BRISTOL COLLEGE OF SCIENCE
AND TECHNOLOGY

An Introduction to

Elliott 803 Autocode

By O. B. CHEDZOY

1st MAY 1963 DEPARTMENT OF MATHEMATICS

ELLIOTT 803 AUTOCODE

p.12 line 8

p.17 1line 3

line 17

p.24 - 27

p.25 line 10

p.39 1line 12

ERRATA

the square root sign should
extend over the whole
expression b2 - 4 ac

- £246.123509 should read
0-246.123500

-9024109 should read
29-24190

Due to the unequal size of
the printed characters in the
text, the results of the
calculations in sections 24,
25 and 26 are approximate
indications only of how

they would appear on a
teleprinted sheet.

"Marcy' should read '"Many"

"hold" should read 'holds"

Author’s Note

The 803 Autocode is primarily used to enable "scientific' cal-
culations to be prepared simply and effectively for the com-
puter. In this description the full flexibility of the Autocode
system has not been used; this has been done in order to clar-
ify and accelerate the teaching of the significant powers of the
computer and its programming. The full specification should
be readily appreciated by anyone who has assimilated this in-
troductory description.

In preparing this description I should like to acknowledge the
origination of the Autocode programme by Elliott Bros. and
their helpful comments.

I should also like to mention the great assistance given to the
preparation of this introduction by the members of the College,
particularly in the Department of Mathematics, for their crit-
icisms consequent upon using previous issues for teaching
purposes, together with corrections of detail.

1st May, 1963. O.B.CHEDZOY
Department of Mathematics
Bristol College of Science
and Technology

Contents

O O-JOO U WN =

Part One

Introduction

Storage and Control

Identification of Storage

Instructions - Arithmetic on Numbers
Specification of Numbers
Instructions - Functions of Numbers
Peripheral Equipment

Instructions - Input of Data
Specification of Numerical Data
Instructions - Output of Results
Instruction - Stop

Example of a Short Programme (1)
Example of a Short Programme (2)
Miscellaneous Exercises

Part Two

Counters
Instructions - Arithmetic on Counters
Instructions - Functions of Counters

Instructions - Input and Output of Counters

Detail of Print Instructions

Control of Printing Layout

Decisions within a Computer
Reference Points

Instructions - Jumps

Setting Instructions

Complete Example (1)

A Simple Loop - Complete Example (2)
A Counting Loop - Complete Example (3)
Miscellaneous Exercises

Part Three

Extensions to Store Numbering - Numerical Sll.fflces
Extensions to Store Numbering - Variable Suff}ces
Extensions to Store Numbering - Complex Suffices
A Simple Counting Loop using a Variable Suffix (1)
A Simple Counting Loop using a Variable Suffix (2)
The Vary Instruction using Counters

The Vary Instruction using Numbers

Loops within Loops)
Setting Instructions for Extended Store Numbering
Complete Example (4)

Subroutines

Complete Example (5)

Further Flexibilities of Autocode

Complete Example (6)

Miscellaneous Exercises

Part One

1 Introduction

Programming for any computer, and the 803 is no exception,
takes the form of breaking down a problem into a list of in-
structions - called a programme - and allowing the computer
to operate on this list of instructions in conjunction with cer-
tain numerical data.

For instance, if it is required to write a programme for eval-
uating the hypotenuse of a triangle, given the values of the
other two sides, we would represent this by a mathematical
formula

a=Vyb®+cC°

The evaluation of the formula can be broken down into steps
which would follow this pattern:

(1) Multiply b by itself.

(2) Multiply c by itself.

(3) Add the result of (1) to the result of (2)

(4) Find the square root of (3) - and this is the answer a.

We have made 4 simple steps which, in effect, control the
calculation. We also raise the questions - where do b and ¢
come from? and what do we do with the answer a?

These are questions which are answered by any system of
programming. A framework of rules to be obeyed is set up,
and this is done in such a way that almost any problem can be
made to fit the rules easily. It is this set of rules and their
implementation which is involved in learning to programme
the computer, not the problem itself which must be understood
in any case.

Like all sets of rules, there are qualifications and extensions,
and even places where they may be broken; these are embell-
ishments which it is possible to learn after one has learned
the basic rules.

5

2 Storage and Control

The most essential feature of any computer operating at con-
temporary speeds is a method of storing numbers. Even in the
problem a =vb*> + ¢ the numbers b and ¢ must have been
stored somewhere; when b and ¢ were squared, b* and c?
were stored, and even when a was determined, that had to be
stored somewhere. If computation takes place at electronic
speeds, then storage must clearly be internal also at electro-
nic speeds.

In addition to the storage system for numbers, we must also
have a system for holding the list of instructions. It is then
possible to place this list of instructions within the computer's
storage, together with some numbers for it to use. In all com-
puters, instructions and numbers share the same storage
system, although the way in which this is done is not of im-
portance to the Autocode programmer.

Once we have the list of instructions and the numbers within
the computer's store, the calculation may proceed automati-
cally under its own control until it has finished the last instruc-
tion.

At the start, the control section of the computer looks at the
first instruction, identifies it and obeys it. For instance, in
the example we had just now, b would be multiplied by itself.
Once this operation is complete, the control would ensure that
the computer looks at the second instruction.

3 Identification of Storage

Although instructions are held in the same store as the numPers,
we consider them as quite different when we are programming.

A normal method of referring to unknown values is by the use

of Roman letters with suffices. This autocode system adopts

this procedure and the locations of numbers are referred to as
A B C D etc.

The Roman letters are, as shown, in upper case.

6

This apparent limitation to 26 locations will be removed later -
however, they are sufficient to write a fair number of pro-
grammes.

4 Instructions - Arithmetic on Numbers.

It is now possible to appreciate the basic forms which an in-
struction must take. For arithmetic, the four usual operations
of addition, subtraction, multiplication and division operate on
two numbers - called operands - to produce one result. Bear-
ing in mind that we are going to refer to numbers by the loca-
tions in which they are stored, the following is a list of the
four basic requirements of arithmetic.

