er-ranti

MERCURY AUTOCODE
MANUAL

Second Edition

by
R. A. Brooker
B. Richards
E. Berg
R. H. Kerr

of
The Computing Machine Laboratory
The University, Manchester.

LIST CS 242A
JUNE 1961

(1)

PREFACE TO THE SECOND EDITION

The present volume is a revised edition of the Manchester Mercury Autocode System of
programming, which was previously printed in May 1959. In this revised edition the material
has been entirely re-arranged, and certain additional information has been included. Some
of this new material describes facilities added to the system after the previous edition was
prepared, and for some of the descriptions, and for the facilities, described in Appendix 4,
we are grateful to the Mercury Group at Imperial Chemical Industries Ltd., Wilton Works.

As in the previous version we have included the first ten Library Programmes to illus-
trate the general specification of such programmes. Two of these are now obsolete, namely
508 and 509, and have been replaced by 516 and 524, prepared by Dr. D. Morris (Manchester
University) and Mr. R. Maddison (Oxford University) respectively. Many other programmes
have also been developed however, and include such operations as determining the latent
roots and vectors of matrices, curve fitting by least squares, miscellaneous data-processing
operations, etc., and prospective users are advised to consult the installation concerned as
to the current state of the library.

Not every installation may have precisely the same facilities in their Autocode system,
but this discrepancy is not likely to affect the ordinary user. Those described in the body
of this report, i.e., Parts 1, 2, 3 and 4, are almost certainly common to every installation,
whilst those described in the Appendices may differ from one installation to another.

One of the reasons for revising the description is that it is proposed to write
Translators to accept Mercury Autocode programmes on the new ATLAS and ORION computers.
There are, however, features of Mercury which it may be impracticable (and in some cases
undesirable) to simulate in detail on the new machines. These include details of the
representation of information on punched paper tape and in the machine, the detailed
specifications of library programmes, running times, and manual operating. For example, the
new machines use different ranges of numbers and precisions of calculation, and will gener-
ally yield greater accuracy in a shorter time.

Consequently, in preparing this edition, an attempt has been made to collect in
appendices information about facilities for which there is no assurance of acceptance by
Atlas or Orion. Even so, the body of the manual still contains details (such as the
precision of numbers, the range of exponents, times of operation, space occupied by the
programme and the preparation of tapes) that are either easily recognisable as specific to
Mercury or explicitly associated with Mercury.

This Manual is a working handbook for the Mercury Autocode System. Those coming to a
computer for the first time might find it useful to read first the “Introduction to the
Mercury Autocode” (Ferranti List CS 241). The document “Autocode Examples” for Mercury
(Ferranti List CS 270) may also be found useful.

Specifications of further Library programmes written in Autocode are available through
the Mercury Library Service. Titles of Autocode programmes are contributed to the Mercury
Programme Interchange scheme.

In other documents issued by Ferranti Ltd. it will be noticed that Y has been used in
place of ¢ (for function) as used in this document. This is because ¢ is used for another
purpose (to signify figure shift) in most Ferranti computer literature. Some sets of tape-
editing equipment show both symbols on the key, but the correction can easily be made mentally.

Those principally responsible for this very successful Autocode System are the authors
of this Manual. They have very kindly made it available for publication by Ferranti Ltd.,
who gratefully acknowledge this fact.

(i1)
PREFACE TO THE FIRST EDITION

The present volume is a description of the Manchester Mercury Autocode system of
programming, which was previously distributed in four parts, namely

1 Basic Facilities by R.A. Brooker.
August, 1958.

2. Operational Facilities by R.A. Brooker and B. Richards.
August, 1958.

3. Matrix and Vector Operations by E. Berg and R.A. Brooker.
October, 1958.

4. A Basis for the Programme Library by R.A. Brooker and R.H. Kerr.
January, 1959.

These are reproduced here with only minor alterations and corrections. No attempt has
been made to re-cast the material in any way.

Several people have helped in this project. Dr. B. Richards has been of considerable
assistance at all stages of the work, and Dr. A.R. Curtiss and Miss M. Biram of A.E.R.E.,
Harwell did some preliminary work on the matrix scheme. I am also extremely grateful to
Dr. J. Howlett of A.E.R.E., Harwell and Dr. G.E. Thomas of I.C.I. Central Instrument
Laboratory, who have helped to make the project successful in operation, by arranging
appropriate educational facilities and computing services.

Thanks are also due to Miss B.M. Dent and Mr. B. Birtwistle, of Metropolitan-Vickers
Electrical Company Ltd., who made available facilities for typing and reproducing the earlier
edition. Much of this earlier material was drafted by Miss C.M. Popplewell who has also
edited the present volume. ’

R. A. BROOKER.

Part 1

Part 2

Part 3

Part 4

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

CONTENTS

Basic Facilities

Further Facilities

Matrix Operations

The Programme Library

A service for the punching and execution of Autocode
Programmes on the Manchester University Mercury
Computer

Notes for Programmers who wish to prepare their own
tapes and/or run them on the machine personally.

Interpretation of Machine Orders

Facilities that are available only on the Manchester
and I.C.I. machines

A selection of library programmes available for
Mercury

(11i)

Page No.

1

16

29

33

41

48

52

55

61

Part 1

Basic Facilities

General properties

An Autocode programme consists of an ordered sequence of instructions and other items
of information. Each of these is written on a separate line and employs the following
symbols: -

abcdefghuvwxyzm
ijklmnopgqrst
.01234561789
t=F=>>(,)n>/¢ "2

The programme is ultimately presented to the machine in the form of a length of perforated
paper tape which is scanned by a photoelectric tape reader, the input unit of the machine.
The programme tape is prepared by means of a manual keyboard perforator on which are engraved
the standard symbols. The material is punched in the conventional fashion, namely from left
to right and down the column. Each instruction is followed by two special symbols CR
(carriage return) and LF (line feed) which are provided for this purpose. There is also an
erase symbol X which is used for overpunching mistakes.

The instructions read from the tape are placed in the instruction store of the machine.
the numerical quantities to which they refer are kept in the number store of the machine.
The programme will include instructions to set the initial values of such quantities, either
directly or by reading them from a further data tape by a process similar to that by which
the instructions themselves were read into the machine.

The instructions fall into two classes, the arithmetical instructions which perform the
calculation proper, and the control instructions which “organise” the calculation (e.g.,
arrange to repeat cycles of arithmetic, select alternative courses of action, or, as already
mentioned, read further numerical data into the machine). This latter class of instructions
are the characteristic features of automatic calculating machines which distinguish them from
desk machines which are “controlled” by the operator himself. Both kinds of instruction need
to refer to the working store so that it is appropriate to start by describing the notation
used to refer to the numbers stored therein.

The working quantities

The numbers recorded in the working store are also of two kinds, general variables and
indices, which, like the two kinds of instructions, relate meinly to the calculation proper
and its organisation. Thus the variables have numerical values in the range 10°7°9 < x < 107°
and are recorded to a precision of eight/nine decimals, while the indices are restricted to
integral values in the range -512 < i < 511,

2 PART 1
The variables
These are divided into three sets as follows:
There are 480 main variables which can be divided into a maximum of 15 groups associated with
the variable letters
abcdefghuvwxyzmw
For example they can be arranged as a single group of 480 variables

v b/

o Y1 Vo osee Vygo
by writing the directive
v = 479

Alternatively they could be arranged in three equal groups, thus

a, B.1 8y e a“,
b, b, b, ... byg
Cy € C, «ev Cygp

the necessary directives being

a - 159

b — 159

c = 159
It is intended that these groups shall reflect any natural grouping of the quantities occur-
ring in the problem, and provided that the total number of variables does not exceed 480 the

number and size of the groups is at the disposal of the programmer.

In addition to the main variables, there are fifteen special variables represented by
the letters

abcdefghuvwxyzmw

employed without a suffix. These will be a common feature to every programme which cares to
use them. The special variable 77 may be assumed to have the value 3.14159... until
otherwise altered.

Finally there are 14 primed special variables denoted by

al bl cl dl el f’ gl hl ul vI wl XI yl zl

(note: there is no 7').

All the above quantities are ke,t in the working part of the number store. An
auxiliary store normally provides up to 10,752 farther variables, but these are less easily

accessible and will not be introduced at this stage, since the working store will be suffi-
cient for many applications.

BASIC FACILITIES 3

Indices
Indices are represented by the 12 letters
ijklmnopqrst

Although permitted 1ntegral'values in the range -512 < i < 511, emphasis is placed on
positive values because they are primarily intended to be combined with variables in the form

€8 X3 OF X(p.y3) OF X(g+50)

to represent a free suffix; that is, these expressions may represent any one of the variables
Xgr Xgy Xy eees

depending on the particular value of the index in question. Thus if n = 4, then X(n-1)
will refer to x,. The last two expressions illustrate the most general form which a suffix
may take, namely, (index t integer). Whatever form it takes, however, the computed value of
a suffix must lie within sensible limits. In calculations of a repetitive nature an index
will assume a range of values, and to arrange this it is necessary to be able to compute with
indices as separate items in much the same way as variables.

In preparing the input tape, all expressions are recorded in a one-dimensional form,
thus x,, Xy, and X(s+s50) @bpear as x3, xi, and x(s+50) respectively. Consequently
it is not possible to distinguish, in a product, between (say) xi meaning x; and xi
meaning “x times i”. In order to resolve this difficulty, a convention will be introduced
later for ordering the factors in a product.

Numerical Values

Explicit numerical values will have to be introduced into the programme at some stage,
so that it is necessary to explain how these are written. The standard form is

integral part decimal point fractional part
omitting what is unnecessary. Thus, as is the case in writing suffices, the decimal point
can be omitted in whole numbers. However, absolute standardisation of form is not necessary,
so that e.g., “fifteen” may be written as
15 15. 15.0 015.0

All these and similar variations will be accepted by the machine.

Similarly V2 to six significant figures may be written as:-

1.41421° or ~01. 41421 or 001.4142100 etc.
and 2/3 to the same precision as:-
0.666667 or . 666667 or 000. 666667000 etc.
Any number of digits are allowed in the integral part and up to 24 in the fractional

part. (In all cases only the first 9 or 10 significant figures are relevant because inside
the machine numbers are restricted to a precision of 29 binary digits.)

4 PART 1
The arithmetical instructions

The basic form of the instructions for computing variables may be illustrated by the
following example:

y = 2mag,, + an + m, + 0.0lm + 0.0ln

which gives the new value of the variable to be altered (in this case y) in terms of other
quantities.

In general the right hand side may involve any number of products which may each have
any number of factors either variables, indices, or constants. As already mentioned it is
necessary to distinguish in the “one-dimensional” form

Yy = 2 mpa(mtl) + amn + man + 0.0lm + 0.0ln
between am meaning a; and a x m. The convention adopted is that an index immediately
following a variable letter is treated as a suffix so that the above expression is interpreted
as

Yy = 2xmxn x 8(m1) t (ap xn) + (mx a;) + (0.01 xm) + (0.01 x n)

As a consequence of these rules, numerical factors will usually be placed at the beginning of
a product.

Further examples of instructions in this general class are:-

a = 0 X = ox t 1 Xp = X, t nh x = i

Products can also be divided by a single quantity

thus u x/a + y/b + z/c
and v = 2mu/n
are possible instructions.

It is recommended that Ty, My «.... , be used as temporary working space, e.g. where a
complex algebraic expression requires several instructions, the intermediate answers are
denoted by 7, 7,, etc.

In formulating the r.h.s. of an arithmetical expression it is recommended that single
terms be written last, e.g.

Yy = uvw + ab+f+g
as in this form the machine will take less time to evaluate the answer.

The basic form of the instructions for computing indices may be illustrated by the
following example.

i =2m + m + n + 1
The only differences between this and the previous class of instruction are that the quantities
on the right hand side are restricted to indices or whole numbers, and that the use of the

solidus is not permitted. Further examples of instructions in this class are:-

i=0 n =n t1 r =10 p + q

BASIC FACILITIES 5

Functions

The following instructions are a means of introducing certain elementary functions into
the programme. Here the 1.h.s. y stands for any variable, and the argument x for any

r.h.s. expression.

= ¢ sart(x)
= ¢ sin(x)
= ¢ cos(x)
= ¢ tan(x)
= ¢ exp(x).
@ log(x) i.e.
= ¢ mod(x) i.e.
= ¢ int pt(x) i.e.
= ¢ fr pt(x) i.e.
= ¢ sign(x) i.e.

T L
"

Examples of instructions in this class are

i =
a = ¢ log (xx + yy)
w = ¢ sqrt (xxx)

X, = ¢ cos (nd)

log to base e
modulus of
integral part of
fractional part of

y= 1if x20,
y=-1if x<0.

¢ cos (1x/a + my/b + nz/c)

The following class of instructions involves functions of two variables, which may each be

replaced by r.h.s. expressions.

z

z

z

Examples of instructions in this class are

¢ divide (x, y) i.e., x/y
¢ arctan (x, y) i.e., arctan (y/x) (-7 < z <7, the quadrant

¢ radius (x, y) i.e., Vx% + y2

being determined as if
X, y were proportional
to cos®, sing respectively)

X =)

z = ¢divide (x + 3,
u = ¢ arctan (aa — bb, 2 ab)
a; = ¢ radius (x;, ¥;)

Finally there are the instructions:-

i

@ int pt(x)

o
"

@ poly(x) 8y, n

for converting a variable (or variable
expression) to an index (the largest whole
number less than or equal to x)
for calculating y = agta x...+a x".

As before, y is any variable and x any
variable expression. The parameter a, is
any first member of a group, and n is any
index or whole number (but not an index
expression)

6 PART 1

¥y = @ parity(n) y = (-1)®, where n is any index expression.

i = ¢ max (xo, m, m) for determining the index of the maximum (or
(minimum) element of the set X;, Xp4q»

1 = dmin (xg, 0, M) | ceunnnny Xy

Here 1 denotes any index, x, any first
member, and n, m are indices or whole numbers.
If there is no unique maximum (or minimum)
element, then that with the least index value is
taken.

The control instructions

These are the instructions which organise the calculation and for this reason are
sometimes known as the “red tape”.

The most important instructions in this class are the jump instructions. Arithmetical
instructions are normally obeyed in the order in which they are listed, but from time to time
it is necessary to select alternative courses of action as in the following sequence of
instructions for calculating:-

e*, x <o jump 1, x>0 T
£(x) = £ = $exp (x) l
1+sinx, x>0 jump 2 —————— 11—

|
1) £ = ¢ sin (x) ¥

f =1+f¢f

2y —

In this example the first instruction is a conditional jump, i.e., if the condition (in this
case X > 0) is satisfied then control *“jumps” to the instruction labelled 1) and then
continues to obey instructions from there onwards; otherwise, if the condition is not
satisfied, then the next instruction is obeyed in the usual way. Any instruction can be
labelled in this way with an integer in the range 1 - 127 inclusive.

The second jump instruction in the above example is an unconditional jump and needs no
further explanation. The general form of a conditional jump instruction is

jump n, a2f8 (or#=>)

where n is a specific label and a, B are the quantities being compared. These must be
either both variables (including a numerical constant) or both indices (including a numerical
integer). 1In this case a minus sign can be written before a constant if it is negative, but
elsewhere numbers are treated as essentially positive and the + and - signs are treated as
operators. It is not possible to compare a variable directly with an index without first
converting the index to variable form. Examples of conditional jump instructions are

jump 1,x 2 ¥y jump 8,1.41421 > a
jump 50,1 # 2 jump 97, r = 8

BASIC FACILITIES 7
Associated with the above are the instructions

Jump (n) n) = 3) n) = m
where n, m denote any index letters.

The instruction n) = 3) makes a subsequent jump (n) equivalent to jump 3. One use
for this will be to mark the point of return when calling in a subsequence, thus:

main sequence subsequence

10)
f

/

n) = 3) /
jump 10
3)

/ B
n) =7 / -~
jump 10 / -

N ———

In the same way the instruction n) = m) makes a jump (n) instruction transfer control to
one of several different points depending on the computed value of m. This device is known
as a multi-way switch. When an index is used to ‘remember’ a label in this way it cannot,
at the same time, be used for other purposes.

