,3 0.000, 0

Fig. 8.12. Examples of printing.

Layout in Printing
As only 68 characters can be printed on one line, it is essential to arrange for the numbers to be
printed in a suitable layout. Two instructions are provided for this purpose:

NEWLINE and SPACE

The former punches the characters CrLf on the output; the latter punches one Sp character, and
so provides an additional gap between numbers printed on the same line. Another way of obtain-
ing a wide gap before a fixed-point number is to set too high a value for M; e.g. if it is known that
|X| < 100, the instruction PRINT (X) 5,7 will always print threc spaces in front of X.

Example. Print a table of r, r?, Jr, 1r, \% for r = 1(1)24. For a particular value of r the five

functions are to be printed on the same line, with a blank line after every fifth line of figures.

We use the index S to count the number of lines printed since the previous blank line. As we
cannot assume that the printer is ready to print at the beginning of a line when the programme is
centered,* a NEWLINE instruction must be obeyed before the first PRINT.

S=0
R = 1(1)24
NEWLINE
PRINT(R)2,0
PRINT(RR)3,0
X = ¢ SQRT(R)
PRINT(X)1,6
PRINT(1/R)1,6
PRINT(X/R)1,6
S=S8+1
JUMPL,S #5
NEWLINE
S=0

1) REPEAT
END

Fig. 8.13. Print table of functions with layout.

Optional printing

While a programme is being tested it is often useful to print some intermediate results which would
not be needed if the programme were functioning correctly. These results help to show which parts
of the programme are free from errors.

* In just the same way, we must not assume that S is zero initially.

72 COMPUTER PROGRAMMING AND AUTOCODES
If a ?is written after an arithmetic instruction, the normal effect is that the result of the calcula-
tion is printed, just as if a pair of extra instructions had been added,
NEWLINE
PRINT(X)0,5
for a variable, and
NEWLINE
PRINT(I)3,0

in the case of an index. This printing is called optional because it will be suppressed unless hand-
switch 4 on the console is horizontal, both during translation and at the time of running.

Captions

Tables printed by the output instructions can be given headings. If a single heading is needed
before any of the numbers are printed, the TITLE directive (described in section 8.14) should be
used; but the CAPTION instruction is necessary if texts are to be interspersed with numerical
results. Both TITLE and CAPTION are facilities for copying a set of characters on to the output

tape.

';:1 the written form of the programme, the word CAPTION is placed on a line by itself and the
following line is stored as the text of the caption. (The Cr and Lf symbols at each end of the line
are not included in the text.)

The text is printed each time the CAPTION instruction is obeyed and then the computer pro-
ceeds to the instruction written on the line after the text. Thus the programme

1=1(1)3
NEWLINE
CAPTION
CASE NUMBER
PRINT(I)1,0
NEWLINE
REPEAT

will print the texts
CASE NUMBER 1
CASE NUMBER 2
CASE NUMBER 3

on separate lines.

Output Channels
Mercury can have several punches connected to it. The output channels are numbered|l,2, etc.,
and the programme can select channel number 5, for example, by the instruction

CHANNEL 5 P
Once this has been obeyed all output instructions* punch on channel 5 until a different

 Including the ¢8(A,U,V,M,N) instruction described in section 8.13.

MERCURY AUTOCODE 73

CHANNEL 7 P instruction is obeyed. When output takes place before a channel is selected,
channel 1 is used.

8.11 Subroutines
In many calculations we find that one particular operation, such as the taking of a cube root,
recurs frequently. When the calculation is written as a programme (often called a routine), a
subroutine will be required for the recurrent operation. We shall normally write this subroutine
and test it for correctness before incorporating it in the main programme.

We take as an example the programme of Fig. 8.14 which sets X equal to the cube root of A.

50) X = ¢ MOD (A)

JUMPSI, X =0

X = ¢ LOG (X)

X = 0-3333333333X

X = ¢ EXP (X)

Y = ¢ SIGN (A)
51) X = XY

Fig. 8.14. Subroutine to set x = e/a.

The simplest method of incorporating this subroutine is to write it out each time a cube root is
required, but this would waste storage space if several copies were required. It is therefore better
to place only one copy of the subroutine in the main programme. We then require some kind of
switch at the end of the subroutine to tell the machine what point in the programme to return to.
This switch is provided by making RETURN the last instruction obeyed by the subroutine.
To enter the subroutine we must now use the instruction

JUMPDOWN 50.

When the machine obeys the JUMPDOWN instruction it jumps unconditionally to label 50,
but first it records the position of JUMPDOWN in the programme. When RETURN is obeyed,
the machine looks up this record and jumps to the instruction following JUMPDOWN.

Thus, having placed the instruction RETURN at the end of the subroutine shown in Fig. 8.14,
we can calculate (/2 +g'/3)? as follows:

100A=F
JUMPDOWN 50
Z=X fllJ
A=G
JUMPDOWN 50
Z=X+2Z flIJ+glIJ
Z=127Z

Fig. 8.15. Programme to calculate z = (f1/3+4g!/3)3,

The calculation of z = (f*/*+g'/%)® may itself be a recurrent part of a larger programme. In
this case it can also be used as a subroutine (once RETURN has been added as its final instruc-

74 COMPUTER PROGRAMMING AND AUTOCODES

tion), being entered by an instruction JUMPDOWN 10. The calculation of a cube root is now a
sub-sub-routine of the main programme:

Each time a JUMPDOWN is obeyed, the machine also records the level of the subroutine to be
entered. On obeying a RETURN the machine jumps back to the next higher level of subroutine
and so the JUMPDOWN which led down from it is cancelled. There may be as many as six
uncancelled JUMPDOWN:Ss in force simultaneously.

The matching of a JUMPDOWN and its associated RETURN when the programme is obeyed
is thus analagous to the matching of cycle-setting and REPEAT instructions. The reader should
notice that cycle-settings and REPEATSs are matched in the written programme in exactly the
same way as in execution, but this is not true of JUMPDOWN and RETURN. A complete pro-
gramme will obey equal numbers of JUMPDOWN and RETURN instructions but the number of
written instructions of the two types nced not be the same.

We may also use JUMPDOWN(I), where 1 is any label store whose value has been previously
set by an I) = L) instruction (see section 8.7). This JUMPDOWN instruction records its position
in the usual way, then jumps as if it were the JUMP(I) instruction.

Routines

In Mercury autocode a subroutine may be made a numbered routine. To give a subroutine the
number 641, for example, we head it by

ROUTINE 641

and terminate it by a pair of asterisks.

Each such routine is a self-contained section of programme; for example, it must have an equal
number of cycle-setting and REPEAT instructions. It also has its own set of labels. This enables
us to use an existing routine in writing a new programme without having to ensure that diffcrent
label numbers are used in the routine and the main programme.

If the cube-root subroutine of Fig. 8.14 is now called routine 641, we cannot enter it by the
instruction JUMPDOWN 50, because this would refer to label 50 of the main programme, not
label 50 of the routine. So we use

JUMPDOWN (R 641)
to enter routine 641 at its first instruction, or, to enter the routine at its label 15,
JUMPDOWN (R 641/15).

If the programme to calculate z = (f*/3+g"/3)3 is called routine 640, its final version will be as
shown in Fig. 8.16.

MERCURY AUTOCODE 75
ROUTINE 640

A=F
JUMPDOWN (R 641)
Z}=X

A=G

JUMPDOWN (R 641)
Z=X+Z

Z=177Z

RETURN

%

Fig. 8.16. Routine to calculate z = (f1/3+4g/3)3,

The use of routines on the programme tape is explained on page 81.

Two instructions previously introduced behave in unexpected ways when used inside a routine.
The instruction I) = 15) will st label store I to hold the position of label 15 in the routine, but the
instruction I) = Q) will use the value of index Q to find the corresponding label in the main
chapter, no matter how many JUMPDOWNs are in force. Secondly, CAPTION should be
avoided.

8.12 Chapters

Until this point we have assumed that Mercury has only one type of store, and that this store is
sufficiently large to hold any programme and all the variables it uses. In fact, Mercury has a small
computing store of magnetic cores and a much larger backing store of magnetic drums.

Access to individual instructions or numbers held in the computing store is almost instantan-
eous, but a much longer time is required to obtain information from the backing store. As the
names imply, the computing store is used to hold the current sets of instructions and numbers and
the backing store provides a reserve of storage space from which information is transferred to the
computing store in large blocks.