Addition A=B+C
Subtraction A=B-C
Multiplication A=B*C
Division A=B/C

The 'Addition' instruction may be interpreted by the computer
as follows

"Take the number stored in location B, and the number
stored in location C, add them together and then place
the result in location A."

It is possible to take liberties with the right hand sides, how-
ever. A could be referred to in place of B and/or C as well
as on the left hand side. Thus the instruction

A=-A+A

means ''take the number stored in location A, and the number
stored in location A, add them together and place the result

in location A.' Here it is important to realise that the contents
of any particular location are unaltered until the instruction

is complete. The instruction

A=A+A

must therefore be interpreted shortly by '"Double the contents
of A."

7

A further extension of the arithmetic facilities is possible by
the use of constants. Suppose it was required to use the value
16.5B. The appropriate instruction would be

A=165*B
if the result was required in location A. This technique may

be applied to either or both of the operands in the four arith-
metic instructions, and also to the setting instruction

A=B (or A = -B)
This merely has the effect of making the number in location A
equal to that in B (or equal to -B).

5 Specification of Numbers

Certain restrictions apply to the writing of numbers in pre-
paring a programme. It is necessary to adhere to these
absolutely.

For Numbers values may be integers or fractional or mixed.
241.57 is permitted as is 24.157 and .24157. Scaling factors
are not allowed, and 3 x 10™ or .3 x 107 must be written as
.0003. The maximum size of a number is virtually unlimited,
but the first twelve significant digits (decimal point ignored.)
must not exceed 274, 877, 906, 944. ’

6 Instructions - Functions of Numbers

A number of mathematical operations are specified by functions
- logarithms, exponentials, square roots and so on. These
are listed below with their meanings

SIN sine

COS cosine

TAN tangent

ARCTAN arctangent (tan™)
LOG logarithm (base e)
EXP exponential

SQRT square root

INT integral part
FRAC fractional part
MOD modulus

8

The instructions for evaluating a function are as would be
expected

A =1LOGB
(or A = -LOG B)

which means evaluate the logarithm (to base e) of the number
in location B and place this value in location A.

The three trigonometric functions SIN, COS and TAN, operate
on angles quoted as a fraction of two rightangles, i.e.

A=COSB

where B is equal to 1/3, gives A a value of .5 (60° = .3333 x
180°). ARCTAN always gives angles in the first twe seeters. uJT
o Ros quﬂolmut)

The function A &g)
=1 >t

A =FRACB

takes the fractional part of B and places it in location A. It
should be noted that where

B =12.23 |, A=.23
B=-12.23 , A=-23

7 Peripheral Equipment of 2 Computer

In a digital computer, as with any machine, it is necessary to
provide it with communication channels so that it may be fed
and may receive information. In the case of the 803, these
channels take the form of paper tape, punched cards and mag-

netic tape, although here we are concerned with the medium
of paper tape.

Paper Tape provides a means of recording, in a suitable con-
tinuous medium form, letters and digits which are punched on

a keyboard. The detailed description of the system employed

is unnecessary at this stage, since the immediate concern is
the preparation of a programme and the data on which it will
operate. To this end, we must explain how we give instructions
to achieve the "input" of information and the "output" of results.

9

8 Instructions - Input of Data
READ A

means '"Read the next number available at the tape reader and
place this number in location A."

9 Specification of Numerical Data

The specification for values of numbers on the data tape is the
same as that for numbers in the programme but in this case

it is possible to quote a number with a scaling factor of a power
of 10;

i.e. in the form .1234/-2 or .5678/5
are equivalent to .001234 or 56, 780

i.e. the number after the oblique indicates the power of ten
which multiplies the fractional decimal number.

The instruction READ A refers to integral, fractional or
mixed numbers as for constants, and also to fractions with a
scaling factor.

It is important to realise the difference between constants which
are included as part of the programme and the data which the
programme itself causes the computer to accept. For instance,
one solution of an equation

ax® + bx + ¢ = 0 is known to be x = -b + Vb® - 4ac
2a

In this case, a programme of instructions may be written to
evaluate X, given the values of a, b and c. The programme
itself will contain two constants, 4 and 2, but the list of in-
structions will evaluate x for any value of a, b and ¢ which
may be given. Thus the programme would be arranged to call
for the three values of a, b and c¢ from the tape reader; the
values of a, b and ¢ are regarded as data.

10 Instructions - Output of Numbers
It is necessary to be able to pass the results from the machine's

10

store to an externally visible one. This is achieved via the
paper tape punch, and a PRINT instruction:

PRINT A

which is interpreted by the computer as print out the contents
of location A on the tape. (This instruction is incomplete as
it stands - further detail will be given in Part II)

11 Instruction - Stop

At the end of a programme it will be necessary to include an
instruction to tell the computer to stop. This instruction is
simply

STOP

12 Example of a Short Programme (1)

Suppose we now look at the example which was first quoted -
to evaluate the hypotenuse of a triangle, given the first two
sides - i.e. evaluate

vaZl + b?

The lengths to the two sides are a and b and we want to write
the programme to deal with any values of a and b which we
may care to present to the computer on paper tape.

Our programme must first call for the values of a and b from
tape and then carry out the calculation as determined earlier
by the application of our special rules. The programme must
then look like this: (and suppose 1st side = 4 and 2nd side = 3).

Values in locations

A B
READ A 4 =
READ B 4 3
A=A*A 16 3
B=B*B 16 9
A=A+B 25 9
A=SQRT A 5 9
PRINT A 5 9

STOP
The value printed will be 5.
11

Part Two

14 Counters
There are, in fact, two types of numerical values which can’
be held in the computer store:

Numbers and Counters

The Numbers have already been described, and take any value,.
positive or negative, but counters may take integral values
only (positive or negative).

We refer to the locations of Counters by the use of Upper Case
Roman Letters, but we use different ones to those used for
numbers. In this document the locations of Numbers are re-
ferred to as ’

A B C D etec.
and the locations of Counters as
I J K L etc.

15 Instructions - Arithmetic on Counters

The operations are similar to those on numbers, ,except that
they do not include division.

Addition I=J+K
Subtraction I=J-K
Multiplication I=J*K
Setting 1=J (or I=-J)

There is NO division operation for counters. J and K may be
replaced by I, or by a constant, for example

I=1+2

Any constants used in conjunction with counters must be
integers.