The execution time of n) = m) is very much longer (18 millisecs) than that of n) = 3)
(120 microsecs).

There is a special form of conditional jump check (x, y, e, 3), where X, y, e are
each any variable or constant, and 3 is any label in the same chapter. This has the effect
“jump to the instruction labelled 3 if e > | X-y |. otherwise continue with the next
instruction”. It can thus be used to compare the computed value x with the expected value
y to an absolute accuracy of e. In the case of failure, the value of x could be printed.
This instruction may be found useful when developing a new programme.

Cycles of Operations

Two special instructions are provided to simplify cycles of operations. These take the
form

8 PART 1

i=p(Qr or = p(-a)r

repeat repeat

and arrange to execute the intervening instructions for values of i running from p by
increments of q (or —q) to r. Any index may be used in place of i and p, q, r, may be
any indices or positive integers, subject of course to the restriction that r-p is a multiple
of q, otherwise the cycle will continue indefinitely.

Each instruction of a pair is associated automatically one with the other by the
computer during the initial input of the programme. The process of association will permit
the use of instruction pairs entirely within other instruction pairs to a total depth of 8.
It is not possible, however, to interleave pairs nor to duplicate either member of a pair,
i.e. there must be a one to one correspondence of the opening and closing instructions of
each loop, e.g.

-_——
————————

—_———————
-— Cycles to a depth of 5

-— Cycles to a depth of 3

This example is typical and illustrates the type of flow arrangement which is permis-
sible. Note that no lines cross.

The following sequence

x = 0 “a3” = 8pen o+ (-1

= »
i = 2(1)n
—> p = i-1 81y Byp eeeeresess Byp
J = 1p By Byy ceevensnns By
qQ = np+j-1 : . .
x = X + aq
repeat By By eeceeeeees Bpp
repeat

for example, illustrates a cycle within a cycle (for calculating the sum of the super
diagonal elements of & square matrix).

BASIC FACILITIES 9

Note that a cycle is always obeyed at least once and that if i, q, or r are
written on the left hand side of an instruction in the loop the operation of the loop may be
affected. At the end of the last repetition the values of i and r are equal.

End

The single word instruction end is used to terminate a calculation.

Input from a data tape

Instructions are provided to read numerical information from the input tape into the
working store. These are

read (x)
read (i)

which mean “read the next number on the tape and set the specified variable (or index) to
this value”. As each number is read the tape is advanced to bring the next number to the
reading station. Numbers must therefore be punched in the order in which they are required.
Each number is written in the manner already described (preceded by minus sign if negative)
and when punched must be terminated by CR LF or a double space SP SP. the “read” instruction
will also accept numbers punched in the floating decimal form, for example, -2.5,-3 (i.e.,
-2.5 x 10”2 or -0.0025). The two component numbers can be punched in any acceptable form
except that now the terminal combination of the first is replaced by the “comma”. The
exponent b takes integer values in the range |b| < 127. Further examples of data punched
in floating decimal form are: -

1,-100 i.e., 10700
-2.5,1 i.e., -25
1000,-3.0 i.e., 1

the last number being in mon-standard form. In all cases it is necessary to check that the
size of the resulting product does not exceed the capacity of the machine, i.e.,
a.10°| < 2256,

Note: the floating decimal form applies only to numbers on a data tape, it must mot be used
for constants appearing in the programme.
Output

To print results the simplest procedure is to write a ? symbol before or after the
arithmetical instructions giving the relevant value of the quantity in question, e.g.,

X = zyy - 12 i=1i+12
This will cause the new value of x (or i) to be printed immediately after computation.
Each number is printed on a new line to 10 significant figures, so that results obtained in
this fashion will be listed in a single column at the left hand margin of the page.

In case the results are required in tabular form, the following instructions are
provided :

print (x) m, n
space

newline

10 PART 1

The first instruction prints the numerical value of x (any variable expression) in fixed
decimal point style with m, n positions allowed respectively for the integral and frac-
tional parts. The parameters m, n will usually be preassigned positive integers, e.g.

print (2/r) 1, 5

but they may also be indices. The numerical value of x is rounded off by adding %1071,
Integers are treated precisely. If n =0 the decimal point is omitted. One figure is
always printed before the decimal point but other non-significant zeros are suppressed. If
negative a minus sign appears before the first digit printed, otherwise a space. If numbers
exceed about 10'° they will be printed in floating decimal form (See next paragraph).

The print instruction will print numbers in standard floating decimal form on setting
m = 0. Three characters (after the “comma”) are allowed for the exponent — corresponding to
a number printed with m = 2, n = 0. The true “zero” of the machine, namely 0.272%%, is
printed as 0,-128 which will be interpreted correctly if subsequently read by the “read”
instruction in spite of the fact that the exponent -128 lies outside the permissible range.

(If a =0 the number (a, b) is treated as 0.2"2°% whatever the value of b.)

The query (?) print is equivalent to a newline followed by a formal print with m = 0,
n = 10 for variables, or m =1, n = 0 for indices.

Each number is automatically followed by two spaces but extra spaces can be “programmed”
by means of the space instruction. A standard teleprinter carriage allows for up to 68
characters across the page. The instruction newline is equivalent to the operations of line
feed and carriage return on a teleprinter.
All numbers printed by the machine can subsequently be read in again by means of the
read instruction, i.e., input and output are complementary.
An Example
y
Tabulate Sievert’s integral / e ~ 2 8€C X 4y for y = 1(1)90° and particular positive
(}

values of a. The method adopted is to tabulate the integrand for x = 0(%) 90° and then
calculate the integral step-by-step using Simpson’s rule to evaluate the increments; thus

Yy +h y
/ = / + 2 [f(y) +at(yrg) f(y+h):|
0 0 ’

™
where h = 360
f —+180

8 h = 7/360 (5 ms.)
2 s = 0(1)179 1
10 b = ¢ cos (sh) (23 ms.)
12 fs = ¢ exp (-a/b) (23 ms.)
4 repeat 4
4 fi0 = O 4
4 y =0 4
2 r = 1(1)90 1
4 newline (90 ms.)
7 print (r)2,0 (150 ms.)
2 space (60 ms.)
11 s = 2r-1 19
10 £ = fguqy Pafg + 2., 22
0 vy = y¥hls ® 0 (5 ms.)
7 print (y) 1,6 (333 ms.)
4 repeat 4

end

BASIC FACILITIES 11

The case s = 180 is excluded from the first loop in order to avoid forming -8/b for
b = 0. Otherwise the programme itself needs no explanation. The numbers on the left give
the number of registers occupied by each instruction in the instruction store, while those
on the right give the execution time in units of 60 us., unless otherwise stated. Most
functions take approximately 23 ms., unless treated as quickies (see Part 2), in which case
the time is reduced to about 6 ms. Approximate rules for estimating the space and time
requirements are given at the end of Part 2.

Chapters

For technical reasons, large programmes have to be partitioned into chapters, each
chapter being restricted in length to 832 registers. (The above programme is well within
this limit and would thus constitute a single chapter.) Each chapter has its own labelling
system, and to jump from one chapter to another an across instruction is employed, e.g.,

across 2/3

means “jump to the instruction labelled 2 in chapter 3”. Since this is a comparatively time
consuming instruction (160 ms.) it should not be included within an inner loop and as far as
possible partition into chapters should correspond to distinct parts of the calculation.

chapter 1

The diagram illustrates the layout of a multi-chapter instructions

programme. Each chapter is headed with the chapter

number and the variable setting directives, and close
terminates with the directive word close. If the

directives in chapter 3 are the same as those in

chapter 2 then we may simply write:-

chapter 2
chapter 3
directives
variables 2
instructions
instructions
close
close
While if extra directives are to be added
we mgy write: - chapter 3

chapter 3 directives
variables 2 instructions

—99
x close

Note however that this substitutional directive may only refer to a previous chapter on the
programme tape. It is necessary to arrange chapters in ascending numerical order as shown.

12 PART 1

The associated instructions

i p(@dr 1) = 3) or 1) = m

repeat Jump (1)

must occur in the same chapter, although the intervening instructions may temporarily switch
control to another chapter. (Normally the indices ‘1’ and ‘o’ should be used as little as
possible since they are readily confused with 1 and 0. In the above case, however, a
connection exists between 1 and label, and there is little risk of confusion.)

The directive ‘“‘psa”

This means “print space available” and is intended to be inserted between the last
instruction of a chapter and the close directive. The effect is to print, on a newline, the
chapter number followed by the number of unused registers at the end of the chapter. The
directive may also be used at any point in the chapter so as to record how the chapter space
is used up.

The significance of the variable directives

When resetting directives in subsequent chapters it may be necessary to appreciate the
significance of these statements. Thus e.g.,

chapter 1
7
a =~ 99 | allocates 0- 99 to &) &;,......, 8y

b =99 | storage 100 - 199 to by, by,......, by,

c =99 | locations | 200 - 299 to ¢y Cy.evees, Cgy

chapter 2
c—~99 | allocates B 0- 99 to ¢y Cyyevnnns, Cgy
x — 49 | storage 100 - 149 to X, X,, Xy

y—~49 | locations 150 - 199 to ¥4, Fyieeeeen, Yus

Thus the “¢’s” of chapter 1 are not those of chapter 2. If it is intended that they should
be, then the latter directives might be recast as follows

X — 49

y =49

m—+99 (waste)

c—-99

BASIC FACILITIES 13

A further consequence of this scheme is that “x.,” is identical with ¥y, “xg,” with y,, and
so on. Such “overlapping” references are sometimes useful. However one must not try to
refer to “x_,” since there are no variables preceding those defined by the x directive.

Subchapters

At any point within a chapter it is possible to call in a “subchapter” and subsequently
to return to the original chapter at the instruction following the point of departure. This
is done by means of a down instruction in the main chapter and an up instruction in the
subchapter. For example

down 2/3

calls in chapter 3 as a subchapter and enters it at the instruction labelled 2. When the
subchapter has completed its task the single word instruction

up

will return control to the main chapter at the instruction following the original down
instruction. Alternatively the up instruction may be used in any chapter reached by means
of across instructions from the original subchapter. A subchapter may have its own sub-
subchapter, but there the regression stops. ’

The special variable 7 is reset to 3.14159... at every chapter change, i.e., as a result of
the instructions across, down, up; and also (see later) preserve and restore.

Starting the programme

Following the last chapter on the programme tape is chapter 0. This is constituted in
the same way as any other chapter, but the close directive terminates the programme input
process and initiates the programme itself at the first instruction (whether labelled or not)
of chapter 0. If there is only one chapter in the programme this could be chapter 0, but it
is more usual to regard chapter 0 as a steering chapter. The two alternatives are illustrated
below where the calculation of Sievert’s Integral, given earlier, is arranged for values of
the parameter a = 1(0.25)5

chapter 1
chapter 0 f-+180
- s : proper
a = 0.25n | | M
oerae : | ; close
-proper | | |
— | { ! chapter 0
w B
| | | a = 0.25n |
close—— — — L__._l_-—down 1/1 |
L — — srepeat |
end :

close— — — — -

14 PART 1

The “rmp” instruction

It has been stated above that a programme consists of chapters numbered 1, 2, 3,......0,
and that when chapter 0 has been read the machine stops reading programme and starts obeying
it. At this time the number store and any part of the instruction store not filled with
instructions are in a standard state.

However, there is a special instruction rmp (read more programme) whose execution makes
the machine resume reading programme. Thus chapter 0 can be followed either by a completely
new programme which will entirely supersede the old one, or by a new chapter 0 which will
supersede the old chapter 0. Thus a succession of steering chapter 0's may be written. In
either case after reading another chapter 0 the machine again stops reading programme and
starts obeying it. Whereas when execution of the original programme started the number store
was in a standard state, the new (or modified) programme finds the numbers left in the number
store by the previous programme.

Steering programmes and rescue procedure

When a calculation has to be repeated for miscellaneous values of certain parameters,
it is sometimes convenient to initiate each individual case by restarting with a supplementary
chapter 0, which sets up the parameters in question befare entering the programme proper.
Such a succession of chapter 0's is called a steering programme. The machine can proceed to
successive cases automatically by terminating the programme cycle with the rmp instruction.
Since numerical results are unaffected by restarting, the successive chapter 0's need only
refer to those parameters which are altered in passing from one case to the next. However,
this may rule out the possibility of initiating the.individual cases out of sequence, or of
“rescuing” the calculation in the event of machine breakdown.

For this reason it is preferable to make the individual chapter 0's independent by
resetting if necessary all initial data. If there is a large mass of data, such as a table,
to be generated, and which is common to each case, then this should be initiated by the main
programme and recorded for future reference in an appropriate part of the store. If this
part of the programme also terminates with rmp, the machine can proceed automatically to read
the first chapter 0 of the steering programme. If the calculations have to be spread over
more than one machine session, or in the event of serious machine breakdown, the main programme
will have to be read again. If the programme has been suitably written, this can immediately
be followed by any chapter 0 on the steering tape. The following diagram illustrates the
arrangement of programme for three “cases” of a calculation specified by two parameters.

case 1 {

case 2 {

case 3 {

The hoot instruction

BASIC FACILITIES

steering programme

main programme

chapter 0 %+ ———— — — j chapter 1
variables 1 |
directives
r—n =1 |
| c = 2.8 | —= 1) main
| I calculation
| across 1/1 —»— [
L — _close
—|— -+ — — — — —TIm
! ’
chapter 0 — — — < — —| | close
variables 1 | ’
lr_—sn = 2 l | chapter 0
| c = 2.9 l I variables 1
| across 1/1 —»— | |
L) | initial
— —close | | I calculation
_]l | N — | - rmp
chapter 0 — — — |4 — |
- — — close
variables 1
-*n = 2
| c = 3.0
: across 1/1 —&»———
L — —close

The instruction hoot interrupts the calculation to give a single note (1 kc/s) of

duration approximately 1 sec. on the loudspeaker.

production run with a

steering tape.

This may prove useful when planning a

By arranging to hoot as each case is finished, the

15

operator is thereby reminded that the machine is behaving correctly, and should it “jump out
of control” the interruption would be noticed.

last case manually.

In this event the operator can restart the

16

Part 2

Further Facilities

The information given so far will enable the reader to attempt a fairly wide range of
problems — with limited storage requirements. The use of the auxiliary store is discussed
in the next few pages which describe several additional facilities. The first of these is a
device for speeding up the execution time of chapters involving functions.

Quickies

Every time one of the functions

sqrt (48) cos (36) log (42) tan (42) chapter 1

radius (48) sin (36) exp (50) arctan (58) variables
is referred to, 17 millisecs are spent in transferring the
necessary set of instructions (subroutine) from the magnetic instructions
drum to the instruction store. Provided there is room, .
however, they can be included in the chapter itself, and in

this case the average execution time is reduced from about ¢ exp
23 millisecs to 6 millisecs. Functions treated in this way

are known as quickies. The number of registers required for ¢ sqrt
each function is given above in parentheses. All that is

necessary is to list them (each preceded by ¢) in order of @ sin
preference at the end of the chapter in question, immediately

before the close directive (as in the accompanying diagram). close

Any functions for which there is not room will be treated in
the usual way.

In the case of “sin” and “cos” these functions involve the same set of instructions,
so that if one is treated as a quicky, the other will be also. The same applies to “sqrt”
and “radius”. Finally it should be mentioned that the functions

mod int pt fr pt divide

are automatically treated as quickies, so that there is no need to include them in a quicky
list.

Rounded and unrounded arithmetical operations

In those arithmetical instructions involving a variable expression on the right hand
side, each sum, difference, and product is formed to a maximum precision of 29 binary digits
and rounded by making the last digit odd. If required, the rounding operation can be
omitted by using the % sign instead of =, In this case the result will normally be biased,
but if the quantities involved can be expressed precisely in 29 significant binary digits or
less, then the m sign provides a means of performing exact arithmetical operations (excluding
division) on variables. These will usually be restricted to integral values, however, since

17

these are the only values which are converted from decimal to binary form precisely during
input.

