Programming the
EDSAC

Andrew Herbert
The National Museum of Computing
18th April 2024

EDSAC FIRSTS

* The world’s first PRACTICAL electronic digital stored
program computer = computer of the modern kind

* The world’s first computer programming system

me mann [- ey

IR | ".",',L‘
R B
FrE BN

| Juwns u."!l

-

»

| 2+ L
J I A1 —.—:L..'

‘l.ll‘:-,. -

| Js

THE PREPARATION OF

<t The Preparation of Programs
for an
Electronic Digital Computer

Maurice V. Wilkes, David .J. Wheeler and Stanley Gill
Addison Wesley, 1951

With special reference to the use of the EDSAC

Why a Programming System?

The methods of preparing programs for the EDSAC were developed with a view to
reducing to a minimum the amount of labour required, and hence of making it
feasible to use the machine for problems which require only a few hours of
computing time as well as for those which require many hours. This necessitated
the establishment of a library of subroutines and the development of systematic
methods for constructing programs with their aid.

[WWG 1951]

Note emphasis on programmer productivity rather than on “optimal programming”.

To the potential user of an automatic digital calculating machine, the successful design
and construction of the machine itself is only a first step, though certainly an essential
one. In order that the machine should in practice be useful to him in the calculations
he may desire to carry out with its aid, the provision of an adequate organization for
using the machine is as important as the machine itself.

The process of building up [such] a library of subroutines, and testing its value by
practical use, appears to have proceeded further at the Mathematical Laboratory of
the University of Cambridge than elsewhere.

... itis a practical and useful system has been tested by experience; it divests
programming of the appearance of being something of a magic art, closed except to a
few specialists, and makes it an activity simple enough to be undertaken by the
potential user who has not the opportunity to give his whole time to the subject.

The subject is one which is still developing. . .

© © N o

Store: ultrasonic delay line holding 1024 x 17 binary digit
numbers stored in true two’s complement form, so most
significant digit corresponds to the sign of the number.

Numbers are held in 1024 numbered “storage locations”
numbered serially from 0 to 1023 for reference. Each such
reference number is often called the “address” of the

associated storage location.
Hence 17-bit numbers are often called “short numbers”

Two consecutive storage locations, starting from an even
numbered address can be combined to make a 35-bit “long
number”.

Arithmetic unit: add, complement, collate, shift. Combine to
enable subtract, multiply, round, but no divide.

Accumulator register of 71 bits.
Multiplier register of 35 bits.

Input: 5 hole paper tape read by photoelectric reader.

Output: teleprinter.

. Control: an “order” passes from store into the control unit

(“Stage 1”), then it is executed {Stage 11”). The machine then,
generally, then automatically takes the next order from the
location following that of the order just executed.

EDSAC Block Diagram

Store
F o e | Control
\ — .
Py 0
Arithmetic| | |
t -1 unit { |
| |
t —— Accumulator| | |
reglstep : :
| |
>— Output |* E
I
<1 Input i

Order Code:

OAForOAD

O: Function code — operation to be carried out
A: Address of location to be used as operand
F or D: Short or Long number

An
Sn
Hn
Vn

N n

Tn
Un

Cn
RD
L D

Add C(n) to Acc
Subtract C(n) from Acc
Copy C(n) to Multiplier

Multiply C(n) by C(Mult) and add
product to Acc

Multiply C(n) by C(Mult) and subtract
product from Acc

Transfer C(Acc) to location n and clear Acc

Transfer C(Acc) to location n but do not
clear Acc

Collate C(n) with C(Mult) and add to Acc
Right shift Acc one place (x 21)
left shift Acc one place (x 2)

L2P2F
R2P2F
EnF

GnF

InF

OnF

N < X m

Multiply by 2P (2 < p <=12)
Multiply by 2P (2 < p <=12)

If C(Acc) >= 0 execute next order from
location n; otherwise proceed serially

If C(Acc) < 0 execute next order from
location n; otherwise proceed serially

Read next 5 bit code from input to location
n from tape reader

Print character set up on teleprinter, then
set up m.s. 5 bits of location n as next
character

Read back last set character
Ineffective — no-op

Round Acc to 34 digits (i.e., add 2-3°).
Halt and ring the bell

Fixed Point Arithmetic

Binary point assumed between top two

most significant bits, so numbers are -1
<=x<1.