14

16 Instructions - Functions involving Counters
Certain functions are available for use with counters. The
most straightforward of these is

I=MODJ
which places the arithmetical value (i.e. irrespective of sign)
of the number in location J in location I.

The other functions concern both counters and numbers

I=INTA
and
B = STAND J

The first of these, I = INT A, places the integral part of the
number in location A into counter location I as an integer.

Conversely, B = STAND J, places the integer held in location
J into number location B in the appropriate form.

Under no other circumstances can counters be changed into
numbers and instructions such as

A = B+J
will cause failure.

17 Instructions - Input and Output of Counters
The Instruction

READ I

is interpreted by the computer as 'Read the next number avail-
able on the data tape and place it, in integral form, in Counter
location I.'

If, however, the number is not an integer, it will not go into
a counter location, and will cause failure.

The integer to be read in must be written as 5 and not 5. or

5.0. The maximum value of an integer to be held in a counter
is 274, 877, 906, 943.

15

The contents of a counter may be printed out by using the
instruction

PRINT I

but this requires slightly more detail (Section 18).

18 Detail of PRINT Instructions

There are several types of print instructions, but three only
are quoted below, and are sufficient for normal use.

(1) PRINT A, M:N
(2) PRINT A, M/
(3) PRINTI,M

In each case the following rules hold:

(i) The first character printed is the sign (- for negative
numbers, space for positive numbers)

(ii) Non-significant leading zeros are suppressed (they are
replaced by spaces)

(iii) Two spaces always follow the printing of a number.

In the following examples, the spaces are shown by the
symbol ¢.

(1) PRINT A, M:N

means print the contents of location A, with M decimal digits
before the point and N digits after. The total number of char-
acters printed is (M+N+4). (M+N) should not be greater than 9.
If A =246.123473, then
PRINT A, 3:4 will cause ¢246.1235¢¢ to be printed and
PRINT A, 4:4 will cause ¢246.1235¢¢ to be printed, but

PRINT A, 2:4 will cause a question mark on the next line
followed by the number printed out in the form A, 9/ (see
below) indicating that it was larger than anticipated.

16

If A=-246.123473 then
PRINT A, 3:4 will cause -246.1235¢¢ to be printed, and
PRINT A, 4:4 will causeff-246.1235¢¢ to be printed.

(2) PRINT A, M/

means put the contents of location A, in scaled form with M
digits accuracy. The total number of characters printed is
(M+8). M should not exceed 9.

If A= -246.12347, then
PRINT A, 7/ will cause -.2461235/¢03¢¢ to be printed, and
If A =.00002314, then
PRINT A, 3/ will cause $.231/- 04¢¢ to be printed.
(3) PRINTI, M

means print the value held by counter I as an M decimal digit
number. The total number of characters prmted is (M+3).
M should not exceed 12.

If 1= -241, then
PRINT I, 5 will causgqmﬂl(pq) to be printed.

19 Instructions - Control of Layout

The layout of the printed values is important - as also is the
correct heading or title at various points.

The instruction

TITLE
VALUES OF F(X)

(3 sp) X (10 sp) F(X)/

will print

VALUES OF F(X)

DOPX Pdxpppppppp F (X)

The title is always terminated by //

So far, we have considered the motion of a printer across the

17

page. We can also instruct it to start a new line at the left
hand end of the margin. This is effected by the instruction

LINE

However, on occasions it may be desirable to space several
sets of results by more than one line. Instead of writing this
instruction five times, the equivalent may be achieved by

LINES 5

It may be desirable to separate columns of figures being
printed - this may be achieved by the instruction

SPACES 1
or
SPACES 7

causing 1 or 7 spaces to be printed.

The width of a teleprinter page is 83 inches, but only 69 char-
acters may be printed across it - a cha.racter occupying ;, inch.
A line is § inch high.

NOTE It is always highly desirable to give each problem a
Suitable title. Considerable attention must be paid to the layout
of results for simple and effective use to be made of them.

20 Decisions within a Computer

So far, in the description and examples, we have considered
only the case where a programme is a list of instructions to
be sequentially obeyed. This, as you will learn later, does not
represent the most efficient way in which a computer may be
used - and indeed it is limiting.

For instance, the previous example of finding the root of a
quadratic needs a decision to make it foolproof if b’><4ac, then
the root will be complex and we shall want to deal with the
answer in a different manner.

All decisions may be said to rest on the judgment of series of
problems each of which may be answered either "yes' or 'mo".
It is a common case to have a number of possible answers to

18

a question - but these may be split into a series of subsidiary
simple questions which, when taken as a whole, represent a
complicated question.

A question which may have two possible answers requires
.narmally, .inany instruction routine, two possible courses of
.action. .In-a programme where all instructions are normally
iin-gequence, the only possible alternative is to arrange for a
break in the sequence of instruction - or, in computer terms
a Hjump. "

However, when there is a break in the sequence of instructions,
or a choice of courses of action, it is necessary to be able to
specify the next instruction if the sequence is to be broken.
This is effected by a numbering system, using Reference
Points. Thus, if the sequence is to be broken, the instruction

JUMP @ 3

will say, in effect, jump to reference point 3.

21 Reference Points

Reference points are numbered from 1 upwards. Reference
point 1 is usually the start of the programme. The other re-
ference points are placed in association with instructions
which are required for various entry and re-entry positions
after using jump instructions, but need not occur in numerical
order.

22 Jump Instructions

There are three types of Jump instruction - all of which refer
to reference points as a new source from which to accept in-
structions. These are:

JUMP @n
JUMP IF A=B@n
JUMP UNLESS A=B@n

19

The first of these is an unconditional jump - i.e. it always
causes the sequence of instructions to be broken and for the
next instruction to be that at reference point n.

The second of the instructions, JUMP IF, means compare the
two quantities which are given, and if that statement is satis-
fied, then the next instruction is that at reference point n, if
the statement is not satisfied, then the next instruction is the
one in immediate sequence. In this case the contents of loca-
tion A are compared with those of location B. If, and only if,
they are equal, will a jump be made.