Rounding errors will be significant ﬁhen using the int pt and fr pt instructions.
Thus for example: -
if x =3 + 2727, then ¢ int pt (x) gives 3
and ¢ fr pt (x) gives 2727
if x =3 - 2727, then ¢ int pt (x) gives 2
and ¢ fr pt (x) gives 1 - 2727
3 precisely, then ¢ int pt (x) gives 3
and ¢ fr pt (x) gives 0.2725% (“zero”)

if x

If the “nearest integer to x” is intended, it is sufficient to use (say)
¥y = ¢ int pt (x + 0.5)

unless x itself is half an odd integer, in which case the result will again depend
critically on rounding errors. Finally it should be pointed out that the int pt, fr pt, and
mod instructions do not themselves introduce any rounding errors — nor of course do simple
transfers.

The auxiliary variables

If the working variables are insufficient in number, then access to an auxiliary store
provides up to 10,752 further variables, depending on the number of chapters in the programme.

The auxiliary storage locations may be regarded as numbered 0, 1,..., 10,751 but the
last 512n of these are occupied by chapters 1 to n inclusive. Thus in a programme extending
up to and including chapter 4 the last available location is 8,703.

To use the auxiliary variables they must first be transferred to the working store,
and at some time or other information must be transferred to the auxiliary store from the
working store. Both of these are relatively time consuming operations, and programmes
employing them require fairly careful planning.

The transfer instructions take the form

b (x) W, n “read” from auxiliary store

@, (x) w, n “write” to auxiliary store

Here the (integral) value of x (any variable expression) specifies a starting location in
the auxiliary store, and the variable w is regarded as a starting location in the working
store; n (any index or whole number) is the number of consecutive variables transferred.
The expression x is computed without rounding, i.e., as if it were on the right hand side
of a A~ sign. The variable w will generally be one of the main set, unless n = 1 in which
case it could be a special variable.

Examples: -

¢s (1000) X, 10 Transfers the contents of auxiliary locations 1000 to 1009 (inclusive)
O Xy X(gagyreeer X(koy+

18 PART 2

¢, (d-nt+1) a, n Transfers the variables a,, a,,..., a,; to auxiliary locations
d-nt+1,..., d.

¢Q (f) g, 1 Replaces the special variable g by a number from the auxiliary store.

It is very often appropriate to associate letters with groups of numbers in the auxiliary
store, e.g., when dealing with matrices. For this purpose fourteen new working variables

al', b/, ¢’, d’, e, £, g', n', u’, v, w, x', y', 2’

are introduced. These are essentially similar to the special variables a, b, c,..., 2 and
indeed may be used as such if desired. It is intended, however, that they be used to
designate the starting locations of groups of auxiliary variables. Thus for example by
setting a’ & 1000 we define a group of unlimited extent located in 1000, 1001, etc. If the
group is an (n x n) matrix and recorded so that the (i,j)th element stands in

a' + (i-1)n + (j-1) then the instruction ¢%(a’ + in - n) by,n transfers the i-th row of the
matrix to the working store.

The execution time for a group transfer cannot be given very precisely but is less

n
= + +
{17 [32] 34 0.36 n} msec.

where [] denotes “integral part of ", and n is the number of variables transferred.

than

The instructions “preserve” and “restore”

These apply to the use of subchapters. If necessary the working variables can be
preserved during the operation of the subchapter and restored on return to the main chapter.
This can be done by writing the word preserve before the down instruction, and the word
restore immediately after it. The variables in question are dumped in hidden locations of
the auxiliary store. There are two dumps, the first being used by the master chapter when
calling in a subchapter, and the second by a subchapter when calling in a sub-subchapter.

A programme may thus extend over three levels, as illustrated in the following diagram

chapter 1 chapter 2 chapter 3
1y — rn
preserve preserve ===
down 1/2 down 1/3 —
restore restore <+— PO
up ‘———up

A consequence of this arrangement is that any results calculated by the subchapter will have
to be recorded in the auxiliary store in order to preserve them. Alternatively, if they are
left in the working store, then the restore instruction can be postponed until they have
been dealt with in the master chapter.

It is recommended, however, that subchapters be designed so as to select from, and
return to, the auxiliary store all relevant material. In this form they provide a
convenient means of arranging a calculation for possible future use as a “packaged” programme.
The subchapters can be written in terms of auxiliary groups a’, b/, ¢’, etc., without

FURTHER FACILITIES 19

assigning numerical values to these variables. Instead they can be defined in terms of those
used in the main chapter by including appropriate instructions between the words preserve and
down. The original values of a’, b/, ¢/, etc. can then be restored on returning to the main
chapter. In this way each ‘level’ of organisation may use its own frame of reference for' the
auxiliary variables. As an example, suppose that both the main chapter and the subchapter
employ three groups of auxiliary variables denoted in both cases by a’, b’, c’, and starting
relative to each other as follows

a"(sub) = c’(main)
b’(sub) = &' (nain)
¢’ (suby = bl(maln) + 50

These relations may be represented diagrammatically thus:-

main chapter a0 _ v N - L
I:so

e

subchapter b’

The instructions for calling in the subchapter and redefining the auxiliary variables are
then as follows

preserve

7 ~xal

a’ ~ ¢!

¢’ &b’ + 50

b’ &w

down ?/?

restore
The special variable 77 has been used as a “shunting station” since in any case it will be

reset on entering the new chapter (7 is automatically reset to 3.14159... as a result of the

instructions across, down, up, preserve, and restore). Normally it is not advisable to
alter the value of 7.

Operations with complex numbers

Operations with complex numbers written as number pairs are provided by instructions of
the form

(w, vy = (x, 5

(u, v) = (x, y) + (a, b)

(u, v)J = (x, y) - (a, b)

(u, v)J = (x, ¥) * (a, b)

(u, v/, = (x, ¥) / (a, b)

(u, v) = ¢sart (x, y) (u>0)
(u, V) = ¢plog (x,5) (m>v>-m

(u, V) = gexp (x, ¥)

20 PART 2

Here u, v; X, y; 8, b denote any variables or (except in the case of u, v) signed
constants. Examples of instructions in this class are

(f5, 81) = (feqoyys B(g-1)) + (E(gay)r Beiey))

(x, ¥) ¢ sqrt (1, 1)

(a, b) @ log (0.5, h)
Note that no instruction may contain more than one operation.

The complex functions involve the use of certain real functions, as follows

sqrt involves sqrt
complex { exp 2 exp, sin, cos

log " log, arctan

Thus in order to treat the complex functions as quickies, it is sufficient to list the
relevant real functions. The ?-print facility does not apply to the complex operations.

Double Precision Instructions

Certain limited double-length facilities have been incorporated into Autocode. These
consist of the four basic arithmetical operations and, in addition, a reciprocal operation
and a single copy.

The instructions take the form: -

(1) ((x, ¥)) = ((a, b)) O ((c, d))

(i1) ((x, ¥)) = 1/((a, b))
((a, b))

(iii) «(x, ¥))

where @ is replaced by one of + - * / corresponding to addition, subtraction, multiplica-
tion and division, and where a, b, ¢, d, x, y may be replaced by any variable, either
working or special (see examples).

The combination ((x, y)) will be interpreted as the two parts of the double length
number in the above operations, x being the more significant half and y the less signifi-
cant half. On Mercury x is represented to a precision of 28 binary digits and y to 29,
i.e. a total of 57 binary digits. Hence y should be at least 272% (~10"°) times smaller
than x ; this condition will automatically hold true for pairs x, y computed by the above
operations, but note that the copy in no way alters the numbers being copied. (On Atlas or
Orion of course the corresponding figures will be quite different.)

There remains the problem of single to double-length conversion. Any variable or
constant, expressed to a precision of at most 28 binary digits, e.g., an integer less than
108, can be converted to standard double length form by associating with it a zero less
significant half. Thus if 8(j.3) contains an exact quantity then to obtain “(j-a)/3 to
double precision, one writes

(% ¥)) = ((Bg5_qy, 0) / ((3, 0))

Notice that, if a(j_j) is not exact but contains a rounding error, then the operation is '
worthless, as x will contain the same relative error and y will be meaningless.

FURTHER FACILITIES 21

With the above considerations, the facilities described in the second paragraph of
this section may be extended by noting that any pair ((a, b)) or ((c, d)) in equation (i)
(ii) may be replaced by ((u, 0)) where u is any variable or constant which can be
represented exactly.
The following examples will illustrate these facilities.
((ag, a(544y)) = ((bj. cj)) / (5, 0))

G’y 3N = L/ ((a(k_:’)l b(k-a)))

«(x,) = (2, 0)) * ((a, 0))

Double length pairs should, for convenience of use, and to avoid errors, be stored
either in corresponding positions under two different letter, e.g. x,, y,, or as adjacent

numbers under the same letter, e.g. Vi» Vi4y, When the even sufficies will indicate the
more significant part.

It is expected that double length working will be mainly used to minimise the effects
of destructive cancellation in ‘““ill-conditioned” problems; and that there will be no great
need for double length input and output routines. For this reason these operations will be
available only as the library sub-programme -512.

However, even without this, something can be done.

A number consisting of integral and fractional parts can be read as two distinct numbers
and combined to form a double precision quantity as follows:

read (x) integral part 0 < |x| < 2%t
read (y) fractional part 0 < |y| <1
((w,) = ((x, 0)) + (3, 0))
conversely we can print a number in this form, thus

((u, v))

X = ¢ int pt (u)

print (x) ?,0

¥y = ¢ frpt (w

((w,) = (¥, 0) + ((v, 0))

print (u) 1,?

Finally, in any chapter in which any of the double-length operations are used, the
directive

double length

must be inserted after the variable directives for that chapter and before the first
instruction. Thus
a — 4
b - 4
double length
3) x = 4

22 PART 2
will satisfy the requirements. This directive will use up 128 of the available 832 registers.

The space occupied by these instructions is (i) 13 - 23 registers, (ii) 9- 15
registers, (iii) 6 - 10 registers. The times for the operations are:-

addition 70 umin., subtraction 90 umin., multiplication 120 umin.
reciprocal 480 umin., division 600 umin., copy 14 pumin.

Step-by-step integration of differential equations

Special facilities are provided for the integration of differential equations. The
equations must be written in the form

dyy _

f; = T £ (X530 ¥p0 ceveee ¥p) (=1, 2, ...)

involving the special variables x, the main variables ¥i. fi and the index n. In
addition the special variable h is used for the step length and the main variables gj, hy,
(1=1,2, n) are introduced for “working space”. The programmer must write a sub-
sequence for calculating the f; in terms of x and the ¥j,» and which must not alter

¥y, &, hy mor n, h, x. The entry should be labelled and the sequence should terminate
with the special instruction 592, 0 (see Appendix 3). With these arrangements the effect of
the instruction

int step (m)

(where m is the entry to the subsequence) is to advance the integration by one step so
that the initial and final values of the ind dent and d dent variables are respectively

X x+h
yi(x) yi(x+h)
The method employed is that of Runge-Kutta, with truncation error of 0(h%). However the
truncation error also depends on the higher derivatives of the function and for this reason
the step length may be adjusted between steps if desired. The time per step is (10n + 4T)
millisecs, where T is the time (in millisecs) of the subsequence.

Example

Tabulate the solution of the equations:-

v, _ 2 2
- T ¥y, -1.2y,y, t2.47 Y,

dx

dy

Kz = 1.01y,%-0.8¢y, y, +1.59 y,°

for x = 0(.02)1
with the initial conditions:-

D x=0 y,=0, y,=1
2) x=0; y;, =1, y,=0

FURTHER FACILITIES
chapter 0 notes
- 2
- 2

f

g

h - 2
y ~ 2

n = 2 no. of equations
h = 0.02 step length

m = 1(1)2

i) = m)

selects initial
conditions

Jump (1)
11) int step (10)
newline
print (x) 1, 2
space tabulates results
print (y,) 2, 4
print (¥,) 2, 4
jump 11, 0.99 > x tests for end of range
repeat
end
10) £, =y,y, -1.23 3,5, + 2.47 5,5,
£, = 101 y,y, - 0.88 y,y,+1.50 y,y, | SWXHHEK seduence
592, 0

1) x =0
subsequence for setting
L initial conditions (1)

Jump 11
2) x

i}
o

¥, =1
_ ditto (2)
¥,= 0

Jump 11

close
Note: the instructions

int step (m)

m)
592, 0

must occur in the same chapter, although the auxiliary sequence may involve transfer of
control to another chapter.

23

24 PART 2

Miscellaneous Facilities

Mercury Autocode allows the basic machine instructions to be included in & programme
if appropriate. In general it will not be possible to translate such instructions for Atlas
and Orion, and for this reason we have confined their description to an Appendix. However,
certain of them are normally used to obtain alpha-numeric output and to generate pseudo-
random numbers. These operations are done as follows: -

Alpha-numeric output

The effect of the “620, n” instruction is to punch (print) the character given in the
accompanying table of tape values. Thus e.g., to print the sequence

case n x = current value of x
on a new line we write:-
new line (also puts printer on figure shift)
620, 27 letter shift
620, 3 c
620, 1 a
620, 19 s
620, 5 e
print (n) 4, 0 prints current value of index n (followed by
2 spaces)
620, 27 letter shift
620, 24 X
space (also puts printer on figure shift)
620, 10 =
print (x) p, q prints current value of the special v;riable X,

The number of spaces separating the “=" and
the leading figure of x will depend on the
size of x and the value of p.

FURTHER FACILITIES

Tape Code for Mercury Computer

Tape Value FS LS
0 FS FsS
. 1 1 A
.0 2 2 B
.00 3 L4 C
o. 4 4 D
e. o 5 (E
.0 6) F
e.00 7 T G
. 8 8 H
e. o 9 # I
° .0 10 = J
o .00 11 - K
[1] 12 & (V) L
0. o 13 LF M
ee. 0 14 SP N
e0. 00 15 ' 0
. 16 0 P
. . 17 > Q
e .o 18 2 R
e .e0 19 3 S
oo 20 - T
ee. o 21 5 U
e e.0 22 6 v
® o.00 23 / W
e 24 @ (x) X
e . o 25 9 Y
26 + V4
27 LS LS
28 Y :
29 ' (n) ?

30 CR m (&)
31 X X

Symbols in brackets may be found on some sets of equipment.

L.
The generation of pseudo-random numbers
The recurrence relation
Xp4y = 8 Xp (mod 227)

is used for this purpose, where a = 435,

The most convenient method of working this recurrence on Mercury involves the use of
un-standardised floating point numbers. The following sequences are employed

i = 29

Jj = 955

k = 202 .
sets a = 43

1 = 140

400, 58

410 (a)

26 PART 2

won
o = o

i

J

" E sets x,
1

400, 58

410 (x)

Thereafter we can generate a new random number (in the range 0 < x < 1, but un-standardised)
by the sequence

400 (x)
540 (a)
410 (x)

The least significant digits of x are not reliable. Having obtained a new x , the
instruction (for example)

t = ¢ int pt (100 x).
yields a random integer in the range 0 - 99 inclusive.

The initial value of X, can be changed by altering the ‘k’ component, e.g.

=R e e
1
© = = O

The above facility will enable the user to write programmes for plant simulation and
allied problems.