Thus, A order computes x+y-2 if x+y>=1,
and x+y+2 if x+y<-1.

When two long numbers are multiplied
together the resulting 71 digits are
available in the Accumulator.

0.5+ 0.25 + (0.5 * 0.25) = 0.875

Compute x+y+xy; x in location 6, y in
location 7.

(0) T 8 F; clear Acc

(1) A6 F; add x

(2) A7F;addy

(3) H 6 F; x to Multiplier

(4) V 7 F; add x*y to Acc

(5) Z0OF; halt

(6) +0.5 ;01000000000000000 x
(7) +0.25 ;00100000000000000 y
(8) (spare)

Demol

Integer Arithmetic

Can treat accumulator as holding integers
forA,S,C, L, R, E, G but for N, V multiplier is
always treated as a fraction.

i.e., integers are stored as value * 21650
need to multiply by 21¢ after multiplication.

10+ 5+ (10 *5) =65

Compute x+y+xy, X in location 8, y in
location 9.

(0) T10F ; clear Acc

(1) H8F ;xto Multiplier

(2) VIOF ;formx*yin Acc

(3) L 512 F ; multiply by 216 = 211%25>
(4) L8 F

(5) A8 F ;addx—n.b. after multiply
(6) A9F ;addy

(7) ZOF ;halt

(8) +10 ; 00000000000001010 x
(9) +5 ; 00000000000000101 v
(10) (spare)

Demo?2

Loop to print digit 7 five times

C(11) is “figure shift”

C(12) is “7”

C(13) is RET

Loops while Acc <0 (-5, -4, -3, -2, -1)

Note: need to set figure vs. letter shift
Note: output delayed one character

Note: only G (< 0) and E (>=0), but no
“equals” order

Loops
(0)
(1)
(2)
(3)*
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
Demo3

T14F : Clear Acc

O10F ; Type figure shift

SOF ; Set count =-5

A10F ; Increment count
O12F ; Type 7’

G3F ; jump back to * if count< 0
O13F ; Type RET

O11F ; Type figure shift

Z0F ; Halt

+5

+1

01011000000000000 ; fig shift
00111000000000000 ; +7
11000000000000000 ; RET
(spare)

Table 2 Edsac Character Codes

Perforator Teleprinter Binary Decimal

EDSAC character codes e mme law me

P 0 P 0 00000 0
Q 1 Q 1 00001 1
w 2 w 2 00010 2
E 3 E 3 00011 3
R 4 R 4 00100 4
T 5 T 5 00101 5
Programs prepared on perforator Y 6 Y 6 00110 6
U 7 U 7 00111 7
Note NO figure / number shift L ; . : 01000 ;
. J J 01010 10
for program or data input! m Figure Shift o1oL !
S S " 01100 12
Z Z + 01101 13
K (01110 14
Erase! Letter Shift 01111 15
. . ank tape? no effec
Output produced in Teleprinter code g p e 10001 o
0 Carriage Return 10010 18
D D ; 10011 19
¢ Space 10100 20
. H + H b £ 10101 21
Order field in instruction is the bit pattern of the N : N : 10110 2
order character, i.e., A=11101 A Line Feed 11000 24
L L) 11001 25
X X / 11010 26
G G # 11011 27
A A - 11100 28
Note conventions for typing Greek letters when 0 0 k o >
Vv A\ = 11111 31

using emulators

Notes

1 Erase is represented by an asterisk (“*”) in the simulator. When this character is output, it sets the
teleprinter into letter shift.

2 Blank tape is represented by a period (“.”). This character has no effect on output.

3 The personal computer text environment has only a “newline” character. On the Edsac simulator,
the line-feed character is interpreted as a newline character, and carriage returns are thrown away.

4 The symbols 0, ¢, A or w are typed as @, |, & and #, respectively.

Indexing

Initially EDSAC had no index register.
Invented for Manchester Mark 1 in 1949.
Later adopted by EDSAC.

So to do an indexed calculation, e.g., sum a vector,
we have to write self-modifying code that
manipulates program in store.