The third of these instructions, JUMP UNLESS, treats the
statement in the reverse manner; a jump is made if, and only
if, it is not satisfied. In the above example, the contents of
location A are compared with those of location B: if they are
equal no jump is made; if they are unequal a jump to reference
point n is made.

The examples given above use the idea of A = B as the con-
dition to be investigated. The condition chosen may be any of
those which have been detailed in the arithmetic instructions
or function instructions. In addition, the = sign may be re-
placed by an unequal sign, either > or <. It is therefore
possible to have a very large number of conditions to be sat-

isfied.

Typical examples are:

A=B A4 A>4.35
A=B/2.5 A<B+C “A>4*B
A=4+B A<LOG B A>SIN B
I=J IKO D7
1=J*3 IKJ-14 I>6+J
Example

In the case of the example given in Section 13, the programme
may now be extended to test for imaginary values in the solu-

tion of a quadratic equation - this is the case where b® - 4ac

is negative. (Example 4x* + 2x + 5 = 0)

20

Contents of Locations
D E
1) READA & o
READ B
READ C -
D=B*B 4 -
E=A*C 4 20
E=4*E 4 80
JUMP IF D<E@2 Test satisfied, next instruction
D=D-E at Reference Point 2
D=SQRT D
D=D-B
E=2*A . Not obeyed in this example
D=D/E
PRINT D, 1:4
STOP
2) TITLE IMAGINARY// 'IMAGINARY' printed
STOP)

23 Setting Instructions

The computer has to be fed its instructions via the tape reader;
it is not psychic and it is necessary to tell it at the beginning

of the tape the general dimensions of the problem it is about

. to be given, so that it can reserve the rlght number of locations
for numbers, counters etc.

‘ There are 5 setting mstz"uctions altogether; four of these are
before the commencement of the 1nstruct10ns, the other is -
after the completion.

The four instructions at the beginning are as follows, where
the four letters on the left indicate the type of setting.

SETS IJK

SETV ABC

SETF TRIG SQRT LOG EXP
SETR 16

21

The first line, SETS, means that the following locations for
counters are being used; I, J and K. Each letter used in the
programme as a counter location must be nominated.

The second line, SETV, means precisely the same thing re-
ferring to numbers; here A, B and C are used.

SETF is followed by a list of the functions which are used in
the programme. Setting them ensures that they are properly
incorporated.

Any of these three settings may be omitted from Setting. If for
instance, there are no counters and no functions being used
one needs to SETV only.

The last of these four settings is SETR - this is to indicate
the number of reference points used in the programme. This
must always be used, and of course there always is at least
one reference point at the start. In this case SETR 16 means
that the highest reference point is 16 - and although it is poss-
ible for some of the intermediate ones to be omitted this is not
usually the case.

A START instruction must be placed at the end of the tape; for
example, we use

START 3

where this particular instruction means that the start of the
programme is at reference point 3. Normally, of course, the
starting point will be at reference point 1, in which case the
instruction is

START 1

24 Complete Example (1)

The following is a complete example for extracting the roots
of any quadratic equation with full consideration of all possi-
bilities, and for the layout and correct heading of the results.

22

1)

2)

3)

Programme

SETV ABCDEF
SETF SQRT
SETR 4

Notes

No counters set

6 numbers A-F used
Function used

Highest Reference Point

TITLE ROOTS OF A QUADRATIC EQUATION//

LINES 2
READ A
PRINT A, 6/
READ B
PRINT B, 6/
READ C
PRINT C, 6/
LINES 2
D=B*B
E=A*C
E=4*E
JUMP IF D<E@4
JUMP UNLESS D=E@3
TITLE EQUAL ROOTS//
SPACES 3
=-B
E=2*A
F=D/E
PRINT F, 6/

'~ STOP

TITLE REAL ROOTS//
SPACES 4

D=D-E

D=SQRT D

E=-B

F=E-D

F=F/A

F=F*.5

PRINT F, 6/

PRINT F, 6/
STOP

Double line space
Occupies 14 characters
Occupies 14 characters

Occupies 14 characters

Double line space
b2

4ac

Test for Complex Roots
Test for Real Roots
Occupies 11 characters
Makes it 14 characters

Evaluates -b/2a

Prints below b (14 characters)
START instruction only at end
Occupies 10 characters
Makes it 14 characters

vb%-dac
-b-/b*-4ac
2a

Prints below b (14 characters)

-b + Vb?-4ac
2a

Prints below ¢

(Programme continued overleaf)

23

4) TITLE COMPLEX ROOTS// Occupies 13 characters

SPACES 1 Makes it 14 characters
D=-B (NB not SPACE)
D=D/A -b/2a (Real Part)

D=D/2

PRINT D, 6/ Prints below b (14 characters)
E=E-D

E=SQRT E y 4ac-b?

E=E/A 2a

E=E/2

PRINT E, 6/ Prints below ¢

STOP

START 1 Starting Reference point at

end of programme only.

Special Notes

1 Reference point 2 is never referred to - it is redundant,
but it is not necessary to delete it.

2 The evaluation of -b/2a may be done in any order (here
three different ways are used) allowed by the rules of arith-
metic.

3 Care has been taken to align the answers immediately
below the coefficients of the equation which are printed out
each time. This is illustrated by the following three examples.
(i) 4x*-20x+25=0
(i) 222 +17x+2 =0
(iii) x* -6x+25 =0
The results for these three examples are shown below in exactly
the form which would be produced by the computer.
Example (i)
ROOTS OF A QUADRATIC EQUATION
400000/ 01 -.200000/ 02 .250000/ 02
EQUAL ROOTS .250000/ 01

24

Example (ii)

ROOTS OF A QUADRATIC EQUATION
.200000/ 01 .170000/ 02 .210000/ 02

REAL ROOTS -.150000/ 01 -.700000/ 01

Example (iii)

ROOTS OF A QUADRATIC EQUATION
.100000/ 01 -.600000/ 01 .250000/ 02

COMPLEX ROOTS .300000/ 01 .400000/ 01

25 A Simple Loop - Complete Example (2)

Maféy computer programmes contain loops; this is the des-
cription applied when a group of instructions within the pro-
gramme is obeyed more than once in its execution by the com-
puter. A very simple example of a loop is encountered in the
following example, which is specified in problem form:

Problem

A set of positive values of x (all less than 1) exist on a data
tape. At the end of these values a zero is punched.