Estimation of time and space for Autocode programmes

AUTOCODE INSTRUCTIONS Space occupied Time in
in machine Mmin,
instructions
Input of Instructions and Directives - 3,000 per
instruction

or directive

Arithmetical Expressions

2 x; Each letter 1 1
Each + — = 1 1
Each index excluding use within subscript 4 10
Each constant 3 1
Each solidus 4 60
Each implied multiplication sign 0 5
2 i; Each letter or constant 1 0
Each + — = 0 1
Each implied multiplication sign 4 10

Continued

FURTHER FACILITIES 27

AUTOCODE INSTRUCTIONS Space occupied Time in
in machine pmin.
instructions

Functions (Arguments as above)

¢ divide

& mod, intpt, frpt, sign, parity

& sqrt, sin, cos, tan, exp, log, arctan, radius

Control

label

jump 2

jump 2, conditional
n) = 3)

n) = m

jump (n)

i=par
repeat
across 2/1

down 2/1
up

rmp
end, halt

Auxiliary Transfers
s (x+3y) by, n
®; (x+3y) by, n

preserve, restore

Input/Output

read (a4 4 ;) 10 characters
space

new line

print (Z x) m, n

?1

?x

Notes

DD DO

= oW wWwowm

10

NN WD D

60
10
100 + 300 (access)

NG

30l

o

o NN

2,000

3,000

600 + 14n
600 + 22n

3,000

1,750
1,000
2,000
3,000 + 500 (mtn)
4,000
8,000

1. Space. Although, owing to the wide variety of permissible forms, it is not possible to
say exactly how many instructions will fit into a single chapter, the figure of 100 has
been found to be a reasonable estimate. If a chapter becomes too long, this will be
indicated during input and the 100 subsequent characters will be printed out. The psa
directive used during development of the programme will also give a good idea of how the

space is being used up.

In general this is all that need by done about the space occupied, but occasionally
it may be necessary to estimate the space more exactly, e.g., to avoid a chapter change

in an inner loop. In this case the table may be used.

PART 2

Consider the expression z; = Y(i+1) + X Y(i-1) + 31i-4/x.

For each of the 9 letters count 1 machine register, giving 9 registers

For each +, -, = not ” 1 ” » » 4 »

For each index occurring ,, , » » 4 »
in a

For each constant | suffix ” 3 ” » » 6 »

For each solidus ” 4 ” n » 4 ”

i.e. z registers

Time. In many cases the ratio of computing to output time is so small that only the
output need be counted when estimating the time. In other cases there is no need to
analyse anything except the inner loop since nearly all the time is spent doing these
instructions.

€8 Zy = Y(y4y) T X Fqoyy T 31— 4/x

For each of the 9 letters count 1 pmin giving 9 pmin

For each +, -, = not count 1 pmin ” 4 pmin
For each index occ;ir:ing ” 10 pmin L4 10 pmin
For each constant | suffix ” 1 pmin " 2 pmin
For each solidus ” 60 pmin » 60 pmin
For each implied multiplication” 5 pmin ” 5 pmin

90 pmin

Accuracy. The above figures have an accuracy of about 10% when applied to typical
instructions.

29

Part 3

Matrix Operations

Special Operations to Facilitate Matrix and Vector Arithmetic

These operations assume that rectangular matrices are recorded as groups of auxiliary
variables, the rows being stored ‘end-to-end’. More precisely, the special variable a’
will be associated with a matrix A .of m rows, and n columns. when the location of
element a;; is given by a’+ in +j, i=0(1)m~1,j=0(1)n-1. In other words, a’ identifies
only the starting point of the corresponding group of auxiliary variables (see Part 2). The
dimensions are specified by additional parametersy Although in the table below, a’, b’, ¢’
have been used to specify matrices A, B, C; we could just as well have used x’, y’, z’
(or indeed any variables or whole numbers) to represent X, Y, Z. The dimensions of the
matrices are (with one exception) also specified by any variables or whole numbers; u, v, W
are used in the equations below. Finally, where a scalar variable is involved, e.g., in the
calculation of a determinant, we have used x for this purpose.

In all these equations, the matrix operands are selected from the auxiliary (magnetic
drum) store, and the resulting matrix returned there. Naturally, this involves the use of
the high speed working store, but arrangements are made to preserve the contents in a
‘secret’ dump, and restore them after the operation. (Note: this ‘secret’ dump is also used
in the mmp operation, to hold the contents of the working store when converting more Autocode
instructions.)

Table of Matrix operations

¢8(a’,u,v,m,n) Prints the (u x v) matrix A in a single column, each v numbers
row being followed by an extra line-feed.
i.e. u blocks of v numbers.
Each element is printed in conventional fixed-point
form, with provision for m, n decimal places before

and after the point. : u blocks

This routine automatically switches over to floating- E

point style for numbers greater than about 10'° =

(see Part 1). : :
#9(a’,u,v,n) As above, but printing in floating-decimal style, in the form a,b.

n is the number of decimal places in a; m is irrelevant, and there-
fore omitted.

¢8 and ¢9 will handle matrices of all sizes up to u = 511 or v = 511.

$10(a’, u) Reads the vector or matrix A consisting of u elements in all, in
fixed- or floating-point form, from punched tape.

a'= P’ e, u) A=B+C

a'= ¢12(b’,c’,u) A=B-C
a'= 13(b'.x,c',u) A=BHxC Linear combination of groups i.e., vectors or matrices

<
a'= ¢1a(b’,x,c’,u) A=B-xC each containing u elements. 1< u
a'= ¢15(b’,u) A=B

30
a'= @16(b’,u,v)

a'= $17(b’,u)
a'= ¢18(b’,u)
a'= ¢19(b’, x,u)
a'= ¢20(b’,x,u)

al= ¢21(b’,d’,u)
a'= ¢22(b’,d’,u)
a'= ¢23(b’,x,d’,u)
a'= ¢e4(b’,x,d’,u)

x= ¢25(a’,u)

a’= ¢e6(b’,c’,u,v,w)

a'= ¢27(b’, ¢’ u,v,w)

a’= ¢28(b’,m,n)

Examples

—rT
A(vxp)‘B(uxv)

A=B+I
A=B-1
A=B+xI
A=B-xI

A=B+D
A=B-D
A=B+xD
A=B-xD

x=/al

PART 3

Matrix transpose. 1< u, 1< v <479,

Add or subtract a multiple of the unit matrix to or from B,
order u. 1< u< 239. In these and the following four
equations u refers to the order of the (square) matrix,
not to the total no. of elements as in ¢11-¢15.

Add or subtract a multiple of the diagonal matrix D (stored
as a vector) to or from B, order u. 1< u< 239.

Replace x (any working variable) by the determinant of A,
order u. 2<u<97. A is destroyed (see Note 2).

A(uxv)B(uxw) C(wxv)

Matrix multiplication. 1 € u,v,w < 129

= T
A(uxv)'B(uxw)C(vxw)

—p-1
A(mxn)'l?'(rllxm)"(luxn)

1) a'=¢20(b’,0.33333,15)

2) x'=d¢p6(y’,z’,30,40,d)

3) a’= ¢6(b’,c’,30,1,30)

4) a'=¢16(a’,4,3)
¢8(a’,3,4,m,n)

5) a'= ¢17(a’,20)

6) a'=¢28(b’,20,20)

Matrix division.

Here, the dimensions are specified by indices, or whole
numbers. (This is the exception mentioned in the preamble.)
2<m<97 1<n<97. B is destroyed, and A is
replaced by the result. (See Note 2.)

A=B-%I where A and B are (15x15) matrices.

X(a0xu0)=Y (a0xd)Z(dxu0)

It is possible to vary the dimensions of matrices operated
on by setting them elsewhere. Here, d would be computed
(as a precise integer) before the multiplication takes
place. Care must be taken to allow room for the largest
matrices.

Product of matrix and vector, namely:

A(a0x1)™B(30x30)C(a0x1)

If a matrix has to be printed in array form, $16 may be
used to transpose the matrix on top of itself before output.
In this example, A(uxa) is first transposed, and then
printed in 3 columns of 4 numbers with m,n layout. Always
remember to re-transpose if A 1is to be used for further
calculations (see Note 1).

If A=0 (as would be the case if the auxiliary store were
clear - 0.2°), then this operation sets A=I, a 20x20 unit
matrix.

If A is a 20x20 unit matrix, and B is a 20x20 general
matrix, then this is equivalent to A=B™!, B itself is
destroyed. ’

MATRIX OPERATIONS 31

7 x-—=+14
n =0(1)14
Forms Matrices can be built up row by row in the auxiliary store by
x, to x, using ¢1.

@7(a’+15n)x,, 15
repeat

In all the examples, we have used the primed special variables to specify matrix
addresses, but there is no reason why we should not use other variables, or absolute constants.
e.g. e,= ¢20(e2,0.3333333.15)
1000= ¢20(1225, 0. 3333, 15)

0= ¢26(-900, 30, 30, 1, 30)

(for the significance of negative addresses, see below)

Storage limitations

The size of the auxiliary store will naturally limit the size and number of matrices
which can be handled. If the highest chapter number is ¥, then the auxiliary storage space
available extends from location O to 10,751 — 512¥. Thus, if the programme contains
chapters 0,1,2, then the last available auxiliary location is 9727.

Further variables are obtained by using the space occupied by the main Autocode
programme, and the dumps. These correspond to negatively numbered locations:-

1) Input Programme gives .1 to -1536
2) Subchapter dump ” -1537 to -2048
3) Main Chapter dump ” -2049 to -2560
4) Secret dump ” -2561 to -3072

The secret dump is listed here for reference purposes only, since it is already used as
private working space by the matrix routines themselves. It may however be used as auxiliary
storage when these are not employed, and when the rmp facility is not wanted. Note that
overwriting the Autocode input programme also means dispensing with the mmp facility.

Notes

1. Any duplication of group names on the left- and right-hand-sides of equations using
$16, $26, $27 must be confined to groups of not more than 160 elements, e.g.,

a’ =¢26(a’,b’,u,u,u)

where u is not greater than 12.

2. It is assumed in ¢28 that the elements of the B matrix are all represented to
approximately the same absolute accuracy. The same applies to the A matrix in $25.

32 PART 3

In ¢28 the value of the determinant is computed as an incidental operation by building
up the product of the pivots. Unfortunately this may lead to accumulator overflow unless
both sides of the equations are suitably scaled. Thus, for example, if all the pivots are
approximately 10°, this would lead to accumulator overflow after about 12 reductions.

Times of operations for square matrices of order n

Size
n 2 10 20 40 60 80 100
Function
)
1 - 15 % 1 % 7 15 25 38
¢
16 1 1% 2% 10 27 59
¢
17 - 24 1 2 3 6 10 14 25
¢
25 1 4 14 70 209 459
o]
26, 27 1 % 16 105 345 695
o]
28 1 9 40 220 686 1560

Time in seconds

33

Part 4
The Programme Library

This part describes the arrangements for using routines consisting of one or more
chapters as “sub-programmes” of a larger programme.

Specification of parameters

The master programme has to provide the sub-programme with certain information before
the latter can carry out its task. Thus it has to be told where to find the operands and
where to place the results. In either case these may take the form of individual numbers
and/or sets of numbers, e.g., series, matrices, etc. In addition the sub-programme may refer
to other programmes (or smaller routines), as in the case of the quadrature programme where
the “argument” is a function. These programme parameters are provided when “calling-in” the
sub-programme. The “preserve” and “restore” instructions were introduced so that a subchapter
could use the working store quite independently of the master chapter, and hence the names of
the main variables (e.g., & - 19) in the subchapter need not bear any relation to those in
the master chapter. However, the special variables a,b,c,..., a’,b’,c’,..., and the indices
i,3,k,..., all refer to fixed locations in the working store and it is by means of these that
the master chapter communicates with the subchapter. Thus after the “preserve” instruction
in the main chapter these quantities can be reset to new values which are then available to
the subchapter, which will be designed to select its information in accordance with the
following concentions.

(a) Individual arguments, field dimensions, etc., will be selected from
abcdefghuvwxyz
ijklmnopqrst

(b) Fields of numbers (e.g., vectors, matrices) will be kept in the auxiliary store,

and their locations (i.e., the location of 1st element or other reference position)
specified by primed varisbles, i.e.,
ﬂ.’ b’ cl dI 8' f’ gI h' lll vI W’ X’ yl Z,

The primed variables will also specify where the sub-programme is to place its results,
which must all be transferred to the auxiliary store before returning to the mein programme.
This epplies to individual numbers as well as sets of numbers, for otherwise, if left in the
working store, they would be destroyed by the subsequent “restore” instruction in the main
programme. Instead they are recovered from the auxiliary store by means of ¢s instructions
after restoring the contents of the working store.

Example

Consider a programme for the best solution of & set of linear ‘“‘equations” in the sense
of least squares, Let these be

34 PART ¢

n

E 855 X3 = by i = 1(m, m>n.

J=1

The programme will have to be supplied with the numerical values of m and n, and
with means to refer to the coefficient matrix and the vector of the right hand sides. Thus,
for instance, it may assume that a;; stands in a’ + (i-1) n + (j-1), and b; in
b’ + (i-1), a’, b’ being specified on entry. In addition the programme may require further
variables as working space in which to set up the normal equations, and provision for this
will have to be made in the main programme. Finally provision for the results x; has to
be made.

The specification of the programme parameters might therefore read as follows:-

m n field dimensions
a’,b’ location of coefficient matrix and r.h.s. vector
w' first of %n(ntl) consecutive auxiliary variables*

xI

location of result vector (x; will be placed in x' + (i-1)).

Except insofar as the auxiliary working space is unnecessarily large, the following
programme would meet this specification. Matrix operations are emplgyed. Denoting the
original “equations” by Ax = b the normal equations are A4 x = A%b.

u = m

v =

y' ~ w' +m

w o= ¢ (al, u V) A

v o= b (W, 8l v, v, W ATy

x' = ¢ ', b, v, 1, W i

x' = ¢,g (¥, m, 1) ATay-14Tp
up

The programme is unsatisfactory for two reasons. Since there is no matrix instruction which
will give the product A°4 directly (in this respect the list is inadequate) it is necessary

to form A° explicitly. This involves extra working space (for mn variables) and extra
computing time. Secondly no advantage is taken of the fact that ATA is symmetrical, so

that %n(n-1) extra elements are computed and stored. Altogether, therefore, the auxiliary working
space could be reduced from mn + n® to % n(n+l) - and possibly further still - by
programming the calculation directly, using only the ¢06 and ¢., instructions to refer to the
auxiliary store.

* A desirable minimum. This assumes that only the distinct elements of the symmetric coefficient
array are calculated, and that the r.h.s. can be stored in the space allocated for the result
vector, x.

The following sequence illustrates, for a particular case, how such a programme would
be called in from the main programme

preserve
m = 70
n = 50
a! = 0
b’ = 3500
x! = 3570
w! = 3620
down ?/?
- restore

¢6<3570)?'50

THE PROGRAMME LIBRARY

—— enters subprogramme

<—— returns from subprogramme

The last instruction recovers'the results from the auxiliary store. The “down” instruction
has been deliberately left incomplete as it serves to introduce the new assembly facilities.

Assembly of the programme

A new directive of the form “programme -V¥” enables a group of chapters constituting a

single sub-programme to be given a number (¥) which can be referred to in the “down” and

‘“across” instructions, which have been extended to deal with this situation.

this facility a typical layout is shown below:

chapter 1

chapter 2

chapter 5

k=}
=]
o
™
=]
E
o
|
AN

programme -2
chapter 1

chapter 2

programme -550

chapter 1

programme -584
chapter 1
chapter 2
chapter 3

chapter 0

To illustrate

35

36 PART 4

Any programme can be assigned a number in the range 1 to 1023, and it is suggested that
the range 501 upwards be reserved for library programmes. Thus in the above example the
first two programmes would have been specially written for the problem, while the last two
programmes would be drawn from the library.

If now it is required to call in programme -2 as a subprogramme, this is done by means
of a modified “down” instruction, e.g.,

down 1/1 - 2

which refers to chapter 1 of programme 2. The “across” instructions can be used in a similar
fashion.

The first directive (programme -1) is not necessary if these are “master” chapters and
not referred to by the other subprogrammes (except implicitly via the “up” instruction).

The directive “variables N now assumes a relative significance: it refers to a
previous chapter in the same subprogramme. 1In Mercury the directive ‘‘variables 0” refers to
the last chapter in the previous subprogramme. In the master chapters or in the final
chapter 0 it refers to the previous chapter 0 in the machine, i.e., the chapter 0 of the
last complete programme. It is possible to take advantage of this in certain situations but
in this case the current programme must be read in by an ‘rmp’ instruction or a manual
restart; otherwise the previous chapter 0 will be destroyed.