To do arithmetic on orders we need to understand
binary format of orders:

* 5m.s. bits: order code

* 1 bit: spare (later add B register to address)
* 10 bits: address in range 0-1023
* [.s. bit: O=F1=D

Demo adds contents of vector starting at location
15

We have to add +2 to location 2 each time around
the loop to fetch the next element of table

0o N o U B W N = O
— e e S S e S S S
*
*

©

T13F
Al4F
A15F
T14F
A2F
Al12F
U2F
S20F
GOF
T13F
Al4F
ZOF
+2
+0
+0
+1+4+2 43 +4 45
A20F

: Clear acc

; Pick up sum so far

; Add vector[0]
; Store in sum
; C(2)

; C(2)+2 (inc. address)

; Modify (2) **

: Check for sentinel

; Loop if not at end

: Clear acc

; Result

; Halt

; address stride
; workspace

; sum

; vector

: sentinel

(Demo4)

* Demos thus far run using EDSAC team test program generator:
* Assembler written with “modern” facilities

* Emulator written in C with tracing facilities
* adapted from original by Lee Wittenberg

* On EDSAC we use a “Signal Sequence Injector” box to set up program in main
store from location O onwards

e Visit GitHub/andrewjherbert to find these:

* edsacasm - https://github.com/andrewjherbert/edsacasm - Python
e edsac - https://github.com/andrewjherbert/EDSAC-Emulator - C

e But this is not how EDSAC users wrote code...

https://github.com/andrewjherbert/edsacasm
https://github.com/andrewjherbert/EDSAC-Emulator

s
- %

UNIVERSITY MATHEMATICAL LABORATORY,

EDSAC PROGRAMME SHEET
; REF
&Mams»r wer oyt ok,
Eililiv: A Aol

) By 440y

f, vk ‘Hf'- 7NSQ 4

/26 D fa o ofbpsbbe 1| T 248
D s | 36

b = \/ 2047 D Sty Ym0
‘ Z 154 i; e 4?{95 D L“'l—(t:/o';_'i
2. [x xS P /2 .-.‘..D;szy
fi-r 26 K| F*‘;‘F P (D> e V-l
WP 4 F - TR s
STz K s PP+ Fg%"‘”’)‘
O E 6 | P (2
>__,1q:4,1.;,4__./(,7.n T 28 K L /@ H g

onledoo 2 /anl go| 7 famaddmaa £ <\ !
s |G 165 F f) T e /d'

A D er :
T 2RIl =//7' Il]

2 7.395}‘ ; 1€ 179 F o
‘| 279 D sl e K NS
T D s s 120 =D

o 241 .F ,17” 132 K|

|6 296 F | P 10%13 F |
b ey DS G Gl
o |P B F AF"2°4‘?=J(‘0 J‘p’;;—Z o 2w=>Fg
1507 ‘320 K 1|7 3/4 ‘ Vi,
, |A 126 D 2 [T 36 o6 &
Jlf; #e F V€ 24 WK
4
T ‘
6 /q. ‘

' ‘

T

s

|

i, 2

CAMBRIDGE

DATE

Notes

RS B B S KoY
2.
m

BRI VAvAVA'SS TR WA

T4 K

Pro24 F

T4 K

: ci 4D

- - o SIS ——— . R
——— T
o o 7

TITLE WRwTEN

o TATE
- CTiuad
= g121D
Eilsu K
—a— .

\

L
-
E_]
-

\

-

.

)
“NCE CL ’\H?\CL

{-05351.

L L MBT15 76+ 048 008, +
f ssgéﬁﬁgﬁééQZﬂﬁue o
pm e 05 C2 B yes " IR

+037588 +018794
+040¢1¢ +01¢138
+045875 +01¢864

+053687 +021222 -

+06690C +023656
+091337 +027¢66
+141844 +035461
+268€04 +047536

+031130 +01€063

+032182 +018865 °

+033528 +018743
+035304 + 03872 3
+037726 +018863
+041163 +01¢252
+046278 +02003¢
+054 331 +021476
+O67907 +02400¢
+0C27¢C +028414
+143687 +035 922~
+270334 +04778¢9