Write a programme to evaluate the function
Loge(6x—3+2/x)

printing out all values to 5 decimal places in tabular form, so
that the tape will stop on encountering the zero value.

Progfamme Notes
No counters set
SETV AB Numbers held in A and B only
SETF LOG Log function required
SETR 3 3 reference points
1) TITLE Title with heading for each
VALUES OF A FUNCTION column
(3sp) X (6sp) FUNCTION//
2) READA Read from tape, start of loop
JUMP UNLESS A=0@3 If zero,
STOP Stop

25

3) LINE Start a new line
PRINT A, 0:5 Print A, 9 characters printed
B=2/A
B=B-3
A=6*A Calculation
B=A+B
B=LOG B
PRINT B, 2:5 Print B, 11 characters printed
JUMP @2 End of loop
START 1

Special Notes

1 The accuracy of the numbers is given in the question; the

extreme values of the function may be calculated.

Zero is used as the end-of-tape character.

There is no STOP as the last instruction, this is an un-

conditional JUMP back to the beginning of the loop.

4 The loop consists of the instructions between reference
point 2 and JUMP @2, except the STOP instruction.

5 The effect of the jump instruction is usually shown in a
programme by arrows. This simplifies the understanding
of the programme by the writer and anyone else, but it is
not of course necessary for the computer.

6 The appearance of the printing will be:

w N

VALUES OF A FUNCTION

X FUNCTION
.91692 1.54388
.87264 1.51022
712538 1.41329
.61864 1.37238
.60813 1.37056
.59951 1.36943

26 A Simple Counting Loop - Complete Example (3)

The number of times which a loop is repeated may be simply
controlled by a counter. This identifies the main role of
counters - as a numerical control on the calculation.

26

Problem

Ten values of an angle A in degrees (A<180° exist on a data
tape. Write a programme to tabulate sin A + cos A against
A for each of these values, to 3 d.p. accuracy.

Programme

SETS I
SETV AB
SETF TRIG
SETR 2

1) TITLE
SIN A +COS A

(4sp) A (7sp) F(A)//
1=10

2) LINE ¢
READ A
PRINT A, 3:3
A=A/180
B=SIN A
A=COS A
A=A+B
PRINT A, 1:3
I=1-1)
JUMP UNLESS I=0@2 ——
STOP
START 1

An illustration of typical output is

SIN A+ COSA

A F(A)
172.316 -0.857
168.422 -0.779
161.311 -0.627
122.262 0.312
121.989 0.318
120.003 0.366
81.472 1.137
46.222 1.414
41.119 1411
18.689 1.268

27

(1)

(2)

@)

(4)

(5

(6)

(7)

(8)

Miscellaneous Examples

A data tape has four values, a, b, ¢ and d. Prepare a
programme to evaluate the expression

a% + bc - ad
b+c

printing the answer with 2 integer figures and 3 decimal
places.

A data tape carries a series of values of x (x<1), term-
inated by a zero value. Write a programme to evaluate the
polynomial 4x® + 3x* + Tx - 5, tabulating the answers to an
accuracy of 3 d.p.

Prepare a programme to accept three different numbers
from a data tape and print them out in descending order of
magnitude. (5 significant figures, 2 d.p.)

A data tape has a value a followed by three possible values
of b; this sequence of numbers is repeated until a is given
a zero value. Evaluate log (a - 3b?) and tabulate your
results; in the cases where the expression is indeterminate,
the printing of a value is replaced by spaces. (The results
will not exceed 9 and accuracy is required to 4 d.p.)

A set of values on a data tape represent the number pur-
chased of a certain product. Orders of up to a dozen are
10/ - each; up to 6 dozen at 9/6d each; higher quantities
at 9/3d each. Write a programme to evaluate the cost in
£ of the numbers on the tape. The last value on the tape
is zero.

A data tape carries the hours worked each day by a cer-
tain employee. The standard working day is 8 hours, for
which he is paid at 5/- per hour and overtime is paid at
13 rate. Write a programme to read the data and evaluate
his gross pay for the week, in £.

Extend the programme for question 6 to allow for 11 rate
on Saturdays and double rate on Sundays, when no normal
time is worked.

Two values exist on a data tape represent angles A and B,
both in degrees. Write a programme to tabulate tanA,

28

tan(A+B), tan(A+2B), tan(A+3B), up to tan(A+9B), against
the angle.

(9) Write a programme to evaluate the square root of a number
x read from a data tape, using a second data number as a
first approximation a, and where a second approximation
a, is given by

a?-x

a2 =31 —Z—a—
1

Print out the result a, and the difference a,-a,.

(10) Extend the programme in question 9 so-that a third approx-
imation a; may be made using a, in place of a,, and then
a fourth and so on until the differences between two succ-
essive approximations is less than .0001.

29

Part Three

27 Extensions to Store Numbering - Numerical Suffices

In Section 3 we identified the various locations in the store
supply by means of the Roman letters, A, B, C etc.

It is, however, necessary to extend the store numbering system,
otherwise we are clearly limited to a total of 26 locations for
numbers and counters. This extension is achieved in the usual
way by employing suffices to the letters. Thus a value which
might normally be referred to in mathematical notation as

a,; becomes A(15), the suffix being quoted in brackets. Simi-
larly b, becomes B(7) and c,; becomes C(33).

Instructions within a programme accept this suffix notation in
exactly the same way as has been the case for no suffices; i.e.
an addition instruction might be

A(15)=B(7)+C(33)
or
E=B(14)+E

Note that the suffices must be integral and positive, but zero
is permitted; in fact A(0) is identical to A.

28 Extensions to Store Numbering - Variable Suffices

We may wish, however, to refer to locations in the store
which we are unable to identify at the time of writing other
than by means of a general suffix i such as pertains to a;. In
th(e Autocode, we adopt a similar system, which refers to
A(D).