Auxiliary routines

Consider for example a programme to evaluate a triple integral

/f[f(x.y,z) dx dy dz

Depending.on the actual process used, the integrand has to be calculated at certain specified
points x,y,z so that if the programme is to be used for a “general” function *his must be
calculated by an auxiliary routine provided by the user. This should be designed so that,
given the particular arguments X, y, z the routine calculates the corresponding function
value and places it in a preassigned location. If there is a substantial amount of calcula-
tion involved, the auxiliary routine can be a separate chapter and be treated as a sub-
programme of the library programme, that is a sub-subprogramme of the main programme. The
programme parameters of the “function” programme would be the arguments X, ¥, z and the
auxiliary location (say f') of the result f(x, y, z).

Alternatively the function programme can be called in by an “across” instruction, in
which case it must also terminate with an “across” instruction, returning control to a pre-
assigned point in the library programme. This arrangement has the advantage that it confines
the whole integration process to one ‘level’. 1In both cases the library programme will
assign a definite programme number to the auxiliary ‘function’ chapter because it is not
(easily) possible to make this a programme parameter.

By-pass parameters

It is not likely that the library programme will make use of all the special variables
and indices, in which case those that remain undisturbed can serve as “by-pass” programme
parameters linking the main programme directly with the auxiliary function programme (whether
treated as a “sub” or "across” programme of the library programme). This may be useful if
the function involves certain parameters, e.g., f(x,y,z; a,b,c) and it is desired to
specify the values a,b,c in the main programme before starting the integration process.

THE PROGRAMME LIBRARY 37

The auxiliary chapter may also consist of several different function routines, any of which
can be selected from the main programme by using a ‘“by-pass” index to serve as a multiway
switch in the function chapter, as illustrated by the following diagram.

main level sublevel auxiliary chapter (sub-sublevel)
. — n) = m)
’ jump (n)

- [1
| |
| |
/ |
' [

m=2 |

—_—] ' '
down library

1) 7 2) 3) ;

chapter ~ | |

S | |
| |

e |

|
| 1
|
8 up up————up

Incomplete chapters

If the ‘function’ is of a fairly simple nature it is desirable to incorporate the
auxiliary routine as an integral part of the library chapter in which it is used, and
eliminate the operations of chapter changing and “preserve” and “restore”. The quadrature
programme -503, e.g., consists of two chapters, the first of which computes the coefficients
of the quadrature formula, while the second carries out the integration proper. It is
intended that the instructions for calculating the integrand shall be included in the second
chapter, which is otherwise only about one-third full. The structure of the programme is
therefore as follows:

programme -503

,

chapter 2 - on library tape

J

further
directives

provided by user
auxiliary r provided by user
sequence

close J

In such a programme it is obviously necessary to know how much of the chapter space is
available for the auxiliary sequence, what labels can be used, and so on. It is convenient
to assume that it would be entered at the first instruction and terminated by returning
control to a preassigned point in the first part of the chapter, e.g., label 127.

38 PART 4

Once again communication with the suxiliary sequence is by means of the special
variables and indices, but since there is mow no “preserve” instruction these are limited to
those which are not used for other purposes by the first part of the chapter. On the other
hand however, the absence of the “restore” operation means that they can now be used for
communication in both directions, so that e.g., & function value calculated by the auxiliary
sequence can be recorded directly as a working variable or index. Those available special
variables and indices which are not used to communicate between the two parts of the chapter
can serve as “by-pass” parameters to link the main programme with the auxiliary sequence.

As already explained this allows the quadrature programme to be used on different integrands,
although the multiway switch device described in the previous section is relatively time
consuming in the present context [n) = m) takes 18 millisecs to execute]. Instead the
different function sequences can be called in by a series of conditional jump instructions,
thus

jump 1, m =1

jump 2, m =2

jump 3, m=3
etc.

This is particularly suitable if there are only 2 or 3 different functions involved.

It is necessary to say something about the directives which are written at the head of
the auxiliary sequence. These are limited only in their extent, i.e., the total number of
variables specified must not exceed the number left unspecified in the first part of the
chapter. There is no limitation however in the letters which can be employed, and if
necessary these may duplicate those used in the first part. Thus e.g., we may write:

chapter 1

a — 119 (0-119)
b - 119 . (120-239)

1st part

a - 119 (240-359)
c —- 119 (360-4179)

2nd part

close

The duplicate ‘“a” directive simply means that wherever (say) a; occurs in the first part
of the chapter it refers to the absolute location 3, whereas in the second part it refers to
location 243. To summarise: in order to be able to write an auxiliary sequence for a
library programme of the kind considered above, the specification must include the following
information.

1, proportion of chapter available (or number of registers)
2. permissible range of labels

3. entry* and exit

4, permissible working space

(i) number of main variables available
(ii) 1list of special variables and indices available (by-pass parameters)

* Unless otherwise specified this would be the first instruction, i.e., at the head of the sequence.

THE PROGRAMME LIBRARY 39

5. programme parameters (i.e., where to find the arguments and where to place the
results).

Some examples of library programmes

A selection of library programmes will be found in Appendix 5.

41

Appendix 1

A service for the punching and execution of Autocode
Programmes on the Manchester University Mercury
Computer.

The majority of small programmes, and in some cases, longer programmes, will be handled
by the operating staff both as regards running on the machine, and also punching, if the
customer has no access to editing equipment.

For this purpose, each programme must be accompanied by a MEMO (Autocode Service
Operating Record) giving rough details of the expected behaviour. Both sides of this MEMO
should be completed if a manuscript is submitted for punching, but if prepared tapes are
sent, the punching details may be omitted. A copy of the MEMO is included at the end of
this appendix.

Titles and Reference Numbers

It is recommended that all programmes should bear a title and for this purpose a
special title directive has been introduced. The word TITLE is written at the head of the
programme and causes the characters on the next line (the titling sequence) to be copied
immediately on to the output punch. Titles extending over more than one line require a
second title directive.

A reference number will be given to each programme submitted for punching, in addition
to the customer’s own title. The first programme received from Messrs. J. Smith will be
called JS/1 and subsequent corrected versions JS/1/1, JS/1/2 etc. until a working (correct)

version is reached, JS/1/5, say. Further production runs will then be called JS/1/5.1,
JS/1/5.2 etc. The second distinct programme will be called JS/2 and so on.

Punching notes

Enumerate all physically distinct tapes and give the last University reference.

Operating notes
(a) Estimated total running time

A rough estimate is sufficient and in many cases it is only necessary to
calculate the output time at the speed of the punch.

(b) Number of chapters and highest numbered auxiliary variable

This information is required in case one magnetic drum is out of action so that
only programmes of restricted size can be run.

(c) Should queries be suppressed? Are matrix operations used?

Yes or no required.

42

APPENDIX 1
(d) Tapes

Give details of any physically distinct tapes and the order in which they are
required.

(e) Expected behaviour

A few details concerning the rhythm of input, computing time and output are
required. There is no point in giving estimated numerical values of any results
because the machine is not directly connected to a printer. The results are output on
tape which is often printed off-line after the computing service session is over.

Details of how the programme terminates should also be given, i.e. end or mmp or
whether the operator is required to stop the machine manually.

It is appropriate to distinguish between production runs with a tested programme
and development runs of a new programme. It is recommended that development and
production should not be combined in a new programme.

Operator’ s comments

(a) The programme conforms to the expected behaviour

If the programme conforms to the expected behaviour, it is allowed to run and
the results are returned to the customer. If the time estimated is grossly inaccurate,
it may be stopped by the operator although it appears to be behaving correctly. A
programme which produces a form of repetitive output (as seen on tape) is also stopped,
although the rhythm may be as expected.

It is desirable to include some checks in the programme, either by repetition of
calculations or by other mathematical relations. For development runs, it is usual to
request a run of a few minutes on the first trial, so that the programmer may ensure
that the results are correct, before attempting production runs.

(b) The programme does not conform to the expected behaviour

In this case, a repeat run is done to obtain consistency and to eliminate the
possibility of machine error, both for the satisfaction of the operator and the
customer. No charge is made for this repeat but it will be indicated on the MEMO. If
the customer does suspect the machine, a second repeat may be requested on another day.
If this is again consistent, it rules out any possibility of machine error, and a
charge is made, but if this differs from the previous runs, it is repeated until
consistency occurs and a charge is made for only one run of the set.

Types of unexpected behaviour are:-

1. The programme may reach end too early.

2. The machine may indicate accumulator overflow
3. The machine may call for more data.
4. The programme may come to a dynamic stop and display a characteristic fault

number.

MANCHESTER UNIVERSITY AUTOCODE SERVICE 43
Autocode Faults

Encountered during Input Encountered during execution of programme
1s Chapter overflow 8. Chapter entry label not set.
2. Label set twice 32. Spurious character encountered during

the read operation.
3. Label not set
= 33. Calls for sqrt of negative argument.
4. Instruction too large
34. Calls for exponent of large argument
5. ” " o 2 177).

6. Directives > 480 35. Calls for logarithm of negative argument.
7. Directives not set

9. 1st instruction of chapter (# 0)

unlabelled.
10. Incorrectly punched machine 13. Reference to a non-existent subprogramme
instruction. (see Part 4).

11. Non-correspondence of cycles.
12. Duplication of index counts.

These programming blunders are tested for in the assembly programme. In the case of
sqrt, exp and log the machine will jump to a sequence labelled 100) in the event of the
argument being incorrect, if such a sequence exists. Otherwise the fault number will be
displayed. In the case of fault (1), the machine also indicates the point at which overflow
took place, by punching out the following 100 characters.

Fault (8) is strictly speaking an input fault but it is more convenient to test for
this in the chapter changing sequence, during the execution of the programme.

If one of the above mistakes is made, the fault number will be indicated but the
converse is not always true.

The machine may stop on input on some function other than a dynamic stop, or on a
dynamic stop with a number displayed which is greater than 35. In both cases it is probably
because a non-permissible form of instruction is encountered.

It is possible for some non-permissible instructions to be accepted by the input
routine and to be converted into faulty programme. This may cause the machine to stop, jump
out of control or result in an incorrect numerical answer. If the programme is entered
successfully, however, it is a fairly simple matter to locate faults using the ? facility.

Restarts

It is recommended that any runs greater than 15 minutes in length should be programmed
to restart.

In the event of a machine failure, it is possible for the operator either to re-enter
the current chapter 0 (with new data) or to feed in a new chapter 0. Small programmes
would be restarted from the beginning.

44

Notes

10.

11.

12.

13.

14.

APPENDIX 1

Any restarting facilities should be indicated on the MEMO.

on Checking Autocode Programmes

Check that: -

The chapter number and final close are set for each chapter.

The DIRECTIVES are < 480: N.B. starting from O .

No variable or index has been used on the R.H.S. until it has been set on the L.H.S.
The values of all indices lie in the range - 512 < i < 511

LABELS 1) In the range 1 - 99 (or 1 - 127 in special cases).
2) The first instruction of each chapter is labelled.

3) Each one referred to is set.
The numbers following “ACROSS” instructions refer to LABEL/CHAPTER.

CYCLES 1) Never more than 8 deep.

2) Each “i = p(q)r” should have an associated ‘REPEAT’ in the same
chapter.

3) Do not reset “i” INSIDE the cycle governed by “i”.
4) Each cycle should terminate, i.e. r-p must be a positive multiple of q.
5) “p” and “r” must not be negative integers, although they can be indices
taking negative values.
Check throughout for SPELLING in all WORDS.
Check that “¢” appears in all FUNCTIONS.

BRACKETS 1) Round arguments of functions, e.g. x = ¢ sqrt yy¥, - 1)
2) Round modified suffices, e.g. X(i+3)» but NOT round the “i” of «xi.
N.B. x(3+i) 1is INCORRECT, the form is x(INDEX t INTEGER).
3) Round letters used after WORDS, e.g. READ(Y): JUMP(i) but NOT in direct
jumps, e.g. JUMP 3.
CONDITIONAL JUMPS, e.g. jump 3, a > 88
Check that 1) a and B are both variables (including asignedorunsignednumericalconstant)
2) » »m » " " jindices (including a signed or unsigned integer)
In the n) = 3) type of instruction, associated with jump (n), do not use “n” as
numerical “3”. It is only a label.
Check that the titling sequence is correct.
e.g. TITLE CR LF

Check that the programme terminates with either END or RMP.

MANCHESTER UNIVERSITY AUTOCODE SERVICE 45

15. Check that the symbols —-CR LF appear at the end of each physically separate tape.
16. Leave at least 6" of blank tape at the beginning of each physically separate tape.

17. DATA TAPES
Check that all numbers terminate with either CR LF or SP SP INCLUDING THE LAST ONE.

Supplementary checks if the Runge-Kutta routine is being used
e.g., an instruction of the form INTSTEP (10)

Check that:

1. There exists a sequence labelled 10), terminating with 592,0 and that the 3 instruc-
tions appear in the same chapter.

2. The sequence calculates f1, £2,......fn and does not use f1 to fn, gl to gn and
hl to hn as working space.

3. Directives h, y, £ and g ‘have been set — (numerical value of) n.

4. h (= step length), n (= no. of equations), x (initial value), and yl1 to yn (initial
values) have been SET before INTSTEP is obeyed.

46

MANCHESTER UNIVERSITY COMPUTING MACHINE TABORATORY
AUTOCODE SERVICE PROGRAMME RECORD

To be filled in by customer For official use
Reference Reference
Date posted Date req'd,
Programmer Date returned
Checked by Supervisor

Tick whichever applies below.

GENERAL INFORMATION
l, This is a new programme. O

2, This is a first production run of Programme No. which is
now working, please preserve for future use.

3. This is a production run of a previous programme (No.)

4, This is a further test of programme No,

>

Has programme to be altered?
(a) punching error

(b) mistake in programme
YES
because (c) modification to help locate mistake
(e.g. ? printing)

(d) modifications to improve programme

(e) mistake in existing data tape

1{',31; (£) further tests needed with fresh data

(g) suspect machine error

OO0 O 00O

5. The following programmes are now obsolete: please destroy/return,

PUNCHING INSTRUCTIONS

l. I am returning print-out of programme : please modify as O
indicated.

2. Punch new programme tape . O

3. Punch new data tape. O

Punched by Date

MANCHESTER UNIVERSITY COMPUTING MACHINE LABORATORY

AUTOCODE SERVICE

: OPERATING RECORD

47

To be filled in by customer

For official use

Estimated total
running time

No. of chapters

Highest numbered

Reference

Run by

Date

Machine time

auxiliary variable used
Should ?°s bé
suppressed
Are matrix
operations used?
Times Operator's

Tape Expected behaviour

omputer | Output

Comments

48

Appendix 2

Notes for Programmers who wish to prepare their own
tapes and/or run them on the machine personally.

Preparation of Tapes

The programme and data are presented to the machine as one or more lengths of
perforated paper tape which are scanned by the photo-electric reader — the input unit of
the machine. These tapes are prepared on a manual keyboard perforator, the keys of which
correspond to the standard symbols listed in Part 1.

The material is punched in the conventional manner, namely from left to right and down
the column. Each line must be followed by two special symbols CR (carriage return) and LF
(line feed). Mistakes may be overpunched with the erase symbol X . There is also a space
symbol SP which corresponds to a space one character wide. Numbers on the data tape which
are written on the same line must be separated by at least two spaces.

If the programme is to be run from time to time with different sets of data, then it
will be convenient to prepare the main programme and the data as physically distinct tapes.
For the same reason a steering programme will usually be prepared as a separate tape. All
such tapes should be terminated by — CR LF (for reasons explained below) and must of course
be presented in the correct logical order corresponding to the ‘programme layout’.