+031106 +01<048
+032179 +018867
+033558 +01875¢
+035380 +018763

I e

+05455€ 4021722

+068860 +024346

+094165 +028832
+145354 +036339

Initial Orders

Fixed program to load source
programs from paper tape into
store

Input is alphanumeric

Combined assembler and linker to
enable user code to be linked to
predefined library routines

Unique to EDSAC

Programming tour de force by
David Wheeler

Proc. Royal Society A, 202, August 1950: D.J. Wheeler,
Programme organization and initial orders for the EDSAC.
https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0121

Initial orders concepts

* Instructions in alphanumeric form rather than binary
* Like modern assembly code

* Control codes to direct initial orders where to load and how to fix up
addresses, start execution

* To enable linking in subroutines in arbitrary order

* Addressing relative to a previously set parameter (control code)

* But no error handling!

= Edsac

I B3

Output From: OXO
'IEEK NOUGHTS AND CROSSES
| 6 5 4 BY
|l 221 A § DOUGLAS, C.1952

Warwick Simulator

00000
00000

| LOADING PLEASE WAIT...
0000000000000000000000000000000 |
| EDSAC/USER FIRST (DIAL 0/1):0
| pran move:7?

Single E.

Written by Martin Campbell-Kelly e
. . . . = I -

Available for Windows and MacOS e

GUI replicates original EDSAC operation e]

https://edsac.net

Includes Tutorial Guide, original EDSAC subroutine library, worked
example programs

https://edsac.net/

H el ‘O WO rl d T 64 K Load from location 64
G K Set 0 parameter
Start — 0 Z F Stop
T 64 K G K and E Z P F are 1 0 50 Print letter shift T64K
control combinations >l o 60| prine g K
3 0 7 6 Print "I" Z¥
9 . o t . dd V44 05@
IS @ “parametric address” . 7 F Stop 068
T 64 K—load from loc 64 5 || * F | Letter shift 07@
G K—set O (to 64) 6 || = Pl me ¥
*F
EZPF—enter programat 7 ||: Pl HF
Location O (64) E z | IF
. .] Enter at location 00 EZPF
* |Is erase character (32 decimal)
(a) Program text (b) Program tape

N.B. Data input as instructions
Demonstration Programs/Hello.txt

Control combinations

TmK
GK

TZ
EmKPF
EZPF
PZorPK

set load point to m

set @ parameter to load point
restore O parameter

enter program at location m
enter program at location 0
start of new tape block

Subroutines —the Wheeler jump

A m F to pick up where calling

from (m+1) m A m F pick up self
m+1 G n F jump to subroutine master routine
A m Fis 11000... so negative nt2 .| control returns here
C(3) = U 2 F n A 3 F form return link
Calculate E m+2 F and store as ntl | T p F | plant return link
final instruction : subroutine
P (.) | return link planted here |

Return to caller

Cubes

Nichomacus’ formula for cubes:

13=1

23=3+5
3=7+9+11
43=13 +15+17 + 19
etc

Use library routine P6 to print integers

.. represents blank tape

Enter—

22

P6

21

—

—

—

23
24
25
26
27
28
29
30
31

HaoprpAapappPAaAnappPd QP 3P OO0O0ONWM

>da wwywdyyd

K Set O-parameter
F Stop

29 0 Figure shift

30 6 New line

31 6]

23 0 k to OF
r |]

6 0 Print OF using P6

se e | |

23 6 Zero to k

24 0

27 0 ntl to n

24 0]

24 6 -n to count

260 | |

25 0

28 6 m+2 tom

25 0]

23 6 k+m to k

230 | |

26 0 Increment count

27 06]

13 6 Jump to 13 if count ¢ 0

20 Repeat main cycle
D k (n3; =1 initially)
D n (=1 initially)
D m (=1 initially)
F count
D =

1F =

F figs
F cr
F 1f

(a) Master routine

Routine Location of Number of storage
first order locations occupied

P6 (print) 56 32
Master 88 -

(b) Table of routines

space P K

T 56 K

P6

space P Z

Master

EZPF

(c) Make-up of program tape

1

8
27
64
125
216
343
512

(e) Printout

[Cubes]