As an example of the way in which a suffix I may be used,
consider the case of 3, 500 customers of a firm having out-
standing accounts, the values being held in locations A(1) to
A(3500) corresponding to the account numbers of the customers.

30

To find the value of any particular account, where the number
of the account is available on a data tape, the programme need
comprise two instructions

READI
PRINT A(I)

The first instruction causes the number of the account (as an
integer) to be read and placed in counter I. The contents of
location A(357) - i.e. the value of account 357 - will be
printed when 357 is on the tape.

NOTE All the suffices must be integral and positive or zero -
therefore the suffices must refer to counters and not to
numbers, even if the number happens to be an integer.

29 Extensions to Store Numbering - Complex Suffices

There is considerable flexibility in the way suffices may be
described. For instance, in the problem quoted above, the
accounts could be held in locations A(101) to A(3600) in which
case the instruction would be

READ I
PRINT A(I+100)

The value of I is unaltered by such an operation - it is only
the value of the suffix which is I+100.

Other forms of suffix which are permissible include

A(51)
A(21+3)
A(1+J)
A(41+J)
A(1+3J)

All suffices must include combinations of counters or integer
constants. The overall value of a suffix must never be negative.

31

30 A Simple Counting Loop using a Variable Suffix (1)

A frequent requirement in a problem is to operate success-
ively on numbers in store locations. An obvious case of this
is when there is a set of numbers on a data tape which must
be placed in successive locations from A(0) upwards, until,
say, a zero value is encountered to mark the end of the data.

The following programme would suffice

1) I=0
2) READ A(I)& .
I=I+1 l

JUMP UNLESS A(I-1)=0@2

I=0 initially so that the first time the READ instruction is
obeyed the value read will go into location A(0); I is then in-
creased by 1 and the process repeated until the zero value is
found.

31 A Simple Counting Loop using a Variable Suffix (2)

Alternatively the problem might be to read 50 numbers from
the tape and place them in successive locations A(0) to A(49).

In this case the programme would be

1) I=0
2) READ A(I) &
I=I+1

JUMP UNLESS I=50@2 ——

The process is similar to that used in Section 30, but the
control this time is exercised by the counter, now serving the
dual purpose of limiting the number of times the loop is re-
peated and the placing in successive locations of the values.

32 The VARY Instruction, using Counters.
The VARY instruction is used to simplify the process of pre-

32

paring counting loops. As an example, the previous counting
loop in Section 31 above, would become

VARY 1=0:1:50 <—
READ A(I)
REPEATI

where the instructions VARY and REPEAT mark the begin-
ning and end of the loop.

The instruction VARY I defines the controls of the loop. In
the above case, it means that I successively assumes the
values of 0, 1, 2,..... ,49: i.e. the loop starts by assuming
that I=0 the first time and I increases by 1 each time the
loop is repeated until the loop is completed 50 times in all.
The REPEAT I instruction is associated with the previous
VARY I instruction in the programme.

Similarly

VARY 1=5:2:6 &—

REPEATI ——

means that a loop will be started with I=5, and repeated for
I=7, 9, 11, 13 and 15, making a total of 6 passages in all.
Note that the values of I should not be interfered with during
loop, unless it is expressly desired.

33 The VARY Instruction, using Numbers.

The VARY instruction may equally well be used for control-
ling loops where numbers are being varied in steps.

For instance

VARY B(15)=1.9:.2:17&——

REPEAT B(15)

would be interpreted as B(15) assuming the value 1.9 for the
first time, and on each repeat increasing by .2 to 2.1, 2.3,

33

etc. until the 17th time when the final value of B(15) will be
5.1. The number of times which the loop is performed is
clearly integral and positive.

34 Loops within Loops

It is necessary and desirable at times to be able to control
loops from more than one source. Consider the problem in-
volved in calculating the value of a function f(a,b) for values
of b of 1.3, 2.4, 3.5, 4.6, 5.7, 6.8 and for 10 values of a
which are read from a data tape.

The programme for this would take the form
VARY I=0:1:10 6——

READ A
VARY B=1.3:1.1:6 &—

35 Setting Instructions - Extension of Store Numbering

The extensions of store numbering discussed earlier must be
taken into account in the setting instructions for both counters
and numbers. For instance, if counters I(0) up to I(10) are
used, together with J, and numbers A, B(0) to B(22) and
C(0) to C(15) are used the two pertinent setting instructions
are

SETS 1(10)J

SETV AB(22)C(15)

i.e. the highest suffix used only is quoted respectively after
the counter or number.

34

If a variable suffix has been used,--the highest value of the
suffix to be encountered must be entered. If this value is not
known, then a good estimate of the top value plus a small
margin for error should be allowed.

36. Complete Example (4)
Problem

In a factory it is found that a machine operator's productivity'y
is sensitive to the pressure under which he is required to
work. It is found that the number of faulty items he makes

per hour is given by .0011 n® where n is the number of
attempted items per hour. (If n = 20, .0011 n® = 8.8 meaning
that 9 must be scrapped).

The profit on a completed item (excluding labour costs) is

£.25 and the loss on each scrap item is £.1. In order to
design a bonus scheme, it is required to tabulate the following:
Number of attempts per hour, Number of scrap, Number of
good items, Total profit on good items, Total loss on scrap,
Margin of overall profit. (n may be taken in the range 5 to 24
inclusive).

Method

The programme below illustrates the use of VARY and the
INT and STAND instructions. The method uses an overall
loop to consider-each value for the number of attempts as a
counter. This is turned into a number to evaluate .0011 n®
and the integral part is placed in counter J and increased by
1. (No value of .0011 n® can be evaluated as a whole number,
therefore the number of scrap items is one more than the
integral value of .0011 n3). This value is printed and the
number 'of good items is found by subtraction. These two
countérs are turned back to numbers to evaluate the profit,
lossand margin, thus enabling the table to be printed out as
shown.

NOTE No input data are required in this case.