Library programme tapes
Although library programmes could be presented to the machine as physically distinct
tapes as described above, it is not a good idea to festoon the console of the machine with
a large number of different tapes. In order to keep the number of physically distinct tapes
to a minimum, all library programmes should be copied on to (and so form part of) the main
programme tape. The library copies will be found to be headed with a title sequence
title
programme — n
which should not be confused with the directive
programme — n.
The latter is necessary to the assembly of the programme, while the former can be omitted
from the final problem tape if desired. (For this purpose it is separated from the programme
proper by a length of blank tape.)
Output tapes
The machine itself produces perforated tape (which can be printed on a teleprinter)
when it reads a title sequence or when it executes a print (or ?) instruction or a 620,n

instruction. A tape produced exclusively by using print (or ?) instructions can be subse-
quently used as a data tape.

49

Operation of the machine

The Autocode programme is a binary tape and is put into the machine by means of
Teleinput. It occupies sectors 0 to 31 and 80 to 127 inclusive, which should then be
isolated. The latter- group corresponds to the negative auxiliary locations -1, -2,,
-1536, and can be used as such if necessary, although this means dispensing with the nmﬁ
facility. A separate tape is provided for the matrix operations (other than ¢8, ¢9, ¢10
which are on the main Autocode tape) — which overwrites sectors 480 to 511 inclusive. These
are normally occupied by the Engineers’ Test routines and for this reason the maintenance
engineer should be informed that they have been overwritten.

As already explained it is a convention that all physically distinct tapes (programme
or data) should be terminated with — CR LF. Should the machine attempt to scan this
sequence, the loudspeaker will give one of two characteristic signals, depending on whether
the scanning instruction was a read (a rapidly varying note) or an mmp (slowly varying note).
In either case it signifies to the operator that the machine is calling for a new tape.

After reloading the reader the machine can be made to continue by pressing handswitch 9.
When splicing two tapes together the sequence should be omitted, otherwise the operator will
have to stand by to surmount it manually.

There is also a halt instruction which stops the programme and gives a medium speed
intermittent note on the loudspeaker. This is surmounted in the same way by pressing handswitch 9.

A facility exists for including or eliminating ?-prints from the translated programme
depending on the setting of handswitch 4 during the translation process. This enables one
to proceed at once to “production” by eliminating the “development” printing without having
to reperforate the tape.

Detailed operating instructions are given below:

I. To input the AUTOCODE LIBRARY TAPE by TELEINPUT
1. All block-isolation switches DOWN (except 7 on DRUM 1).
2. Autocode Library tape in the reader.

3. Key 2 (ONLY) of bottom row of handswitches UP.
4. ITB.

5. Switch on to CONTINUOUS.
The tape is read in, terminating with a continuous hoot.

6. Switch off to SINGLE.
T. ISOLATE switches O and 3 on DRUM O.

IF MATRIX OPERATIONS USED

1. Put switch 7 on DRUM 1 DOWN.
2. MATRIX TAPE in reader. Proceed as above to (6).
3. ISOLATE switch 7 on DRUM 1.

II., To input an AUTOCODE PROGRANMME TAPE

This is the usual procedure when putting a fresh programme into the machine, and
has the effect of resetting all the stores to a standard state. This is essential
should it prove necessary to repeat the run for a consistency test.

IIIA.

IIIB.

Iv.

3.
4.

APPENDIX 2
Programme tape in reader.
Set the bottom row of handswitches:
(a) ALL ZERO - normal input, or
(b) KEY 4 (ONLY) UP - if query printing is required.
ITB.
Switch on to CONTINUOUS.

The programme is now translated and entered on reading a starting chapter 0.

Faults encountered during INPUT

1.

The machine may come to a 99 stop (PF = all zeros).
CAUSE: NO matrix tape in machine OR incorrect form of instruction.

The machine may stop and record ACCUMULATOR OVERFLOW (the 2 most significant
digits of YA are different).

CAUSE: Incorrect form of instruction.
The parity light may come ON with PF = 0010100 ... but NO drum selection light ON.
CAUSE: Incorrect form of instruction OR ERROR on tape.

The machine may come to a LOOP STOP (PF = 0000001000) IN THIS CASE, LOOK IN By
which will give the FAULT NUMBER (see Appendix 1).

Certain versions of AUTOCODE do not stop on encountering an input fault, but
continue to translate and list all the faults discovered during the input attempt.

Faults encountered during OPERATION

1

The machine may come to a loop stop (as Note 4 in IITA). LOOK IN B7 for FAULT
NUMBERS 8, 32, 33 to 35. Fault 32 can be surmounted after correcting the tape, by
resetting control to 15.0.

The machine may record ACCUMULATOR OVERFLOW. The numbers have exceeded capacity,
i.e. > 1077,

Action required when the hooter sounds

PWNH

HALT - medium intermittent hoot. Depress KEY 9 to surmount.
HOOT - one single hoot. No action necessary.
END - continuous hoot. Final and insurmountable.

The warning sequence —-CR LF (normally at end of tape).
Slow intermittent hoot - calling for more programme.
Fast intermittent hoot - calling for more DATA.
Depress KEY 9 to surmount in both cases.

Methods of RESTARTING

1

To re-enter the current chapter 0
(a) Put up KEYS 9 and 1 ONLY (of the bottom row of handswitches).
(b) ITB.

(c) Switch on.

NOTES ON PUNCHING AND OPERATING 51

The current chapter 0 will be re-entered at the first instruction.

2. To read in a new chapter 0 (or an entirely new programme) from tape.

In this case the number stores are not reset to a standard state, and the modified
(or new) programme will find them in the state in which they were left by the
previous calculation.

(a) Put up KEY 0 ONLY (of the bottom row of handswitches).
(b) ITB.
(c) Switch on.

The machine will read in the tape.

N.B. 1In both cases the INDICES are destroyed.

To preserve the indices do #OT press I.T.B. as in (b), instead CLEAR CONTROL as
follows: -

bl) Set MAN/AUTO switch to MAN,

b2) Put KEY 3 up on TOP row of handswitches,

b3) Clear MIDDLE row of handswitches,

b4) Press PREPULSE button,

b5) Return MAN/AUTO switch to AUTO.

Appendix 3

Interpretation of Machine Orders.

Facilities are provided for writing part of an Autocode programme in conventional
machine instructions* in order to speed up inner loops, etc. The instructions must be
written in the form

function and b-digits and address digits
and may be written with the address either in the conventional form or in the symbolic form
described below. The function and b-digits are in both cases written in the conventional

way. These instructions may be labelled in the same way as Autocode instructions.

Conventional addresses. Conventional addresses are written in terms of medium length
register numbers with a comma between the functional part and the address part, e.g.

200, 15.10+
407, 2

The usual facilities for writing the address in any consistent page-and-line form and for
the use of the symbols # = with instructions of the n,b type still apply.

Only fixed addresses are allowed with this facility: no forms of relative addresses
are possible.

Care must be taken when using conventional addresses that no vital part of Autocode is
overwritten; their use is therefore deprecated apart from the possible use of a few functions

such as 620 etc., since all the facilities can be obtained by means of the symbolic form.

Symbolic addresses. In the symbolic form the address is written in brackets and is
interpreted as follows:

Instruction Interpretation of the address

(i) 400 (x) address of x
(ii) 200 (i) address of i
(iii) 590 (3) address of the instruction labelled 3.

The first example applies to any of the accumulator codes 40 to 45 and 50 to 55. The
quantity in the brackets can be a variable such as Xy X, Xq, X(4_g) OF any signed or
unsigned numerical constant. In the case of xy, X(i-3)» the b-digit must always be a zero.

The second example applies to any of the machine codes 00 to 07, 20 to 27. 1In this
case the quantity in brackets can be an index or a signed or unsigned integer.

The third example applies to all jump instructions.

* See Programmers’ Handbook for the Ferranti Mercury Computer. List C.S.225

53

Machine codes of the type n,B are not allowed in symbolic address form, thus 300(3)
should be written in the form 300,3 etc.

As an illustration of the way time can be saved by the use of conventional machine
orders in an inner loop, consider the following example. The problem is the summation of
the polynomial

10

y = g;+ta, x+........ ta X

and the AUTOCODE programme is as follows:-

u 5.10

9(-1)0

r
u = ux +ap
repeat
The number of instructions can be almost halved by writing them directly in the symbolic
form described above. Thus:-
300, 10 sets BT7
407 (ao) transfers 2, to the accumulator
1) 33, 1 reduces BT)
500 (x)
427 (ao)
280 (1) tests B7

}forms ux + a,

410 (u) plants u
This could be shortemed still further if the polynomial were arranged in the form:-
10 9
8, X°0 + 8, X" F ci.ele. 8

for then the cycle could be re-written

400 (a0)
- 300, -9
1) 500 (x)

427 (a,q)
380 (1)
410 (0

The times for the three methods are respectively 185, 105 and 95 micromins. This
example is one of the worst possible, but serves to stress that Autocode is generally much
less than a factor of two slower than the conventional method.

Interpretation on Atlas and Orion

In general it will not be possible to interpret Autocode programmes involving Mercury
machine instructions correctly on the Atlas and Orion computers. As already explained,
however, special provision will be made in the case of the “592,0” instruction, the “620"
instruction, which is used for alpha-numeric output, and the instructions needed for
generating pseudo-random numbers.

COMPUTING STORE SPACE

ALLOCATION OF STORAGE SPACE IN AUTOCODE

Page Register Use
L0 to L2 Not available
M4 to M31 Division Subroutine
0 L32 to L38 Workspace (may be used in machine orders)
L40 to LS56 Not available
H58 to H63+ Indices in order (i,j.k, ... t)
1 MO to M1.63 Us;gu::: :l;zéliary transfers and complex
2 to 14 M2.0 to M14.63 Programme
15 M15.0 to M16.63 Buffer store to read functions into
16 to 30 L16.0 to L30.62 Main variables
(see Part 1, p.12)
L31.0 to L31.26 Special variables a’, b/, ¢’ ... z'
L31.28 to L31.54 Special variables a, b, ¢, ... z
a1 L31.56 Special variable 7
L31.58 0% 2725¢
L31.60 -1 x 2°
L31.62 -0.75 x 2%°

Drum Space
Drum Column Sectors Use Auxiliary Variable
0 0 to 31 Autocode Programme Not available
1 32 to 47 Secret Dump -3072 to -2561 (4)
48 to 63 Main Chapter Dump -2560 to -2049 (3)
2 64 to 79 Sub Chapter Dump -2048 to -1537 (2)
80 to 95 Autocode _1536 to)
3 96 to 127 Programme
0
4 128 to 159 0 to 1023
5 160 to 191 1024 to 2047
6 192 to 223 2048 to 3071
7 224 to 255 3072 to 4095
[} 256 to 287 4096 to 5119
1 288 to 319 5120 to 6143
2 320 to 351 6144 to 7167
3 352 to 383 7168 to 8191
1
Chapter § 8192 to 8703 (5)
4 384 to 415 Gpter 4 8704 to 9215 (5)
Chapter 3 9216 to 9727 (5)
5 416 to T I Gapter 2 9728 _to_10239_(5)
Chapter 1 10240 to 10751 (5)
6 4480 to; 40 Chapter 0 Not available
1 480 to 511 Matrix Programmes Not available
Notes:
(1) Can be used if “rmp” facility dispensed with
(2) Can be used if no “preserve” in a sub chapter
(3) Can be used if no “preserve” in a Main chapter
(4) Can be used if “rmp” facility dispensed with and if no matrix routines used
(5) If the highest chapter number is N then the last auxiliary variable which

may be used is 10751 - 512N

S

€ XIONIddY

Appendix 4

Facilities that are available only on the Manchester and
I.C.I. machines.

Use of short integers in machine instructions

In addition to the ability to use both conventional and symbolic instructionms, the
Autocode programmer may introduce short integers and long numbers. These numbers can be
written in the usual way. However, it is not permitted to place a decimal point in a short
integer — which means that the page and line form cannot be used but must be converted to
line form. There is also a slight restriction in that these numbers must be listed at the
head of the chapter, i.e. between the variable directives and the first instruction. The
conventional addresses of the instructions in a chapter starting at the first, are
2.0, 2. 50000 etc. To refer to the first number in the list of numbers at the head of the
chapter, the conventional address 2.0 must, therefore, be used. If this first number is a
long number (which occupies two locations) then the address of the second number will be 2.2.

The short integers must each be preceded by one of the symbols = # or >. They must
be preceded by a minus sign where negative, but no positive signs are allowed. The + sign
may be used with the > symbol when it will be interpreted as %. In the case of positive
integers this will be equivalent to the next half register, i.e. the right-hand half
register, while for negative (non-zero) integers, it will give the preceding half register
(right-hand half register). Thus the following are equivalent:

-3 > -1+ # -6 = 1021
as are the following:
=1 > 0+ 72
Note: It is not permitted to write > -0+.
Long numbers must be punched in fixed-point style and should be preceded by either a
+ or a - sign, otherwise the number may be punched with the same freedom as constants

occurring in instructions.

The following example should illustrate all the facilities and, as usual, the first
instruction in each chapter (other than chapter 0) must be labelled.

56 APPENDIX 4
chapter 1
a — 10
b — 10
X — 400
£2
>3, > -3+

1}
[

-1, # -2 Short integers.
1023, # 2046

>0+, =1 Since the long number must go into an even line an empty
line will be inserted before the long number in the
+ 3.
B DkaeiRaY translated programme and allowance should be made for

-1 this in referring to subsequent numbers in the list.
+ 0.5

- 10

ok Bate More short integers.

=3, =4

+10 In this case the long number will go into the next

register as this will be an even register.
1) read (x) The only way to ensure that the first instruction goes
into an even register is to precede it by a long number.
Although very rarely will it be necessary for the
instruction to be so placed.

close

Generation of pseudo-random ﬁumbers
The autocode instruction
Yy = ¢ random (x, n)
where n 1is any index, can perform 3 different operations depending on whether the chosen

index n 1is set to 0, 1, or 2. These three integers can be substituted directly in place
of n in the instruction, if desired, and in fact, this will be the more usual procedure.

Starting a seq of do-random bers

Each term in a sequence of pseudo-random numbers is dependent on the previous term,
and to initiate a satisfactory sequence the first term must conform to certain rules and the
binary form of this number will for convenience have to be prepared in a non-standardised
form.

The instruction to load y with a suitable starting value can have either of the two
forms

D
]

¢ random (x, 0)

1

or y ¢ random (x, n) where n contains 0,

FACILITIES ON MANCHESTER AND I.C.I. MACHINES 57

in both cases y can be any variable, X can be any variable or an integer, and n can
be any index. The value chosen for x or its substitute integer can have any odd value in
the range 1 to 10°. It is, therefore, possible to initiate many different random number
sequences.

Generation of a sequence of rectangularly distributed pseudo-random numbers

Having set a starting value in a location, the ‘residue’ method may be used to obtain
a sequence of random numbers.

The instruction
¥y = ¢ random (X, n)
where x and y are any variables, and n has the value 1 or is replaced by the integer
1, uses this method to place in y the next number in that sequence obtained by operation
on x. It is, therefore, sensible that y be the same as x (x can only be a variable),
for otherwise the sequence will not advance. The variable y will be rectangularly

distributed in the open interval (0, 1).

To obtain a random integer in fhe range (0,100) the pair of instructions

X ¢ random (x, 1)

.
1

¢ int pt (101 x)

could be used.

Generation of a sequence of normally distributed pseudo-random deviates
An approximately normally distributed pseudo-random deviate can be obtained by the
addition of a number of rectangular numbers, and the mechanism of the residue class

generating procedure already described is used for this purpose.

The instruction to maintain a normally distributed sequence has the form

y & random (x, 2)

or y ¢ random (x, n) where n contains 2,
in both cases y can be any variable, x can be any other variable and n can be any
index. The contents of variable y will approximate to a normal random deviate with zero
mean and unit standard deviation. The distribution will lie in the open interval (-6, 6).
The sequence generated in y is dependent on a sequence of rectangularly distributed
variates which are automatically generated in x. Twelve values in the sequence of x are
used to generate one term in y and after obeying this instruction the twelfth term in the
x sequence is retained in x ready for further use.

Examples

Load the locations a,......a; with (i) rectangular variates and (ii) with normal
variates.