..PK

T56K

[P6]
GKA3FT25@H29@VFT4DA3Q@TFH30@S6QT1F
V4DU4ADAFG26@TFTFOSFA4DF4FS4F
LAFT4DA1FS3@G9Q@EFSFO31@E20@J995FJF!F
..PZ

[Cubes Master]
GK

ZF

029¢@

030@

031@

A23@

TF

A6@Q

G56F

T23@

A244@

A27@

T24@

s24¢@

T26@

A25¢@

A28@

U25@

A23@

T23@

A26@

A27@

G1l3@

E2@

EZPF

(d) Program tape

Demonstration Programs/Cubes.txt

Notes

Conventional “coding sheet” style for writing programs

No layout on EDSAC tape

No comments on EDSAC tape

Use of O to make code position independent

Constants written as pseudo-orders

Need to know length of standard subroutines (included in WWG!)

Advanced features

Code letters (terminate address field of an order)

Code-letter Location Value

F 41 0

0 42 Origin of current routine
D 43 1

¢, H N, M ...V 44.45,46 ... 55 For use by programmer

Used to create position independent code and data cross references
Subroutine parameters:
Pass via fixed address (often 0)

Include in calling sequence

Run and delete open subroutines on the fly to save store...

19

D6

Pl

—

—

—

NoyO b WN E O

10
11
12

13
14
15
16
17
18
19

20

~Noudbd wiNEE O

QrHApPpapAandddn

@ P O OO

N QP P Hay P

W RP>DP0OMHD

47
21

N o
MM PO RORRENDRN

= O
N RO W Lo o I RN
H o 2=

oON NSO
PRREEMT

|

H H MY OO

]

Set M parameter

Set count to -9
1:27% to 0D
n-2-4 to OF

Set 0D to 0D/4D(ie.
using subroutine D6

1/n)

Output new line
Output decimal point
Print 0D

using subroutine Pl
Parameter for Pl
Increment n
Increment

and test counter

Stop

1 M block at 21 - data
=9

= 1-274

carriage return

line feed

decimal point

count

= n (=2-2"% initially)

(a) Master routine

space P K
T 56 K Load at loc 56
Print caption
M3
OA*RECIPROCALSOAR Table heading

space P Z

T 56 K Load at loc 56

D6 Divide subroutine

space P Z

P1 Print subroutine

space P Z

Master Main program

EZPF Enter main program

(c) Make-up of program tape

Reciprocals Folder/Reciprocals.txt

Routine Location of Number of storage
first order locations occupied

D6 (divide) 56 36

Pl (print) 92 21

Master 113 -

(b) Table of routines

RECIPROCALS

.4999999999
.3333333333
.2499999999
.2000000000
.1666666666
.1428571428
.1249999999
1111111111
.0999999999

(d) Printout

Also Demo5

Using command line emulator

Demo5
punch — convert ASCII to EDSAC code

same conventions as Warwick emulator for special symbols etc
edsac — run emulator taking input from stdin

-v1l/-v2 tracing

-Innn order limit

-s to start

-b for EDSAC replica SSI emulation

tprint — convert Teleprinter output to UTF

* Debugging — post-mortem

Start reciprocals

... Executes. ..

Start PM5

Dial start location, e.g., 134 (113421 = start of data)

Debugging — Checking (i.e., tracing)

Assemble program with checking routine at end

C7 — execution trace C10 — arithmetical trace

épace P Z épace P Z

Master Master
space P Z space P Z
GKT 45 K P F GKT45KP370P10F
P 113 F P 113 F
PNAOPN PNAOPN

Cc7 C1l0

E 113 K P F

By contrast...

From Turing’s programming
guide for Manchester Mark 1

£ Fig. 2. (continued).

How to get started

 Download Warwick simulator, work through examples
* Pitfalls:

Remember the store is tiny
Be careful about long versus short numbers.
Remember to scale calculations.

Remember no index registers so vectors, arrays and stacks tedious to manipulate —
consider writing subroutines / interpreters

Read library subroutine specifications carefully to understand parameter passing
conventions and any special control combinations to load them.

Use code letters to divide code and data into short blocks to avoid having to
renumber addresses if additional code or data inserted (or deleted).

Beware miscoding pseudo-orders (i.e., constants)

Must use library routines (R series) to input long numbers — N.B., R2 will input long
integers at load time

Remember need to set teleprinter shift and to force out last character

