MANCHESTER UNIVERSITY

COMPUTER SCIENCE DEPT.

THE ATLAS AUTCCODE
MINI- MANUAT

W. F. Lunnon
G. Riding
July 1965

References & Notes

'Atlas Autocode Reference Manual' by R, A,Brooker & J,S,Rohl at
Manchester University,

'Programming Manual for Atlas Basic Language' at I,C.T. Ltd,
list no. CS348A. (Also CS348 with amendments,)

There- follows a summary of the basic facilities of Atlas Autocode,
as realised in COMPILER AB, [] are used for grouping and parenthesis,
:= and :- mean 'stands for' and 'the following', and a prime indicates
'any no, of, including none'; in this context these symbols are

external to the language,

x := name of a real scalar
i := name of an integer scalar
a := name of a [reall array

yI) := name of a [real) array element

k = name of an integer array
k(I) := name of an integer array element

v := name of any variable, e.g. x, i, a(I), k(I)
A := general name
STRING := any string of characters excluding newline & semicolon
E := real expression
1 := integer expression, a special case of E
[= any constant
N := any integer, a special case of C

STAT := statement (q.v.) - a permissible line of program
BP := bound pair := I:I

a-list := al,a]’ := o,a,...,a Where a stands for any of the above

Characters, Names & Delimiters

Letters & digits:- A .., 2 a.,,, 2 0...9
+--/1C)=<>_, ., :'3?&llasBm

Compound characters: - #32<k;¢c >

All except the last of these include backspace, See also Captions,
L := letter D := digit P := prime A := name := LL'D'P'
delimiter : - +=r/7 k), 32<2<=7 >7|

cycle repeat real integer array name if then unless

caption comment fn spec end end of program return

result and or begin stop routine switch

Labels & Jumps
LABEL := simple or switch label :- N: A(N):

JUMP - > N = A(D)

switches must be declared, together with their ranges, (see DECL)
and the name A must be local, DECLs and routine headings should
not be labelled; blank lines may be,

Assigwents
‘OFPND := eperand: - v € (E) IEl function
OPTR tw operator: - + - / K
B := repl expression: - +' opND [oPTR OPND]'

I 4= integar expression:- E, but with all OPNDs of type integer,
and such that the result is an integer
C := constant: fixed or floating point, using o to imply
8 base of 10 for the exponent, e,g, fifteen may be
punched: 15 0015.00 502 1500a-2
operator precedence: () are evaluated first, then } ,
then * and / , then 4+ and - , Otherwise the
operations are performed in order of occurrence,
e.g. a+be=(d-ctetf)
means (a + (b *» (d - ((c Fe) k £))))

ASST := assignment : - v=1 X =E a(l) = E
Statements

Poi- = 7 > 2 < %

SC := simple condition: -~ EPE (Ge)

GC := general condition:- Sc [and sc]’ sc lor scl’

UI := unconditional imstruction :- ASST routine call Juip
return result = E stop caption STRING

CI := conditional instruction - if GC then UIX

unless GC then UI Ul if GC UI unless GC

DECL := declaration:- real x-list integer 1i-list
array [a-list(BP-1ist)] - list OR real array ...
integer array [k-list(BP-list)] - list

gwitch [A-list(I:1)] - list routine spec [sec Routines]
ST := unlabelled statement : - U1 CI DECL routine heading
begin end end of program cycle repeat | STRING
comment STRING [see also Monitoring]
STAT := statement := LABEL' ST

Blocks

A block is a list of statements enclosed between begin and end .
Blocks are 'open': they may be entered and left only via begin and
end resp. Blocks may be nested to any depth, A label in a block or at
its end may only be referred to by an instruction in the block and
not in & sub-block. The 'scope’ of a name is the block at the START
of which it is declared (the block to which it is 'local'), together
with any blocks which may be nested within (to which it is *non-local'),
A name may be used within its scope, and nowhere else; but non-local
names may be re-declared,

A program is a block with end replaced by end of program and

followed by optional data, (together with the necessary supervisor
material)

Routines
RT := routine type :- routine real fn integer fn
Corresponding exit :- return result = E result = I

R := name of a routine of the appropriate type

Routine spec :- RT spec R(FP-list)

Routine heading :- RT R(FP-list)

Routine call :- R(AP-list)

FP := formal parameter : - AP := actual parameter : -
integer name i i, k(i)
real name x v
Brray oame & &
integer arroy name k k
integer 1 I
real x E
routine R real fn R integer fn R R

A routine is a named block with parameters; the routine heading
replaces begin, and the corresponding exit is inserted. The FPs in
the heading have the force of declarations inside the routine; but
when the FP is of routine type, a spec must be inserted (from which
the RT may be omitted).