58 APPENDIX 4

(i) X = ¢ random (1, 0)
i = 1@)n
X = ¢ random (x, 1)
a; = x
repeat
(ii) X = ¢ random (1, 0)
i =1@Mn
a; = ¢ random (x, 2)
Erepeat

Time and space
The times taken for the various operations are
(0) 15 pumin. (1) 20 pmin. (2) 200 pmin.

plus an additional time of 300 umin. access. This access time may be eliminated by incor-
porating ¢ random as a quicky by writing

¢ random

at the end of the chapter in the usual manner. The space required for the instruction is
T registers in all cases.

Sunvic Logger

With the advent of automatic devices for the production of punched paper tape, such as
card-to-tape converters, analogue-to-digital devices and in particular one such device
produced by Sunvic Controls Limited, it has been found desirable to be able to process tapes
which, by virtue of their length, may contain several punching errors. It is, therefore,
necessary to be able to distinguish between numbers correctly punched and others which may
have characters inserted or omitted or incorrectly punched (thereby becoming spurious
characters). Decimal characters may be inserted or omitted and it is obviously necessary to
be able to detect these. Many of these devices assign a fixed number of decimal places to
each item of information and it is intended to make use of this uniformity of -output. It is
with these points in mind that the following Autocode instruction has been prepared.

The instruction
sunvic logger (x, n, 3)

where x is any one variable, n any index, and 3 any label in the same chapter, has the
effect: set x equal to the next number on the data tape, n equal to the number of
decimal digits in that number and then proceed with the next instruction. However, should
any spurious characters be encountered the machine will jump to the sequence labelled 3
with x and n set as above.

The decimal digits referred to above are the ten characters, 0, 1
characters referred to above are

y++.,9. The spurious

* ()Y #F==x, >2 /¢ +t1Ls ' .

FACILITIES ON MANCHESTER AND I.C.I. MACHINES 59

The characters FS LF and SP are ignored outside a number, while inside a number
they will be regarded as spurious. The ERASE symbol is ignored everywhere. A double space
or a CR will terminate a number — a number being any sequence of characters, legitimate or
spurious, but not any of those which are ignored. The only remaining symbol is the minus
sign, which will have its usual significance but it will also be taken to be the start of
the number and hence any preceding decimal digits will be ignored completely. Outside a
number, the -~ causes the machine to halt in the usual - hoot loop, and this can then be
surmounted, but inside a number it will be treated as spurious.

The restrictions given above mean that blank tape and line feeds are ignored before
numbers, but that a group of spurious characters suitably terminated will be regarded as a
number, however, in this case the machine will jump to label 3.

There remains the case where decimal digits have been mispunched as ERASE or a minus
sign. This occurrence can be detected as one should know how many decimal digits to expect
in each number, and it is then a simple matter to detect this, as the conversion of a decimal
digit into a minus or an ERASE will appear to the machine as if that decimal digit is missing
altogether. This is best done by following the sunvic logger instruction with a conditional

Jump.

Thus, suppose one expects to read a number with r decimal digits, the following
sequence could be used if it is desired to attempt a diagnosis of the fault, should any
ocecur.

sunvic logger (x, n, 3)

Jump 1, n # 1 This sequence will be obeyed if the number is

perfect.

1)

This sequence will be obeyed if the number has
either lost or gained a decimal digit but contains
no spurious characters.

In this case the correct number of decimal digits
are present but extra spurious digits are present.

2) Here the number has either gained or lost some
decimal characters and has also some spurious
characters present. .

——3) jump 2, n#r }

Caption

The instruction caption may be written anywhere in a chapter, and when obeyed will
effect the output of all the characters presented on the next line of the programme. Any
of the combinations in the tape code may be used* and spaces between characters, or from the
start of the line to the first character, will be accurately reproduced on the output tape.

* Erase is ignored completely.

60 APPENDIX 4

For example the sequence

newline

i = 1(2)5
caption
temperature
print (i) 1, 0

repeat

will produce

temperature 1 temperature 3 temperature 5

Thus the carriage return at the end of the line containing “temperature” is not included in
the output.

Matrix operations ¢,,, .0, @,

The existing matrix operations ¢, to ¢,, have been supplemented by the following
facilities.

a = ¢59 (u) A becomes the unit matrix I of order u where
2<uc<129

al = Dy (W) A becomes the null matrix 0 of order u where
2<u<129

a' = ¢,, (a',u) Extract D, the diagonal of A, and store it
as a vector of length u.

Further Machine Instructions

In addition to the basic instruction codes given in the Ferranti Handbook CS.225, the
(decimal) codes 78, 90 to 97, 11 and 31 described in CS.188A (Sept. 1960) are also available.
However the code 91 is translated into the octal code 123 not 137.

At the time of writing only the Manchester University and I.C.I. machines are equipped
to interpret the octal code 123.

Appendix g

A selection of library programmes available for Mercury.

The following pages describe some library programmes currently available. A complete
list will be supplied by the installation at which the programme is to be run.
ESTIMATION OF THE LIMIT OF A NUMERICAL SEQUENCE: PROGRAMME - 501

Given the first (n+1) terms of a numerical sequence

a8, 8, 8, ..., 8,

the programme estimates the limit, n — ®, according to one of the following methods.

1s By “meaning”, i.e., by forming the derived sequences

8) - (s-1) (s-1) 0) -
3r(=% (a, + 8), ar() = a.

which under suitable conditions tend more rapidly to a limit. This will be the case

if zr(ar ~-a.) is an alternating series, and f£(r) = (—)r(ar - a._,) is analytic in

the half plane Re(r) > 0.

2. Assumes that the nth term is of the form

Ay B A B+ R A+ e AG AT, R €4

A, is then the limit in question. For details of the method see Wynn, M.T.A.C.,
April 1956 (p.91).

3. Assumes that the nth term is of the form

A+ Amn+A,n?+ ... A"

2 m
By, +Bn +B,n° +...... B,n

The limit Am/Bm is selected from the even order differences in a table of Thiele’s
reciprocal differences of the sequence an.

4. Assumes that the nth term is of the form

The limit A, is formed by polynomial extrapolation based on the data f(x,) = a.,
where x. = 1/r. (See Salzer, J. of Maths. & Phys., Vol. 33, p.356 (1954).)

In all four methods the.data is introduced in the order a,, &, ,, 8, , etc., proceed-
ing as far back as a term a, . such that the estimate L™ based on these values differs

62 APPENDIX 5

from L(™1) by less than a preassigned limit e, 1.e., JL(m - L(m1| < e; or until
the introduction of further terms fails to improve the estimate; or until m =n. In all
cases the programme provides (1) the final estimate, (2) the accuracy obtained, i.e.,

|LM _ (M=1)| " and (3) the quantity m (m may be zero or even -1).

The programme consists of a single chapter called in by “down ?/1 - 501", the entry

label corresponding to the method selected, i.e., for method 3 use ‘“down 3/1 - 501", and
similarly for 1,2, and 4.

Programme Parameters

n Extent of sequence (n < 470).

e (absolute) accuracy required.

al sequence stands in a’, a’ +1, .. , a’ +n.

b’ results (1), (2), (3) are placed in b/, b’ +1, b’ + 2,
respectively.

Time: (370 + km(m-1)/2) ms, where k = 1.5,5,6,6 for methods 1,2,3,4
respectively.

SIMPLE QUADRATURE: PROGRAMME - 502

b
This programme evaluates the integral fn f(x)dx, where f(x) is assumed to be free
of singularities in the immediate neighbourhood of the real interval (a, b).

The method used is that of Gauss, employed over suitable subdivisions of the interval.
Integration is first attempted over the whole range by comparing the results of a 5-point
and 6-point formula. If these agree to a preassigned accuracy the integration is regarded
as successful. Otherwise the interval is halved and the same process applied to each half.
If either of these proves too large it is subdivided still further, and so on.

The method of comparison ensures a fixed absolute accuracy in every contribution, the
criterion being |I§ - ISI < e, where I, and I, denote the two estimates and e is a
programme parameter.

It may happen that this accuracy cannot be achieved however far the subdivision
process is carried, e.g., because the integrand camnot be evaluated to sufficient accuracy.
In this case the process is terminated immediately it fails to show any improvement, and the
discrimination parameter e is replaced by the best value |I, — Isl actually obtained. The
final accuracy is recorded along with the answer in the auxiliary store.

Structure of Programme

The programme consists of a single chapter in two parts. The first part generates the
quadrature formula and carries out the integration proper. The second part is provided by
the user and is the auxiliary routine for calculating the integrand. The layout of the
programme tape is as follows.

SOME MERCURY LIBRARY PROGRAMMES 63

programme — 502

1st part of Ay Ume

chapter

auxiliary
sequence

punched by user

close

The auxiliary sequence will of course include its own directives.

Programme parameters

a

b limits of integration

e limit of accuracy

u’ auxiliary location of result: final accuracy placed in
u’ +1

Specification of auxiliary sequence
1. chapter space available: 539 registers.
2. labels 3 to 99 available.
3. conventional entry: exit by jumping to label 101).

4. permissible working space:
(i) 440 main variables available,
(ii) by-pass parameters: all special variables and indices other than a,b,e,u’

and i,j,k,1,m.

5. programme parameter: x. Auxiliary sequence must replace x by f£(x).

How to call in the library programme

This is done by “down 1/1 - 502”. An alternative entry “down 2/1 — 502” provides a
printed record of the integration process on the following lines. The subintervals over
which the integration process was successful are listed together with the contributions
from these intervals. Thus, e.g.,

0.00 - 0.25 0.99326 -
0.25 - 0.50 0.00669 (this is the case of J. e™* dx)
0.50 - 1.00 0.00005 8

means that the 5/6 point formulas are appropriate for the subintervals

b-a b-a b-a b-a
, &t , (a t , at and (a + , b).
4 4 2 2

64 ’ APPENDIX 5

It is realised that the user is usually more interested in calculating a set of
integrals, depending on a parameter, rather than one particular integral. It is suggested
that one or two members of the set be investigated with the aid of the above post-mortem
facility, with a view to writing a “tailor made” programme for the whole set. This wculd_be
more economical in machine time.

20
Time: depends on the nature of the integrand, e.g., J; e"*dx to 4D takes 2.2 sec.

QUADRATURE PROGRAMME - 503
b
This programme calculates | (b — x)%(x - a)Vf(x) dx, where u> -1, v> -1 and
a

f(x) bas no singularities in the immediate neighbourhood of the real interval (a,b).

Structure of the programme

The programme is similar to 502 but contains an additional chapter to calculate the
quadrature formulas involved. These are the 5 and 6 point Gaussian formulas corresponding
to the weight functions (1) (1-x)" (1+x)¥ in the range (-1,1), (2) (1+x)V in the range
(-1,1), and (3) (1-x)u in the range (-1,1). A printed record of the weights and zeros can
be obtained by using the alternative “post mortem” entry. They will be found listed in a
self-explanatory fashion prior to the analysis of the subdivision process which is similar
to that of programme -502. The programme calculates the weights and zeros to six significant
figures only, so that this places an upper limit to the accuracy.

Chapter 2 performs the same function as in programme -502. The programme tape is made
up as follows.

programme -503

on library tape

1st part of
chapter 2
auxiliary
ce
seduen) punched by user
close
Programme parameters
a Fieia s s
b} limits of integration
:} order of singularities
e limit of accuracy (should not exceed six significant
figures)
u’ auxiliary location of result: final accuracy placed in
u’ +1

SOME MERCURY LIBRARY PROGRAMMES 65

Specification of auxiliary sequence
1. chapter space available: 423 registers.
2. labels 3 to 99 available.
3. conventional entry: exit by jumping to label 101)

4. permissible working space:
(i) 320 main variables available,

(ii) by-pass parameters: all special variables and indices other than
a, b u v,e u; i j, k1 mn o

5. programme parameter: Xx. Auxiliary sequence must replace x by f£(x).

Calling in the programme
If the answer only is required then enter with ‘‘down 1/1 - 503”. If the weights and
zeros of the quadrature formula and an analysis of the subdivision process are required,
then the alternative entry, “down 2/1 - 503” is used.
Time: depends on the nature of the integrand, e.g.
16
x%e'x<} + E)% dx

to 4D, takes 2.8 secs.

QUADRATURE FOR INFINITE INTEGRALS: PROGRAMME -504

©
f(x) dx,
c

where f(x) has no singularities in the immediate neighbourhood of the real interval (c,).

This programme evaluates

In this programme the user specifies a step length h and the programme forms a
sequence by accumulating the contributions from each step. After the first six steps it
tries to find a limit of this sequence by choosing one of the methods which are described
in programme -501. The choice of the method is left to the user, and is specified by
setting p =1, 2, 3 or 4 which correspond to the four entry points in programme -501.
Thus, e.g., if the integrand contains a factor cos k x, it would be appropriate to use
method (1) with h = w/k.

Structure of Library programme

The library programme consists of three chapters. Chapter 2 is identical to programme
-501, while chapter 3 corresponds to programme -502, except that in each case the final “up”
instruction has been replaced by “across 7/1" and “across 6/1” respectively, in order to
keep the programme on “one level”.

66 APPENDIX 5

The specification for the auxiliary sequence in chapter 3 is identical to that in
programme -502,with the exception of certain by-pass parameters. The user who wishes to
employ a limit process other than those used in programme -501 may do so by substituting an
appropriate chapter 2, drawn up in accordance with the specification of programme -501 —
except, as already mentioned, that the “up” instruction is replaced by “across 7/1”.

The programme tape is made up as follows

programme -504

chapter 1
chapter 2 on library tape

1st part
chapter 3

auxiliary
sequence

provided by user

close

Programme parameters

c lower limit of integral

h step length

p specifies entry point for limit process

e accuracy required

c! sequence obtained from successive steps is placed in c’,
c'+1, c'+2, etc., as far as is necessary for convergence.

b’ results of sequence summation (see programme -501)

u’ answer and accuracy in u’ and u’+1

Specification of auxiliary sequence
1« chapter space available: 539 registers.
2. labels 3 to 99 available.
3. conventional entry: exit by jumping to label 101).

4. permissible working space:
(i) 440 main variables available,
(ii) by-pass parameters: all special variables and indices other than

a, b, c, h, e a', b, e d, u; i j, k 1, m n p.

5. programme parameter: X. Auxiliary sequence must replace x by f(x).

SOME MERCURY LIBRARY PROGRAMMES 67
Calling in the library programme
If the answer only is required use “down 1/1 — 504”. The entry “down 2/1 - 504" will
cause the machine to print out for each step, (1) the number of the step, (2) the breakdown
of each step into its successful integration units (see programme -502), and (3) after the

first six steps it will print out the best estimate obtained from the limit process,
together with an estimate of the accuracy of the result.

Time: depends on the nature of the integrand, e.g.,
cos X
a4+ x%y?

0

to 4D, takes T sec.

HARMONIC ANALYSIS: PROGRAMME -505
Given numerical values of a periodic function f(x) = f(x+L) at 2n+l1 equally spaced

points x,. = Xo + (rL/2n), r = 0(1)2n, covering the period L, the programme calculates
the coefficients of the harmonic approximation

2mr . 2mr
f(x) =ay t+ By Bos = = (x = xy) * b, sin 5 (x = x)p -
I

It is assumed that the values corresponding to x, and x, + L are equal. The coefficient
b, is undetermined. If the function is even with respect to the mid-point of the range,
then only the cosine terms are present and only the i1st ntl values £, to £, are needed
to determine the a’s. Similarly if the function is odd (w.r.t. to the mid-point) only the
sine terms are present, and f, to f;, suffice to determine the coefficients b, to b,_,
(f, = £, = 0 in this case).

The programme has three entry points corresponding to:
(1) the general case, (2) the even case, and (3) the odd case.

Method: See Hildebrand’s “Introduction to Numerical Analysis”, p.373.