35

Programme to Calculate Productivity Estimates

1)

SETS IJK

SETV ABCD

SETF INT FRAC STAND
SETR 1

TITLE

PRODUCTIVITY ESTIMATES

ATTEMPTS SCRAP GOOD PROFIT LOSS MARGIN//
VARY 1=5:1:20 &—
PRINT I, 5
A=STAND I
B=A*A
B=B*A
B=.0011*B
J=INT B
J=J+1
PRINT J,5
K=I-J
PRINT K, 5
B=STAND K
C=STAND J
B=B*.25
PRINT B, 4:2
C=C*.1
PRINT C, 4:2
D=B-C
PRINT D, 4:2
LINE
REPEATI
STOP
START 1

36

Table produced by Programme for Productivity Estimates
PRODUCTIVITY ESTIMATES
ATTEMPTS SCRAP GOOD PROFIT LOSS MARGIN

5 1 4 1.00 0.10 0.90

6 1 5 1.25 0.10 1.15

7 1 6 1.50 0.10 1.40

8 1 7 1.75 0.10 1.65

9 1 8 2.00 0.10 1.90
10 2 8 2.00 0.20 1.80
11 2 9 2.25 0.20 2.05
12 2 10 2.50 0.20 2.30
13 3 10 2.50 0.30 2.20
14 4 10 2.50 0.40 2.10
15 4 11 2.75 0.40 2.35
16 5 11 2.75 0.50 2.25
17 6 11 2.75 0.60 2.15
18 7 11 2.75 0.70 2.05
19 8 11 2.75 0.80 1.95
20 9 11 2.75 0.90 1.85
21 11 10 2.50 1.10 1.40
22 12 10 2.50 1.20 1.30
23 14 9 2.25 1.40 0.85
24 16 8 2.00 1.60 0.40

37 Subroutines

It sometimes occurs during a calculation that a set of instruc-
tions to perform a certain function has to be repeated since
there appears to be no simple way of using a loop to effect
this without considerable complication.

The instruction
SUBR 5

has the effect of making the computer take its next instruction
at reference point 5 (as in JUMP @5), but on reaching an in-
struction

EXIT

-the computer will take further instructions from immediately
after the SUBR 5 instruction.

37

An example of the use of the subroutine function will clarify
the method. o

38 Complete Example (5)
Problem

Write a programme to evaluate y where y =Vx® + 1 +/&2 1+ 9
for x =0 to x = 2 in steps of .2, to an accuracy of 3 d.p.

Programme

SETV ABCDX
SETF SQRT
SETR 2

1) TITLE
EVALUATION OF A FUNCTION//
VARY X=0:.2:11——
A=X
B=1
SUBR 2
D=C ¢
A=2*X
B=9
SUBR 2
C=C+D &
PRINT C, 1:3
REPEAT X —
STOP

2) C=A*A ¢
C=C+B
C=SQRT C
EXIT
START 1

NOTE The subroutine commences at reference point 2 and
evaluates v A? + B and places the result in C each time it is
entered. The first time it is used, the EXIT instruction
refers back to D=C, and the second time it is used, the EXIT
instruction refers back to C=C+D. Care must be taken to make
sure that the data for the subroutine are in the correct loca-
tions and that the subroutine does not obliterate any useful
results so far obtained.

38

39 Further Flexibilities of Autocode

In certain operations, further flexibilities of the autocoding
system may be achieved by using the contents of a counter
location where hitherto integers have been used for clarity.

JUMP Instructions

The three types of JUMP instruction all terminate in a
specification of the reference point e.g.

JUMP @4

This reference point may be the contents of a counter location
- for example

JUMP @J

and if counter J hold:7, the effect of the instruction is to be
obeyed as

JUMP @7

This type of operation is used in the last complete example

(6).

PRINT Instructions

The three print instructions may be quoted as

PRINT A,J:K
PRINT A, J/
PRINT I,J

i.e. the actual PRINT Instructions may have their number of
positions governed by the contents of counter locations. Thus
if counters J and K contain 3 and 5 respectively, then

PRINT A, J:K
will be interpreted as
PRINT A, 3:5

39

SUBROUTINE Instructions

It is desirable at times to specify subroutines by the contents
of a counter location. For example

SUBR L

where L is a counter which contains 12, is interpreted as

SUBR 12

and will enter the subroutine which commences at reference
point 12.

40 Complete Example (6)

It is essential in the writing of programmes for any problem
to be able to see quite clearly how the problem is to be tackled.
This programme is a fairly complicated example of a short

programme.

Problem

The four main batsmen of a cricket side are called Smith,
Jones, Green and Morgan. Their scores in each innings are
recorded on a data tape, starting with those of Smith, and
concluding with those of Morgan. All scores are recorded as
the integers which they represent apart from not out scores
which have 1000 added to them. After the last score for each
batsman, a negative number is punched on the data tape.

Write a programme to accept this data tapeé.and to tabulate
the following for each batsman - Name; Number of Innings;
Number of times not out; Total Runs scored; Highest Score;
Average (total runs/times out). The figures for each batsman
must be tabulated in order of decreasing averages.

Method adopted

The method adopted must clearly be to gather all the data
before any print out commences. The table below gives an

40

illustration of the way in which the stores are allocated to the
various numbers.

Store B C D E F
Tot.al Times [Total| Highest Average
Innings|not out|runs | score
Smith 0
Jones 1
Green 2
Morgan 3

These 20 numbers must be evaluated before any printing. All
the data is in groups according to each of the four batsmen.
Procedure to be adopted is to read Smith's data (first group)
and then to adjust the totals as each number is read, after
ensuring that all the totals start as zero. As soon as the neg-
ative number is encountered, the average is filled in. The
process is repeated for the four remaining groups, the gen-
eral suffix I taking values 0, 1, 2 and 3 successively.

After the conclusion of this part of the programme, the re-
mainder of the programme commences with a search for the
highest average, each average being compared with the high-
est so far found in G. When the highest has been found, the
appropriate name is printed (selected by the JUMP @L in-
struction) followed by the appropriate values across the table.
The process is then repeated for the remaining three times
to provide the full table; notice that at the end of the print out
for a batsman his average is made zero - this ensures that it
is not considered again for inclusion in the table.