A routine is 'closed': it can only be entered via a call, which
causes it to be obeyed with the FPs in its heading replaced by the
APs in the call, An integer or real FP will be assigned the value
of the AP at time of call ('call by value'), A .,.name FP will be
assigned the actual store location of the AP, so that e, g, assignments
to the FP alter the AP; but should the AP be an array element, its
subscripts will be treated as integer parameters and remain fixed
throughout the routine ('call by simple name')

In a list of FPs of the same type, the type delimiters after the
first may be omitted, In the case of a parameterless routine, the

(FP-list) and (AP-list) are omitted,

cycles
) eycle 1 = 11, 12, I3
[1ist of statements)
repeat
Here I1, 12, 13 are all of the form I, and such that (13 - 11)/12
is a positive integer or zero., I1, I2, I3 are evaluated at the
start of the cycle, and remain unaltered throughout it,

Ccycles can be nested to any depth,

Standard Functions
resl fn
sin(E) cos(E) tan(E) 1log(E) exp(E) sqrt(E) arctan(El, E2)
[= arctan(E2/E1), in (-m/2, v/2) if E1 > 0, in (m/2, 37/2) if E1 < 0}
arcsin(E) [in (-'w, }7)] arccos(E) [in (0, 7)]
radius(E,E) fracpt(E) mod(E) |E|
integer fn
intpt(E) [intpt(-3.73) = =4, intpt(3.73) = 31 int(E) parity(D)
Standard functions may not be substituted for FPs of routime type
in routine calls (see Routines),

Input and Qutput

routine

select input (I) I refers to stream in JOB descr.
select output (I) v

read symbol (1) See table of numerical equivalents
print symbol (I) L
print (E, I1, I2) Punches I14I2+2 characs., or Il+l
if 12 = 0, unless Il1 is too small
print f1 (E, I) Punches I+7 characs,
read (v-list) Reads nos, from data 'tape' in order,

punched as constants except for optiomal sign, terminmated
by space or newline, e.g, +15.,0 -1.3a1 L15a+1
Initial spaces and newlines are ignored,

read binary (i) 5, 7, or 12 least significant Dbits

punch binary (I) vy

tab Character positions for tab:
U 8 16 24 R 48 64 80 96 11z 128 144 159
Tab advances the character position at least two spaces.

newline , newlines (I)

space , spaces (I)

runout (I) no effect on linecprinter

newpage thirty newlines on seven-hole punch
integer fn

next symbol See table of numerical equivalents.

Does not advance data 'tape’

Captions & Quotes
Instead of the numerical equivalent, the character itself
may be used enclosed by quotes. An entire string of characters can
be output by the statement
caption STRING

-5 =

In captions or between quotes use the symbols

B or § to denote space

gor $ v space underlined
4 or} A semicolon
Aor d 34 newline
e.g. print symbol (97); print symbol (65)
print symbol ('a'); print symbol ('s')
caption ag

all have the same effect,

Numerical equivalents

A 33 ? 12 stop 76 > 11035
z 58 & 13 t 79 b 11150
a g7 * 14 [8 ; 10122
z 122 / 15 1 8
16 < 26 _ 8 A 14735
25 > 27 1 87 £ 1895183
= 28 a 9o A 14005
newline 4 + 29 8 o1 7 1296266
« 8 - 3 i 92 $ 14807
> 9 .o + 11164 4 1895382
, 1o '3 # 3599 * 14167
T 11 space 065 < 11034 t 1435530

The numerical equivalent of a compound character is (128%x +) 128y + z ,

where (x,) y, z are the equivalents of its constituents and (x >) y > z,

Notes on punching
Tab is converted to multiple space on inmput.