A Mercury autocode programme is divided into blocks called c/hapters which are numbered
0,1,2, ctc. The maximum number of autocode instructions which can be held in one chapter is
usually about 80, but this varies with the complexity of the instructions used.* Programmes
which are too large for a single chapter often fall naturally into sections, and then separate
chapters can be used for the various sections. Just one chapter is held in the computing store at
any time.

The chapters of a programme each have their own sets of labels, numbered from 0 to 127. By
use of the main-variable directives (section 8.14) they can also give different names to the main
variables, but more frequently the same main variables are used in every chapter.

When Mercury is just about to enter an autocode programme, chapter 0 will be in the com-
puting store and the backing store will hold the entire programme (including a copy of chapter 0).
After some of the instructions of chapter 0 have been obeyed, a different chapter will have to be
fetched into the computing store and entered. If chapter 1 is to be entered at label 15, the instruc-
tion will be

ACROSS 15/1%

* A directive PSA described in section 8.14 gives information about the size of the chapter.
t Notice that the instruction entering routine 1 at label 15 is JUMPDOWN (R1/15).

76 COMPUTER PROGRAMMING AND AUTOCODES

The instructions of chapter 1 will now be obeyed until another chapter-changing instruction is
reached. This could enter a further chapter or return to chapter 0. In the same way, it is always
possible to leave a chapter temporarily for another and return to it later.

A chapter can also be used as a subroutine to a main chapter, in a way precisely similar to the
use of subroutines described in the previous section. In this case the chapter is entered by an
instruction

DOWN 15/1
(instead of the ACROSS 15/1 used earlier), and the instruction
UP

makes the machine return to the instruction in the main chapter immediately following the
DOWN. The programme can be illustrated by the following diagram:

DOWN 15/1

up

A chapter entered by DOWN is called a sub-chapter. It may have its own sub-chapter, which will
be a sub-sub-chapter of the main chapter, as is shown in the following diagram:

The method is exactly analogous to that of JUMPDOWN and RETURN. DOWN makes a
record of the current level and the position of the DOWN instruction, while UP cancels the last
undeleted DQWN. We may go down as far as sub-sub-sub-chapter le\’rel.

ACR.OSS instructions may be obeyed between a DOWN and the UP which cancels it. No
record is made of the position of any ACROSS, which is equivalent to a jump to another chapter

and dqes not aﬂ'ect. the chapter level in any way. Complicated arrangements of chapters such as the
following are possible:

MERCURY AUTOCODE 77

DOWN

ACROSS

up
Chapter 3

DOWN

Chapter 2 | ACROSS

DOWN
uep

up
Chapter 4 Chapter 4

Here the DOWN in chapter 0 leads to chapter 1, but it is an UP in chapter 3 which eventually

re-enters chapter 0 at the instruction following the DOWN.

The number of chapters allowed depends on the size of the Mercury being used. On a machine
with 3 magnetic drums, chapters may be numbered up to 27.

The three chapter-changing instructions do not change any numbers in the store, except that
the value of 7 returns to 3-14159265 at each change of chapter.

8.13 Auxiliary Variables

Numbers held in the backing store are called auxiliary variables. The capacity of this store depends
not only on the number of drums fitted to the computer, but also on the size of the particular
programme. When a programme with highest chapter number ¢ is run on a Mercury with three
drums, 13824 —512c¢ auxiliary variables can be stored.

The positions in the backing store are numbered from 0 to 13823, and all instructions using
auxiliary variables refer to them by their addresses in the backing store. The phrase “auxiliary
variable 1234” is often used as a shorthand for “the auxiliary variable at address 1234": its use
does not imply that the value of that auxiliary variable is + 1234.

If the address of a particular auxiliary variable is to be calculated by programme, exact arith-
metic with variables (see page 59) will be required, since the range of values for an index is too
small. All the instructions handling auxiliary variables allow us to specify a particular one by
making the value of a variable in the computing store equal to the required address. (The primed
special variables are often used for this purpose.)

For example, we may need to store an array of m? numbers as auxiliary variables starting at
address 1024 and a second array immediately after the first. The instruction

Z' ~ MM +1024

sets special variable Z' to hold the address of the initial auxiliary variable of the second array. Any
instruction to handle this array can now use Z’ to find the starting point. We may therefore refer
to the auxiliary variable whose address is the value of the special variable Z’, or, more succinctly,

to the “auxiliary variable at address Z'”.
Numbers stored as auxiliary variables cannot be used for calculations until they have been

placed in the computing store. The two instructions
Y6(V')X0,I

and
Y7(V')XO0,I

78 COMPUTER PROGRAMMING AND AUTOCODES

each written on a line by itself, are used to transfer between the two stores a set of 1 numbers,
starting with variable X0 in the computing store and with the auxiliary variable at address V' in
the backing store. /6 transfers numbers into the computing store from the backing store, Y7 in
the opposite direction. In these two instructions V' may be any general expression with an integral
value; X0 may be replaced by the name of any main variable* (with a compound suffix if desired);
1 can be any index or integer. Thus Y6(U’V’+N+1500) A(1+3), M is permitted.

By way of example we show the programme to read a data tape containing m and n followed by
two arrays of m? and mn numbers (each assumed to have not more than 480 numbers). These
numbers will be stored as consecutive auxiliary variables, starting at the auxiliary variable whose
address is given in Z' (assumed to have been set previously).

READ (M)
READ (N)
J=MM
1=131))
READ (A(I-1))
REPEAT
Y1(Z')A0,]

K = MN
I=10)K
READ (A(I-1))
REPEAT

YI(Z' +J)A0K

Fig. 8.17. Read and store two arrays (1).

A more cfficient programme for this problem would use the instruction
¥ 10(A,U)
which reads U numbers from paper tape and places them in the auxiliary variables starting at

address A. Both A and U may be integers or variables with integral values.
The programme for this problem then becomes:

READ (M)

READ (N)

X'~ MM

Y 10(Z2',X")

Y' ~Z'+X'
X' ~ MN

¥ 10(Y',X")

Fig. 8.18. Read and store two arrays (2).

In this programme the arrays are not restricted to 480 numbers each.

There is also an instruction for punching numbers in the auxiliary variables directly on to the
output tape, namely

V8(A,U,V,M,N).

The set of UV numbers starting at address A is punched with M digits in front of the point and
® Or, when I = 1, by a special variable.

MERCURY AUTOCODE 79

N digits following it. M and N, which may be integers or indices, have exactly the same effect as
in the PRINT(V)M,N instruction: in particular, M = 0 specifies floating-point numbers. A, U
and V may be integers or variables with integral values. When the output tape is printed, the
numbers will be printed in a single column divided into V blocks of U numbers, with a blank line
after each block.

PRESERVE and RESTORE

When a change of chapter is made, it is sometimes valuable to be able to preserve the current
values of the main and special variables and the indices. Then, when the sub-chapter is later
replaced by the main chapter, these values can be restored. This facility is most frequently neces-
sary when the two chapters give diffcrent names to the main variables.

The instruction PRESERVE (usually placed just before a DOWN instruction) places in the
backing store the current values of the 480 main variables, the 29 special variables, and the 12
indices I to T (but not the primed indices I’ to T’). This does not affect the values of the auxiliary
variables. The instruction RESTORE, normally obeyed shortly after the return to the main chap-
ter by an UP instruction, restores these values to the computing store, leaving the primed indices
unchanged. Both PRESERVE and RESTORE set = equal to 3:14159265.

The reader will notice that, if the sub-chapter leaves its results in the computing store, they will
be lost when the RESTORE instruction is obeyed. They must therefore be stored as auxiliary
variables before RESTORE is obeyed.

Three dumps are used by the PRESERVE and RESTORE instructions; they are called the main
dump, sub-chapter dump and sub-sub-chapter dump. PRESERVE and RESTORE each use the
dump corresponding to the level of their own chapter. Thus a programme of the form

DOWN

up

DOWN

up
Chapter 2

can have a PRESERVE and a matching RESTORE in both chapter 0 and chapter 1.

8.14 Directives

When the complete programme has been written, it is punched on paper tape. This tape is then
fed into the computer, where the autocode compiler programme reads it, translates the individual
instructions into sequences of machine instructions, compiles the chapters (one at a time) and stores
them in the backing store. Finally, when the entire programme has been read and compiled, chap-
ter 0 is brought into the computing store and entered at its first instruction.