41

(474

1)

2)

3)

4)

Programme to Calculate Cricket Batting Averages

Programme
SETS IJKL

Notes

SETV AB(3)C(3)D(3)E(3)F(3)G

SETR 10
TITLE

CRICKET BATTING AVERAGES

INNS N.O. TOTAL HIGH AVGE//

VARY 1=0:1:4
B(I)=0
Cc(1=0
D(1)=0

JUMP IF A<L0@4
JUMP IF A<1000@3
A=A-1000
C(=C(1)+1
B(I)=B(I)+1
D(I)=D(I)+A

JUMP IF E(I)>A@2 7]
E(I)=A

JumMP @2—"——1

F()=B(I)-C([}¢«—
F(D)=D(1)/F(1)
REPEAT 1

Set totals to zero

Look for negative number
Look for "not out"
Increase "Innings'" by 1
Increase ""Total"

§Check highest score

}Calculate average

Increase ""Times not out' by 1

1574

5)

6)
7)
8)

9)
10)

VARY K=0:1:4 <
G=0

VARY 1=0:1:4]
JUMP IF G> F(I)@5
G=F(I)

J=1

REPEAT I

L=J+6

LINE

JUMP @L

TITLE SMITH//
JUMP @10 ————
TITLE JONES//<]
JUMP @10— |
TITLE GREEN//
JUMP @10————./
TITLE MORGAN,
PRINT B(J), 5:06—
PRINT C(J), 5:0
PRINT D(J), 6:0
PRINT E(J), 5:0
PRINT F(J), 4:2

F(J)=0
REPEAT K
STOP
START 1

Look for highest average

Counter controlled Jump

Print table

Reduce average to zero

Input Data for Cricket Batting Averages

1046 Smith

Jones

33

38

47

112

101 Green
0

2

5

1

1000

Morgan

44

Illustration of Output

CRICKET BATTING AVERAGES

INNS N.O. TOTAL HIGH AVGE

MORGAN 8 5 291 72 97.00
SMITH 9 2 444 142 63.43
JONES 10 1 545 96 60.56
GREEN 10 1 339 112 37.67

Miscellaneous Examples on Part Three

A data tape contains 60 positive numbers, the second 30
being "'weights'' attributed to the respective observations
of the first 30. Evaluate by programme the mean value
per unit weight. (The final mean is less than 100 and
should be printed to 3 dec. places).

Write a programme to evaluate the amount of income
tax payable by persons with incomes varying from
£1,000 to £2,000 in steps of £50 assuming the following:

"(i) Allowances totalling £850.

(ii) Income Relief at 2/9 of income.

(iii) Reduced tax on £50 at £.125 per £.

(iv) 2nd Reduced tax on £200 at £.375 per £.
(v) Standard rate of tax at £.45 per £.

Tabulate tax against income, tax being printed to 2 dec.
places.

Prepare a programme to read a set of 50 numbers from
tape into the store. Arrange these numbers in order of
descending magnitude - and print them out in that order.
(You may assume that all numbers are different, but
may be positive, negative or zero). They include frac-
tional numbers to 2 dec. places accuracy).

A certain democracy, with 100 representative seats
divided between two parties A and B, shows that the

45

distribution of seats approximately obeys the relation-
ship

>’ where V, and V,, are the votes

3
VA_
V.3~ A B

B B

cast for the two parties, and S M and SB are the seats
obtained respectively. '

The results of the first 10 declarations are available on
a data tape, party A first. Write a programme to predict
the final seat distribution after each result tabulating the
results to include - result number, total votes so far

for each party, predicted seats so far for each party.

£1,000 is invested at a fixed rate of compound interest
of 21% after tax. At the same time, there is a continuous
devaluing of currency at the rates quoted for 20 years
successively on tape (3% devaluation means that £1 will
buy this year only 97% of what it bought last year).
Prepare a programme to accept these values from tape,
and tabulate for each year: the year number, the face
value of the investment, the present purchasing power

of the investment compared with the original investment.
(3 dec. place accuracy required).

A data tape has integral values all lying between 20 and
40 inclusive, except the last one. Write a programme
to tabulate the frequency with which each of these values
occurs.

An index of industrial share prices is based upon the
following investments of a total of £1, 000, the base of
the index being 100.

Investment A 88 units of £2.5
" B 90 n 7" £2
" C 20 7" ll. £5
o D 200 " " £1.25
" E 40 " " £4
”" F 30 ”" " £3

The value of the share prices for each day is prepared
on a data tape in this order. Write a programme to

46

evaluate and print the % rise or fall of each share and
the value of the new 1ndex (2 dec. place accuracy
required).

8 The temperature of a critical part of a nuclear reactor
(operating at an optimum temperature of 400° C) is
supplied direct to a computer (in this case it may be
simulated by a data tape). Write a programme to accept
these values and to print out the values together with
reasons for the printing taking place, under the following
conditions:

(i) Alarm conditions - when a tolerance of 40° C from
the optimum is exceeded.

(ii) Warning conditions - when a change from the
previous reading is more than 15° C.

(iii) Normal conditions - at every 20th reading, the
16th - 20th readings are printed consecutively.

9 Four teams play a tournament at football, the matches
being played in the following order:

(1) North v. South (4) Eastv. South
(2) Eastv. West (5) West v. North
(3) Westv. South (6) North v. East

The number of goals scored in each of these matches
are recorded in this order on the data tape.

Write a programme to list the teams in order of their
success, together with the points obtained by each.

NOTE The success of a team is measured by points - 2 pts.
for a win, 1 pt. for a draw, 0 pt. for a loss. Their
overall success is the sum of these points.

10 A totalisator is in operation for a race with 5 starters.
The bets places are recorded on tape with horse number
(1, 2, 3, 4 or 5) followed by the number of units staked.
Write a programme to accept all bets and record them
until the "off" - this being indicated by a zero horse
number.

47

To evaluate the dividend, 15% of the units staked on
losing horses is deducted from the "'pool', the remainder
being paid as prize money equally distributed over the
winning units. Extend the programme to print the divi-
dend per unit staked should any of the five horses win.

(3 d.p. accuracy required).,

Produced by the NEOPRINT system

set on electric keyboards and printed by
offset lithography by Unwin Brothers Limited

AT THE GRESHAM PRESS
Old Woking Surrey England