1f the printout (including erases) looks right, the tape is right,
In the program:

A statement is terminated by newline or semicolon,

c at the end of a line causes the newline to be ignored, i.e. the
statement continues on to the next line and the line
number is not advanced,

Spaces, underlined spaces, erased characters and superfluous
terminators are ignored,

5 and ? are converted to .5 and 2 on input,

Comments may be inserted by means of
comnent STRING or | STRING

% is an alternative to # .

In the data:

Erased characters are ignored,

For the supervisor material (JOB descr,, etc,) see elsewhere,

Monitoring

monitor statement: - compile queries ignore queries

compile array bound check stop array bound check
fault [N-list - LABEL]-list ASST ?

Array subscripts are tested dynamically for overflow if they appear
in the program between compile .., and stop array bound EEEEE' and ?
-~ which causes the value in the preceding ASST to be printed each
time the ASST is obeyed - is similarly comtrolled by compile ..., and
ignore gueries,

Faults detected at compile time are noted in the program 'map’

printed during compiling, and the program is not then entered, Dynamic

faults, unless trapped, cause the private monitor to print the current
routine and line number and a summary of the stack (working space),
then terminate the run, Faults occurring just before a JUMP, return,
etc, may escape detection till after the jump has been obeyed,

Some faults may be trapped by the statement fault ,,., causing a
Jjump to the LABEL (which must be simple) if fault N subsequently
occurs, The stack is then restored to its extent at the time when
the fault statement was oheyed; but some variables may have been
altered in the meantime, fault ... is dynamic but not nested - the
LABEL used is that in the last fault ... obeyed containing N - so it
should normally be confined to the outermost block,

Cormon trappable faults: ~

TRAP NO. N NATURE OF FAULT
1 Division by O
2 Exponent overflow
4 More store required
S Square root of mo, <0
6 Logarithm of no, <0
8 Trig., fn, out of range
9 No more data

14 Data fault: spurious character at start of no.

(this character-is the 'next symbol')
16 v

¢ real no, instead of integer

(the no, is read in off the 'tape')

Snmgle program
The program overleaf is badly written (superfluous instructions
and cumbersome method) to involve more facilities of the language,

and its blocks are delineated for emphasis, The output is shown after,

JOB

-7 =

URN, EILEEN DOVER, PRINT BINOM COEFFS
CQOMPILER AB

begin

| comment tabulate the binomial coefficlents c
iCj, with i down the left margin and j across €
the bottom, for 1 =0 (1) n
real fn spec fact (integer p)
routine spec binom (real name ons, integer p, q)
integer n ; read (n)
caption MBINOMIALSCOEFFICIENTSH
=> 1 unless n < 0
caption Ng<gopt ; -~ 2

1:begin

array B (0:n, O:n)
integer 1, j ; real x
cycle i =0, 1, n
newline
print (4, 2, 0)
cycle j =0, 1, 1
binom (x, 1, j)
B(i, j) = x
print (B(i, j), 6, 0)
repeat
repeat
newline ; spaces (3)
cycle j =0, 1, n
Lprint 3, 6, 0)
repeat
stop
end

routine binom (real name ans, integer p, q)

comment puts pCq in ans
ans = fact(p)/(fact(q)*fact(p—q))
end

real fn fact (integer p)

comment result = p !

result = 1 ii p=0

if p # 0 then result = p*fact(p-1)
end

2:end of program

Rl LA

k74
PROGRAM ENTERED

1

9
27
28
3
X
30

-8 =

[title etc (supervisor)]

BEGIN BLOCK NO = Q1 ADDRESS =00115050
BEGIN BLOCK 'NO = Q4 ADDRESS =00116000
END BLOCK OCCUPIES 192 LOCATIONS
BEGIN ROUTINE <BINOM> NO = Q93 ADDRESS =00121010
END ROUTINE <BINOM> OCCUPIES 52 LOCATIONS
BEGIN REAL FN <FACT> NO = Q2 ADDRESS =00121660
END REAL FN <FACT> OCCUPIES 43 LOCATIONS

END BLOCK OCCUPIES 350 LOCATIONS

[newpage]

BINOMIAL QOEFFICIENTS

Lpw N0

CH e

1

BOp WD
N Cow
-

1
10 5
3 4

[newpage]
[logging information (supervisor)]