It will be seen that no instruction of the user’s programme is obeyed until the entire programme

80 COMPUTER PROGRAMMING AND AUTOCODES

tape has been read.* Only then can instructions be obeyed, and only then can data tapes be read.
However, the programme tape must include some information to help the compiler in its trans-
lation; for instance, the compiler must be told where each chapter begins and ends. The name
directive is given to such information. Because directives tell the compiler how to do its work, they
are obeyed as soon as they are read from the programme tape.
Each chapter must begin with the directive

CHAPTER ¢
where c is the chapter number, and end with the directive

CLOSE.

After reading the CLOSE directive, the compiler fills in a number of cross-references within the
chapter and then places the complete chapter in the backing store. Unless the chapter was chapter
0, the compiler continues to read the programme tape; but after chapter 0 the compiler brings that
chapter into the computing store and enters it at its first instruction. This is the only way in which a
programme can be entered.

If main vgriables are used in any chapter, their names must be declared before any instruction

refers to them. So main-variable directives normally follow the CHAPTER directive. They take
two forms.

The first kind are directives such as
X—57

which declares a set of 58 main variables, X0, X1, . . . X57. Several sets of main variables may be
used in one chapter; thus we may have

X-57
A-100
n—6

at the head of a chapter. These dircctives give the names X0,X1, . . . X57, AO,Al, . . . Al100,
70, . . . 76 to the first 166 main variables. If, during execution, the programme calls for main

variable A101, it will pick up n0. (Suffices may become negative or too large during execution
without any error being detected.)

The second kind of main-variable directive is
VARIABLES ¢

where ¢ is the number of a chapter earlier on the programme tape. This copies the main-variable
settings of chapter ¢ into the new chapter. Directives of the first kind may be used after this dircc-
tive, but they should not precede it.

Not more than 480 main variables may be declared in any one chapter. The 29 special variables
are never declared.

Two directives which may be used at any point on the programme tape are PSA (standing for
Print Space Available) and TITLE.

On reading PSA, the compiler immediately prints out the chapter number and the amount of
unfilled space. The second number is, in fact, the number of instructions in machine code which
can still be inserted in the chapter; it starts at 832 and decreases steadily.

When the compiler reads TITLE, it copies the following line on to the output tape immediately.
TITLE should be distinguished from the instruction CAPTION, for the text following a TITLE is

® The instruction END, for example, does not make the compiler stop reading tape.

MERCURY AUTOCODE 81

not stored and so can be punched once only. If a text of several lines is to be copied, a succession
of TITLE directives will be required, since TITLE copies a single line.
Routines appear on the tape preceded by the directive

ROUTINE n

*%

and followed by the

directive. No matter how many chapters call for routine n by using JUMPDOWN (R) instruc-
tions, only one copy of the routine is placed on the programme tape. The place for routines is the
head of the tape, before the first CHAPTER directive. Nevertheless, they do not require any main-
variable directives. This is because a routine, unlike other sections of the programme, is not trans-
lated immediately: instead, it is stored temporarily, and the translation takes place at the CLOSE
of each chapter which calls for it. Only one copy of any routine is placed in a chapter, no matter
how many instructions jump down to it.

For similar reasons, a PSA directive in a routine is not obeyed as soon as it is read; it is stored
with the routine and it is obeyed each time the routine is compiled into a chapter. The TITLE
directive must not be used in a routine, but quicky-settings (see below) are permitted.

Some of the functions listed in Table 8.1 (page 60) take a long time to evaluate because the sub-
routines which calculate them are held in the backing store; each time the function is needed, its
subroutine is transferred into the computing store. No function takes more than 6 msecs. to
evaluate, yet up to 17 msecs. will be added because of the transfer.

By means of a quicky-setting directive such as

¥ SQRT
placed just before the CLOSE of a chapter, the programmer can arrange to have the subroutine
for the corresponding function included in the chapter. It will be transferred to the computing store
when the chapter is entered and no further transfers are required when the function is called for.
Such a function is then called a quicky.

The quickies required in any chapter should be listed in order of preference with the most
frequently used function first. The compiler does not insert the quickies into a chapter until it has
translated all the instructions and compiled the routines; then it inserts only those quickies for
which there is sufficient space.

Table 8.2 gives the complete list of functions which can be declared as quickies. If one of the
pair i COS and ¢ SIN is declared, the other also becomes a quicky: the same is true for the pair
¥ RADIUS and ¢ SQRT.

¥ ARCTAN

Yy COS and ¢ SIN

¥ EXP

¥ LOG

¥ RADIUS and ¢ SQRT
¥ TAN

Table 8.2. Quicky-setting directives.

Functions which do not appear in this table are always translated into a set of instructions in
the chapter, and so do not need to be made quickies.

Comments may be included on a programme tape. If a line begins with a pair of > symbols, the
compiler reads it but does no translation.

An example of a complete programme tape is shown in Fig. 8.19, where only the directives are
given.

82 COMPUTER PROGRAMMING AND AUTOCODES
TITLE

EXAMPLE OF COMPLETE PROGRAMME

TITLE

BHDS/29.2.63

ROUTINE 640
PSA

%

ROUTINE 641
PSA

*%

>> ROUTINES SHOULD PRECEDE CHAPTERS

CHAPTER 1
X-57
A—100

n—6

PSA
PSA
¥ EXP

¥ COS
CLOSE

CHAPTER 2
VARIABLES 1
H-14

¥ LOG
CLOSE

>> CHAPTER 0 MUST COME LAST

>> THE PROGRAMME TAPE SHOULD END WITH AN ARROW
CHAPTER 0

VARIABLES 2

CLOSE

-

Fig. 8.19. Directives in a complete programme.

The compiler routine can detect the more obvious faults in a programme. The majority of faults
are detected as soon as they are translated:* examples are the use of main variables not declared
by a main-variable directive, and the second occurrence of a label in one chapter. Some faults

* Faults in a routine are not d d until the ine is iled into a ch

P

MERCURY AUTOCODE 83

cannot be detected until the CLOSE of the chapter in which they occur; an example is a JUMP
instruction leading to a non-existent label. On detecting a fault the compiler prints FAULT n*
and any information which may help in the diagnosis of the error. Although the programme
cannot now be run, the compiler continues reading the programme tape so that other grammatical
faults are discovered. When the CLOSE of chapter 0 is reached, the compiler prints NO GO and
does not enter the programme.

Faults can also be detected during the execution of a programme. Examples are:

(1) negative argument for ¥ SQRT or ¢ LOG;

(2) argument greater than + 177 for y EXP (so that e*>22%5);

(3) division by zero;

(4) a spurious character on a data tape.

Two courses of action are possible in such circumstances. If there is a label 100 in the current
chapter (label O for the spurious input character) the programme jumps to this label, and so the
programmer can arrange for whatever action he requires. If no such label exists, the machine
prints the fault number and the chapter number, followed by the values of the indices and special
variables. The machine then stops and execution of the programme cannot be continued.

If a fault is detected while a routine is being obeyed, it is still label 100 or O of the chapter
which is looked for.

The compiler does not find every fault which offends the grammar of autocode and it cannot
detect any mistakes in the logic of the programme, such as the overwriting of results which will be
required later, or conditional jump instructions with the wrong condition. The programmer must
test the programme on data for which the results are already known, so that all such errors can be
climinated. They are likely to be numerous.

8.15 Other facilities

This chapter does not describe all the instructions and directives provided in Mercury autocode.
Some of the more important facilities which have been omitted are:

(1) a set of 20 functions, Y11 to 30, for matrix operations;
(2) the instruction INTSTEP for integrating a set of differential equations;
(3) calculations with complex numbers;
(4) calculations with double-length numbers, for extra precision;
(5) the generation of pseudo-random numbers;
(6) storage for more than 24 indices;
(7) tables of numbers, integers and labels;
(8) the use of a sub-programme of several chapters;
(9) list processing;
(10) the incorporation of instructions in machine language into an autocodc programme;
(11) the instruction RMP which reads more programme;
(12) the input instruction SUNVICLOGGER.

A description of the Mercury autocode language is given in reference [9]. Some facilities of
CHLF3 autocode, in particular the use of routines, are not described in this publication. The only
full descriptions are privately printed and are not obtainable outside computer establishments.

* A short list of fault numbers is given in the *Mercury Autocode Manual" [9).