Programme parameters

n represents the number of intervals in a half period.
rL

g’ the data f(fo + E—) stands in f’ + r, where
n

1. r =0(1)2n-1 in the general case (the last value corresponding
to r =2n being omitted since it is identical to r = 0),

2. r=0(1)n in the even case,
3. r =1(1)n-1 in the odd case.
[even, odd w.r. to mid-point of the range implies even, odd w.r. to > |
a’ the coefficients of the cosine terms 8 8,......, 8 Wwill be placed
in a’, a'+1,....., a’+n (can be omitted in odd case).
b’ the coefficients of the sine terms by, b,,....., b,_, will be placed

in b’+1,....., b’+n-1 (can be omitted in even case).

68 APPENDIX 5
The programme consists of a single chapter called in as follows
by “down 1/1 — 505” for the general case,
by “down 2/1 - 505" for the even case,
by “down 3/1 - 505” for the odd case.
Time: approximately (300 + 6n? + 28n) millisecs. in general case and (300 + 3n? + 13n)
millisecs. in odd or even cases.

SOLUTION OF ALGEBRAIC EQUATIONS: PROGRAMME -506

This programme calculates the zeros of the polynomial

n n-1 .
az +az oo e, =0,

where the a’'s can be real or complex.
Method used is that described by D.E. Muller in M.T.A.C., Oct.1956 (p.208).

Each root is found by an iterative process and followed by removal of the corresponding
factor from the equation. The relative accuracy required in the roots is specified by a

programme parameter e which is employed as a criterion for convergence, thus

x(m+1) — x(m
<e

B(x (ML) 4 x(m)y

where x(m), x(m+1) are two successive iterates to a root x . Thus, to obtain 4 signifi-
cant figures, set e = 0.0001.

Programme parameters

n order of equation (< 116)

e relative accuracy of roots

a' real parts of a’s stand in a’, a’+1,...., a'tn

b’ imaginary parts of b’s stand in b’, b'+1,....., b/+n

c! real parts of roots will be placed in c¢’, c¢'+1,...., c¢/+n-1

d’ 1Taginary parts of roots will be placed in d/, d'+1,.....,
d’+n-1

The programme consists of a single chapter called in as follows
1. if the a'’s are complex by “down 1/1 - 506"

2. if the a's are real by “down 2/1 - 506” (in this case it is not necessary to
specify b’)

Times: 1 min for n = 25, 4 min for n = 50, and 16 min for n = 100.

SOME MERCURY LIBRARY PROGRAMMES
AUTO- AND CROSS-CORRELATION: PROGRAMME -507

Given two sequences (which may be identical):

X X

10 Xgr eeer XN
Yo For eeer INo
the programme calculates the quantities

Ag - BD/(N - s) .

zs = , for s = 0(1)p,
B,* D2
8
-8 N-s
N-s
Ag = XY (tes)
N-s N-s
e - 2
By = X Cs = th 5
=1 t=1
N N
e 2
Ds = Z T Es - g
t=s+1 t=s+1
Programme parameters
w the number of terms N (limited only by the space available
in the auxiliary store)
x! the x sequence stands in x/+1, x/+2,.......,x 4w
y! the y sequence stands in y'+1, y/42,.......,y/+w
p is the maximum displacement (< 379)
z! the results are placed in z’, z'+1,..........,2"+D

Time: approximately pN/160 secs.

The programme consists of a single chapter called in by “down 1/1 - 507”.

TABULAR SOLUTION OF DIFFERENTIAL EQUATIONS : PROGRAMME -516
This is an 1pproved version of programme -508.
The programme will tabulate the solution of a set of differential equations

dyy
= = (¥ Ypeeen ¥y X)), 1 = 1(1)n,

at a uniform interval d, starting from the initial conditions y,;(x,) at x = x,.

69

70 APPENDIX 5

The step-by-step Runge-Kutta process is used (“int step”). To ensure a given accuracy
in each interval, the results of taking first p steps of size d/p, and then (p*l) steps
of size d/(p+l), are compared. If these differ by less than a preassigned small quantity
e (a programme parameter) we proceed to the next interval; otherwise p is advanced by 1
until agreement is obtained, or until there is no further improvement. (In this case e is
replaced by a more realistic quantity.) For the first interval we start with p =1, and
in subsequent intervals we start with & value of p less than or equal to that which proved
successful in the previous interval. Thus the programme always seeks to reduce the number
of steps performed.

Experience with programme -508 showed that in some instances it made a premature
decision that the accuracy required was unattainable. This version of the programme accumu-
lates more information before making a decision, and the above situation may thereby be
avoided. Further, whenever it is found impossible to achieve the accuracy required, then
the error parameter e is reset to a value not less than the accuracy which has been
obtained. Irrespective of which of the two entries into the programme has been used, the
interval and the accuracy obtained, are printed whenever it is found necessary to adjust e.

Though the maximum number of equations in the set has been nominally fixed as 50, it
can be altered to any other number N (say) in the range 1 — 76, by changing the first six
directives at the head of the programme from:

u — 50 u =~ N

v - 50 v =N

w - 50 w = N
to

y — 50 y *N

f — 50 f - N

g — 50 g N

This change will of course affect the amount of working space available, which is, in
general, 160 - 6(N - 50).

The programme is a single chapter and an auxiliary sequence to compute the f£;'s must
be added thus:

programme -516

1st part on the library tape

of chapter

auxiliary

Aeduence punched by user
close

Specification of auxiliary sequence
1. chapter space available: 475 registers.
2. labels 3) to 90) available.

3. conventional entry: exit by jumping to label 101)*.

* Not 592, 0 as in the case of an auxiliary sequence used directly with “int step”

SOME MERCURY LIBRARY PROGRAMMES 1
4, permissible working space:
(1) 160 main variables (or 160 — 6(N - 50) as above),

(i1) by-pass parameters: all special variables and indices other than
b X5k Ly 0,

5. the auxiliary sequence must be designed to place

£ (V¥ eeeeeyX) in £y, 1 =1(1)n.

Programme parameters

y! Assumes x, is placed in y’, and y;(x,) in ¥y + 1.
Subsequently the programme places X, t jd in y’ + j(n+1)
and yi(x, + jd) in y' + j(n+l) + i.

n number of equations.

m number of steps.

d tabular interval.

e accuracy required.

e’ final accuracy placed in e’.

To call in the programme

down 1/1 - 516 simply generates the solution, printing the value of p and the
comparative accuracy, only for the intervals in which e is modified.

down 2/1 - 516 generates the solution and prints the values of p and the comparative
accuracy for every interval.

TABULATION: PROGRAMME -524
This is a revised version of Programme -509.

Purpose. A single-chapter programme for the sectional tabulation of a matrix 854,
i =0(1)m, j =0(1)n, as a two dimensional array. Thus e.g., if m =6, n = 1T.

i j == number of columns, limited by width of teleprinter page.

remaining columns

T2 APPENDIX 5

Description

If the number of columns is such as to exceed the width of the standard teleprinter
page (68 characters) then the array is taken out sectionally, the 1st row of each section
being separated from the last row of the previous section by 10 line feeds. This allows the
paper roll to be guillotined and the sections pasted up in juxtaposition. Ten line feeds
are punched before the first section, but only one is punched after the last section. Each
column is separated by two spaces.

A programme parameter q specifies the number of decimal places, i.e., it is the
parameter which is normally used in the instruction “print (x)p,q”. The associated quantity
p, the number of digital positions to allow in the integral part is determined by first
scanning the entire array and noting the maximum element in each column. This fixes the
parameter p for that column. If for any column, p should exceed 9, then the column is
printed in floating point form with q = 7, so that significant figures in the smaller
elements in the column are not lost.

If, in a particular column to be printed in fixed point after appropriate rounding to
q decimals, r is the largest number of non-zero significant figures in the fractional
part of any entry, then all the entries in the column will have at least q-r zeros at
their right hand ends. The entries in the column will then be printed to r decimals.
Floating point columns are always printed 0,7. For example, if the first column was in
fact an argument of the form 0(0.01)1.00, say, then this column would only be printed to
2 decimals, whatever value q(> 2) had on entry. The values of the argument could have
small rounding errors either up or down.

The programme is intended to be used in conjunction with programme -516 for tabulating
the solution of a set of differential equations. In this case we have 8 o = X + id and
a5 =y5 (xotid), j = 1(1)n, i = 0(1)m. The programme can also be used however in place of

the ¢B, ¢9 instructions, to print a matrix, recorded in the conventional row-wise fashion.
The main differences between this programme and programme -509 are that stored values

can be rounded up or down, some tests have been altered to deal more suitably with certain
critical cases, and that columns requiring floating point lay-out are always printed 0,7.

Programme Parameters

m m + 1 is the number of rows.

n n + 1 is the number of columns.

q maximum number of decimal places for printing fixed point.

a' the element a;; stands in a’ + i(ntl) +j, for
i=0(1)m j = 0(1)n.

The programme is called in by “down 1/1 - 524",

SOLUTION OF NORMAL EQUATIONS OF LEAST SQUARES: PROGRAMME -510

Given a set of m linear equations in n unknowns (m > n)

where A = {a;;], x= [Xj] and b = [bi]' 1=1Mm, j=1(1)n, this programme sets up

SOME MERCURY LIBRARY PROGRAMMES 13

and solves the normal equations
A'Ax = A'b, i.e., Cx = d (say).

Pivotal condensation is employed taking advantage of the symmetry of C and selecting the
pivot at each stage from the reduced diagonal

Programme parameters

a' The original matrix a;; stands in a’+(i-1)ntj-1.
b’ Refers to the vector of r.h. sides: b; stands in b/+(i-1).
m is the number of equations
m + 2n + 2 < 480,
n is the number of variables
x! the solution x; is recorded in x/+(j-1).

c! 1st of Y%n(n+3) consecutive auxiliary locations used to record the
normal equations, which are destroyed in the process of solution.

The programme can also be used to solve a symmetric set of equations Cx = d, provided
these are recorded in the form

d,, etc.,

¢, an %3

c c c

17 Cpp Cpg-+++Cop d,; 23 Caye--+C

11 Faehets

starting at a preassigned location ¢! in the auxiliary store. More precisely:
¢;y stands in e/ + (nt2-%i) (i-1) + j-i
d; stands in ¢’ + (nt2-%i) (i-1) + nl-i.

The solution x; will be recorded in x'+(j-1) as in the first case.

Note: as before, the normal equations are destroyed in the process of solution.

Entering the programme

down 1/1 -510 for least squares solution,

down 2/1 -510 for solution of symmetric equations only (in this case we can omit to
specify a’, b’, m).

Time of execution:

for setting up normal equations: mn(52+0.7n) millisecs. (approx.),

for solving normal equations: 60n® millisecs. (approx.).

Ferranti Ltd

COMPUTER DEPARTMENT

Engquiries to:
London Computer Centre, 68 NEWMAN STREET, LONDON, W.1
Telephone MUSeum 5040
and
21 PORTLAND PLACE, LONDON, W.1

Office, Works, and Research Laboratories:
WEST GORTON, MANCHESTER, 12, Telephone EASt 1301

Research Laboratories:

LILY HILL, BRACKNELL, BERKS.

This document is published with the kind permission of Manchester University
by Ferranti Ltd. as part of their service to users of Ferranti computers.

The document must not be reproduced in whole or in part without the written

permission of Manchester University.

Printed in England by Specialised Printing Services Ltd., 30-34 Langham Strect, London, W.1.

"+ BYMBOL

0000, 01
00QC, 010
000e, 100
000C, 111
0001, 000
001,011
0003, 101
cOGl,i10
2010, Q00
0G10. 011
GQA10, 108
0050, 110
0041, 001
09011, 010
Go11, 100
00i1,111
0100, G600
0100,021%
©100,101
0100,110
G101, 00L
0104, 010
010§.100
0101.131
0110, 001
0110, 010
0.10.160
0110,111
0111,000
0111.011
0111.101
011,110

uc

FRERE
NEWLINWE
TABEULATE
uc

FRER

FRER
PUNCH ON
PURCRE OFF
SPACE
FAEE
BACKSPACE
j7s

FREE

FRRE

STAP

20T vl o

P+ Do N e

i

FRER
REWLYITR
TARBULATE
uc

FREE

FREE
PUNCH CX
PURCH OFF
SPACE
FRER
BACKIPACR
e

FRER

FRER

§TOP

L &

H A

~ m)

L A L R

SYIMBOL
1000, 000
1000, 011
1000,104
1000,110
1001, 001
1001, 010
1001, 100
1061,141
110,001
010,010
1010, 100
1010,113
1011, 000
i011.G11
1041,1.0L
lo15.110
1100, 001
11¢0, 010
1120,100
11Go, 111

LIDL, 000

10

-1101,110

1110, 000
iiio.oi1L
1130.101
1110, 1i0
1111,001
111,010
111,100
i111,:11

Elg

W oB
ol al
:f“"m

AmMN S AU YT NESNOZRNADOT>O N NN
w

i

nnnﬂﬂul#rnnrnowu&unag m

38
o B

153
%
%
w

:}N!dﬂ.’d

BASIC AUTOCODE FACILITIES

The Progran

Each program nust begin with about six inches of
blank tape followed by, e.g.

Title
Joe Bloggs - Question 4
Chapter O
and must end with the word “close" followed by tha data tape.

Variables (a, b, c,.d, 0y £5-8, hy uy, vy, Wy X, ¥, 2 and W),

These arg nunbors corrcct to 8 significant decimal
digits within tho range + 10870 |

Indices (4, 3, %, %, n; n, 0, p, q, ¥, 8 and %)
Thosc are intogers in tho range -512 £ i £ 511,

Variables nmay have a suffix c.ge a7, ai,"a(i_B).

The nunbor of variablos aj; is spocificd by a dircctive a -3N ,
A paximun of 480 suffixed variablos is.pornitted,

’W hﬂS the valuc 3.1@59.,'.;.

Arithnotic Instructions,

Thesc instructions. take tho forn
variablec = genoral cxprqssiqn.
A goneral oxprossion (g.cs) is o sum of torms,” Bach torm is a

product of factors, rpossibly divided by a.single factor, A
factor nay bo a fixod point number, a variablec or an indox,

0.8 Yyi = 2mn B(pe1) = 1 ap/ag + 0.l n + 1/7
n,b, anzay,naznxa,amszayxh,

An index can also bo sct cqual to an oxprossion of
sinilar forn involving only indicos and intogers, Tho usec of
tho solidus is then, hiot. pernitted, '

Elonontary Functions,

The instructions tako the forn
variable = YF(g,0.)

F nay bo sqrt, sin, cos, ten, c®p, log, mod, int pt, fr pt
or sign,

An index can bo sot by i = {int pt (g.c.)

Thoro arc also functions with two argumonts, Thoso
instructions take the forn

variableo = ¢ G(g.c., g.0.)
G noy be divido, arctan or radius,

Junp Instructions,
Unconditional : junp 2 or junp (n)
Conditionel : jump2 , X B G
O naybe =,#,> or > , o and A nust bo of the sane
type i.e, indicos/integers or variablos/fixed point numbors,
n) = 3) nakos junp (n) = jump 3 . For cyclos of
instructions usc

Input,
Numbers may bo road fron a data tapo By
rond (%) or road (n)
THe nunber is _punéhod in .oither in fixed ‘or floating point form
and torninated by C.R. L.F, or SP. SP,
Output,
The valuo of a g,0. can bo print_od by
print (gs.0.) my n

This prints n figurcs before the point and n aftor, If
n = 0 -tho number.is punched in-floating point form, - Ono
o1n also usc

newline and apace

Quickics,

To save timo list tho functions boing usod 0.8,
W sin, (W oxp,. boforc writing “closo!, -

Runge-Kutta
To integrate the differential equations
i.
—=" = 2.(X Y15 Yos sees V)
ax i 1’ 72 n

a subsequence of instructions must be provided ‘tp calculate the functions
ri' The first instruction must be labelled and the last must be 592, O.
h™ must be set equal to the stép and n to the number of equations. The
instruction

int step (m)

(where m is the entry to the subsequence) will advance the solution by
one step. The variables 8 -8, and hl - hn

are used and must not be disturbed.