PART III
ALGOL

CHAPTER 9
ALGOL

Introduction

We have seen in Part I that before we can put a calculation on an automatic computer, we need
a precise description of the numerical processes to be carried out. Such descriptions are known as
algorithms. Each of the autocodes described in Part II provides a notation for algorithms which
can be understood directly by a particular machine. However, the various autocodes are suffi-
ciently different to cause difficulties in communication between groups of programmers or users
working with different machines. For this reason there is now considerable interest in a universal
computing language known as ALGOL, which stands for ALGOrithmic Language. This language
is the result of the work of several international conferences and committees, culminating in the
*“Report on the Algorithmic Language ALGOL 60” which was published early in 1960. A revised
version [14] of this report was adopted in 1962.

Algol is a language for describing numerical processes so that they can be understood both by
human beings and by machines. For a machine to understand Algol it must be provided with an
Algol compiler or translator, i.c. a special programme which enables the machine to translate any
Algol programme into its own code. Such translators have been written for and are being used on
a number of computers in Europe and America, and in particular for the Elliott 803 and 503, the
English Electric KDF 9, and the Ferranti Pegasus in Britain. Algol translators are expected to be
available for most large computers in future.

9.1 Statements and Identifiers

An Algol programme consists essentially of a sequence of instructions, called statements. These
statements are written in a notation similar to that adopted in Part I, except that instead of relying
on the layout of instructions on separate lines we now use a semicolon to indicate the end* of an
instruction.)

Algol permits great varicty in the notation for variables. A variable is denoted by an identifier,
which may be any combination of letters or of letters and decimal digits, provided it always starts
with a letter.

To illustrate what an Algol programme looks like, we give in Fig. 9.1 a straightforward tran-
scription of the programme of Fig. 2.9 for estimating the mean, variance and standard deviation.

Instead of the symbols p, b, ¢, m, v, s used in Fig. 2.9 we now adopt the rather more descriptive
identifiers count, sum, sumsq, mean, variance, standev. The symbol := is the standard Algol
notation for “becomes”, as in Part I. Any statement using this symbol is called an assignment
statement.

Algol also recognizes multiple assignment statements, e.g. instead of a := 0; b := 0; we may
writea :=b:=0.

1t will be seen that certain basic symbols of Algol, like the words begin, if, then, go to, end, are

* Strictly speaking the semicolon is only needed to separate different statements and *'declarations” (to be defined
later) from each other. However, in this chapter we put a semicolon also at the end of each programme, because it
will be needed when incorporating the programme in a larger programme.

87

88 COMPUTER PROGRAMMING AND AUTOCODES
always printed in boldface; these words should be underlined in manuscript or typed programmes.

begin integer n, count; real sum, sumsq, x, mean, variance, standev;
n := input; count := n; sum := 0; sumsq := 0;
repeat: x := input;
sum 1= sum+Xx; sumsq := sumsq+x1t2;
count := count—1; if count # 0 then go to repeat;
mean := sumj|n;
variance = (sumsq—sum x mean)|(n—1);
standev := sqrt(variance);
print(mean); print‘:ariance); print(standev);
end mean, variance, standev;
Fig. 9.1.

In the first line. immediately after begin, we have the so-called 1ype declarations, stating which of
the identifiers are of type integer (taking integer values only) and which are of type real (not
restricted to integer values). These declarations enable the compiler to allocate storage locations
and to determine whether to use integer or floating-point arithmetic for the identifiers concerned.

In line 5 of the programme we have an example of a conditional statement of the form if . . .
then . . .; this is governed by the rule that the (unconditional) statement immediately following
then is ignored unless the condition in the if clause is satisfied. However, by enclosing a sequence
of statements in the so-called statement brackets begin and end we can obtain a compound statement
which may be governed by a single if clause, e.g.

if...thenbegin...; ...; ...end;

Conditional statements may also take the form

if...then...clse...;

Because this is a single statement, else must not be preceded by a semicolon. The statement
following else may itsclf be another conditional statement ; some examples of this will be given in
section 9.7.

In our example the statement governed by the if clause is a simple jump instruction, known as a
go to statement.* The identifier repeat is here used as a label, and this label followed by a colon
must be written in front of the instruction to which we want to jump.

We can include explanatory notes in an Algol programme by placing the word comment
immediately after a semicolon or immediately after begin; this word comment and everything up
to and including the next following semicolon will then be ignored by the translator. Similarly
everything between the basic word end up to (but excluding) the first following semicolon or end
or else will be ignored. The last line of our programme illustrates the use of this device. The exis-
tence of this convention explains why, in general, we must place a semicolon after end.

9.2 Arithmetic expressions and basic functions

The programme given in the previous section illustrates the use of the operators +, —, X, /, T

for addition, subtraction, multiplication, division, and raising to a power (‘‘exponentiation”).

Thus x 1 2 stands for x%, and this notation enables us to write formulae involving powers on a

single level. Algol also provides the operator = for finding the integer quotient of two integers.t
* Some compilers use goto as a single word.

1 If aand b are integers of the same sign, then a -+ b represents the integral part of the quotient a/b; for integers
of opposite signs we obtain — (a =+ (—b)).

ALGOL 89

The order in which arithmetic operations occurring in one expression are to be carried out is
governed by the following rules of precedence. The highest precedence is given to the operator t,
which binds numbers more closely than any other; next come the operators for multiplication
and division, which are on the second level of precedence; finally we have the operators for addi-
tion and subtraction. Thus

sumsq+x 12 gives sumsq+(x 1 2)
and
sumsq—sumx mean gives sumsq—(sum x mean).

Where the above rules do not determine the order of precedence, the operations will be carried
out from left to right.* In cases where we want the operations to be carried out in a different order,
round brackets should be used as in ordinary mathematical notation, and we may use brackets
within brackets to any depth.

Algol allows numbers (and variables) of type real and of type mteger to occur together in the
same arithmetic expression. Furthermore, if an arithmetic expression of one type is to be assigned
to a variable of the opposite type, the value of the expression will be automatically converted to
the appropriate type. Conversion from real to integer type is equivalent to rounding to the nearest
integer. Variables defined by a multiple assignment statement must all be of the same type.

Algol provides nine basic mathematical functions; in each case the argument, which may be an
arithmetic expression, is placed in round brackets after the name of the function. We have:

sqrt (E) positive square root of E

sin (E) (where E is in radians)

cos (E) (where E is in radians)

arctan (E) (principal value between —4r and +4n)

In (E) natural logarithm of E

exp (B) exponential of E

abs (E) absolute value (modulus) of E

sign (E) +1, 0, or —1, according as E is positive, zero, or negative.

entier (E) largest integer not greater than E.}

These functions may themselves be used as operands in arithmetic expressions in the same way
as variables or constants. The nine identifiers sqrt, sin, cos, arctan, In, exp, abs, sign, entier must
not be used for any other purpose.

Algol docs not define any input or output operations, because these may depend on the particu-
lar input and output mechanisms available on a given machine. Unfortunately different conven-
tions are being adopted for different translators. In this chapter we shall use input as defined in
Part I (page 11) to read the next number from an input device, and we shall use print (E) for put-
ting the value of the expression E on to an output device. As regards non-numerical information,
Algol defines a string as being a sequence of characters enclosed in the string quotes * and ’, but no
opcrations for handling such strings are defined.

The special symbol , followed by an integer (signed or unsigned) is used to denote powers of
ten. Thus ;o—8 stands for 1078, and we may also attach such a power of ten to a decimal number
as in 2-5,o—8 which is the same as -000000025. However, we must use a multiplication sign when
multiplying a variable by a power of ten, as in ax y+8 or ax ;8.

* Thus a/b x ¢ means (a/b) X ¢, and a/b/c means (a/b)/c.
t entier: ici on parle frangais.

90 COMPUTER PROGRAMMING AND AUTOCODES
9.3 for statements

Our example programme of section 9.1 contains a loop in which we count down from n to 1.
Algol provides special facilities for handling loops by means of for statements, and this enables us
to write the programme for mean, variance and standard deviation as in Fig. 9.2.

begin integer n, count; real sum, sumsq, x, mean, variance, standev;
n := input; sum := sumsq := 0;
for count := 1 step 1 until n do
begin x := input;
sum 1= sum+Xx; sumsq := sumsq+x 1t 2
end;
mean := sumfn;
variance = (sumsq—sum x mean)[(n—1);
standev := sqrit(variance);
print(mean); print(variance); print(standev)
end mean, variance, standev;

Fig. 9.2.

It will be noticed that by using the for statement we no longer nced to label the beginning of the
loop, but on the other hand we must now indicate just which instructions are comprised in this
loop. Where such a loop consists of more than one simple statement, we make it into a single
compound statement by introducing the statement brackets begin and end, as in the example
above. The careful reader will notice that the semicolon may be omitted in front of end. The reason
for putting a semicolon after end was given at the end of section 9.1.

When the controlled variable (c.g. count in Fig. 9.2) is given a value outside the range defined by
the step . . . until . . . element, we say that the “for list is exhausted”, and the statement following
do will not be executed for such a value of the controlled variable.* Thus, if in

fori:= 1step2until mdo S

m has the value 6, the statement S will be executed for i = 1,3,5; whereas, if m has the value
—1, Sis not executed at all. In cases where the controlled variable is of type real, rounding errors}
may cause its intended final value to fall just outside the range defined by until. It may therefore
be necessary to adjust the until clement, as has been done in

for i := Ostep 0-1 until 1-05do . .. ;

if we put “until 1:0 do”, there is the danger that the result of ten additions of 0-1 might exceed 1:0
owing to rounding errors, in which case 0-9 would be the last value of / to be used.
Two other types of for list are available, as in:

fork :=1,2,4,8,16, 32, 64 do. ..
and
for k :

1, 2xk while k<100 do . ..

These two lists are actually equivalent; the last for list is considered exhausted as soon as the
controlled variable k is assigned a value for which the condition specified by while does not hold.
This form of for list is particularly useful in iterative processes where we may want to repeat the

« After exhaustion of the for list the programme proceeds to the next instruction, and the value of the controlled
variable is not defined. Compiler writers are left free to organize the test for exhaustion to suit their convenience.

ALGOL 91

loop until some expression becomes sufficiently small. We shall illustrate this in Fig. 9.3 by giving
an Algol version of the programme shown in Fig. 2.8 (page 12) for finding \/a:

begin real z;

root := 1-0;
for z := (root+afroot)/2 while abs(z—root)>zx 1,—8 do root := z
end;

Fig. 9.3.

Notice that, since the controlled variable z is considered as being undefined on exhaustion of the
for list, we take the final value of root to be our approximation to Ja. In this respect the present
algorithm differs slightly from that of Fig. 2.8. In practice we should of course use the basic
function sqrt(a) to find \/a.

9.4 Subscripts and arrays
In chapter 3 we discussed the importance of the suffix notation for dealing with sets of numbers.
In Algol such a set is called an array; its elements are called subscripted variables and are referred
to by writing the suffix (i.e. subscript) in square brackets after the identifier of the array. Thus the
array a in the example of Fig. 3.6 has the elements a[1], a[2], . . . , a[n]. To enable the translator to
allocate the right number of storage locations, it is necessary to give subscript bounds when
declaring an array. This is done by one of the declarations
real array a[1:n] or integer array a[l:n]

according as the elements of the array are of type real or of type integer; the declaration real
array may be abbreviated to array. Note the use of the colon to separate the upper from the lower
suffix bound in the array declaration.

We can now write the procedure of Fig. 3.6 (page 18) for finding the largest element of the array

a.

begin integer k;

m:=1;

for k := 2 step 1 until n do

if a[k)>a[m] then m := k;
max := a[m]))

end;
Fig. 9.4.

We have assumed that all variables other than the “local variable” k£ have been defined outside
this block. Note that Algol resolves the difficulty of the special case of n = 1, because in this case
k = 2 is already outside the range of the for list, so that the programme proceeds to execute the
instruction max := a[1] which is correct.

Usually subscripts are variables of type integer. However, Algol allows the use of any arithmetic
expression as a subscript and will evaluate this to the nearest integer. Further, the subscript bounds
in an array declaration need not necessarily be constants. Algol allows the use of dynamic arrays
in which the subscript bounds are variables or expressions evaluated at the time of execution of the
programme.

Algol also allows arrays with more than one subscript. Thus a two-dimensional array repre-
senting an mxn matrix A would have its elements denoted by a[i,j] and would be declared as
array a[l:m, 1:n)]. In Fig. 9.5 we use this notation to re-write the programme of Fig. 3.5 (page 17)
for reading the elements of a matrix column by column together with column check-sums, failure

92 COMPUTER PROGRAMMING AND AUTOCODES

of this check leading to a statement labelled error. By going over to a two-dimensional notation
we shall no longer need the suffix & which was used in Fig. 3.5 for putting the matrix elements in
a one-dimensional sequence. We now assume that m and n have already been defined and so need
not be read in.

begin integer i, j; real sum, b;
for j := 1 step 1 until n do
begin sum := 0; for i := 1 step 1 until m do
begin b := input; sum := sum+b; alij] := b end;

b = input;
if abs(sum—b)>,,—7 then go to error
end

end;
Fig. 9.5.

The reason for introducing the temporary variable b in the fourth line of Fig. 9.5 is to avoid having
to write a[i,j] twice. In this way the computer will only have to calculate the address of the storage
location of ali,j] once for each element of the matrix. Even so, the use of a two-dimensional array
is likely to take more computer time than the straightforward approach of Fig. 3.5.

9.5 Blocks, declarations and labels

Any identifier, other than a formal parameter or a label, must be listed in a declaration before it
can be used. Such declarations can only be given immediately after the symbol begin which intro-
duces a compound statement, and they are then valid only within this compound statement, i.c. up
to the symbol end which terminates it. A compound statement which contains one or more
declarations is called a block.

The division of a programme into blocks is one of the features of Algol. The variables that are
declared at the head of a block are called /ocal variables of that particular block, and the values of
any such variables are lost when we leave this block (either by going through end, or by means of a
go 1o statement).

Algol allows blocks within blocks to any depth.*

If anidentifier /of an outer block is declared again in an inner block, then the translator will regard
the I of the inner block as a distinct variable which temporarily suppresses the meaning that /
had in the outer block; but on returning from the inner block to the outer block 7 will resume its
former meaning and the value it last had in the outer block. To test his understanding of this point,
the reader should convince himself that the effect of the example programme of Fig. 9.6 is to
print the number 13.

begin integer a, b, c;

a:=1; b:=2;

begin integer a, d;

a:=3;d:= 4; b:= axd;

end;

¢ := a+b; print(c)
end;

Fig. 9.6. Problem for the reader.

* It is customary to arrange the programme so that each end appears cither vertically below or horizontally to the
right of the begin corresponding to it, and to indent an inner block relative to its embracing block. Although the
meaning of a programme does not depend on its layout on the page, this does help the human reader to understand
and check the programme, and we have followed this convention throughout this chapter.

ALGOL 93

The rules for local variables make it possible to build up a programme from blocks written
independently by different programmers, each of whom is free to choose any identifiers he likes
for the local variables of his block. Any clash of names will be automatically resolved by the
translator.

In addition to its local variables, an inner block may also use non-local variables which are
declared in some outer (embracing) block; such variables are sometimes called global variables
of the inner block, because they preserve their meaning and their value in going from the outer to
the inner block and vice versa. Any variable whose value is calculated in one block in order to be
used in another block must of necessity be a global variable. Thus the block of programme for
finding \/a (sce Fig. 9.3) does not contain a declaration for the variable root because this will be
used to communicate the result of the calculation to another block.

It will now be seen that each block introduces its own level of nomenclature, and that the mean-
ing of the identifiers used within a block can only be fully understood after reading the declarations
at the head of that block. For this reason the only way in which a block may be entered from out-
side is through the symbol begin and the declarations that follow it.

Although Algol does not require labels to be declared explicitly, the appearance of an identifier
(or an unsigned integer) followed by a colon in front of a statement defines a label, and this label
is valid only in the block in which it has been so defined. If we regard such definition of a label as
being equivalent to a declaration, then the rules governing the use of labels are exactly analogous
to the rules governing local and global variables. It follows that a label defined in an inner block
is inaccessible to a go fo statement outside this block.*

By prefixing the symbol own to the type declaration 1 of variables or arrays we ensure that, on
lcaving the block, the values of such own variables or own arrays are preserved for use on subse-
quent re-entry to the block. Such variables are still local to the block in which they are declared in
so far as they are inaccessible outside this block. ’

9.6 Procedures

One often has to use the same sequence of instructions at several places in a programme, or in
several programmes. Such sequences of instructions are sometimes referred to as subroutines, but
in Algol they have been given the special name procedure.

Any procedure which is used in a given block must be defined by a procedure declaration at the
head of this block, or at the head of an embracing block. Such a procedure declaration consists of
two parts, namely the procedure heading and the procedure body. Fig. 9.7 shows the declaration of
the procedure coeffin for reading a sequence of coefficients from an input device:

procedure coeffin(n, a); integer n; array a;
begin integer i;
for i := O step 1 until n do ali] := input
end;
Fig. 9.7.

Here the!first line gives the procedure heading, and the block defined by begin and end is the pro-
cedure body.

* An additional restriction, not related to block structure but necessary to avoid ambiguities, is that a go to
s! ide a for may not lead to the inside of the for statement.
t own real, own integer, own real array

94 COMPUTER PROGRAMMING AND AUTOCODES

The procedure heading starts with the identifier coeffin which names this procedure, followed
by the list of formal parameters in brackets; the nature of these formal parameters is then
indicated by a specification. Although Algol regards such a specification as optional, it is in fact
required by all existing translators to enable them to produce an efficient programme. It should be
noted, however, that such a specification of the formal parameters does not have the effect of a
declaration,* and that in the case of an array the specification does not give subscript bounds.

The procedure declaration serves merely to define a procedure for future reference within the
same block. We may then cause the procedure to be executed by means of a procedure call (or
procedure statement), which consists of the name of the procedure followed by a list of actual
parameters in brackets. Thus the statement coeffin(n, a) will cause the procedure body given above
to be executed. However, the actual parameters need not have the same names as the formal
parameters. Thus the statement coeffin(5, b) may be used to read 6 numbers and assign their values
to the elements 56[0], b[1], . . . , b[S] of an array b, provided of course that this array has been
declared either in the block in which the procedure call occurs or in an embracing block.

Another kind of procedure is analogous to the use of the basic functions in that it produces
just a single value which can be put directly into an arithmetic expression by writing the name of
the procedure with its actual parameters in brackets. Such function procedures are declared as
either real procedure or integer procedure, as the case may be, and such a declaration distin-
guishes them from the previous kind of procedure. Thus the procedure (discussed in Fig. 3.2 on
page 15) for evaluating the polynomial

apxX"+a;x" "'+ ... +a,_,x+a,
could be defined by the declaration of Fig. 9.8.

real procedure polynomial(x,n,a); real x; integer n; array a;
begin integer i; real p; p := a[0];
for i := 1 step 1 until ndo p := pxx+di];
polynomial := p
end;
Fig. 9.8. Declaration of function procedure polynomial.

Note that the identifier of the procedure must always appear (without its parameters) as the left
part of an assignment statement in the procedure body so as to define the value of such a function
procedure.t

Suppose now that we wanted to find the difference between the values of this polynomial for
x = 2 and for x = 1. This may be done by the Algol statement

difference := polynomial(2-0, n, a)—polynomial(1-0, n, a);

In order to show how procedures are incorporated in a complete programme, we shall now give a

programme for tabulating the values taken by the two polynomials
PoX"+p X" A L AP 1 X+ P
and)
boxS+byx*+ ... +bx+bs

* In fact a formal parameter may be specified as being a label or a string, although these basic words are not
allowed in declarations. .

+ However, if this identifier were to appear on the right-hand side of an assignment statement, it would be inter-

preted as 9&:;; attempt to exccute this procedure (see page 96). This explains why we have introduced the local variable
p in Fig. 9.8.

ALGOL 95

for x = Xq, Xo+/, Xo+2h, . . ., Xo+rh. The procedure declarations will be precisely those given
above; the programme itself follows the lines of Fig. 3.4 (page 16), except that we now tabulate
two polynomials side by side. The reader should note the use of the function procedure polynomial
as the argument of the print function.

The data tape for this programme would require a sequence of numbers representing res-
pectively:

My Pos P1s + « + 5 Pms b07 bn LI -11751 Xos I’: r.

begin integer m; m := input; comment this outer block serves to define the value of the dynamic
subscript bound m which is used in the next (inner) block;
begin array p[0:m], b[0:5]; real x, h; integer r, j;
procedure coeffin(n,a); integer n; array a;
begin integer i;)
for i := O step 1 until n do a[i] := input
end;
real procedure polynomial(x,n,a); real x; integer n; array a;
begin integer i; real p; p := a[0];
for i := 1step 1 until ndo p := pxx+ali];
polynomial := p
end of declarations;
coeffin(m,p); coeffin(5,b);
x := input; h := input; r :=linput;
for j := 0 step 1 until r do
begin newline;* print(x);
print(polynomial(x,m,p));
print(polynomial(x,5,b));
x:i=x+h
end
end
end;

Fig. 9.9. Tabulation of two polynomials.

Our programme illustrates that the actual parameters used in a procedure call need not have the
same names as the corresponding formal parameters in the procedure declaration. The procedure
call will cause the actual parameters to be substituted for the formal parameters during execution
of the procedure body. It will be clear that each of the actual parameters must be of the same sort
as the corresponding formal parameter in the procedure declaration.t

For a formal parameter specified as real, the corresponding actual parameter may be a constant,

* Since Algol does not define a notation for output operations, we have arbitrarily introduced a procedure new-
line (ussumed to be available without declaration) which has the effect of starting a new line on the printer.

1 To separate from cach other any two parameters given in brackets after the name of a procedure we may either
use a comma (as in the examples above) or the parameter delimiter

Jaa...ax(

where aa . . . a denotes any combination of letters. Such a p is purely cxpl. y, and may be
used to indicate the role of the parameter that follows it; e.g. instead of polynomial (x,n,a) we could write:

polynomial (x) degree: (n) coefficients: (a) E
It will be seen that in each case par are enclosed in hing brackets.

96 COMPUTER PROGRAMMING AND AUTOCODES

a variable, an arithmetic expression, or a function or function procedure with its argument (or
parameters) in brackets. Let us consider the procedure call:

polynomial(cos(y), 8, a);

In executing this call, the function cos(y) would be substituted for x in the procedure body, and
this means that the function cos(y) would be calculated 8 times in the execution of the call poly-
nomial(cos(y), 8, a), even though y may have the same value each time. To avoid these repcated
evaluations of the same function, Algol allows us to indicate that a parameter does not change its
value during execution of the procedure, by putting the corresponding formal parameter in a
value list in the procedure heading. Such parameters are then said to be called by value. This means
that, in executing the procedure, the formal parameter is initially assigned the value of the corres-
ponding actual parameter at the beginning of the procedure call, and there is then no further
reference to this actual parameter. A formal parameter included in the value list is effectively
treated as a local variable of the procedure body. By contrast, any parameter not included in the
value list is said to be called by name, which means that the rule for evaluating the actual para-
meter is referred to on each occurrence of the formal parameter in the procedure body.

The value list, if any, consists of the symbol value followed by the list of formal parameters
which are to be called by value; all such parameters must also be specified. The value list is placed
in the procedure heading immediately after the name of the procedure, e.g.

real procedure polynomial(x,n,a); value x; real x;

An interesting feature of Algol is that it can define a function recursively. Consider again the
evaluation of the polynomial

Pn = @oX"+a;x" '+ ... +a,_,x+a,

The procedure given in Fig. 9.8 is equivalent to the following sequence of steps:

Po = ao

P1 = pox+a,
P2 =pix+a;
Pn = Pn-1X+a,

We may regard the two formulae
Pn = Pa-1X+a, (forn=1)
Po = Qo
as giving a recursive definition of p,, and express this in Algol as the recursive procedure of Fig.

9.10. Note that the procedure body now consists of a single statement, so that the usual statement
brackets begin and end can be omitted.

real procedure polycur(x,n,a); value x,n; real x; integer n; array a;
if n = 0 then polycur := a[0]
else polycur := polycur(x,n—1,a) x x+a[n];
Fig. 9.10. Recursive procedure for evaluating polynomial.

The procedure is called recursive because the procedure body contains a call for itself, namely
polycur(x,n—1,a). At each such call the value of the second parameter is reduced by unity,
until eventually the condition n = 0 is satisfied. The recursive procedure polycur(x,n,a) will give

ALGOL 97

the same result as the procedure polynomial(x,n,a) of Fig. 9.8. Recursive procedures are usually
inefficient as regards computing time, but they do provide the programmer with a useful tool in
certain applications.

9.7 Conditional Statements and Switches

The example of section 9.1 contained a conditional statement of the form if . . . then. .. ;to
illustrate the other kind of conditional statement available in Algol, we shall now give a programme
for factorizing an integer. After reading the integer from an input device and testing that it is
positive, the programme continues exactly as shown in Fig. 2.2 of Part . By referring to the flow
diagram given on page 8, the reader should be able to interpret the construction

if...then...elseif...then...else...
which constitutes the main part of our Algol programme:

begin integer n, g, m; n := input; if n<0 then stop;*
even: ¢ := n-+-2;
ifn—2xq = 0 then
begin print(2); n := q; go to even end;
m:=3;
odd: q := n-+m;
if n—mxq = 0 then begin print(m); n :=q;
" if n # 1 then go to odd
end
else if g <m then print(n)
else begin m := m+2; go to odd end
end;
Fig. 9.11. Factorize.

Our next example is somewhat artificial. It supposes that we have a compiler which does not
fully implement the basic function sin(x), but provides instead a function sing(x) for which the
argument x must be an angle in the first quadrant and must be expressed in degrees. The following
conditional statement then serves to make the variable f'equal to the value of the sine of an angle
d degrees, where 0<<d<360:

if d<<90 then f := sing(d)
else if d<<180 then f := sing(180—d)
else if d<<270 then f := —sing(d— 180)
else f := —sing(360—d);
Fig. 9.12.

This example will also serve us to explain the use of a switch. We can construct an array whose
elements are labels by means of a switch declaration, e.g.
switch quadrant := first, second, third, last;

the instruction go to quadrant[q] then acts as a switch by leading directly to the statement which
carries the g™ label of the switch list. We may now write our programme as follows:

* We are assuming the availability of a procedure stop.

o) COMPUTER PROGRAMMING AND AUTOCODES
begin integer ¢
switch quadrant := first, second, third, last;
q := entier(d[90)+1; go to quadrant[q];
first: J := sing(d); go to finish;
second: f := sing(180—d); go to finish;
third: f = —sing(d—180); go to finish;
last : f := —sing(360—d);
Sinish: ;*
end;
Fig. 9.13. Example of a switch.

Algol provides conditional expressions as well as conditional statements. An example of a con-

ditional expression is the right-hand side of the assignment statement
h := if 1<0 then 0 else]l
which has the same effect as the conditional statement
ift<Othen/ :=0eclse hh := 1;

it is important to realize that a conditional expression must contain both then and else, as otherwise
it would not be fully defined. If the expression following then is itself conditional, this should be
enclosed in round brackets to avoid possible ambiguities as to the meaning of else.

The procedure body of Fig. 9.10 may now be written as

polycur := if n = 0 then a[0] else polycur (x,n—1,a) x x+a[n];

Conditional expressions may also be used as parameters of a procedure call (or as the argument
of a function).

9.8 Logical Operators and Boolean Variables
We shall now consider the structure of the conditions used in if clauses. Such a condition is either
satisfied or it is not satisfied, and accordingly we say that it has one or other of the two logical
values true and false. The simplest form of condition is a relation between two arithmetic expres-
sions, and Algol recognizes the six relational operators <, <, =, =, >, #. Compound conditions
may be formed as combinations of such simple relations. Thus the compound condition 0<x<1
is satisfied provided both the simple conditions

0<x and x<l
are satisfied. The word and in the previous line may be regarded as a logical operator connecting
two conditions, and as such it is denoted by the symbol A. The condition that x should lic in the
range 0<<x<I may therefore be expressed as

O<)A<I)
or, since arithmetic relations take precedence over logical operators, we may write it without
brackets as

0<xAx<l.
The condition that x should lic outside this range may be stated in the form that either
x<0 or 1<x

should be satisfied. The word or is also used as a logical operator in this sense, and is then denoted

* Algol allows a label to be placed in front of an empty called a di 1y

ALGOL 99
by the symbol V. This enables us to write the condition that x should lie outside the range 0<x<1

as
x<0Vvi<x. .
Yet another logical operator is one that turns any condition into its converse. It is denoted by the
symbol — (pronounced not). By placing this in front of our last compound condition we have an
alternative form for the condition 0<x<1, namely
—1(x<0V1<x).

Algol recognizes the five logical operators =, A, V, >, = as defined by the truth table of Fig.
9.14; they are called Boolean* operators.

A condition may be regarded as a Boolean expression, and the truth-value of such an expression
may be assigned to a Boolean variable, just as the numerical value of an arithmetic expression
may be assigned to a real variable. Boolean variables must be declared as Boolean, and Algol also
allows the declarations Boolean array and Boolean procedure. An example of a Boolean assign-
ment statement is

B := abs(x)<1
which is equivalent to
if abs(x)<1 then B := true else B := false
Note that if the value of x is changed affer execution of this statement, the value of B would not
be affected.

Two Boolean variables B1 and B2 may be compounded by means of the logical operators, and

the values taken by the resulting expressions are given in the following truth table:

Bl false false true true
B2 false true false true

not: =Bl true true false false
and: Bl A B2 false false false true
or: Bl v B2 false true true true
implies: Bl > B2 true true false true
cquivalent: Bl = B2 true false false true

Fig. 9.14. Truth-table for logical operations.

We shall now give a procedure (based on the method described on page 18 of Part I) for sort-
ing a set of positive numbers a[l), a[2], . . . , a[n] into either ascending or descending order of
magnitude, according as the value corresponding to the formal parameter U is true or false.

procedure sort(a, n, U); array a; integer n; Boolean U;
begin integer m,k; real extr;
for i := n step —1 until 2 do
begin m := 1; for k := 2 step 1 until /s do
if U then begin if a(k]>a[m] then m := k end
else if a[k] <a[m] then m := k;
extr := a[m]; a[m] := a[h]; a[h] := extr;
end
end;
Fig. 9.15. Sort up or down.

*® After the mathematician George Boole (1815-1864).

100 COMPUTER PROGRAMMING AND AUTOCODES
The statement

if U then begin if . . . then . . . end
elseif ...then...;

of Fig. 9.15 could be replaced by the more compact statement
if U = alk]>a[m] then m := k;
in the case of U being false, the statement i := k would then be executed if a[k] <a[m].

Having declared a procedure sort as above, we could put a sequence of numbers s[1], . . ., s[p]
into descending order by means of the statement

sort(s, p, false);

9.9 Implementation

Although Algol is a language for describing computational processes without reference to any
particular machine, an Algol programme is presumably intended to be used on some machine
which can translate Algol into its own code and then perform the desired computation.

Algol recognizes that a translator for a particular machine must have its own rules for input
and output procedures, and also its own conventions for representing the 116 basic symbols of
Algol. Actual translators may impose a few further restrictions on the full generality of Algol to
take account of the finite size of the store and also to simplify the process of translation and obtain
a more cfficient programme. The different conventions adopted for different makes of machine may
be compared with variations of dialect between different groups of people talking the same
language.

The programmes and procedures given in this chapter have all been tested on the Elliott 803
computer in the University of Reading after making such minor changes as are required by the
conventions of the Elliott Algol compiler.

Conclusion

This chapter is intended as an introduction to Algol. We have described all the main features of
the language, but without necessarily defining in detail the effect of some of the rather subtle
constructions for which the Algol Report[14] provides a definition.

APPENDIX
PAPER TAPE CODES

The Ferranti 5-hole “Numerical The Elliott 5-hole
paper tape code Value” paper tape code

Figures Letters Figures Letters
000.00 Figure Shift 0 00.000 Blank Tape
000.0e 1 A 1 00.00@ 1 A
000.00 2 B 2 00.000 2 B
000.00 ¥ C 3 00.000 * C
00e.00 4 D 4 00.000 4 D
00e.0e (E 5 00.00@ <(r$) E
00e.e0) F 6 00.000 = F
OOe.00@ 7 G 7 00.000 7 G
000.00 8 H 8 0®.000 8 H
000.0e # I 9 0e.00e ! I
000.00 = J 10 0e.000 , J
0e0.e00 - K 11 ce.0c00 + K
000.00 v(or ~) L 12 00.000 L
cee.00 Lf M 13 0e.e000@ - M
Ocee.e0 Sp N 14 0e.000 s N
Ocee.00 5 (0} 15 oce.e000 >(or %)O
©00.00 0 P 16 ©0.000 0 P
€00.00 > Q 17 €0.00@ (Q
€00.00 > R 18 00.000) R
©00.00 3 S 19 ®0.000 3 S
©00.00 - T 20 ©0.000 ? T
e0e@.00 5 U 21 e0.000 5 U
000.00 6 \' 22 ®0.000 6 \'
e00.00 / w 23 e0.000 /) w
©00.00 x (or ¢) X 24 ©0.000 @ X
0e00.00 9 Y 25 00.000 9 Y
©00.00 + z 26 00.000 £ z
000.00 Letter Shift 27 ee0.000 Figure Shift
©00.00 i . 28 00.000 Space
e060.00 n(or ') ? 29 ee.00@ Carriage Return
e00.00 Cr £(or m) 30 00.000 Line Feed
000.00 Erase 31 00.000 Letter Shift

Sprocket holes are represented by . and holes by ®. Both codes use an odd number of holes to
represent the digits 0,1,2, . . . , 9 to guard against occasional failures of the input and output
cequipment. The most common type of fault is losing or gaining a single hole and this would give
a non-numerical character.

101

REFERENCES AND SUGGESTIONS FOR FURTHER READING

Part 1.

1. S. H. Hollingdale, High Specd Computing: Methods and Applications; E.U.P., 1959.

2. R. K. Livesley, An Introduction to Automatic Digital Computers; Cambridge U.P., 1957.
3. K. A. Redish, An Introduction to Computational Methods; E.U.P., 1961.

4. P. Henrici, Lecture Notes on Elementary Numerical Analysis; Wiley, 1962.

5. National Physical Laboratory, Modern Computing Methods; H.M.S.O., 1961.

6. J. Todd (ed.), Survey of Numerical Analysis; McGraw-Hill, 1962.

Part 11.
7. A specification of the Mark 3 Autocode for the 803 Electronic Digital Computer; Elliott
Computing Division (Borehamwood, Herts.), 1962.
8a. The Pegasus Autocode; List CS217A, Ferranti Ltd. (68 Newman Strect, London, W.1),
1959.
8b. Description of the [Sirius) autocode; List CS302, Ferranti Ltd., 1961.
8c. Extension of the [Sirius] Autocode; List CS334, Ferranti Ltd., 1962.
9. Mercury Autocode Manual; List CS242A, Ferranti Ltd., 1959.
10. D. D. McCracken, A Guide to FORTRAN Programming; Wiley, 1961.

Part 111.

11. H. Bottenbruch, Structure and Use of ALGOL 60; Journal of the ACM, 9 (Apr. 1962),
161-221.

12. E. W. Dijkstra, A Primer of ALGOL 60 Programming; Academic Press, 1962.

13. D. D. McCracken, A Guide to ALGOL Programming; Wiley, 1962.

14. P. Naur (ed.), Revised Report on the Algorithmic Language ALGOL 60; Computer Journal,
5 (January 1963) 349-367; also available in Communications of the ACM, 6 (January 1963)
1-17; and in Numerische Mathematik, 4 (January 1963), 420-453.

102

INDEX

The index is given in tabular form to allow easy cross-referencing between the four programming
languages of Parts II and I1I. Where different words are used to describe similar concepts, corresponding
words are listed instead of page references; these words may then be found in their own right elsewhere in
the index. Words in CAPITALS are instructions of an autocode, and words in bold type are basic Algol
symbols. There is no index to Part I.

A list of examples, in order of their appearance, is given at the end, with page numbers and an indication
showing which programming language has been used.

Pegasus- Elliott
Sigrius 803 Mercury ALGOL

ACROSS 75-11
ALTER 38-39
Arithmetic operations 29-30, 40 50 56-59 88-89

Approximate equality 39

Exact arithmetic 43-44 57,59
array 91
Assignment statement 87, 89
begin (see statement brackets)
Block Chapter 92-93
Boolean 98-99
CAPTION TEXT TITLE 72,75
Call by name, by value 96
Chapter 75-717, 79-83 Block
CHECK (see Output, optional)
Comment 55 81 88
Compiler 37 42, 54 79-83 87, 100
Conditional statement (see also jump) 88, 97
Constant 30 44 69
Cycle (CYCLE) 43, 53-54 62-66 for statement
Data tape (see Input)
Date 38
Dcclaration 92

Array declaration SETS, SETV| Directive, 91

main
variable

Procedure declaration 93-94

Type declaration SETS, SETV 88
Directive 79-82

Main-variable directive SETV 80
DOWN 76-77
Dynamic array 91
end (see statement brackets)
END Loop stop STOP 68
Entry to programme 37 46, 50 80
EXIT | 52 RETURN

103

104 INDEX
Pecgasus- Elliott |
Sirius 803 Mercury ALGOL
Expression
Arithmetic expression 88-89
Conditional expression 98
General expression 58 Arithmetic
Index expression 57 cxpression
for statement CYCLE Cycle 90
Function procedure 94
Functions 31, 40-41 50 60, 66 89
Global variables 93
go to Jump JUMP JuMP 88, 93
HALT STOP WAIT 68
HOOT 68
Identifier 87
Index 29 Integer 56 integer
variable
Input 34-35 47 69 89
Integer, integer index 43 index 88
Interlude 37
Jump, JUMP 30-31, 51 61-62 go to
39, 41
JUMPDOWN SUBR 73-74 procedure
call
Label (for data) Name 47
Label (for instructions) 30 Reference 61,74 88, 93
number
Local variables 92
Logical operators 98-99
Loop stop 31 STOP END
Modifier 29 Suffix Suffix Subscript
Name 38 | Label TITLE
| (for data) (Directive)
Number 34,40 | 43-44,47 56, 69 89
Output 35-37 47-48 70-72 89
Optional output 37 54 I 71-72
own | 93
Parameters 94-95
PRESERVE 79
Procedure, procedure subroutine | (sub) routine| 93-96
procedure call 94
recursive procedure { 96
Quicky ‘ 81
real variable variable, variable 88
floating-
point
Reference number Label 42, 46 Label Label
REPEAT 43, 53-54 63-66
RESTORE 79
RETURN EXIT 73-74
ROUTINE 74, 81-82 procedure

INDEX 105
Pegasus- Elliott Mercury ALGOL
Sirius 803
SETF, SETR, SETS, SETV 46 Directive | Declaration
Specification (of parameters) 94
Statement 87
statement brackets 8
compound statement 88
STOP (Elliott) Loop stop 46, 47 END
STOP (Pcgasus-Sirius) 32 WAIT HALT
String 89
SUBR 52 JUMP- procedure
DOWN call
Subroutine 52 73 procedure
Subscript 29 45 57-58 91
Suffix (see Subscript)
Switch 31 51 68 97
TEXT 38 TITLE CAPTION
TITLE TEXT 48 CAPTION
TITLE (Directive) Name 80, 81
Trace see Output,
optional
Trigger see Input
Type 88-89
Change of type 30 44, 45 58, 61 89
UP 76-77
value, value list 96
Variable 29 4 56, 57 87
Auxiliary variable 7
Floating-point variable variable 43, 46 variable real
Integer variable index 43, 46 index integer
VARIABLES 80
VARY see Cycle
WAIT STOP 49 HALT

106

Least Prime Factor of n.
Factorizing intcgers.

Calculating (14 1/m)".

Evaluation of f(x.y.2).

Iterative method for square root.

Mean, variance, standard deviation.

Adding a sequence of numbers.
Evaluating a polynomial.

Input of a set of numbers.
Tabulating a polynomial.

Input of a matrix.

Largest element of sequence.
Sorting numbers into order.
Example of a switch.

Solution of quadratic equations.
Table of functions with layout.
Subroutine for cube root.

INDEX

List of Examples

6-7

6, 8, 19-20, S2(E), 97(A)

9, 32(P), 42-43(E), 62-63(M)

9-11

11-12, 31(P), 62(M), 91(A)

11-12, 36(P), 49(E), 69(M), 87-88(A), 90(A)
14-15, 45(E), 66(M)

14-15, 32-33(P), 46(E), 66(M), 94(A),
96(A), 98(A)

14-15, 34(P), 69(M), 78(M), 93(A)

16, 94-95(A)

17, 67(M), 91-92(A)

‘18, 66(M), 91(A)

18, 33(P), 66-67(M), 99-100(A)
19, 68(M), 97-98(A)

65(M)

T(M)

73(M)

A = Algol. E = Elliott Autocode. M = Mercury Autocode. P = Pegasus Autocode

